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1.   Introduction 
 

The National Weather Service’s (NWS) Mete-
orological Development Laboratory (MDL) has 
developed and implemented the Localized Avia-
tion MOS Program (LAMP) to provide objective 
forecast guidance for the aviation forecasting 
community.  Since 2006, the LAMP system has 
provided centrally-produced, statistically-based 
forecast guidance for sensible weather elements 
at METAR stations, as well as thunderstorm guid-
ance produced (directly) on a 5-km grid.  The 
LAMP guidance serves to update the Global Fore-
cast System (GFS; Kalnay et al. 1990) MOS guid-
ance (Dallavalle et al. 2004).  The GFS MOS 
guidance is produced four times a day, while the 
LAMP guidance is produced every hour.  LAMP 
incorporates the most recent GFS MOS data, the 
most recent observational data of various types, 
and output from simple advective-type models 
(Ghirardelli and Glahn 2010). 

 
In 2010, MDL implemented Gridded LAMP in-

to NWS operations.  Gridded LAMP provides fore-
cast guidance on the 2.5-km National Digital Fore-
cast Database (NDFD; Glahn and Ruth 2003) grid 
for temperature, dewpoint, ceiling height, and visi-
bility (Ghirardelli and Glahn 2011).  Also provided 
are grids of observations of the same fields as well 
as temperature and dewpoint error estimation 

grids (Im and Glahn 2012; Glahn and Im 2013).    
In 2012, MDL replaced the gridded LAMP 5-km 
thunderstorm guidance with an upgraded “light-
ning” product and also added gridded convection 
guidance, with both elements valid on the 2.5-km 
NDFD grid (Charba et al. 2011).   

 
NWS forecast offices are in great need of im-

proved gridded guidance for the aviation forecast 
elements of lightning, convection, ceiling height, 
and visibility.  LAMP guidance for these elements 
is discussed in more detail in the subsequent sec-
tion.  Present challenges and the need to further 
improve these products are discussed in section 3.  
In section 4, we describe recently available fine-
scale observational and model data sets, which 
show strong promise toward improving each of the 
above-noted LAMP guidance products, while in 
section 5 we describe approaches to improving 
the various elements.  The latter part of this paper 
deals with current research to improve ceiling and 
visibility, with the majority of the results to date 
pertaining to visibility.  We present some back-
ground ceiling and visibility verification in section 
6, new prototype visibility regression development 
is described in section 7, and visibility verification 
results are presented in section 8.  Finally, this 
effort is summarized, and MDL’s plans for future 
development and improvements based on this 
prototype are discussed in section 9. 

 
2.   LAMP background 

 
The development method of the gridded 

LAMP lightning and convection guidance funda-
mentally differs from that of the station-based 
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LAMP ceiling height and visibility guidance, and 
thus differences apply to upgrades of each of 
these products.  The backgrounds of the different 
elements are presented here to give the reader an 
understanding of these inherent differences. 

 
a.  Gridded LAMP lightning and convection 

 
The gridded LAMP lightning and convection 

guidance is produced from multiple linear regres-
sion equations and associated statistically-derived 
thresholds.  The predictand for the lighting guid-
ance is defined as an event of at least one cloud-
to-ground (CG) lightning strike in a 20-km grid box 
in a 2-h period.  The predictand of the convection 
guidance is defined as an event of at least one CG 
lightning strike and/or radar reflectivity of 40 DBz.  
The lightning data source is the National Lightning 
Detection Network (Cummins et al. 1998), while 
the radar data source is the Radar Coded Mes-
sage (RCM; OFCM 1991; Kitzmiller et al. 2002). 

 
LAMP lightning and convection guidance is 

derived from a variety of predictor sources (Char-
ba et al. 2011), which include GFS MOS and 
North American Mesoscale model (NAM; Rodgers 
et al. 2005) MOS 2-h lightning and convection 
probabilities, the GFS and NAM direct model out-
put, gridded observations of CG lightning and 
RCM radar together with advected representations 
of these grids, and fine-scale CG lightning and 
convection climatology.  

 
The regression equations are derived via the 

Regression Estimation of Event Probabilities 
(REEP) method (Miller 1958; Wilks 2011).  REEP 
is regression where the predictand is binary and 
takes on the value 1 when the event occurred and 
0 otherwise.  The REEP equation will produce an 
estimate of the probability of the predictand event 
conditional on the predictor values.  Because the 
predictor and predictand data are available in 
gridded form, the regression equation develop-
ment is performed on the grid, and the equations 
are evaluated on the grid to produce the gridded 
guidance.   
 

The LAMP guidance is available on the 2.5-km 
NDFD grid and is produced hourly.  The guidance 
is valid over 2-h periods that overlap in the short-
term and over contiguous non-overlapping 2-h 
periods after that.  The forecasts go out to 24 or 
25 hours, depending on the LAMP cycle.  Please 
refer to Charba et al. (2011) for more details. 

 
 

b.  Station-based and gridded LAMP ceiling height 
and visibility 
 

In contrast to the LAMP lightning and convec-
tion guidance, the LAMP ceiling and visibility 
equations are developed at stations.  This is be-
cause the predictor and predictand data are valid 
at stations.  The predictands are METAR observa-
tions, while the predictors are GFS MOS and ob-
servations at the stations, and gridded simple 
model output interpolated to the stations.  The 
LAMP ceiling and visibility regression equation 
development also follows the REEP methodology.  
Evaluating the equations yields forecast probabili-
ties that along with statistically-derived thresholds 
result in categorical forecast guidance for ceiling 
and visibility.  Please see Ghirardelli and Glahn 
(2010) for more details on the LAMP station-based 
development for these elements.   

 
NWS currently provides LAMP ceiling and vis-

ibility guidance valid at 1678 stations.  The guid-
ance is produced every hour and covers the 1- to 
25-h period in 1-h time steps.  The guidance can 
be used by aviation forecasters to create Terminal 
Aerodrome Forecasts (TAF; NWS 2008) which are 
valid at airports (i.e., at stations).   

 
The aviation community also has a need for 

good quality gridded guidance of ceiling and visi-
bility for a variety of stakeholders.  In 2012, MDL 
implemented Gridded LAMP for ceiling and visibil-
ity.  To produce these grids, the LAMP station-
based ceiling and visibility forecasts are analyzed 
to the NDFD grid via the Bergthorssen-Cressman-
Doos-Glahn (BCDG) process described in Glahn 
et al. (2009) and Im and Glahn (2012).   
 
3.   Current challenges 
 

  The LAMP guidance is intended to meet the 
evolving needs of the aviation community.  With 
respect to lightning and convection guidance, MDL 
understands that our stakeholders require prod-
ucts with increased spatial and temporal resolu-
tion, especially in the short-term period.  An im-
portant weakness of the present LAMP lightning 
and convection guidance is that it does not incor-
porate predictors that depict convection initiation 
or dissipation on a fine scale or that are updated 
frequently; the only relevant predictor input is from 
NAM and GFS model output and MOS probabili-
ties, each of which is for rather coarse space and 
time scales. 
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Providing digital aviation services, which in-
clude gridded ceiling and visibility forecasts, is part 
of the NWS’ plan for Enhanced Digital Services 
(Uskievich and Pontius 2015). In addition, in 2012 
the Federal Aviation Administration (FAA) made a 
number of ceiling and visibility research priority 
recommendations (FAA 2012), two of which were 
to improve ceiling and visibility forecast accuracy 
with TAFs at high-impact terminals as well as to 
improve gridded ceiling and visibility observations 
and forecasts across the National Airspace Sys-
tem.  Gridded LAMP guidance for ceiling and visi-
bility can be used to support the NWS digital avia-
tion services as well as to provide TAF guidance 
and gridded observations and forecasts to meet 
the FAA needs. 

 
Weaknesses of the Gridded LAMP ceiling and 

visibility guidance include the lack of station ob-
servations and LAMP forecasts of ceiling and visi-
bility to adequately cover the 2.5-km NDFD grid.  
In 2015, MDL will add additional LAMP station in-
put to the Gridded LAMP ceiling and visibility 
guidance, which will provide more data points for 
the analyses, but even with additional stations, the 
total number of stations is still inadequate to re-
solve the fields of ceiling height and visibility in the 
CONUS at 2.5-km resolution.  In addition, LAMP 
guidance at points over water (ocean, Great 
Lakes, Great Salt Lake) was produced without 
observational input valid at those points, as the 
reporting platforms over the water do not in gen-
eral report ceiling and visibility.  Therefore the ac-
curacy of these new LAMP forecasts is most likely 
less than that of the LAMP forecasts valid at land 
stations for which there are observations.  In addi-
tion, both ceiling and visibility are very discontinu-
ous fields, which makes producing good quality 
gridded products from an inadequate number of 
data points very challenging. 

 
Given the above challenges and weaknesses, 

it became apparent that Gridded LAMP guidance 
for lightning, convection, ceiling, and visibility 
should be upgraded based on fine-scale data that 
have recently become available. 

 
4.   Newly available data 

 
a.  Lightning data 

 
Lightning data is used both as a predictor and 

predictand for LAMP lightning guidance.  Using 
improved lightning data would be one way to im-
prove LAMP lightning guidance.  Therefore, MDL 

is now investigating the use of Total Lightning (TL) 
data, which has recently become available. 

 
Total lightning data consist of a mix of individ-

ual CG and in-cloud (IC) flashes, as measured by 
a ground-based, remotely-sensed network across 
the CONUS.  For development of upgraded light-
ning and convection guidance, MDL has been uti-
lizing a TL archive provided by Earth Networks, 
Inc. (ENI), but TL data have also recently become 
available from the National Lightning Detection 
Network operated by Vaisala, Inc.  Operational 
implementation of TL data, as likely provided by 
one of these systems, is expected by mid-2015. 

 
b.  Radar data 
 

Another type of CONUS ground-based re-
motely-sensed observational data used in LAMP is 
radar reflectivity.  As with lightning data, radar re-
flectivity data are used both as a predictor and 
predictand in the LAMP convection guidance, only 
as a predictor in the corresponding lightning guid-
ance, and to a slight degree as a predictor in 
LAMP station guidance.  The current RCM radar 
data used in LAMP is rather coarse spatially, tem-
porally, and quantitatively, and it lacks good quali-
ty control.   

 
High resolution Multi-Radar/Multi-Sensor Sys-

tem (MRMS) has recently become available. 
These data consist of WSR-88D radar reflectivity-
based products, which also incorporate other ob-
servational data types (mainly precipitation gage 
and satellite measurements) especially in the 
mountainous western US where radar coverage is 
poor.  The native MRMS data have a spatial reso-
lution of approximately 1-km and a temporal reso-
lution of 2.5-min (Zhang et al. 2011; Zhang et al. 
2014). 

 
For development of upgraded LAMP lightning 

and convection guidance, MDL has acquired an 
archive of MRMS data from the National Severe 
Storms Laboratory (NSSL).  Also, MRMS data be-
came operationally available in September 2014.  
Incorporation of both the MRMS archive and real 
time data into upgraded LAMP lightning and con-
vection products should provide a big step forward 
towards improved LAMP lightning and convection 
products. 

 
c.  Mesoscale model output data 

A high-resolution mesoscale model with fre-
quent updates should benefit LAMP, as the cur-
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rent model or MOS inputs to LAMP are only up-
dated every 6 hours.  The High Resolution Rapid 
Refresh (HRRR; Smith et al. 2008; Ikeda et al. 
2013) model data are produced hourly at 1-h time 
steps, with some fields available in 15-min time 
steps.  Many model output variables are available, 
whose focus is on aviation applications (e. g., sim-
ulated radar reflectivity, ceiling height, and visibil-
ity).  [For the most up-to-date information on the 
HRRR configuration, readers should refer to the 
HRRR website:   http://rapidrefresh.noaa.gov/hrrr]. 

 
For the purposes of research and develop-

ment, MDL has acquired an archive of HRRR 
model output grids from the NOAA/Earth Systems 
Research Laboratory/Global Systems Division, 
which spans the period of April 2013 through Sep-
tember 2014.  Such data are on a 3-km grid refer-
enced to a Lambert map projection covering most 
of the NDFD CONUS grid.   

 
The HRRR produces forecasts for projections 

1 through 15 hours.  The HRRR visibility forecasts 
are in units of meters, which we converted for 
convenience to miles, the units used by aviation 
interests in the United States and the units used 
by LAMP.   We used the HRRR grid of “cloud 
base” as ceiling height, per the suggestion of the 
HRRR developers that the HRRR cloud base is a 
representation of ceiling height (S. Benjamin and 
C. Alexander 2014, personal communication).  
The HRRR model became operationally available 
in September 2014.  

 
5.   Upgrading LAMP with high-resolution da-
tasets 

 
a.  LAMP lightning and convection 

 
MDL expects to use the high-resolution da-

tasets discussed above to improve the spatial and 
temporal resolution of the LAMP lightning and 
convection forecasts.  Specifically, the mesh of the 
forecast grid will be reduced from 20-km used 
presently to 10-km, which will allow for increased 
spatial detail.  Also, the forecast valid period will 
be reduced from the present 2 hours to 1 hour, at 
least for the forecasts in the first 6-8 hours, which 
provides enhanced temporal resolution.   

 
Note that the predictand valid area will remain 

unchanged from the present 20-km square box to 
avoid excessive loss of sharpness in the forecast 
probabilities (Charba et al. 2011) that would likely 
occur with a reduction in both the grid box size 
and valid period.  It is also worth noting that the TL 

data should enhance the specification of the con-
vection predictand as well as predictors for both 
lightning and convection, since the frequency of IC 
flashes in ENI TL data is about six times the num-
ber CG flashes (Charba et al. 2015). 

 
The high-resolution MRMS radar and TL ob-

servations together with the HRRR forecasts are 
expected to support the increased spatial and 
temporal detail in the convection predictands.  
Specifically, the MRMS data will be incorporated 
on a 5-km grid every 15 minutes, which provides a 
big improvement on the 10-km spatial and  
30-minute temporal resolution of the RCM radar 
data ingest presently being used.  Also, the HRRR 
model forecasts exhibit remarkable spatial and 
temporal detail, which should be reflected in the 
LAMP forecasts since HRRR predictors will be 
used. 

 
It is noted that the TL and HRRR data are also 

used to improve the quality of the MRMS data pri-
or to inclusion of the latter into LAMP.  Specifically, 
an automated supplemental QC process for 
MRMS data is being developed, wherein the TL 
observations and HRRR forecasts are used to 
identify and remove false echoes in the MRMS 
data.  MDL is currently preparing these datasets 
for use in redeveloping the LAMP lightning and 
convection guidance. 

   
b.  LAMP ceiling height and visibility 

 
The goal for LAMP ceiling and visibility work is 

not just to improve LAMP at the LAMP stations, 
but also to improve Gridded LAMP for these ele-
ments in between the LAMP stations.  To this end, 
MDL began investigating a second-order devel-
opment where regression equations would be de-
veloped at LAMP stations using predictors made 
up of ceiling and visibility forecasts from both 
LAMP and HRRR.  Such equations could then be 
applied at the Gridded LAMP gridpoints with Grid-
ded LAMP and HRRR predictors to produce a grid 
which could be seen as a statistical blend of the 
Gridded LAMP and HRRR forecasts. 

 
The rest of this paper deals with the results to 

date from MDL efforts to improve LAMP ceiling 
and visibility. 

 
6.   HRRR ceiling and visibility verification  

 
Before any development began, MDL evaluat-

ed ceiling and visibility forecasts from the HRRR 
model compared to the Rapid Refresh (RAP; Ben-
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jamin et al. 2007) model and the LAMP forecasts.  
The intent was to determine which model might be 
the best input to a redeveloped LAMP system.  
The results are not shown here, but in general the 
HRRR was found to have better scores for more 
projections than the RAP, so the decision was 
made to use the HRRR in the LAMP development.  
Therefore this section will focus on the HRRR veri-
fication results. 

 
For the verification, the HRRR model cloud 

base (hereafter referred to as ceiling) and visibility 
forecasts were interpolated to 1,562 LAMP 
stations in the CONUS.  In addition, because the 
HRRR ceiling forecasts are relative to sea level, 
the values were adjusted by using the HRRR 
terrain to represent ceiling above ground level, 
which is consistent with LAMP ceiling forecasts 
and METAR observations.  The verification 
metrics evaluated were bias, threat score (or 
Critical Success Index [CSI]) (Donaldson et al. 
1975; Shaffer 1990), probability of detection, and 
false alarm ratio (Wilks 2011).  The events 
(categories) of ceiling < 500 ft, <1000 ft, and  
≤ 3000 feet, and visibility < 0.5 mile, < 1 mile, and  
< 3 miles were verified. 

 
Data verified were for one warm season (April 

– September 2013) and one cool season (October 
2013 – March 2014).  This paper focuses on the 
cool season results.  Two cycles were selected to 
verify: 0000 and 1200 UTC.  Because the HRRR 
does not complete for approximately an hour after 
the LAMP forecasts are available and disseminat-
ed, in the verification we used HRRR forecasts 
produced for the run time 1 hour previous to LAMP 
so as to be comparing the products that would 
have been available at the time the LAMP guid-
ance became available. Therefore, the 0000 and 
1200 UTC LAMP guidance was compared with the 
corresponding 2300 and 1100 UTC HRRR model 
output.  Persistence, which is the forecast that 
would result from persisting the observations into 
the forecast period, was also evaluated, as that is 
often very difficult to improve on in the very early 
projections.  Because the HRRR model only goes 
out 15 hours in time, and the verification used a 
model run already 1 hour old, only 14 projections 
of matching LAMP, HRRR, and persistence fore-
casts could be verified.  

 
The verification for visibility forecasts at  

0000 UTC (2300 UTC HRRR) for the cool season 
showed that LAMP had much higher threat scores 
than HRRR for the first few hours at the LAMP 
stations, and the HRRR had comparable or slightly 

better threat scores after 3-6 hours, depending on 
the category.  The crossover point where HRRR 
had higher threat scores than LAMP was later for 
ceiling.  However, this result wasn’t seen with the 
1200 UTC (1100 UTC HRRR) verification, where 
LAMP typically had a higher or comparable threat 
score to the HRRR at all projections.  It is possible 
that using the 1-h old HRRR is more detrimental at 
1200 UTC when conditions may be changing more 
rapidly than they are at 0000 UTC. 

 
While the HRRR threat scores were higher 

than LAMP’s at most longer projections for visibil-
ity at 0000 UTC, the bias scores showed an over-
forecasting bias in the HRRR for the lower two 
cumulative categories.  For ceiling, there was also 
an overforecasting bias for the HRRR, but it wasn’t 
as high as that for visibility.  This was true for the 
0000 UTC as well as the 1200 UTC results. 

 
As one goal of using the HRRR model data is 

to improve Gridded LAMP between the LAMP sta-
tions where there are no data points, additional 
verification was performed to evaluate the HRRR 
in between the LAMP stations.  To do this, Grid-
ded LAMP ceiling and visibility forecasts as well as 
HRRR forecasts were interpolated to 314 CONUS 
stations that had no LAMP forecasts, but that did 
have observations.  Again, the HRRR ceiling fore-
casts were adjusted to be above ground level. 

 
This verification showed that the Gridded 

LAMP forecasts interpolated to the non-LAMP sta-
tions (hereafter referred to as GLMP at non-LAMP 
stations) had lower threat scores in the first 
3 hours compared to what was seen with the 
LAMP forecasts at LAMP stations, which was to 
be expected.  For visibility, HRRR threat scores 
were higher than GLMP at non-LAMP stations for 
both cycles and all categories and projections ex-
cept at 0000 UTC for the first projection for visibil-
ity < 3 miles, and at 1200 UTC for the 1-10 h pro-
jections for visibility < 3 miles and the first projec-
tion for visibility < 1 mile.   

 
For ceiling, the HRRR results were not as 

good compared to GLMP at non-LAMP stations as 
what was seen with visibility.  The HRRR threat 
scores were higher than the GLMP at non-LAMP 
stations at 0000 UTC after projection 4 for visibility 
< 1000 ft and after projection 6 for visibility  
< 500 ft.  HRRR threat scores were not higher 
than LAMP at 1200 UTC for any ceiling category 
or projection.  As at the LAMP stations, the HRRR 
biases tended to be high for the lower two cumula-
tive categories for both ceiling and visibility.   
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These results indicate that the HRRR contains 
valuable information, especially for visibility and at 
the points between the LAMP stations. 

 
7.   Regression equation development for 
visibility 

 
 The verification results discussed in the pre-
vious section encouraged us to determine whether 
or not a combination of LAMP and HRRR could 
produce better forecasts than either alone.  Our 
initial work was on cool season visibility; the tech-
nique for combining is explained in this section 
and the results are shown in the next section.  
Cool season is defined as October through March. 
 
 The developmental period was limited by the 
availability of HRRR forecasts. We used HRRR 
data which covered the cool season of October 1, 
2013 through March 31, 2014.  The data were 
prepared as discussed in Section 4c.  
 
 LAMP produces probability forecasts for each 
of the visibility categories shown in Table 1 for pro-
jections 1 through 25 hours.  These probabilities 
are used to produce “best category” forecasts by 
thresholding the probability forecasts such that the 
biases are in an acceptable range near unity and 
the threat score is maximized.  In the conversion, 
information is necessarily lost, and it was con-
firmed with initial tests that the categorical fore-
casts did not provide useful information over and 
above the probabilistic forecasts.  For combining 
LAMP and HRRR, only the LAMP probabilistic 
forecasts were used. 
 
Table 1.  Category definitions of visibility in miles. 

  
 The LAMP equations that produce the 
experimental probability forecasts were developed 
by the REEP technique, as were the original 
LAMP probabilistic visibility equations. Usually for 
rare events such as low visibilities, many stations 
are pooled over areas where the predictand-
predictor relationships are thought to be similar, 
and a sample of several years is used.  We had 

only one season of data, so we used a 
generalized operator approach where all stations 
were pooled and only one equation was produced 
for each visibility category and each forecast 
projection.  LAMP forecasts and matching 
observations were available for 1,562 CONUS 
stations, and we “interpolated” the HRRR 
forecasts to those points by using the closest 
HRRR gridpoint to the station location.  
 
 The predictors used in the equations are 
usually selected from a pool of potential predictors 
automatically according to their usefulness in re-
ducing the predictand variance.  MDL software 
uses the forward selection method, and when 
more than one projection is involved, screening is 
over all projections and predictands.  That is, for 
the first selection, the predictor is chosen that re-
duces the variance the most for any predictand 
category and any projection.  The second and fol-
lowing choices are made in the same way, given 
that the previous one(s) has (have) been selected. 
 
 Many times the predictors in a REEP equa-
tion are cumulative binary and one or more such 
binaries defined from a continuous variable pro-
duces much better results than the continuous 
variable itself.  The cumulative from above bina-
ries we defined from the HRRR visibility forecasts 
were for the same categories as the categories 
defined by the upper category values in Table 1, 
and in addition we included binaries for > 7, > 8,  
> 9, > 10, > 15, and > 20 mi to take into account 
the full range of the HRRR forecasts.  The total 
number of potential HRRR predictors was 12. 
 
 We divided the 6 months of data into a de-
velopmental sample of 4 months (October, De-
cember, January, and March), and an independent 
sample of 2 months (November and February). As 
with the verification, we used the HRRR forecasts 
produced at the previous hour to the LAMP cycle 
for which we were developing since that is what 
would be available in real-time operations.  That 
is, for a LAMP run time of 0000 UTC, we used the 
HRRR for the previous run time of 2300 UTC. Our 
total potential predictor set consisted of the six 
continuous LAMP probability forecasts and 
12 HRRR binary predictors.  The screening 
stopped when the next best predictor did not re-
duce the variance of any predictand by at least 
0.5%.    
 

The predictor set chosen by screening con-
sisted of all six LAMP predictors and five HRRR 
predictors.  To produce categorical forecasts, as 

Category Number Visibility (mi.) 
1 < 0.5 
2 > 0.5 and < 1.0 
3 > 1.0 and < 2.0 
4 > 2.0 and < 3.0 
5 > 3.0 and < 5.0 
6 > 5.0 and < 6.0 
7 > 6.0 



 7 

the current LAMP system does, thresholds were 
calculated such that the threat score for each cat-
egory was maximized within a bias range of 1.0-
1.2.  New categorical forecasts for 0000 UTC from 
this system, hereafter referred to as the 
LAMP+HRRR forecasts, were then created from 
the LAMP+HRRR probabilities and associated 
thresholds.  For additional detail, see Glahn et al. 
(2014).  

 
8.   Results for redeveloped LAMP/HRRR visi-
bility forecasts 

 
As noted above, the months of November 

2013 and February 2014 were withheld from the 
development sample and were used as independ-
ent data for verification of the new LAMP+HRRR 
categorical forecasts and comparison with LAMP, 
HRRR, and persistence at the same 1,562 sta-
tions used in the development.  Figures 2, 3, and 4 
show the threat scores for the cumulative catego-
ries of visibility < 0.5 miles, < 1 mile, and < 3 miles, 
respectively.   

 
The figures all show the same overall result: 

the original LAMP forecasts are comparable to 
persistence in the first 2 or 3 hours, and increas-
ingly more accurate than persistence thereafter.  
The original LAMP forecasts are also much more 
accurate than the HRRR forecasts in the early pro-
jections, but the HRRR forecasts are more accu-
rate than the original LAMP forecasts after a cer-
tain “crossover” projection.  This crossover projec-
tion varies based on the category; the HRRR fore-
casts become more accurate than the original 
LAMP forecasts after 11 hours for visibility  
< 0.5 miles, after 4 hours for visibility < 1 mile, and 
after only 3 hours for visibility < 3 miles.  The new 
LAMP+HRRR forecasts are as accurate or more 
accurate than any of the other forecasts, with the 
improvement over the original LAMP forecasts 
being the greatest for visibility < 3 miles where 
LAMP+HRRR forecasts are more accurate than 
the original LAMP forecasts even as early as the 
1-h projection 

 
Figure 5 shows the percentage improvement 

of the threat scores of the new LAMP+HRRR fore-
casts over the threat scores of the original LAMP 
forecasts for visibility < 0.5 miles, < 1 mile, and  
< 3 miles.  The improvement is small in the very 
first hours, but the improvement quickly increases 
with projection.  The improvement was positive for 
all projections except for projection 2 for visibility 
< 0.5 miles, where it was only slightly negative 
(-1%), and the improvements generally were be-

tween 20% and 30%, with as much as a 42% im-
provement for visibility < 1 mile at 12 hours.   

 
As we discovered in the earlier verification of 

the HRRR forecasts, there was an overforecasting 
bias for the lower categories.  The biases for the 
forecasts of visibility < 0.5 miles are shown in Fig. 
6.  The HRRR forecasts have a high bias of 2.5 – 
3.1, which is much higher than the original LAMP 
forecast biases, which range from 1.1 to 1.6.  Per-
sistence has an underforecasting bias (as low as 
0.2) because 0000 UTC is at a time of fewer ob-
servations of low visibility, with more occurrences 
of low visibility thereafter.  The LAMP+HRRR fore-
casts exhibit a bias near unity (the range being 
from 1.0 to 1.3), which is generally better than any 
of the other systems that we evaluated. 

 
The bias results for the second LAMP catego-

ry (visibility ≥ 0.5 miles and < 1.0 mile; not shown) 
indicate that the HRRR forecasts were underfore-
casted in this category as the biases were around 
0.5 from 5 to 14 hours.  The biases for the visibility  
< 3.0 miles (not shown) indicate the HRRR fore-
casts have a bias closer to unity when all three 
categories are considered, which indicates that the 
biggest issue of overforecasting for the HRRR bias 
originates with the visibility forecasts < 0.5 miles. 
The LAMP+HRRR statistical blend is able to suc-
cessfully correct for this bias, as evidenced in the 
LAMP+HRRR biases being close to unity for all 
categories investigated. 

 
The results presented above are at stations, 

but the objective is to produce gridded forecasts 
that can be put into the National Digital Gridded 
Database (NDGD), a companion to the NDFD, 
therefore implementation must be on a grid, and 
specifically the NDFD grid.  The equations and 
thresholds, being generalized, can be applied to 
any point, including gridpoints.  The HRRR fore-
casts can be interpolated to points on the NDFD 
grid.  The LAMP probabilities at stations can be 
analyzed to the same grid with the BCDG method, 
and that analysis produces probabilities at the 
same gridpoints.  These two sets of values, six 
from LAMP and five from HRRR, can be used with 
the generalized equations, one for each of the vis-
ibility predictand categories, to produce a probabil-
ity grid for each category.  Then the thresholds, 
developed for stations, can be applied at each 
gridpoint to yield a gridded categorical visibility 
forecast. 

 
This process has been carried out for the 6-h 

projection for the 0000 UTC cycle of October 7, 
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2013.  The 6-h projection was chosen because it 
is into the period where the quality of HRRR and 
LAMP forecasts are somewhat comparable.  Fig-
ures 7-10 show, respectively, the LAMP forecast, 
the HRRR forecast, the combined LAMP+HRRR 
forecast, and the verifying grid.  Figures 7 and 10 
were made by analyzing the LAMP station fore-
casts and the observations with the BCDG meth-
od.  Values of > 10 miles are shown as off-white. 

 
Figures 7 and 10, being analyses of rather 

sparse values, are somewhat “spotty.”  On the 
other hand, the HRRR forecast in Fig. 8 shows 
great detail, with “spottiness” of pixel size.  The 
pattern of actual low visibilities is generally cap-
tured by both LAMP and HRRR, with some over-
casting.  The HRRR has large areas of > 5 and 
< 10 miles (green), that are neither observed nor 
forecast by LAMP.  The visibilities depicted over 
ocean areas are in question on all maps. 

 
Figure 9 shows that the combined  

LAMP+ HRRR forecast has the detail of the HRRR 
generally preserved, without the large HRRR over-
forecasting of  > 5 and < 10 miles.  The combined 
forecast also shows details of the LAMP forecast, 
and more visibilities < 10 miles are forecast than 
observed.  The pixel-sized spottiness is somewhat 
troublesome, as a 6-h forecast cannot be ex-
pected to be correct in that detail.  However, the 
general areas of low visibility are depicted rather 
well; the Ohio to eastern Tennessee band, the 
western Virginia through Alabama and into the 
Gulf of Mexico band, and the New England south-
ward band are rather well placed. 

 
9.   Summary and Plans 
 

These initial results of combining LAMP and 
HRRR for visibility are very encouraging, and this 
seems a viable path to improvement of operational 
ceiling and visibility products.  We plan to continue 
with other cycles, and extend the method to ceil-
ing.  The upgraded redevelopment of gridded 
LAMP lightning and convection is not yet complete 
and therefore we do not have preliminary results, 
however it is expected that the inclusion of the 
new datasets will likewise greatly improve the 
LAMP guidance for these elements.    

 
Two large concerns for these redevelopments 

are the considerable development time needed to 
extend to all cycles, and the possibility the HRRR 
will be modified in ways that will largely invalidate 
the regression relationships.  The latter concern 
can be mitigated somewhat by the availability of 

an archive of data from an upgraded HRRR model 
that can be tested with and redeveloped on, if 
necessary, prior to any HRRR upgrade. 
 

The real time production of such prototype 
LAMP+HRRR guidance for visibility, lightning, and 
convection forecasts is expected to begin during 
the summer of 2015.  The production of the proto-
type LAMP+HRRR ceiling height guidance will 
begin in 2016. 
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FIG. 1.  MRMS composite reflectivity for 01 July 2014 at 0444 UTC before (left) and after (right) an 

automated supplemental quality control process (QC) was applied.  Small scattered echoes in Iowa are 
due to anomalous radar beam propagation (AP), and those AP echoes 40 DBz and higher are removed 
(shown as black) by the QC. 

 

 
FIG. 2.  Threat score for visibility < 0.5 miles for 0000 UTC LAMP (green squares), 2300 UTC Ar-

chived HRRR (purple circles), Persistence (red triangles), and the new LAMP+HRRR forecasts (blue di-
amonds). 
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FIG. 3.  Same as Fig. 1, but for visibility < 1.0 mile. 

 
FIG. 4.  Same as Fig 1, but for visibility < 3.0 miles.
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FIG. 5.  Improvement in threat score of new 0000 UTC LAMP+HRRR forecasts over threat score of 

original 0000 UTC LAMP forecasts for visibility < 0.5 miles (pink circles), visibility < 1 mile (orange 
squares), and visibility < 3.0 miles (green diamonds). 

 FIG. 6. Bias for visibility < 0.5 miles for the same series as in Fig. 1. 
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FIG. 7.  6-h visibility Gridded LAMP forecast in miles from October 7, 2013, 0000 UTC cycle,  

valid at 0600 UTC. 

 
FIG. 8.  The HRRR 7-h visibility forecast in miles from 2300 UTC October 6, 2013, valid at  

0600 UTC. 
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FIG. 9.  Same as for Fig. 7, but for LAMP+HRRR. 

 
FIG. 10.  Verifying Gridded Observations for visibility in miles from Gridded LAMP for 0600 UTC  

October 07, 2013. 
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