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Introduction

Forecast challenges

Snowfall accumulation forecasts in the
southern Appalachian Mountains (SAMS)
are difficult due to

esignificant relief (Figs. 1 & 2)

scomplex topography (Figs. 1 & 2)

*highly localized accumulations,
particularly in Northwest Flow Snowfall
(NWES) events, (Figs. 3, 6-9)

svariations in snow density (snow to liquid
equivalent ratio), (Table 1, Fig. 6)
enumerical forecast models tend to deposit
snow primarily on windward slopes and
peaks

Purpose

Assess and improve numerical forecast
model (WRF) capabilities associated with
snowfall in the SAMs.

Table 1. Storm summaries for selected snowfall events during the study
period. Meteorological data are two-hour averages during the period of
heaviest precipitation.
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Figure 1. MODIS image of NWF Snowfall evi
~1640 UTC 18 Feb 2007.

Methodology

“macro” ensembles - WRF (v2.1.1)

*36, 12, 4 km domains, 50 vertical levels
Initial conditions

*NARR (29 Ivls, 32km), NAM (38 Ivls,
12km), or GFS (22 lvls, 1°)
Physics options
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Figure 6. Vertically-pointing radar image for NWFS
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*CPS (expl); Kain-Fritsch CPS

*PBL (exp2); Mellor-Yamada-Janjic
PBL
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“micro” ensembles — microphysics tests

Figure 8. NARR analyses of (a) 500 hPa Z [dm]/ abs vort [x10° s], (b) SLP [hPa]/ 1000-
500 hPa thickness, (c) 700 hPa Z [dm]/ RH [%)], and (d) 850 hPa Z [dm]/ Temp [°C]/ RH [%]

valid at 1200 UTC 27 Feb 2008.

Figure 9. WRF 24-h “macro” ensemble simulations of (a) 500 hPa Z [m], (b) SLP [hPa],
(c) 700 hPa RH [%)], and (d) 850 hPa Temp [°C] valid at 1200 UTC 27 Feb 2008.
Blue = NARR, Green = NAM, Red = GFS
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Results
Macro — ensembles “winner” (Table 2)
*NARR initialization, ctrl physics
Micro — ensembles “winner” (Table 3)
empl, no CPS in innermost domain;
[Hong et al. (2004), WSM 3-class scheme]
Miscellaneous
*Modest differences between NARR/ctrl
and mpl simulations in

e vertical T, Td profile (Fig. 14)

* mountain wave response (Fig 17)

* trajectory forecast (Fig. 20)

—> lead to significant differences in

* acc precip forecasts (Figs. 16 & 19)

Conclusions

* “best” synoptic-scale simulation does not
assure best model acc precip fcst (Table 2)
* a probabilistic approach appears as the
only way to predict the range of realistic
potential outcomes

* what role sub-grid scale convection (e.g.
cloud rolls) and mountain waves?
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Figure 10. Poga Mountain observations of (a) average {blue} and maximum {pink} wind speed [m s], (b) relative humidity
[%], and (c) air temperature [°F] over the period 0000 UTC 27 Feb - 0000 UTC 28 Feb 2008.
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Figure 11. Composite reflectivity for NWFS event over the
SAMs region valid 1158 UTC 27 Feb 2008.

Table 2. p ion (In.) liquid eq
statistics for the “macro” WRF experiments for the 60-h
period; 1200 UTC 26 Feb — 0000 UTC 29 Feb 2008.

period; 1200 UTC 26 Feb — 0000 UTC 29 Feb 2008.

Table 3. Accumulated precipitation (In.) liquid equivalent
statistics for the “micro” WRF experiments for the 60-h

1500 UTC 27 Feb 2008
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Figure 14. Vertical T, Td [°C] profile forecasts of the
NARR/ctrl & mp1 simulations valid 1500 UTC 27 Feb 2008.
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Figure 12. Vertical T, Td [°C] profile forecasts of the
“macro” simulations valid 0300 UTC 27 Feb 2008.
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Figure 13. Water species schematics for the (a) NARR/ctrl
and (b) mp1 experiments.
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Figure 18. Backward trajectories ending at b & e ‘l { ot L Cl

Poga Mountain at 1500 UTC 27 Feb 2008 for
the outermost (36 km) NARR/ctrl simulation.

Figure 19. Accum. precip. error (In) over the 60-h period
1200 UTC 26 Feb — 0000 UTC 29 Feb 2008 for the (a)

NARR(/ctrl and (b) mp1 simulations of domain 3 (4 km).
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Figure 20. Backward trajectories ending at Poga Mountain at 1500 UTC 27 Feb 2008 for the (a)
NARR/ctrl and (b) mp1 simulations for domain 3 (4 km).

Future work

Test “best” WRF model physics
combination and initialization for 3
independent case studies (IOPs 5 - 7)
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