P3.5 Snowfall Accumulation Forecasting Challenges for the **Southern Appalachians**

Douglas K. Miller, UNC Asheville, L. Baker Perry, Appalachian State University, Sandra Yuter, North Carolina State University, Laurence Lee, NOAA/NWS, Greer, SC, Stephen Keighton, NOAA/NWS, Blacksburg, VA, and Clay Tabor, UNCA

Introduction

Forecast challenges Snowfall accumulation forecasts in the southern Appalachian Mountains (SAMs) are difficult due to •significant relief (Figs. 1 & 2) •complex topography (Figs. 1 & 2)

•highly localized accumulations, particularly in Northwest Flow Snowfall (NWFS) events, (Figs. 3, 6-9) •variations in snow density (snow to liquid equivalent ratio), (Table 1, Fig. 6) •numerical forecast models tend to deposit snow primarily on windward slopes and peaks

Purpose

Assess and improve numerical forecast model (WRF) capabilities associated with snowfall in the SAMs.

Methodology

"macro" ensembles – WRF (v2.1.1) •36, 12, 4 km domains, 50 vertical levels Initial conditions •NARR (29 lvls, 32km), NAM (38 lvls, 12km), or GFS (22 lvls, 1°) **Physics** options •Control (ctrl); Betts-Miller-Janjic CPS, YSU PBL, and Lin et al. microphysics •CPS (exp1); Kain-Fritsch CPS •PBL (exp2); Mellor-Yamada-Janjic **PBL**

"micro" ensembles - microphysics tests

igure 8. NARR analyses of (a) 500 hPa Z [dm]/ abs vort [x10⁵ s⁻¹]. (b) SLP [hPa]/ 1000 500 hPa thickness, (c) 700 hPa Z [dm]/ RH [%], and (d) 850 hPa Z [dm]/ Temp [°C]/ RH [%

Figure 9. WRF 24-h "macro" ensemble simulations of (a) 500 hPa Z [m], (b) SLP [hPa], c) 700 hPa RH [%], and (d) 850 hPa Temp [°C] valid at 1200 UTC 27 Feb 20 ue = NARR Green = NAM Red = GES

Douglas K. Miller, UNC Asheville, L. Baker Perry, Appalachian State University, Sandra Yuter, North Carolina State University, Laurence Lee, NOAA/NWS, Greer, SC, Stephen Keighton, NOAA/NWS, Blacksburg, VA, and Clay Tabor, UNCA

Results

- Macro ensembles "winner" (Table 2) •NARR initialization, ctrl physics <u>Micro – ensemb</u>les "winner" (Table 3) •mp1, no CPS in innermost domain; [Hong et al. (2004), WSM 3-class scheme] Miscellaneous
- •Modest differences between NARR/ctrl and mp1 simulations in
- vertical T, Td profile (Fig. 14)
- mountain wave response (Fig 17)
- trajectory forecast (Fig. 20)
- \rightarrow lead to *significant* differences in
- acc precip forecasts (Figs. 16 & 19)

Conclusions

- "best" synoptic-scale simulation does not assure best model acc precip fcst (Table 2) • a probabilistic approach appears as the only way to predict the range of realistic potential outcomes
- what role sub-grid scale convection (e.g. cloud rolls) and mountain waves?

Fable 2. Accumulated precipitation (In.) liquid equivalent statistics for the "macro" WRF experiments for the 60-h period; 1200 UTC 26 Feb – 0000 UTC 29 Feb 2008.							Table 3. Accumulated precipitation (In.) liquid equivalent statistics for the "micro" WRF experiments for the 60-h period; 1200 UTC 26 Feb – 0000 UTC 29 Feb 2008.						
npts=80	mean	σ	rmse	bias	corr	6	npts=80	mean	σ	rmse	bias	cor	^
obs	0.496	0.281	N/A	N/A	N/A		mp1, no cps	0.451	0.286	0.279	-0.045	0.53	1
narr-ctrl	0.614	0.372	0.336	0.117	0.566	Ŀ	mp1, cps	0.449	0.284	0.279	-0.048	0.526	ŝ
narr-exp1	0.609	0.368	0.334	0.113	0.559	Ŀ	mp2, no cps	0.426	0.253	0.292	-0.070	0.439	9
narr-exp2	0.672	0.420	0.398	0.176	0.541	Ŀ	mp2, cps	0.423	0.245	0.284	-0.074	0.462	2
nam-ctrl	0.556	0.380	0.319	0.059	0.586	Ŀ	mp3, no cps	0.489	0.320	0.294	-0.008	0.52	7
nam-exp1	0.558	0.388	0.327	0.061	0.579		mp3, cps	0.487	0.319	0.291	-0.010	0.536	6
nam-exp2	0.652	0.384	0.348	0.155	0.601	Ŀ	mp4, no cps	0.447	0.248	0.271	-0.050	0.499	9
gfs-ctrl	0.600	0.335	0.296	0.103	0.609	Ŀ	mp4, cps	0.449	0.249	0.271	-0.047	0.500	D
gfs-exp1	0.572	0.325	0.286	0.076	0.594	Ŀ	mp5, no cps	0.368	0.180	0.273	-0.129	0.530	D
gfs-exp2	0.691	0.411	0.381	0.194	0.609		mp5, cps	0.363	0.179	0.276	-0.134	0.52	5
overall	0.614	0.380	0.338	0.117	0.576	6	overall	0.435	0.264	0.281	-0.061	0.49	4

ies ending at Poga Mountain at 1500 UTC 27 Feb 2008 for the (a

Future work

Test "best" WRF model physics combination and initialization for 3 independent case studies (IOPs 5-7)

Acknowledgements

Figure 20. Backward trajectories ending at Poga Moun NARR/ctrl and (b) mp1 simulations for domain 3 (4 km).

•funded by a UNC-GA Research Competitiveness grant •NERSC (DOE) for computing resources •Naval Postgraduate School and Dick Lind for use of a sounding base unit and rawinsondes

ons valid 1500 UTC 27 Feb 2008

Figure 16. Accumulated precipitation (liquid equivalent, Inches) over the 60-h period 1200 UTC 26 Feb – 0000 UTC 29 Feb 2008 for the (a) NARR/ctrl and (b) mp1 simulations of domain 3 (4 km).

gure 17. Vertical cross section (location given in Fig. 15) of θ [contours, K] and water mixing ratio [x10⁵ kg/kg] thro oga Mountain at 1500 UTC 27 February 2008 for the (a) NARR/ctrl and (b) mp1 simulations for domain 3 (4 km).