A Novel 75-year Database and Climatology of Heat Index Values in Miami

Brian McNoldy ${ }^{1}$ and Robert Molleda ${ }^{2}$

${ }^{1}$ University of Miami, Rosenstiel School of Marine \& Atmospheric Science ${ }^{2}$ National Weather Service, Miami Weather Forecast Office

Overview

The Heat Index is an apparent temperature experienced by the human body when humidity is taken into account, and is the basis for heat advisories issued by the National Weather Service. Using weather observations taken at Miami International Airport dating back to 1948, a database of heat index values was created. The heat index calculation requires only two inputs: air temperature and relative humidity.
Over the seven-plus decades of observations, increasing trends of temperature, dew point, and heat index are evident and point to a loss of relatively cool mornings and to more extreme and prolonged heat in the afternoons.

What is the Heat Index?

The Heat Index used in this work is an "assessment of sultriness" or apparent temperature developed by Steadman (1979) to describe the effect of heat and humidity on a person's perception of temperature.

- The same air temperature feels more comfortable when accompanied by low humidity than when accompanied by high humidity.
- For example, $90^{\circ} \mathrm{F}$ and $70 \% \mathrm{RH}=106^{\circ} \mathrm{F}$ heat index $90^{\circ} \mathrm{F}$ and $20 \% \mathrm{RH}=86^{\circ} \mathrm{F}$ heat index
- All other things being equal, as the humidity increases, the body's natural cooling mechanism (the evaporation of sweat) becomes less efficient and the core temperature rises. - As pointed out by Rothfusz (1990), "no true equation for the Heat Index exists"... it is an empirical approximation derived from "extensive biometeorological studies" that includes more than a dozen assumptions about the person (height, weight, core temperature, clothing, etc) and the environment (wind speed, sunshine, vapor pressure, etc.). - The Heat Index is simple to calculate from standard observations (temperature and humidity), making it wellsuited for routine use. The exact equations used in this work are described in WPC (2022)

There are many other possible metrics, but a few others include the wet bulb globe temperature (Budd 2008), equivalent potential temperature and moist enthalpy or effective temperature (Pielke et al. 2007) While those certainly have their advantages and would be worth exploring, they are either more difficult (or impossible) to calculate from routine weather observations or are less intuitive to the public.

Data

Weather observations collected by the Automated Surface Observing System (ASOS) station at Miami International Airport (MIA), from 1948 to present
Data access: Environmental Mesonet at lowa State University website For consistency through the period of record, temperature (T) and dew point (T_{d}) values are retrieved in degrees Fahrenheit (${ }^{\circ} \mathrm{F}$) then converted to degrees Celsius (${ }^{\circ} \mathrm{C}$)
Relative humidity (RH) is calculated from the T and T_{d} values using the Magnus approximation (Alduchov and Eskridge 1996)
The heat index (HI) is calculated using the regression equation and adjustments according to WPC (2022)
T, T_{d} and HI values quality-controlled using visual inspection and investigation of outliers, and by omitting days and times known to have faulty/questionable data. Days with >4 hrs of missing data are omitted
A useful side benefit of developing a heat index database is a new dew point database and climatology!

- The HI database is not an official NWS product; errors could still exist

Climatology \& Records

Daily updates posted to https://bmenoldy.rsmas.miami.edu/m record values, and an expandable sortable table below it with many additional details (best viewed on larger screens) many additional details (best viewed on larger screens)

- Chart \& table combination available for $\mathrm{HI}, \mathrm{T}_{d}$, and T

Monthly averages and records have similar charts and tables
al" period Vaverages calculated over the 1991-2020 "climate normal" period Values smoothed using appropriate Loess filter to
maintain meaningful/physical peaks and values

- Daily records calculated over the 1948-present period

Miami is spending more time at high Heat Index values
"Summer weather" is expanding into Spring and Fall

Number of hours the HI was above
per day of each year

Number of hours the HI was above

- A fraction of this warming trend is caused by the "urban heat island" (UHI) effect. UHI intensity is increasing year-round, but is least pronounced in summer months in south Florida (Kedzuf et al., 2018).
A fraction of this warming trend is caused by increasing average ocean temperatures - temperatures in a coastal city like Miami are influenced by the surrounding water.
- For the NWS, a modern climatology of heat index values specific to an area can more accurately:
- Inform Heat Advisory \& Excessive Heat Warning threshod when combined with health records
when combined with health records Define Heat Wave criteria based on the duration and frequency of extremes

References

Alduchov, O., and R. Eskidge, 1996: Improved Magnus Fo
Vapor Pressure. J. Applied Meteor. Clim., 35, 601-609.
Budd, G., 2008: Wet-bulb Globe Temperature (WBGT) - Its History and its line Med. Sport, 11, 20-32.
Kedzuf, N., P. Zuidema, and
Kedzur, N... P. Uuidema, and B. MCNoldy, 2018: Seasonal Variability and Trends of the Miam Urban Heat Island. Amer. Meteor. Soc. 98^{ti} Annual Meeting, Austin, TX. Pielke Sr. R K. Wolter O Bliss, N. Doesken, and B. MCNoldy. 2007: The Juy 2005 Denne heat Wave: How Unusual Was It?. Nat. Weac. Dig., 31, 24-35,
Rothfusz, L., 1990: The Heat Index "Equation". NOA Technical Attachment SR-90-23, 2 pp.
 on Human Physiology and Clothing Science. J. Applied Meteor. Clim., 18, 8611 - 873 .
WPC (NOAA Weather Prediction Center) 2022: The Heat Index Equation Accessed Ap
WPC (NOAA Weather Prediction Center), 2022: The Heat Index Equation. Acces.
2022, https://www.wpc.ncep.noaa.gov/htm//heatindex_equation.shtml.

