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1.  INTRODUCTION 
 
 In the early 1990s, the Model Output Statistics 
(MOS; Glahn and Lowry 1972) technique and its 
forecasts were a part of the operational mainstream 
of NOAA’s National Weather Service (NWS) and of a 
number of countries outside the US.  In December 
1992, the National Meteorological Center (NMC, 
predecessor to NOAA’s National Centers for Envi-
ronmental Prediction or NCEP) implemented the 
NWS’s first Ensemble Forecast System (EFS; Toth and 
Kalnay 1997). 
 
 As both the MOS and EFS evolved through the 
1990s, there were repeated calls for an “Ensemble 
MOS” product.  The Meteorological Development 
Laboratory (MDL) of the NWS developed a product 
that applied MOS equations based on an operational 
deterministic model to the individual members of 
the operational EFS (Erickson 1996).  Fig. 1 shows a 
typical visualization of one of these forecasts, as a 
box-and-whisker diagram.  This method produced a 
distribution of forecasts with predictable strengths 
and weaknesses.  The center of the MOS distribution 
was largely consistent with other deterministic MOS 
forecasts.  The spread of the distribution provided 
some insight into the spread forecast by the EFS.  
Temperature forecasts for long lead times, however, 
tended to exhibit less spread than those at earlier 
lead times, and they were generally underdispersive.  
In short, this method provided no mechanism for 
spread calibration.  This behavior is understandable.  
MOS forecasts generally trend toward the mean of 
the development sample as lead time increases and 
the forecast skill of the underlying model diminishes. 
 
 During the mid-2000s, Harry R. Glahn, the Direc-
tor of MDL, formed a team to develop statistical 
postprocessing methods that were more suitable for 
EFS.  The goal was to statistically postprocess EFS 
output to yield accurate and reliable probabilistic 
forecasts of sensible weather elements.  Glahn, et al. 
(2009) documents many of the methods used and 
the results achieved by this team.  This extended 
abstract will briefly summarize the work document-

ed in Glahn, et al. (2009), note some of the im-
provements introduced after its publication, and 
provide some insight into MDL’s ongoing work with 
the statistical postprocessing of EFS output. 
 
2.  METHOD 
 
2.1  Application of MOS to EFS 
 
 Fig. 2 is a graphical depiction of the Ensemble 
Kernel Density MOS technique (EKDMOS).  Glahn, et 
al. (2009) described the original technique as it was 
applied to the NCEP’s Global Ensemble Forecast Sys-
tem (GEFS).  Wagner and Glahn (2010) described 
enhancements that support the combination of mul-
tiple EFS with similar skill.  Glahn, et al. (2009) de-
scribed the need for a spread calibration step, and 
introduced a simple one.  Veenhuis and Wagner 
(2012) and Veenhuis (2013) introduced an improved 
spread calibration technique that is more responsive 
to day-to-day changes in the component EFS. 
 
 The top portion of Fig. 2 shows the initial EKD-
MOS development step.  As with other variations of 
MOS, developers gather a representative sample of 
EFS forecasts and observations of sensible weather 
parameters.  The developers then use forward-
screening least squares regression using the mean 
from each EFS.  This regression step is repeated for 
each EFS.  Like other MOS techniques, this step 
yields a forecast equation for each station/gridpoint, 
time projection, and weather element.  Unlike other 
MOS techniques, this step also yields a confidence 
estimate that is computed directly as part of the 
regression process.  This step expresses the confi-
dence in a new forecast for a case drawn from the 
same population as the initial development.  As one 
might expect, confidence in a new forecast is higher 
when that forecast is near the mean of the devel-
opment sample, and that confidence is also higher 
when the spread of the development sample about 
the regression line is small. 
 
 Fig. 2 also shows two EFS, the GEFS and the Ca-
nadian Meteorological Center’s EFS (CMCE).  The 



technique has been applied to 3 EFS and more.  Ad-
ditional adaptations are required when the compo-
nent EFS exhibit dissimilar skill. 
 
 The middle portion of Fig. 2 illustrates the spread 
calibration step which is a follow-on to the develop-
ment step.  Again, a representative sample of en-
semble forecasts and observations are used to de-
velop a spread-skill relationship for each EFS.  In 
general, we have found that the spread taken direct-
ly from EFS is not a reliable indicator of day-to-day 
skill when used directly.  We have found, however, 
that the EFS spread is informative in this regard.  It is 
interesting to note that the relationship between EFS 
skill and EFS spread varies considerably with climato-
logical regime. 
 
 The last step in the EKDMOS process, shown in 
the lower third of Fig. 2, is the implementation.  This 
is where output from a single run of each EFS is 
gathered, postprocessed, and used to create fore-
cast Probability Density Functions (PDF).  In this step, 
the regression equations that were developed using 
the ensemble means are applied to each member of 
the EFS, yielding a number of varying forecasts.  Ker-
nel Density Estimation (KDE) is used to combine the 
various forecasts generated from all EFS into a single 
PDF.  For this step, we chose to use kernels that have 
the shape of a Gaussian Distribution, and to use the 
confidence estimate from the regression to set the 
variance of each kernel.  Once the forecast PDF is 
formed and normalized, the spread-skill relationship 
is used to adjust the spread of the PDF. 
 
2.2  Presentation of probability forecasts 
 
 One of the many challenges associated with cre-
ating probabilistic forecasts of sensible weather el-
ements is developing suitable methods to dissemi-
nate them.  Fig. 3 shows three different ways to 
graphically depict a temperature forecast that is a 
probability distribution.  Fig. 3(a) is a PDF.  PDFs are 
intuitively appealing to many, and they quickly pro-
vide a user information about location, spread, and 
skew of the forecast distribution.  That said, users 
are typically not prepared to extract quantitative 
information from a PDF.  I.e., PDFs do not readily 
answer questions such as “What is the probability of 
freezing tonight?” “What is the probability of reach-
ing 500 accumulated growing degree days tomor-
row?” and “What is the probability of wind speeds 
too fast to operate a wind turbine next week?” 

 Fig. 3(b) shows the same distribution as a Cumu-
lative Distribution Function (CDF), the integral of the 
PDF.  While the CDF cannot be interpreted visually as 
easily as the PDF, a user can readily use it to answer 
the questions posed above.  One can read the values 
of the weather element on the x-axis and the proba-
bility values that run from 0 to 1 along the y-axis. 
 
 Fig. 3(c) shows the same distribution as a Quan-
tile Function.  The Quantile Function is the same as 
the CDF with axes adjusted to increase its utility.  
The squares along the curve are placed at the prob-
abilities 0.05, 0.10, 0.20, 0.25, 0.30, 0.40, 0.50, 0.60, 
0.70, 0.75, 0.80, 0.90, and 0.95.  EKDMOS forecasts 
are disseminated for almost all of these probability 
values.  (We chose to omit 0.25 and 0.75 for our op-
erational implementations.  Testing revealed that a 
user could almost always extract sufficient infor-
mation by interpolating between the two neighbor-
ing probability values.) 
 
 As of this writing the NWS produces operational 
EKDMOS forecasts twice daily (0000 and 1200 UTC 
model runs) for the North American Ensemble Fore-
cast System (NAEFS; Toth, et al. 2006).  The primary 
means of dissemination is grids of the percentile 
values described above.  The EKDMOS grids are 
compatible with the National Digital Forecast Data-
base (NDFD; Glahn and Ruth 2003), and the CONUS 
grids have a resolution of 2.5 km.  Gridded forecasts 
for seven weather elements are issued.  EKDMOS 
forecasts of temperature, dew point, daytime maxi-
mum temperature, and nighttime minimum temper-
ature are classified as operational.  EKDMOS fore-
casts of apparent temperature (a combination of 
wind chill temperature, temperature, and heat in-
dex), wind speed, and Quantitative Precipitation 
Forecast (QPF) are classified as experimental.  Lead 
times vary among the weather elements.  The long-
est lead times are for daytime maximum and 
nighttime minimum temperatures which extend to 
16 days. 
 
 Fig. 4 and Fig 5 are both examples of graphical 
depictions of probabilistic weather forecasts made 
with EKDMOS.  As noted above, EKDMOS forecasts 
are disseminated as 11 fixed percentile points along 
the quantile function.  Ideally, users and partners  
will  analyze these percentiles, interpolate as need-
ed, and obtain reliable and accurate answers to their 
own questions.  It is interesting (and, perhaps, sad) 
to note that almost all visualizations of probabilistic 



weather forecasts are forced to abandon eight of the 
11 percentile points and use only the 10th, 50th, and 
90th percentiles. 
 
 Fig. 4 shows a sample gridded probabilistic fore-
cast of wind speed, plotted on the NDFD CONUS 
grid.  The frames show the 10th, 50th, and 90th per-
centiles of forecasted wind speed at the 24 h lead 
time.  Fig. 5 shows forecasts of daytime maximum 
temperature and wind speed as meteograms.  Three 
colors encode the 10th, 50th, and 90th percentiles.  
The center portion of Fig. 5 uses stacked histograms 
to show the probability of pre-selected QPF catego-
ries. 
 
2.3  Methods of evaluation 
 
 The evaluation of a single probabilistic weather 
forecast is a long-standing challenge.  In one sense of 
the word, a probabilistic forecast cannot be “wrong” 
since the observed outcome was assigned some non-
zero probability of occurrence.  Of course, given a 
sufficient sample of forecast distributions and verify-
ing observations, we can assess the performance of 
EKDMOS or any other probabilistic forecasting tech-
nique.  As our team developed the EKDMOS tech-
nique, we also spent substantial effort developing 
appropriate evaluation techniques.  These tech-
niques focused on evaluating the first two moments 
of the forecast probability distribution--location and 
spread.  Higher moments, such as skew and kurtosis, 
seemed to have less intuitive appeal and practical 
application for users.  Moreover, our goal was to 
provide accurate and reliable forecast distributions.  
Location and spread both seemed to contribute di-
rectly to these two goals. 
 
 Glahn, et al. (2009) provides a thorough descrip-
tion of these evaluation techniques, useful refer-
ences, and more than a few examples of their use.  A 
few methods will be presented briefly here. 
 
 Assessing the first moment of the forecast distri-
bution is quite straightforward.  One selects a suita-
ble metric for the location of the distribution and 
applies the same techniques typically used for single-
valued forecasts.  The mean and the median of the 
forecast distribution are the two obvious metrics for 
location.  There seemed to be little difference be-
tween the two when evaluating EKDMOS and similar 
probabilistic forecasts.  Mean Absolute Error (MAE) 

and bias are scores that seemed to be both simple 
and informative for probabilistic forecasts. 
 
 Assessing the second moment of the EKDMOS 
forecasts proved to be more challenging.  Fig. 6 
shows an assessment of forecast spread called a 
Cumulative Reliability Diagram (CRD).  This plots the 
cumulative forecast probability against the cumula-
tive observed relative frequency for a representative 
sample of forecasts.  The CRD can visually identify 
departures from reliability.  Ideally, the CRD curve 
will remain close to the diagonal reference line. 
 
 Fig. 7 shows another tool named the Probability 
Integral Transform (PIT) histogram.  The PIT is the 
probability value of the CDF at the value of the veri-
fying observation.  For example, if the forecast CDF 
called for a probability of 0.20 of a temperature of 
36 degrees Fahrenheit or lower, and the verifying 
observation was 36, then the PIT for this case is 0.20.  
To form a PIT histogram, one gathers a representa-
tive sample of cases, bins them according to PIT val-
ues, and computes the proportion of cases observed 
to the number of cases expected in each bin.  Ideally, 
the histogram bars will align with the horizontal uni-
ty reference line. 
 
 Fig. 8 illustrates the computation of the Continu-
ous Ranked Probability Score (CRPS).  The left half 
illustrates the comparison of the forecast CDF (red 
line) with a unit step function of the verifying obser-
vation (green line).  The shaded area in the right half 
is the difference between the two.  The CRPS for a 
single case is the square of the shaded area.  CRPS 
values for a representative sample of cases are aver-
aged together.  One can consider the unit step func-
tion an absolutely sharp and accurate forecast.  CRPS 
is negatively oriented and positive.  A perfect CRPS 
of zero means that all forecasts were accurate and 
sharp.  There is no upper limit. 
 
3.  ONGOING WORK 
 
 Since 2013, much of the NWS’s effort in statistical 
post processing of EFS has been focused on the Na-
tional Blend of Global Models Project (Gilbert, et al. 
2015).  This ambitious project is developing tech-
niques that will produce a nationally consistent and 
skillful suite of calibrated forecast guidance from a 
blend of both NWS and non-NWS models.  “The 
blend” will be useful to national centers, local field 
offices, and the private sector.  Most of the require-



ments for this blend (e.g., lead times, forecast grids, 
weather element definitions) have been chosen to 
suit the needs of the NDFD. 
 It was noted above that Wagner and Glahn 
(2010) described an adaptation of the EKDMOS 
technique that could combine forecasts from EFS of 
similar skill.  Veenhuis (2014) described a technique, 
named Updatable Bayesian Model Averaging (UB-
MA), which can combine forecasts from EFS with 
different skills.  UBMA assigns weights to each EFS 
and creates a PDF from the members.  Like EKDMOS, 
UBMA dresses each member with a Gaussian kernel.  
The concepts and infrastructure of EKDMOS and 
UBMA contribute much to the NBM project. 
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FIGURES 
 



 
Fig. 1.  Sample visualization of a MOS forecast generated from EFS 



 

Fig. 2.  Graphic depiction of EKDMOS technique 

 

 

Fig. 3.  An example of an (a) Probability Density Function (PDF), (b) Cumulative Distribution Function (CDF), and (c) a quantile 
function 



 

Fig. 4.  An example of a gridded probability forecast.  These 3 images can be presented as an animation loop.  The images 
depict the 10th (left), 50th (middle), and 90th (right) percentiles of the forecast distribution. 

 

 

 

Fig. 5.  Sample probabilistic forecasts for daytime maximum temperature, 12-h probabilisitic quantitative precipitation fore-
cast, and wind speed visualized as a mixture of 2 meteograms and a stacked histogram. 



 

Fig. 6.  Sample Cumulative Reliability Diagram 

 

 

Fig. 7.  Sample Probability Integral Transform (PIT) histogram 

 

 

 

Fig. 8.  An illustration of the computation of Continuous Rank Probability Score for a single forecast case.  The red curve is 
the forecast CDF.  The green line is a unit step function located at the value of the verifying observation. 


