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ABSTRACT

The Meteorological Development Laboratory (MDL) of the National Weather Service (NWS) has de-

veloped high-resolution Global Forecast System (GFS)-based model output statistics (MOS) 6- and 12-h

quantitative precipitation forecast (QPF) guidance on a 4-km grid for the contiguous United States. Geo-

graphically regionalized multiple linear regression equations are used to produce probabilistic QPFs (PQPFs)

for multiple precipitation exceedance thresholds. Also, several supplementary QPF elements are derived

from the PQPFs. The QPF elements are produced (presently experimentally) twice per day for forecast

projections up to 156 h (6.5 days); probability of (measurable) precipitation (POP) forecasts extend to 192 h

(8 days). Because the spatial and intensity resolutions of the QPF elements are higher than that for the

currently operational gridded MOS QPF elements, this new application is referred to as high-resolution MOS

(HRMOS) QPF.

High spatial resolution and enhanced skill are built into the HRMOS PQPFs by incorporating finescale

topography and climatology into the predictor database. This is accomplished through the use of specially

formulated ‘‘topoclimatic’’ interactive predictors, which are formed as a simple product of a climatology- or

terrain-related quantity and a GFS forecast variable. Such a predictor contains interactive effects, whereby

finescale detail in the topographic or climatic variable is built into the GFS forecast variable, and dynamics in

the large-scale GFS forecast variable are incorporated into the static topoclimatic variable. In essence, such

interactive predictors account for the finescale bias error in the GFS forecasts, and thus they enhance the skill

of the PQPFs.

Underlying the enhanced performance of the HRMOS QPF elements is extensive use of archived fine-grid

radar-based quantitative precipitation estimates (QPEs). The fine spatial scale of the QPE data supported

development of a detailed precipitation climatology, which is used as a climatic predictive input. Also, the

very large number of QPE sample points supported specification of rare-event (i.e., $1.50 and $2.00 in.) 6-h

precipitation exceedance thresholds as predictands. Geographical regionalization of the PQPF regression

equations and the derived QPF elements also contributes to enhanced forecast performance.

Limited comparative verification of several 6-h model QPFs in categorical form showed the HRMOS QPF

with significantly better threat scores and biases than corresponding GFS and operational gridded MOS QPFs.

Limited testing of logistic regression versus linear regression to produce the 6-h PQPFs showed the fea-

sibility of applying the logistic method with the very large HRMOS samples. However, objective screening of

many candidate predictors with linear regression resulted in slightly better PQPF skill.

1. Introduction

Forecast skill of quantitative precipitations forecasts

(QPFs) in the National Weather Service (NWS) is low,

especially during the warm season (Fritsch and Carbone

2004). While gradual improvements in QPF skill have

been made over the years, the rate of improvement

has lagged corresponding improvements in large-scale

circulation forecasts by operational numerical weather

prediction (NWP) models. The skill disparity is widely

believed to be due to the relatively coarse spatial reso-

lution in operational NWP models: intense precipitation

is associated with mesoscale systems, whereas these

NWP models primarily resolve synoptic-scale circula-

tions. This implies that a key to improving QPF resides

in downscaling predictive information from current

NWP models or using finer-resolution models.

The performance of precipitation forecasts from op-

erational NWP models reflects the large-scale nature of

the models. Light precipitation is overpredicted, while

intense precipitation is underpredicted (Jensenius 1990),
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which the authors have found in archived National

Centers for Environmental Prediction (NCEP) Global

Forecast System (GFS; Kanamitsu 1989; Kanamitsu et al.

1991; Iredell and Caplan 1997) precipitation forecasts

from 2001 to the present. We have also seen a similar

bias trend in the NCEP Nonhydrostatic Mesoscale Model

(Rodgers et al. 2005), though to a somewhat lesser de-

gree. (Documentation of these findings is planned for a

forthcoming article.) Such model bias suggests inadequacy

of the parameterization of convective precipitation in these

coarse-mesh operational models, as recent experimenta-

tion with fine-grid nonhydrostatic (‘‘convection allow-

ing’’) numerical models to improve precipitation forecasts

have yielded encouraging results (e.g., Clark et al. 2009).

Model output statistics (MOS) postprocessing of NWP

output has been used by the NWS to produce unbiased

QPFs and provide uncertainty (probability) estimates

for over three decades (Antolik 2000; Ruth et al. 2008).

However, conventional MOS QPF applications are ham-

pered by short samples from stable NWP models (Carter

et al. 1989; Antolik and Baker 2009), the necessity of

using broad precipitation categories as predictands, poor

sharpness of forecast probabilities (Wilks 2006) for rare

heavy-precipitation categories, and the inability to pre-

dict very heavy precipitation events. Another limitation

of the operational MOS QPFs is that the MOS station

distribution is quite irregular over the forecast domain

(Gilbert et al. 2009).

The recent implementation of the gridded National

Digital Forecast Database (NDFD; Glahn and Ruth 2003)

by the NWS has created a strong demand for corre-

sponding National Digital Guidance Database (NDGD)

grids. In response to the demand, NDGD grids for a

number of weather elements, including 6-h and 12-h QPFs,

are being operationally produced from MOS station fore-

casts (Glahn et al. 2009; Gilbert et al. 2009) through ap-

plication of tailored objective analysis techniques.

The objective of this study is to enhance the spatial and

intensity resolution of the current gridded MOS-based

(GMOS) QPFs through application of new data inputs and

new techniques. A fundamental departure here from the

GMOS QPF approach is that the QPFs are produced by

applying the predictive equations directly on a fine-mesh

(4 km) grid instead of (initially) at irregularly spaced MOS

stations. While such a direct-grid approach is not new—it

has been applied previously for the prediction of thunder-

storms (Hughes 2004; Charba and Samplatsky 2009), severe

local storms (Hughes 1999), and QPF (Charba 1998)—

the present use of a fine-mesh grid together with a geo-

graphically regionalized approach (Lowry and Glahn 1976)

presented new challenges and new opportunities.

In a companion article, Charba and Samplatsky (2011,

hereinafter CS) describe how geographical regionalization

together with use of a fine-mesh grid necessitated the de-

velopment of procedures to avoid spatial discontinuities in

the QPF products across regional boundaries. CS also

briefly describe how the use of finescale terrain and cli-

matological data resulted in enhanced spatial resolution

and skill in the gridded QPF products. Thus, this new MOS

QPF application is referred to as high-resolution MOS

(HRMOS) to distinguish it from the current GMOS QPF

method.

This article provides an overview of the HRMOS QPF

model. The precipitation predictand is described in

section 2 and the various types of potential predictors are

discussed in section 3. Geographical regionalization of the

model is briefly discussed in section 4, highly ranked pre-

dictors in the probabilistic quantitative precipitation fore-

cast (PQPF) linear regression equations are examined in

section 5 along with limited tests with the nonlinear lo-

gistic regression model, and the development of several

derived precipitation products is described in section 6. A

brief examination of the properties and performance of

the QPF elements is presented in section 7, and a sum-

mary and comments are contained in section 8.

2. Precipitation predictand specification

At the NWS, QPF products are commonly issued for

6-, 12-, and 24-h periods. The 12-h QPF products form an

important source of input into public weather forecasts,

and 24-h products are used primarily in water manage-

ment operations. An important application of the 6-h

QPFs is their ingestion into streamflow prediction mod-

els run at NWS River Forecast Centers (RFCs). These

models predict flow levels for small streams and rivers

across the United States. Since flooding along these water

bodies poses a major threat to human life and property,

the production of high-quality 6-h QPF products was the

focus in the HRMOS model development; the production

of similar 12-h QPF products was a secondary objective.

a. Precipitation database

The database used for specifying the 6- and 12-h preci-

pitation predictands consisted of ‘‘stage III’’ 6-h quanti-

tative precipitation estimates (QPEs), which are produced

in real time at RFCs. At each of the 12 conterminous U.S.

(CONUS) RFCs, the QPEs are specified on a polar ste-

reographic grid with a 4.762-km mesh at 608N for a local

subset of the national Hydrologic Rainfall Analysis Pro-

ject (HRAP) grid. This grid is commonly referred to as

the 4-km HRAP grid, as the mesh is just over 4 km at

midlatitudes. For the nine CONUS RFC service areas east

of the Continental Divide (see map online at http://www.

nws.noaa.gov/ahps/rfc/rfc.php), the stage III QPE analyses
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are based on the combined inputs from Weather Sur-

veillance Radar-1988 Doppler (WSR-88D) precipita-

tion estimates and quality-controlled (QCed) gauge

observations (Fulton et al. 1998). The QPEs for the

three western RFCs are produced with a climatology-

enhanced objective analysis of QCed gauge observations

(Henkel and Peterson 1996); radar-based precipitation

estimates are not used in this rugged mountainous region

of the CONUS because they are not considered reliable

there.

The QPEs for the HRAP grid subsets are composited

at the NCEP Central Computer System (CCS) to form a

‘‘stage IV’’ national mosaic (information online at http://

www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/), an ex-

ample of which is shown in Fig. 1a. For use in this study,

an archive of the stage IV data spanning January 2001–

March 20101 was obtained from the National Precipita-

tion Verification Unit of NCEP.

Although human quality control of the stage III anal-

yses is performed at each RFC (Fulton et al. 1998), we

found random and systematic errors in the national

grids. Random errors, due largely to erroneous gauge

observations, were common in the early years of the

archive, but such error in recent grids is rare. Systematic

error in the QPE grids is manifested mainly as pre-

cipitation underreporting, which results from poor radar

coverage, beam blockage, and beam overshooting of

precipitation. To a far lesser degree, systematic error in

the QPEs also arises from the nonrandom incidence

of radar beam anomalous propagation (AP), which was

more common in the early part of the archive. Im-

provements in the multisensor precipitation processing

algorithms over time (Fulton et al. 1998) have resulted in

AP reduction, but precipitation underreporting due to

incomplete radar coverage is unchanged.

Thus, we developed QC procedures to detect and

screen random and systematic errors in the QPE data

in two serial steps. First, random error was detected

and screened through a ‘‘human in the loop’’ dynamic

process, whereby individual grids were subjected to

automated spatial and temporal consistency checks.

From a preliminary automated dynamic QC run, the

lead author inspected computer-generated error flags

and subgrid masks for individual grids. When the in-

spector disagreed with an error flag or subgrid mask, he

issued either an override of the error flag or an adjust-

ment to the subgrid mask for inclusion in a final dynamic

QC run.

The systematic data error detection and masking pro-

cess, which comprised the second QC step, is ‘‘grid static’’

in the sense that QPE values were set to missing for a

seasonally fixed set of grid points in every warm season

(April–September) or cool season (October–March) grid.

The data-reject grid points were predetermined from

careful examination of 6-h precipitation seasonal mean

relative frequency (SRF) maps for multiple precipitation

exceedance thresholds (see section 3b). Unrealistic SRFs at

individual 4-km grid points were identified through cross-

checking against detailed geophysical and documented

precipitation climatology maps (Daley et al. 1994; Charba

et al. 1998). The QPE data were set to missing at the in-

valid SRF grid points in an ensuing grid-static data mask-

ing computer run.

Results from the QC processing revealed that the QPE

discard rate with the dynamic and static masks combined

was about 6% during the warm season and about 12%

during the cool season, the vast portion of which resulted

from the grid-static masking. While the discarded fraction

from the dynamic masking was extremely small (averag-

ing about 0.02% over the entire archive), it is considered

significant because the rejected data often fell near the

upper bound of valid precipitation amounts. The higher

discard rate for the cool season resulted from the grid-

static masking of radar-underdetected shallow stratiform

precipitation. In fact, the broad coverage of the grid-static

data masking, especially over the high plains of the United

States, prompted subsequent insertion into those areas of

QCed 6-h precipitation gauge observations from aviation

routine weather reports (METARs). Corresponding to

the raw QPE field in Fig. 1a, the QCed QPE field, sup-

plemented with these gauge data, is shown in Fig. 1b.

It is worth noting that a routine aspect of the QPE QC

processing is a statistical comparison of 24-h precip-

itation based on the QPE data with QCed precipitation

gauge observations at roughly 7000 stations over the

CONUS. For this comparison the 6-h QPE data are

accumulated over 24 h; the QCed gauge observations

were supplied by the NCEP Hydrometeorological Pre-

diction Center (HPC). Averaged over the years 2001–09

and the full CONUS domain, the root-mean-squared

difference, mean absolute difference, and mean differ-

ence for the cool (warm) season were 0.13, 0.04, and

0.0 in. (0.17, 0.05, and 0.0 in.), respectively. The smallness

of these 24-h precipitation difference measures indicates

that the QCed QPE and gauge data could be used in-

terchangeably for most meteorological applications.2

1 The NPVU archive of the QPE data begins on 1 October 2000,

but data for the period October–December 2000 were not used

because of their very poor quality.

2 It is noted the gauge versus QPE differences may be larger east

of the U.S. Continental Divide than to the west because the QPE

analyses in the latter domain are based only on gauge data.
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b. Predictand specification

The HRMOS predictand was specified from the QCed

QPE data for individual 4-km HRAP grid boxes as

a binary variable with a value of 1 when a precipitation

exceedance threshold was met and 0 otherwise. The 6-h

exceedance thresholds are $0.01, $0.10, $0.25, $0.50,

$0.75, $1.00, $1.50, and $2.00 in. It is noted that the

peak 6-h precipitation threshold used in the currently

operational MOS QPF product is $1.00 in. (Antolik

2000). The addition of the very rare event (i.e., $1.50

and $2.00 in.) 6-h precipitation exceedence thresholds

was possible because the number of grid points with QCed

QPE data is far greater than the number of CONUS MOS

stations with trustworthy gauge data (;420 000 versus

;300). With such a large number of sampling points and

FIG. 1. Stage IV quantitative precipitation estimates (in.) for the 6-h period ending 0000 UTC

5 Jan 2008 (a) before and (b) after QC procedures were applied. Missing data (white areas) in

(b) reflect application of QC procedures and brown specks in those locations show where

precipitation gauge data were subsequently inserted.
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a historical archive of QPE data spanning 2001–10, sta-

tistically robust samples were formed even for the $1.50-

and $2.00-in. 6-h precipitation thresholds. Finally, the

exceedance thresholds for the 12-h periods are identical

to those for 6 h, except for the addition of a peak 12-h

threshold of $3.00 in. (The peak 12-h threshold for MOS

is $2.00 in.)

The predictand for development of the HRMOS

model was specified for 4-km grid boxes over the stage

IV data coverage area (denoted HRMOS developmental

domain in Fig. 2). The corresponding candidate predictor

variables, discussed in the next section, are defined for the

same locations. However, to meet the NWS CONUS

service requirements, operational QPFs must be pro-

duced for the expanded coverage area shown in Fig. 2.

Thus, predictor fields used for operational application of

the HRMOS model must also be defined for this ex-

panded area, which posed a challenge for predictor var-

iables derived from data confined to the developmental

area.

3. Candidate predictor specification

Forecast output from the NCEP GFS provided the

dynamic predictor base for the HRMOS application.

Although convective parameterization in the GFS can

result in mesoscale detail in the forecast precipitation

field, other model variables are of the synoptic scale.

Thus, to increase mesoscale information in the predictor

data, finescale topography and climatological data were

incorporated as ‘‘static’’ predictor inputs. The approach

used for incorporating the ‘‘topoclimatic’’ data is similar

to that used in a previous short-range statistically based

QPF model (Charba 1998), but here these data inputs

are more extensive and they contain enhanced spatial

resolution. The basic forms of these topoclimatic inputs

are listed in Table 1a under the heading ‘‘constant data,’’

and the basic GFS forecast variables are listed in Table

1b. These variables are denoted as ‘‘basic’’ as additional

candidate predictors (described later) are derived from

them. In the following subsections, we first address how

each of the topoclimatic variables was defined.

a. Topography

Terrain elevations provided by the U.S. Geological

Survey on a 30-arc-s latitude–longitude grid were in-

terpolated onto the 4-km HRAP grid. This initial terrain

field was then smoothed through conventional grid

FIG. 2. HRMOS developmental domain (medium blue shading)

and the required coverage for NWS operational QPF products

(light blue shading). The map border coincides with the bounds of

the HRAP grid.

TABLE 1. (left) Basic potential predictor variables and (right) the

applicable height level(s). All references to precipitation pertain to

standard 6-h periods. Abbreviations are DOY, day of the year; RF,

relative frequency; precip, precipitation; CTG, cloud to ground; u,

westerly wind component; y, southerly wind component; MSL,

mean sea level; RH, relative humidity; and CAPE, convective

available potential energy.

Variable Level (s)

(a) Constant data

Terrain elev —

Lat —

Lon —

Sine, cosine DOY —

Seasonal RF for multiple

precip categories

—

Monthly RF for multiple

precip categories

—

PRISM monthly-mean precip —

Monthly RF of CTG lightning —

(b) GFS forecasts

Tot (grid scale 1

convective) precip

—

Convective precip —

Vertical velocity 700 mb

u, y wind components Multiple levels

MSL pressure —

Pressure height Multiple levels

Mean RH Multiple layers, precipitable

water 1000–500 mb

Terrain-forced vertical

velocity*

10 m, 850 mb

Divergence of the moisture

flux

850 mb

Equivalent potential

temperature

850 mb

Best lifted index —

CAPE Surface based

K index —

Total totals index —

* Based on GFS u, y wind components at 10 m and 850 mb.
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smoothing to optimize the predictive effectiveness of

a stand-alone terrain elevation predictor and terrain-

induced vertical velocity (the primary predictor usage of

the terrain data). The utility of these terrain-based pre-

dictors was tested on the basis of sensitivity experiments,

whereby PQPF skill from predictive regression equa-

tions was objectively measured for various levels of

terrain detail (not shown). The level of terrain detail that

resulted in optimal PQPF skill is shown in Fig. 3; nev-

ertheless, substantial smoothing of the derived terrain-

induced vertical velocity was necessary.

b. Precipitation climatology

Three types of gridded precipitation climatologies

were included as predictor inputs (Table 1a), each with

unique properties and limitations. One type consisted of

6-h precipitation SRFs, which were computed for each

4-km grid box and each of the eight 6-h precipitation

exceedance thresholds from an 8-yr (2001–08) archive of

the HRMOS predictand (section 2b). To obtain adequate

statistical samples at individual grid boxes, the SRFs were

averaged over the 6-month warm or cool seasons and

over the four 6-h periods of the day.

An example of the ‘‘raw’’ cool season SRFs is shown

in Fig. 4a, which is for the $0.10-in. 6-h precipitation

exceedance threshold. This raw SRF field contains sev-

eral impediments to direct predictor usage, which in-

clude (a) extensive data coverage gaps, especially from

West Texas to the Canadian border (results from the QC

screening of the QPE data); (b) excessive spatial inco-

herency throughout the SRF field, which is due largely to

shortness of the underlying sample; c) fictitious flower-

shaped patterns (due to range dependency of radar esti-

mated precipitation), which is especially problematic in

the U.S. central and northern plains; and (d) insufficient

geographical coverage for operational application of the

HRMOS model.

The treatment of these deficiencies involved recon-

struction and expansion of the raw SRF field. A key aspect

of the reconstruction involved localized grid filling and

smoothing, which was performed manually with the aid of

interactive grid-editing software (Wier et al. 1998) to-

gether with guidance from precipitation climatology maps

from Charba et al. (1998) and Daley et al. (1994). The

geographical coverage expansion also involved manual

grid filling, whereby miscellaneous precipitation climatol-

ogy information as well as cloud-to-ground lightning cli-

matology maps (section 3c) was used as guidance. These

localized grid-filling and smoothing processes were fol-

lowed by conventional automated grid smoothing to re-

move residual finescale noise over the full domain.

The reconstructed SRF field corresponding to Fig. 4a

is shown in Fig. 4b. Note that it contains high spatial

coherency as well as mesoscale detail, which includes

strong SRF maxima (minima) on the windward (lee)

slopes of significant mountain chains across the United

States (Fig. 3) and also weak maxima along the lee

FIG. 3. Terrain elevation (hundreds of meters) for the developmental area.

44 M O N T H L Y W E A T H E R R E V I E W VOLUME 139



shores of the Great Lakes.3 Similarly, reconstructed cool

season SRF fields were also produced for the seven

other 6-h precipitation exceedance thresholds and all

thresholds for the warm season.

A second type of precipitation climatology (Table 1a)

consisted of monthly relative frequencies (MRFs) for

each of five 6-h precipitation exceedance thresholds

($0.10, $0.25, $0.50, $1.00, and $2.00 in.), which were

developed on a 20-km grid from 33 yr of hourly precip-

itation gauge measurements from the U.S. cooperative

observer network (Charba et al. 1998). For application

FIG. 4. (a) Raw cool SRF (%) of $0.10 in. and (b) the corresponding reconstructed SRF field

for the expanded coverage area (Fig. 2).

3 An unfortunate consequence of the automated grid smoothing

used to suppress finescale SRF noise throughout the domain is the

amplitude reduction of the real small-scale SRF features such as are

found along the lee shores of the Great Lakes (Fig. 4). Subsequent

manual editing would be required to restore this detail, the cost of

which was considered excessive relative to the likely benefits.
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here, the MRF fields were interpolated onto the HRAP

grid. It is noted that the MRF and SRF precipitation cli-

matologies (discussed above) complement one another, as

the MRFs vary by month and time of day whereas the

SRFs contain higher spatial detail and additional pre-

cipitation thresholds ($0.01, $0.75, and $1.50 in.).

The third precipitation climatology type (Table 1a),

commonly known as the Parameter-elevation Regressions

on Independent Slopes Model (PRISM; Daley et al.

1994), consists of monthly-mean precipitation amounts on

a 30-arc-s latitude–longitude grid that spans the CONUS.

This precipitation climatology type was incorporated here

to complement the SRF and MRF climatologies, as it in-

cludes both statistical analyses and finescale orographic

precipitation modeling in its formulation.

As for the SRFs, it was necessary to extend the areal

coverage of the MRF and PRISM climatologies to the

expanded CONUS domain (Fig. 2). These expansions

were performed objectively with a simple iterative dif-

fusion procedure, whereby the reconstructed and ex-

panded SRF field for $0.10 in. (Fig. 4b) was used as

a key control variable.

c. Lightning climatology

The fourth climatological predictor type (Table 1a)

consists of monthly relative frequencies (LRFs) of one

or more cloud-to-ground (CTG) lightning strikes within

the 4-km HRAP grid cells and each of the four 6-h pe-

riods of the day. The LRFs were derived from a 15-yr

(1994–2008) archive of CTG strikes from the National

Lightning Detection Network (NLDN; Cummins et al.

1998). Spatial and month-to-month temporal smooth-

ings were applied to raw LRF grids to enhance spatial

coherency and intermonth consistency at the smallest re-

solvable scales. An example map valid for 1800–0000 UTC

during July is shown in Fig. 5. The LRF climatology

complements the three precipitation climatologies as it

contains increased spatial detail in the eastern United

States, good temporal resolution, and coverage beyond

the CONUS boundaries.

d. GFS model output variables

Candidate predictor variables from GFS output were

prepared by first interpolating the model fields to the

HRAP grid from a Meteorological Development Lab-

oratory (MDL) archive on a polar stereographic grid

with a 95.25-km mesh length (called an 80-km grid since

the grid spacing is about 80 km at midlatitudes).4 Of the

full list of GFS variables in Table 1b, the first six are

basic model variables, whereas the remaining ones are

mostly derived quantities. Also, while this list of variables

may appear short, the actual number of candidate GFS

predictors was far larger (approaching 100) because of

several factors. First, continuous variables were converted

to multiple grid binary variables (Jensenius 1992) to help

account for nonlinear associations with the precipitation

FIG. 5. July relative frequency (smoothed; %) of one or more CTG lightning strikes in 4-km

HRAP grid boxes during 1800–0000 UTC for the expanded coverage area.

4 The GFS grids in the MDL archive are interpolated from the

native model grid.
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predictands and to instill consistency between the binary

predictands and the predictors. Where continuous pre-

dictor variables are inherently bounded (such as for rela-

tive humidity), the continuous form was also used. Second,

many of the more useful variables were specified at mul-

tiple forecast projections to account for possible phase

speed bias in the GFS. Finally, some of the more useful

variables were specified not only from the latest GFS cycle,

but also from as many as three previous 6-hourly cycles (up

to 18 h earlier). The aim of this ‘‘ensemble’’ approach was

to enhance forecast skill and intercycle consistency in the

HRMOS QPF products.

e. Interactive variables

As noted before, GFS model output variables contain

predominantly synoptic-scale predictive information,

whereas the ‘‘topoclimatic’’ variables contain finescale

detail. A technique by which detail in the latter is in-

fused into the former is through specification of ‘‘inter-

active’’ variables. Such a variable was defined as a simple

product of a selected topography or climatology variable

(from Table 1a) with a selected GFS variable (from Table

1b), similar to that used previously by Reap and Foster

(1979) and Charba (1998). These product variables ap-

proximate ‘‘true’’ interactive variables used by Bocchieri

(1979) and Charba (1987), where such a variable was

defined as the (statistically derived) relative frequency

of occurrence of the predictand for any combination of

values of the component predictor variables. The simple

product surrogate was adopted here because the de-

velopment and implementation costs are far less. This

factor together with the extensive topoclimatic inputs

available in this study provided the opportunity to

specify many interactive variables of this type. The full

list of these topoclimatic interactive (TCIA) variables is

shown in Table 2a.

A key attribute of a TCIA variable is that it combines,

in an interactive manner, predictive aspects of each

component variable into a single predictor. Specifically,

fine spatial detail that characterizes a topography or cli-

matology variable is infused with large-scale information

in a GFS forecast variable. Also, the dynamic aspects

of the GFS forecast instill temporal variability into the

time-static topography or climatology variable. An ex-

ample of these interactive effects is shown in Fig. 6b for

the product of the cool season 6-h precipitation SRF

of $0.10 in. (Fig. 4b) and a grid binary representation

(with a 0.10-in. exceedance threshold) of the GFS 6-h

total (grid scale plus convective) precipitation at the

12-h forecast projection (Fig. 6a). Note that the prod-

uct results in a conditioning of SRF for $0.10 in. with

the GFS prediction of 6-h precipitation $0.10 in. Close

inspection of Figs. 4b, 6a, and 6b reveals that the SRF

variable is responsible for the finescale detail in the

product field, whereas the GFS forecast of $0.10 in.

(a binary variable) controls the geographical coverage

of nonzero values. From one perspective, the GFS forecast

TABLE 2. Derived interactive (potential) predictor variables formed as a product of variable 1 and variable 2 (and variable 3 for three-

component variables). All references to precipitation pertain to std 6-h periods. Nonstandard abbreviations, in addition to those in Table 1,

are vert. vel., vertical velocity; TVV, terrain vertical velocity; GB, grid binary; comp., component; convec., convective; equiv. pot., equivalent

potential; and neg., negative.

Variable 1 Variable 2 Variable 3

(a) Topography–climatology

1) TVV (upward; GFS 850-mb u, y comp.) GFS total precip $0.04 in. (GB) —

2) TVV (upward; GFS 10-m u, y comp.) GFS 1000–500-mb mean RH —

3) Monthly RF CTG lightning GFS K index $30.0 K (GB) —

4) Monthly RF precip $0.10 in. Seasonal RF precip $0.10 in. GFS tot precip $0.10 in. (GB)

5) Monthly RF precip $0.50 in. Seasonal RF precip $0.50 in. GFS convec. precip $0.16 in. (GB)

6) Monthly RF precip $0.10 in. PRISM monthly precip GFS tot precip $0.10 in. (GB)

7) Monthly RF precip $0.10 in. GFS tot precip $0.10 in. (GB) —

8) Monthly RF precip $0.25 in. GFS tot precip $0.25 in. (GB) —

9) Monthly RF precip $0.50 in. GFS convec. precip $0.16 in. (GB) —

10) Seasonal RF precip $0.10 in. GFS tot precip $0.10 in. (GB) —

11) Seasonal RF precip $0.25 in. GFS tot precip $0.25 in. (GB) —

12) Seasonal RF precip $0.50 in. GFS tot precip $0.40 in. (GB) —

13) Seasonal RF precip $0.75 in. GFS tot precip $0.65 in. (GB) —

(b) GFS only

1) GFS 700-mb vert. vel. (upward) GFS K index $30.0 K (GB) —

2) GFS 850-mb equiv. pot. temperature GFS 850-mb u-wind comp. —

3) GFS 850-mb equiv. pot. temperature GFS 850-mb y-wind comp. (southerly) —

4) GFS 700-mb vert. vel. (upward) GFS precipitable water —

5) GFS 700-mb vert. vel. (upward) GFS 850-mb moisture divergence (neg.) —
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acts as a dynamic control on the static climatology

variable. From another perspective, the climatology

serves to account for the finescale bias error in the

GFS forecast.

This concept underlies other TCIA variables in Table

2a. All variables numbered 4–13 involve one or more

types of precipitation climatology together with a GFS

forecasted 6-h precipitation threshold. In the case of the

three-component interactive variables (variable numbers

4–6), the aim was to combine the complementary aspects

of different precipitation climatology types (section 3b).

For variables 1 and 2, the finescale terrain-induced verti-

cal velocity (computed via low-level GFS wind compo-

nents) is conditioned by GFS measureable precipitation

($0.01 in.) and lower-tropospheric mean relative hu-

midity forecasts, respectively. Finally, for variable number

FIG. 6. (a) GFS total precipitation (in.) with a 12-h forecast projection for the 6-h period

ending 0000 UTC 5 Jan 2008, and (b) the product of cool season relative frequency (%) of 6-h

precipitation $0.10 in. (Fig. 4b) and the GB representation of (a) with a $0.10-in. exceedance

threshold.
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3, lightning climatology is dynamically conditioned by the

GFS-predicted K (convective instability) index.

Another attribute of a TCIA variable is that it allows

for a nonlinear relationship between the predictand and

the individual component variables. This attribute may

be significant because it provides a mechanism by which

nonlinear effects can be accounted for in the linear re-

gression model used in the HRMOS QPF application.

It is noted that the level of smoothing applied to

a topoclimatic interactive variable was an important as-

pect of its predictive effectiveness. Since taking the

product of two variables essentially multiples the spatial

detail in the component fields, the product field tends to

exhibit excessive spatial variability (‘‘noise’’). The noise

was controlled by applying conventional grid smoothing,

where the level of smoothing was ‘‘tuned’’ by trial and

error to optimize PQPF skill. The specific tuning criterion

used was to maximize spatial detail to the degree that

PQPF skill is not sacrificed. The tuning was initially te-

dious, but, with experience, good smoothing estimates

could be made from inspection of test PQPF fields.

A smaller set of additional product variables was

specified (Table 2b), where both component variables

were selected from the GFS group (Table 1b). The aim

was to account for possible nonlinear relationships be-

tween these GFS product variables and the precipitation

predictands. The component pairs were chosen to reflect

precipitation mechanisms. For instance, 700-mb vertical

velocity is paired with a convective instability index, pre-

cipitable water, and divergence of the low-level moisture

flux. It is important to note that rare outlier values in some

of these product variables were (initially) problematic in

the PQPF linear regression equations, as an outlier value

could result in a very poor PQPF. The problem was

treated by truncating outlier values, where truncation

bounds were set at about the 1 (or 99) percentile values of

a product distribution. Finally, the avoidance of extreme

outlier values was a factor in the decision to use (in-

herently bounded) grid binary variables as the GFS

components of the TCIA variables (Table 2a).

4. Geographical regionalization

Details of the geographical regionalization of the

PQPF linear regression equations are contained in CS. It

is useful to briefly review the regionalization process

here because slight changes have subsequently been

made to the regions. Also, regionalization was used in

the formulation of the derived QPF elements, which was

not addressed in the earlier article.

In an early developmental stage of the HRMOS model,

the geographical regions were the nonoverlapping areas

shown in Fig. 7, and CS showed these regions resulted in

artificial discontinuities in PQPF patterns along regional

boundaries. The problem was treated by outwardly ex-

panding the boundaries of each nonoverlapping region,

and then regression equations were developed for the

resulting overlapping regions. Since application of these

equations to the overlapping regions results in multiple

PQPFs in the overlap zones, a weighting technique was

used to blend the multiple PQPFs in those areas. CS

showed that the region overlap and weighting techniques

mitigated the artificial PQPF discontinuities without de-

grading forecast skill. Daily inspection of experimental

real-time PQPF maps by the authors over a period of

almost 2 yr reveals that the current regions do not result

in significant regional discontinuities anywhere over the

CONUS domain.

The recent slight modification of the regions (noted

above) consisted of two changes. One was that a new

region (region 14 in Fig. 7) was formed by partitioning

off from the original region 11 (Fig. 4 in CS) an area

slightly larger than the state of Florida. This was done to

treat a unique problem of strong warm season over-

forecasting of heavy precipitation amounts at very long

forecast projections (120 h and longer) over the Florida

peninsula. Another change was a westward extension of

the northwest portion of region 12 to include the

southern shore of Lake Superior. This change consoli-

dates the area of cool season precipitation enhancement

of the Great Lakes (Charba et al. 1998 and references

therein) entirely within region 12.

The weighting technique constitutes a key component

of the regionalization process, as it is used for blending

FIG. 7. Overlapping regions (depicted by color shades that

change in overlap areas) numbered 1–14, which are used for de-

velopment and application of the PQPF regression equations and

nonoverlapping regions (boldface black lines) used for formulation

of the derived QPF products.
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multiple PQPFs (and other variables involving the de-

rived QPF elements) within the regional overlap zones.

Here, we note a few aspects of the weight fields and how

they are applied. For example, Fig. 8 shows the weight

field for region 7, which features an inner core coinciding

with the nonoverlapping portion of the region (Fig. 7)

where the weights have a constant value of 1.0. Within

bands of variable width along the regional perimeter

(which constitute the regional overlap zones), the weights

decrease smoothly to 0.0 according to a continuous math-

ematical function (CS). A key feature of the weights is that

for a grid point in an overlap zone the set of weights from

all regions sums to 1.0. Thus, the application of the weights

to overlapping fields results in seamless transitions across

the regions.

5. PQPF regression equations

a. Equation development and PQPF scoring

Separate PQPF linear regression equations were de-

veloped for the cool and warm seasons, each of the 14

overlapping geographical regions, 6- and 12-h valid pe-

riods, and each forecast projection in 6-h increments5 in

the 12–156-h range for the 1200 and 0000 UTC cycles.

In addition, the development was extended to 192 h

(8 days) for the $0.01-in. threshold (probability of pre-

cipitation, POP); PQPFs for higher precipitation thresh-

olds for this very long forecast range are not produced

because of their very low skill. The samples for the equa-

tion development were formed by aggregating predictor–

predictand data within each overlapping region for all

cool (or warm) season days for the period 1 January

2001–30 September 2009.

The Brier skill score (BSS),

BSS 5 1� BS

CL
, (1)

which measures the fractional improvement in Brier score

(BS; Brier 1950) of the PQPFs over the BS for climatology

(CL), was used to assess the skill of the PQPFs. Here, BS is

given by

BS 5
1

n
�

n

k51
( f

k
� o

k
), (2)

where n is the number of forecasts in the verification

sample, fk is the PQPF whose range is 0.0–1.0, and ok is

the observation with a value of 1 when the precipitation

amount is greater than or equal to the threshold and

0 otherwise. Finally, CL is the climatology score given by

(2), where the predictand SRF defined in section 3b was

used as the climatological forecast.6

To assess whether the BSS corresponding to one set of

PQPFs is significantly different (in a statistical sense)

from the BSS for another set, we used the two-tailed

paired t test (Wilks 2006), where the null hypothesis is

that there is no difference in skill between the two sets.

In these tests the BSS was computed separately for in-

dividual days based on all CONUS grid points, all days

of an independent season (about 180 days) were used as

the verification sample, and we assume that the sample

average of (BSS1 2 BSS2) values (where the subscripts

distinguish the two PQPF sets) approximate a Gaussian

distribution.7 This formulation was used in all signifi-

cance tests conducted in this study.

b. Unconditional versus conditional predictands

Two approaches (UC and CND) for obtaining un-

conditional PQPFs were tested. With the UC method

the predictand (section 2b) is unconditional, and thus

the associated regression equations (directly) yield un-

conditional PQPFs. Also, for a given cycle, season, and

forecast projection, the same set of predictors is used for

all precipitation thresholds (predictands). This set was

obtained through forward-selection screening regression

(Glahn and Lowry 1972; Wilks 2006) applied simulta-

neously to the eight 6-h precipitation thresholds, whereby

a given predictor is selected as it yields the maximum

incremental reduction of variance (among all unused

predictors) for one of the thresholds. Predictor screening

over all predictands simultaneously greatly reduces the

computational cost, and the common predictor set may

enhance PQPF consistency among the multiple precipi-

tation thresholds.

With the CND method, only the measureable pre-

cipitation predictand is unconditional; the predictands

5 Consecutive valid times of the 12-h periods overlap since they

are in 6-h increments.

6 Because the MRF data (described in section 3b) are stratified by

month and time of the day, they should be more representative of

the true precipitation climatology; however, these data were not

used because the $0.01-in. precipitation threshold is not available.
7 It is cautioned that for a full-season sample, dependencies in

the QPE observations may exist among consecutive days. Since the

paired t test assumes a random sampling of independent observa-

tions, consecutive-day samples may underestimate the true vari-

ability of the BSS differences and thus overestimate the statistical

significance of the BSS differences. A random withholding of days

from the developmental dataset would provide a more robust

verification sample, and it will be considered in future work. Also,

cross validation (Wilks 2006) is another preferred method of

forecast model testing, but this computationally expensive ap-

proach was not feasible in this study because of its very large cost.
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for the seven remaining precipitation thresholds are

conditioned on the occurrence of measureable pre-

cipitation. Also, one predictor set is screened for the

unconditional POP predictand, and a different set is

screened for the seven conditional predictands. Since

regression equations for the latter predictands yield

conditional PQPFs (CPQPFs), unconditional probabil-

ities are obtained by taking the product of POP and

CPQPF. The CND method has long been used at MDL

especially for applications where the distribution of

predictand occurrences among the multiple thresholds is

highly nonuniform and event occurrences for some

thresholds are very rare (the case here).

BSS comparisons of unconditional 6-h PQPFs with

the UC and CND methods showed CND yielded slightly

higher skill for both seasons and cycles and all forecast

projections. For example, Fig. 9 shows comparative

BSSs averaged over four day 1 forecast projections (12,

18, 24, and 30 h) for the 2007/08 cool season. Note that

the BSS with the CND method (BSSCND) is slightly

higher than for BSSUC for all but the (inherently un-

conditional) $0.01-in. threshold. The t test indicated

that the BSSCND improvement on BSSUC for thresholds

in the $0.10 to $1.00-in. range is significant at the 99%

confidence level, whereas the small improvement for

$2.00 in. is significant at the 95% confidence level.

Increased skill with the CND method is likely due to

two factors. One is that the predictors for the conditional

predictands are substantially different from those for the

unconditional POP predictand, as shown in the follow-

ing subsection; that is, the two predictor sets are tailored

to the unique predictands. A second factor is that the

CND method can account for nonlinear relationships

between the unconditional predictands and the predictors

even with the use of linear regression equations. Since

taking the product of POP and CPQPF to obtain an un-

conditional PQPF is equivalent to taking the product of

the underlying linear regression equations, individual

predictor terms now involve products of the original

predictors. Accordingly, the unconditional predictands

are functions of the (inherently nonlinear) product vari-

ables. Thus, all subsequent references to unconditional

PQPFs in this article are based on the CND method.

c. Predictor properties

With forward-selection screening regression, the num-

ber of predictors selected for inclusion in a POP or CPQPF

regression equation was optimized on the basis of several

criteria. The criteria consist of an arbitrary upper bound

(19) on the number of predictors, a minimum incremental

reduction of variance condition, and a predictor colinearity

restriction. Parameter values associated with the latter

two controls were chosen by optimizing statistical fore-

cast performance properties of the unconditional PQPFs

[such as BSS, reliability, and sharpness (Wilks 2006)] for

independent samples.

The number of predictors among the regression

equations varied widely as a function of the predictand

type, geographical region, and forecast projection. The

overall range for the cool season was 4–18 among the

POP equations, with an average of about 10; the corre-

sponding range for the CPQPF equations was 12–19,

with an average of about 18. There was little difference

in the number of predictors for the warm season. Since

the upper bounds of these ranges slightly exceed the

number of predictors commonly used in MOS appli-

cations at MDL (Glahn 1985; Antolik 2000), a test of

BSS versus the number of predictors was conducted for

FIG. 8. Map of weight constants for region 7.

FIG. 9. BSS (%) of 6-h PQPFs for multiple precipitation

thresholds (in.) over the CONUS domain with the UC and CND

predictand approaches (see text). The scores are averaged over

four day 1 forecast projections (12, 18, 24, and 30 h) from the

1200 UTC cycle for the 2007/08 cool season.
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a short forecast projection (12 h) and a long projection

(114 h) for the cool season (Fig. 10). The monotonic

increase of BSS with the increasing number of predictors

seen here does not indicate overfitting of the develop-

mental data (Wilks 2006). Also, the flattening of the BSS

profiles for high predictor numbers indicates that in-

clusion of additional predictors would not benefit PQPF

performance.

Assessments of the more important predictors in the

various regression equations were conducted by ranking

and summarizing predictors across groups of equations

(to avoid being misled by possible rank order anomalies

in individual equations8). The predictor ranking took

into account the order of selection in individual equations

FIG. 10. BSSs for unconditional PQPFs vs precipitation threshold (in.) for cool season re-

gression equations with a varying number of predictors (the number is indicated in the legends).

The top chart applies to the 12-h projection and the bottom chart to the 114-h projection. The

verification sample is for the CONUS domain and the 2008/09 cool season. The $0.01-in.

threshold applies to the POP equations where the predictor maximum is 9; all other thresholds

apply to the CPQPF equations (see text) where the predictor maximum is 19 (18) for the 12-h

(114 h) projection. The unconditional PQPF was obtained by taking the product of POP and

CPQPF for equations with identical numbers of predictors, but where the number of CPQPF

predictors exceeded 9, the nine-term POP equations were linked with CPQPF equations with

11, 13, etc. predictors.

8 Rank order anomalies can occur because of high intercorrelation

among the predictors. High intercorrelations are due to many fac-

tors, which include the use of physically similar variables, multiple

grid binary thresholds, multiple forecast projections, and multiple

GFS cycles (section 3d).
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and the frequency of selection across multiple equations.

With forward-selection screening, the earlier a predictor

is selected the greater its contribution to the reduction of

predictand variance (the higher its rank). Also, the higher

the frequency of selection of a given predictor for an

equation group, the greater its predictive contribution. For

a given equation group, the ranking was performed for the

top nine predictors; the arbitrary nine-predictor cutoff is

about the same as the average number of predictors in a

POP equation.

The ranked predictor sets showed marked contrasts

across the two predictand types (POP versus CPQPF),

geographical regions, and forecast projections. For ex-

ample, Table 3 shows the ranked predictors for 6-h POP

and CPQPF equations for the 1200 UTC cycle during

the cool season, all geographical regions, and four day 1

forecast projections (12, 18, 24, and 30 h). Note that

highly ranked predictors for POP (Table 3a) are vari-

ables with information about whether precipitation will

occur (GFS total precipitation together with pre-

cipitation climatology for light thresholds, layer mean

relative humidity in the lower atmosphere, and 700-mb

vertical velocity). The corresponding CPQPF predictors

(Table 3b) are slanted more toward the amount of pre-

cipitation and the convective nature of heavy amounts

[GFS total/convective precipitation and precipitation

climatology for thresholds of 0.10 in. and greater, 700-mb

vertical velocity together with the K stability index, and

precipitable water for moderate and large grid binary

(GB) thresholds]. These predictor contrasts are consis-

tent with improved forecast skill with the CND vis-à-vis

the UC PQPF approach shown in section 5a.

As an example of predictor variations across diverse

geographical regions, Table 4 shows the ranked day 1

cool season CPQPF predictors for region 1, which has

rugged mountain terrain, and region 14, which has flat

terrain (Figs. 3 and 7). Note that strong predictors in

region 1 (Table 4a) include precipitation climatology,

terrain-forced vertical velocity, and terrain elevation.

Contrasting predictors for region 14 (Table 4b) include

GFS forecasts of convective precipitation and several

convective stability indices, which is consistent with the

subtropical climate of this region. Other unique predictors

for this region are GFS forecasts of sea level pressure and

the u-wind component. Finally, note that the predictor

uniqueness for these regions is mostly obscured in the

corresponding predictor set summarized over the entire

CONUS domain (Table 3b).

The impacts of regional predictor variations on PQPF

skill are indicated in Fig. 11. Here, the BSS for re-

gionalized regression equations (REG) is compared with

the BSS for nonregionalized equations (NON-REG) for

four day 1 forecast projections over the 2008/09 cool

season. The t test indicated that the CONUS skill supe-

riority of REG over NON-REG (Fig. 11a) is statistically

significant with 99% confidence for all precipitation

thresholds in the 0.01–0.50 range and with 90% confi-

dence for $1.00 in. (the tiny BSS increase for $2.00 is not

significant). Figure 11b shows the corresponding BSSs for

individual regions at the $0.25-in. threshold. Here, we

see that the largest skill improvements for REG are for

regions 1–5 in the mountainous western United States

(Figs. 3 and 7); in the east, where terrain effects are small

or nonexistent, the improvement of REG on NON-REG

is small.

d. Impact of the topoclimatic interactive predictors

In section 3e we described attractive properties of the

TCIA predictor variables and in the previous subsection

we saw that these predictors had high CONUS-wide

TABLE 3. Nine highest-ranked predictors, which are listed in the

order of decreasing rank, in cool season 6-h (a) POP and (b) CPQPF

(see text) regression equations for all regions and four day 1 forecast

projections (12-, 18-, 24-, and 30-h) combined (1200 UTC cycle). All

references to precipitation apply to 6-h periods, and nonstandard

abbreviations are as in Tables 1 and 2. Most of the stand-alone GFS

predictors are in GB form, but GB thresholds are shown only for the

interactive predictors.

(a) POP

1) GFS tot precip (GB form with most precip thresholds less

than 0.10)

2) GFS mean layer RH (1–0.44 sigma)

3) (Seasonal RF precip $0.10 in.) 3 [GFS tot precip. $0.10 in.

(GB)]

4) [Seasonal RF precip (mostly 0.01-in. threshold)]

5) GFS 700-mb vert. vel.

6) GFS 1000–500-mb mean RH

7) [TVV (upward; GFS 10-m u, y comp.)] 3 (GFS 1000–

500-mb mean RH)

8) (Monthly RF precip $0.10 in.) 3 [GFS tot precip $0.10 in.

(GB)]

9) GFS K index

(b) CPQPF

1) GFS tot precip (GB form with most precip thresholds 0.10 in.

and greater)

2) (Seasonal RF precip $0.25 in.) 3 [GFS tot precip $0.25 in.

(GB)]

3) (Seasonal RF precip $0.75 in.) 3 [GFS tot precip $0.65 in.

(GB)]

4) GFS convective precip (GB form with most precip

thresholds 0.10 in and greater)

5) (Seasonal RF precip $0.50 in.) 3 [GFS tot precip $0.40 in.

(GB)]

6) (Seasonal RF precip $0.10 in.) 3 [GFS tot precip $0.10 in.

(GB)]

7) [GFS 700-mb vert. vel. (upward)] 3 [GFS K index $30.0 K

(GB)]

8) GFS precipitable water (most GB thresholds 1.4 in.

and greater)

9) [GFS 700-mb vert. vel. (upward)] 3 (GFS precipitable water)
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ranking, especially for the CPQPF equations. A test was

conducted to quantify the impact of these predictors by

withholding them in ‘‘NO TCIA’’ regression equations

and then comparing the resulting PQPF skill against the

skill with ‘‘TCIA’’ equations. Since the component vari-

ables of the TCIA predictors were retained in the candidate

predictor lists for the NO TCIA equations, the experiment

was designed to specifically quantify the contribution of the

interactive effects on forecast performance.

Figure 12 shows a case of 36-h PQPFs for the $0.25-in.

threshold with the NO TCIA and TCIA equations for

the 6-h period ending 0000 UTC 5 January 2008. The

maps show that the TCIA predictors yielded higher

peak probabilities and improved spatial resolution in

this case. Figure 13a shows the corresponding compar-

ative BSS averaged for the day 2 period (36-, 42-, 48-,

and 54-h forecast projections) over the CONUS domain

for the 2007/08 cool season. In this chart the BSSs for the

TCIA equations are significantly higher (at the 99%

confidence level) than those for the NO TCIA equations

for all precipitation thresholds. The strong contribution

of the TCIA variables to forecast skill evident here is

consistent with a demonstration in section 3e of their

powerful predictive effects.9

The strong predictive role of the TCIA predictors

shown so far applies to the shorter forecast projections

(through day 2). Examination of the ranked POP and

CPQPF predictors as a function of increasing projec-

tion reveals that the contribution of the TCIA predic-

tors gradually decreases with time. For example, Table 5

shows that the contribution of these predictors for day 5

(108-, 114-, 120-, and 126-h projections) was clearly

lower than for day 1 (Table 3b), and, instead, simple

predictors (GFS total/convective precipitation and y-wind

TABLE 4. As in Table 3b, but for two contrasting regions.

(a) Region 1

1) (Seasonal RF precip $0.50 in.) 3 [GFS tot precip $0.40 in.

(GB)]

2) GFS tot precip (GB form with most precip thresholds 0.10 in.

and greater)

3) [TVV (upward; GFS 850-mb u, y comp.)] 3 [GFS tot

precip $0.04 in.(GB)]

4) (Seasonal RF precip $0.75 in.) 3 [GFS tot precip $0.65 in.

(GB)]

5) [TVV (upward; GFS 10-m u, y comp.)] 3 (GFS 1000–500-mb

mean RH)

6) (Seasonal RF precip $0.25 in.) 3 [GFS tot precip $0.25 in.

(GB)]

7) [GFS 700-mb vert. vel. (upward)] 3 [GFS 850-mb

moisture divergence (neg.)]

8) (Seasonal RF precip $0.10 in.) 3 [GFS tot precip $0.10 in.

(GB)]

9) Terrain elevation

(b) Region 14

1) GFS tot precip (GB form with most precip thresholds 0.10 in.

and greater)

2) GFS convective precip (GB form with most precip

thresholds 0.10 in. and greater)

3) [GFS 700-mb vert. vel. (upward)] 3 [GFS K index $30.0 K

(GB)]

4) (Monthly RF precip $0.50 in.) 3 [GFS convective

precip $0.16 in. (GB)]

5) GFS mean SLP

6) GFS best lifted index

7) (Seasonal RF precip $0.10 in.) 3 [GFS tot precip $0.10 in.

(GB)]

8) GFS u-wind components (850- and 500-mb)

9) GFS total totals index

FIG. 11. BSSs (%) of 6-h PQPFs with NON-REG and REG

regression equations for (a) the CONUS domain for multiple

precipitation thresholds (in.) and (b) the individual regions for the

$0.25-in. threshold. The scores are averaged over four day 1

forecast projections (12, 18, 24, and 30 h) from the 1200 UTC cycle

for the 2008/09 cool season.

9 A ‘‘similar test’’ of the topoclimatic predictors reported in CS

(Figs. 10 and 11 of that article) contains an important distinction

from the test conducted here; all topoclimatic predictors were

withheld in that test, whereas here only those that were interacted

with the GFS total precipitation forecast were withheld. This dif-

ference accounts for the higher impact of these predictors in CS.
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components) assume an increased presence. Also, ‘‘stand

alone’’ seasonal and monthly precipitation climatology

variables appear for the first time in the day 5 list. Further

evidence of the reduced role of the TCIA variables for day

5 is shown in Fig. 13b; the skill differences between the

TCIA and NO TCIA PQPFs are noticeably smaller than

for day 2 (Fig. 13a). Still, the top ranking of the GFS total

and convective precipitation forecasts is maintained to

day 5 (Table 5) despite a presumed increase in GFS

forecast error with time. If the primary predictive effect

of the TCIA variables is to account for the small-scale

bias error in the GFS precipitation forecasts (as sug-

gested in section 3e), these day 5 findings suggest that

this mechanism is relatively ineffective as GFS forecast

error increases.

e. Experiments with logistic regression

The multiple linear regression method is used virtu-

ally exclusively at MDL to produce a broad suite of

centralized MOS weather guidance products for use at

the NWS (Glahn and Lowry 1972; Carter et al. 1989;

Glahn et al. 2009). The long history of success with

linear regression is owed to its mathematical simplicity

and effectiveness in producing useful forecast guidance

for operational settings. Its low computational cost al-

lows for a large number of diverse potential predictors,

including those formulated to account for nonlinear

predictand–predictor relationships (see discussion of

such HRMOS predictors in sections 3e, 5b, and 5d).

Nonlinear statistical models inherently account for

predictand–predictor nonlinearities, and especially where

the applications involve dichotomous (e.g., binary) predic-

tands, they should provide a better fit of the predictand–

predictor data than linear regression. The logistic re-

gression method may be especially well suited for binary

predictand events with 0 and 1 values as the nonlinear

logistic function is constrained to the 0 to 1 range (Wilks

2006). In a PQPF application involving 24-h precipita-

tion for light thresholds ($0.01, $0.05, and $0.10 in.),

Applequist et al. (2002) found that logistic forecast skill

was significantly better than that for linear regression.

High-quality 24-h PQPFs with the logistic method have

subsequently been obtained by Hamill and Whitaker

(2006), Sloughter et al. (2007), and Wilks and Hamill

(2007), among others.

A significant drawback with the logistic method is that

the constant and regression coefficients must be ap-

proximated with an iterative method, which involves

FIG. 12. The 36-h probability (%) of $0.25 in. for the 6-h period ending 0000 UTC 5 Jan 2008, where topoclimatic

interactive predictors were excluded (NO TCIA) and included (TCIA).
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substantial additional computational cost. With HRMOS

PQPF, computational cost is an important consideration

as this application involves very large developmental

samples (up to 100 million cases) and many candidate

predictors (around 150). Thus, applying the logistic re-

gression involves trade-offs between potentially im-

proved forecast performance and increased development

cost. Here, we discuss logistic versus linear regression

tests to address aspects of two questions: 1) To what de-

gree is HRMOS PQPF performance improved by using

logistic regression? 2) To what degree is it feasible to

apply logistic regression in the HRMOS model context?

The logistic program used is ‘‘freeware’’ (available

online at http://jblevins.org/mirror/amiller/#logit), where

predictors to be fitted must be supplied (there is no pre-

dictor screening capability as there is with the linear re-

gression program). We could use up to 84 million cases

(composing 6.5 cool seasons) and four predictors, beyond

which the logistic program failed (probably because avail-

able memory was exceeded) on the NCEP CCS. Since

these restrictions do not apply to the MDL linear re-

gression program, eight full cool seasons and all candidate

predictors were screened to develop the comparative

linear regression equations.

Because logistic regression tests with fewer than four

predictors yielded lower BSSs (on an independent

sample) than those tests with four (not shown), four

predictors were used in comparative tests against linear

regression. The four predictors in the POP and CPQPF

logistic (LOG4) equations were determined by maxi-

mizing PQPF skill on an independent sample based on

various candidate four-predictor sets. The variables in

the candidate sets were selected, largely by physical rea-

soning, from those in Tables 1 and 2. Also considered

were continuous forms of the GFS total and convective

precipitation as well as the cube root transformation of

each, as such model precipitation variables were used in

previous logistic PQPF applications (Hamill and Whitaker

2006; Sloughter et al. 2007; Wilks and Hamill 2007; Hamill

et al. 2008). The 36-h POP and CPQPF predictors that

produced the highest BSS on an independent sample (and

are used in the comparative tests against linear regression)

are listed in Table 6. Note that these predictors appear

among highly ranked day 1 predictors in the HRMOS lin-

ear regression equations (see Table 3).

Two sets of linear regression equations were matched

with the LOG4 equations. One set consisted of ‘‘four

predictor’’ test equations (LIN4), where a maximum of

four predictors were screened from the full candidate

lists (Tables 1 and 2). The second set consisted of the

HRMOS model equations (LINOP), where the number

of predictors was optimized as described in section 5c.

Figure 14 shows BSSs for unconditional PQPFs with

LOG4, LIN4, and LINOP for four day 2 forecast pro-

jections (36, 42, 48, and 54 h) from 1200 UTC during the

full 2009/10 cool season. Note that the BSSs for LINOP

were slightly higher than those for both LIN4 and LOG4

across all thresholds (the LINOP improvement on

LOG4 is significant at the 95% level for all thresholds

but $2.00 in.). Also, the BSSs for LOG4 and LIN4 are

FIG. 13. BSSs (%) of 6-h PQPFs [for multiple precipitation

thresholds (in.)] with and without topoclimatic interactive pre-

dictors (TCIA and NO TCIA, respectively; see text) for the

CONUS domain averaged over (a) four day 2 projections (36, 42,

48, and 54 h) and (b) four day 5 projections (108, 114, 120, and

126 h) from the 1200 UTC cycle for the 2007/08 cool season.

TABLE 5. As in Table 3b, except for day 5.

1) GFS tot precip (GB form with most precip thresholds 0.10 in.

and greater)

2) GFS convective precip (GB form with most precip

thresholds 0.10 in. and greater)

3) GFS precipitable water (most GB thresholds 1.4 in.

and greater)

4) V-wind components (850 and 500 mb)

5) (Seasonal RF precip $0.25 in.) 3 [GFS tot precip $0.25 in.

(GB)]

6) (Seasonal RF precip $0.75 in.) 3 [GFS tot precip $0.65 in.

(GB)]

7) Seasonal RF precip (mostly $0.25 in. and larger thresholds)

8) Monthly RF precip (all thresholds $0.25 in. and larger)

9) GFS 850-mb moisture flux divergence
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quite similar to one another for all but the $0.01-in.

threshold where the LOG4 BSS is notably lower.

The corresponding PQPF reliability and sharpness

for the three methods are shown for the $0.01- and

$1.00-in. thresholds in Fig. 15. For $0.01 in., the LIN4

and LINOP probabilities are slightly more reliable than

those for LOG4 [the plotted points are closer to the

perfect reliability (diagonal) line]. For LOG4, the pro-

nounced overforecasting (forecast probabilities higher

than observed relative frequencies) together with the

high frequency of issuance of probabilities in the 5%–

30% range may be responsible for the low relative skill

at this threshold. For $1.00 in., the reliability properties

of LINOP and LOG4 are mostly similar to one another,

except LOG4 again shows notable overforecasting of

low probabilities. Also, LIN4 shows pronounced under-

forecasting and a more limited probability range than

LOG4.

The comparative PQPF sharpness for the three models

is indicated in the probability histograms in Fig. 15. The

most notable differences between LOG4 and the linear

methods are that LOG4 has lower frequencies of prob-

abilities across the central span (15%–75%) of the full

probability range at $0.01 in. and higher frequencies of

upper probabilities at $1.00 in. As the frequency differ-

ences are mostly small otherwise, this suggests slightly

better sharpness with the logistic method. Finally, be-

tween LIN4 and LINOP evidence of improved sharpness

for $1.00 in. with the latter is the finding of higher fre-

quencies of probabilities above 35%.

To summarize, this limited test shows that linear re-

gression equations with an optimal number of predictors

performed somewhat better than logistic equations with

four predetermined predictors. Considering the enhanced

mathematical appropriateness of logistic over linear re-

gression for the PQPF predictand and the superior PQPF

performance with logistic regression reported by Applequist

et al. (2002) (see previous citation), this (perhaps un-

expected) finding is likely due to impediments encoun-

tered with the logistic method. Most notably, the predictor

number and specific predictors in the logistic equations

were not optimized to the degree applicable to the linear

regression equations in part because the logistic program

did not have a predictor screening capability. The essence

of this limitation is the substantial computational cost as-

sociated with predictor screening, which is far less with

linear regression. Another constraint with the logistic

method is the increased computer memory requirement,

which necessitated reducing the developmental sample

from 8 seasons with linear regression to 6.5 seasons.

A factor that may have reduced the potential advan-

tage of the nonlinear attribute of the logistic method in

the test conducted here is the use of techniques to build

nonlinear relationships into the linear regression equa-

tions. Recall that two such techniques were used: 1) the

use of interactive predictors discussed in sections 3e, 5c,

and 5d, and 2) the use of the conditional predictand ap-

proach discussed in section 5b. Recall, also, that each of

these techniques improved PQPF skill in the linear re-

gression equations.

6. Derived QPF elements10

Presently, the sole QPF element produced in NDFD is

a continuously varying 6-h precipitation amount forecast,

TABLE 6. Four POP and CPQPF predictors in cool season lo-

gistic regression equations that yielded the best (unconditional)

PQPF skill (see text) over multiple precipitation thresholds at the

36-h forecast projection from 1200 UTC. All references to pre-

cipitation apply to 6-h periods, and nonstandard abbreviations are

as in Tables 1 and 2.

POP

GFS tot precip $0.01 in. (GB)

GFS mean RH (lower atmosphere layer)

[TVV (upward; GFS 10-m u, y comp.)] 3 (GFS 1000–500-mb

mean RH)

(Seasonal RF precip $0.10 in.) 3 [GFS tot precip $0.10 in. (GB)]

CPQPF

GFS tot precip

GFS convective precip

[GFS 700-mb vert. vel. (upward)] 3 (GFS precipitable water)

(Seasonal RF precip $0.25 in.) 3 [GFS tot precip $0.25 in.

(GB)]

FIG. 14. CONUS BSS vs precipitation threshold (in.) for 6-h

PQPFs averaged over four day 2 forecast projections from 1200 UTC

during the 2009/10 cool season. The legend notations denote PQPF

regression equations, where LOG4 is for the logistic method with

four predetermined predictors (see text), LIN4 is for screening linear

regression with a maximum of four predictors, and LINOP is for

screening linear regression with an optimal number of predictors.

The precipitation thresholds are in units of in.

10 The generic term QPF element refers to one of three forecast

precipitation quantities derived from the PQPFs (the basic QPF

element). The derived QPF elements are described in this section.
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which is also the QPF element currently ingested into

RFC streamflow prediction models. A similar HRMOS

QPF element was derived from the 6-h PQPFs. The

derivation consists of two steps, the first of which in-

volves computing a categorical QPF element; in the

second step the continuous QPF element is computed

from the latter.

a. Categorical QPF

The formulation of the categorical QPF consists of

three tasks. First, we compute a threshold probability

constant, which is separate for each region, precipitation

threshold, and forecast projection. The second step con-

sists of checking whether or not a PQPF value at a grid

point equaled or exceeded the corresponding threshold

value and then setting a ‘‘yes’’ or ‘‘no’’ flag accordingly.

When the test is performed over all thresholds, it yields

a set of eight yes–no flags for the point. In the third step,

a categorical QPF quantity, commonly called the best

precipitation category (BC), is specified from the flag set.

Important details concerning these steps are included in

appendix A.

b. Continuous QPF

The derivation of the HRMOS continuous precipi-

tation (CP) element from BC involves ‘‘interpolating’’

between the (discontinuous) precipitation categories

and ‘‘extrapolating’’ beyond the unbounded 2.0-in. peak

category. Details of the computation appear in appendix

B.11 Not surprisingly, raw CP fields exhibited undesir-

able stair-stepping as a result of interpolating into the

discontinuous BC field. To treat the problem, a specially

formulated smoothing scheme was devised, a key aspect

of which involves incorporation of yet another derived

HRMOS QPF element: expected precipitation.

FIG. 15. (top) PQPF reliability diagrams and (bottom) probability histograms (with logarithmic ordinate scale) corresponding to Fig. 14

for the (left) $0.01- and (right) $1.00-in. thresholds. Forecast probabilities in the reliability diagrams are mean values for intervals shown

in the histograms.

11 The techniques for computing categorical and continuous

QPFs from the PQPFs are very efficient computationally, which is

important considering the large data volume at hand. Despite the

simplicity of the methods, in section 7c we show that the derived

QPF elements perform at a high level relative to other model QPF

products. Thus, more elaborate QPF modeling methods, such as

those involving ensemble calibration (e.g., Hamill and Colucci

1998) and Bayesian model averaging (Sloughter et al. 2007), were

not considered in part out of concern over high computation cost.
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c. Expected precipitation

Given the probability pi for precipitation exceedance

threshold i (PQPFi) at a grid point, the probability pi11

for the next higher exceedance threshold, the condi-

tional climatic mean precipitation mi between threshold

i and i 1 1, and pN (and mN) are corresponding quantities

for the peak exceedance threshold, the expected pre-

cipitation (EP) is given by

EP 5 �
N�1

i51
m

i
(p

i
� p

i11
) 1 m

N
p

N
(3)

(Wilks 2006), where i 5 1 corresponds to $0.01 in. (in

the case of p) and i 5 N corresponds to $2.00 in. The m’s

(constants) were computed by combining precipitation

data from the entire developmental dataset, as earlier

tests indicated that the variability of the m’s as a function

of geography, season, and time of day is quite small.

Note from (3) that an appropriate alternate term for EP

is probability-weighted average precipitation [Wilks

(2006, p. 82)].

Since both EP and CP are continuously varying pre-

cipitation quantities, it is important to note the distinctive

properties of each element. Note that EP is computed

from forecast probabilities for multiple threshold pre-

cipitation amounts. Since the probabilities for the heavy

thresholds are generally quite low, EP will strongly under-

forecast heavy precipitation events. Also, EP will greatly

overforecast very light precipitation amounts because (3)

yields a nonzero value whenever the probability (how-

ever small) of any precipitation threshold is nonzero.

Because of these properties, it quite unlikely a given EP

field will closely resemble the corresponding observed

precipitation field.

Underlying the definition of CP, on the other hand, is

a conversion from the probability of a precipitation

threshold to a corresponding categorical forecast, which

involves applying a threshold probability (section 6b).

Since the threshold probabilities for the various pre-

cipitation thresholds are specified to yield an appropri-

ate bias for the categorical forecasts, a given CP field

may closely resemble the corresponding observed pre-

cipitation field. Still, an inherent weakness of CP is the

abrupt change in its value where the probability for

a given precipitation threshold falls just below or just

meets the threshold probability value.

The application of conventional grid smoothing to treat

stair-stepping in the raw CP fields (noted in section 6b)

was not fruitful, as the level of required smoothing resulted

in an unacceptable level of erosion of valid CP detail. In

search of an alternative, we noted that since EP fields have

characteristics of highly smoothed CP fields, the former

could serve as a control for ‘‘smoothing’’ the latter. With

this premise, a smoothing operator was defined as

CP
i
5 EP

i
f

i
and

f
i
5

�
N

k51
CP

k,i

�
N

k51
EP

k,i

, (4)

where the smoothed CP value at point i (CPi) is obtained

by scaling EPi with the factor fi. The summation in (4) is

over all grid points N within a circle of about 20-km

radius, centered on point i, and fi is set to 0.0, where

CPi 5 0.0. This simple operator adequately mitigated

the stair-step artifact, as indicated by the CP examples in

the following section.

7. Properties and performance of the basic and
derived QPF elements

In this section, predictive properties of the HRMOS

QPF elements are described for two selected heavy

precipitation cases, one for the cool season and the other

for the warm season. Also, the forecast performance of

the CP element is examined through limited compara-

tive scoring. The aim is to provide a concise assessment

of the quality of the QPF elements.

a. Cool season case

Figure 16 shows the observed 6-h precipitation and

60-h QPF elements valid at 0000 UTC 5 January 2008.

The observed precipitation field features an extensive

area of precipitation inland of the U.S. West Coast,

where relatively high amounts are focused on the western

(windward) slopes of the Coastal Mountains and Sierra

Nevada in California with peak amounts in the 2–4-in.

range. Note that the finescale distribution of observed

precipitation matches up well with the finescale patterns

in the four HRMOS QPF elements (Figs. 16b–e). Thus,

this case exemplifies the high-spatial-resolution property

of the QPFs, which is most prominent in the mountain-

ous western United States. The enhanced spatial detail in

the West, which also appears for warm season cases (not

shown), reflects the predictive effectiveness of the TCIA

predictors (see Figs. 12 and 13). Note from Fig. 11b that

cool season PQPF skill for the two West Coast regions

equals or exceeds the highest skill anywhere over the

CONUS.

Close inspection of the probability map of 6-h pre-

cipitation $0.50 in. (Fig. 16b) yields several findings.

One feature is the strong probability sharpness, as the
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FIG. 16. (a) QCed stage IV precipitation analysis (in.; white areas indicate missing values) and 60-h QPF elements

for the 6-h period ending 0000 UTC 5 Jan 2008 (cool season case). The QPF elements are (b) probability (%) of

$0.50 in., and (c) EP, (d) BC, and (e) CP, all in units of in. Note that the units in (a),(c),(d), and (e) are identical, but

the color bar in (d) is unique.

60 M O N T H L Y W E A T H E R R E V I E W VOLUME 139



full range of probabilities (0%–100%) is present. Note

also that the coverage of $0.50-in. probabilities of about

20% and higher closely matches the area where such

precipitation amounts were observed (Figs. 16a and 16b).

Also, the spatial pattern of the probabilities closely

matches the patterns of the upper values of the EP, BC,

and CP fields (Figs. 16c, 16d, and 16e, respectively), which

reflects the derivation of these elements from the proba-

bilities. Finally, the finding of the expanded geographical

coverage of the light precipitation in these derived QPF

elements reflects the contribution of probabilities for

precipitation thresholds below $0.50 in (not shown).

Careful inspection of the derived BC and CP elements

(Figs. 16d and 16e) reveals both common and unique

features between them. The strong similarity of the BC

and CP patterns stands out, which is expected since CP is

essentially a continuous precipitation replica of the dis-

continuous BC field (appendixes A and B). Note that

the BC field contains the full range of categorical pre-

cipitation amounts (Fig. 16d), and CP values vary con-

tinuously from 0.0 to a peak of about 2.5 in. Recall that

CP values above the BC peak precipitation threshold

of $2.00 in. are extrapolated (section 6b); here, the peak

extrapolated values are only slightly greater than this

peak threshold.

The EP field (Fig. 16c) is similar to CP, as it also consists

of continuously varying precipitation amounts; however,

EP contains distinguishing properties. Specifically, note

that peak EP values are much lower than peak CP values,

as EP incorporates the uncertainty associated with the

CP amounts (section 6c). Note also that the geographical

coverage of nonzero EP values extends beyond the cov-

erage of nonzero CP values, which reflects the pre-

cipitation occurrence uncertainty near the zero lines of the

latter. Thus, the forecaster-guidance utility of EP should

complement that for CP, as the former provides warning

for low threat precipitation events. Here, the extension of

small EP values eastward of corresponding CP values

provides a warning of the scattered light observed pre-

cipitation from western Montana to western Colorado to

southeastern Arizona. Finally, note that an additional

potential practical benefit of EP is that, since it combines

the contributions of the PQPFs for multiple precipitation

thresholds into one map, it could alleviate the map ex-

amination workload for time-pressed line forecasters.

b. Warm season case

The selected warm season case is for the 6-h period

ending 1200 UTC 13 September 2008, as Hurricane Ike

was coming ashore over Galveston Bay (Texas Gulf

coast). As before, Fig. 17 contains maps of the observed

6-h precipitation and a 48-h prediction of each QPF el-

ement. The observed precipitation field (Fig. 17a) shows

a small area of extremely heavy precipitation in the

Galveston Bay area of Texas, where many values ex-

ceeded 4.5 in. and the peak value was 10.8 in. In addition,

FIG. 16. (Continued)
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a narrow swath of heavy precipitation from Oklahoma to

Ohio also contains small peaks with over 4.5 in.

Each of the 6-h QPF elements (Figs. 17b–e) accurately

predicted the locations of the two heavy precipitation

areas. Further, CP (Fig. 17e) accurately predicted the in-

tensity of the extremely heavy precipitation around

Galveston Bay, which provides a striking example of

the high precipitation intensity resolution attribute of

the HRMOS model. On the other hand, CP did not

accurately predict the intensity of the similarly heavy

precipitation from northeast Missouri to northwest In-

diana. Since the BC field (Fig. 17d) contains areas of the

peak $2.00-in. precipitation threshold for both precipi-

tation maxima, the difference in peak CP values between

them results from contrasting extrapolated precipitation

amounts (appendix B).

It is also noteworthy that the forecast probabilities

are lower for this warm season event than for the pre-

vious cool season case despite the occurrence of much

higher precipitation amounts. Note that peak $0.50-in.

FIG. 17. As in Fig. 16, but for the 6-h period ending 1200 UTC 13 Sep 2008 (warm season case), where the QPF

elements are for the 48-h projection from 1200 UTC 11 Sep 2008.
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probability values in Fig. 17b are just above 50%, while

they reach 100% for the cool season case (Fig. 16b).

Also, the comparatively low EP values in Fig. 17c indicate

that the probabilities are lower across all precipitation

thresholds. The lower probabilities here are probably

due to relatively weak synoptic-scale forcing and the

absence of resolvable localized precipitation forcing.

The very broad areal coverage of small EP values in

Fig. 17c is consistent with this assessment. In contrast,

the QPF predictability for the western cool season case

undoubtedly benefited from the combination of strong

localized topographic forcing and strong synoptic-scale

forcing, both of which are well represented in the HRMOS

predictor database.

c. Comparative scoring of CP

Here, the forecast performance of the 6-h CP element

is examined by comparatively scoring it with two oper-

ational model QPFs: the GFS (also used as an HRMOS

QPF predictor) and GMOS. In this limited forecast

performance assessment, each model QPF was ‘‘catego-

rized’’ into a set of multiple binary variables, where a bi-

nary variable denotes the predicted occurrence (value of

1) or nonoccurrence (value of 0) of a 6-h precipitation

exceedance threshold. The scoring was conducted on the

4-km HRAP grid where the QCed QPE data were used

for validation. This necessitated interpolating the GFS

and GMOS QPFs to the HRAP grid. Since the GFS QPF

was obtained from an MDL archive with an 80-km grid,

two interpolations relative to the GFS native grid are

involved in the rendering to the HRAP grid. The GMOS

QPF was interpolated from the 5-km NDFD grid. All

interpolations were performed with a precipitation-area-

preserving method (National Weather Service 1974). Note

that CP did not involve grid interpolation, and the verify-

ing data were the same as those used in HRMOS model

development. Since it could be argued that the scoring

framework favors CP, the performance assessment should

be regarded as preliminary.

The CONUS threat score [TS; same as the critical suc-

cess index (Schaefer 1990)] and bias (where unbiased

forecasts have a 1.0 bias) for the categorized GFS, GMOS,

and CP (denoted HRMOS here) QPFs are shown in

Fig. 18 for the day 1 and day 3 forecast periods during the

cool and warm seasons. Figures 18a and 18b show that the

TSs for HRMOS are clearly higher (indicating better

forecast accuracy) than those for GFS and GMOS; the

charts also show that the HRMOS TS improvement in-

creases with increasing precipitation threshold. (All

HRMOS TS improvements in Figs. 18a and 18b have high

statistical significance.) Figures 18c and 18d show that

the HRMOS bias was just above 1.0 over all thresholds;

HRMOS bias scores for other forecast projections (not

shown) are about the same as these for all forecast pro-

jections to 156 h. Contrastingly, the GFS and GMOS

QPFs show poor bias; the GFS overforecasting of light

precipitation thresholds and underforecasting of heavy

thresholds is quite pronounced.

Several comments concerning the scores in Fig. 18 are

noteworthy. 1) The superior scores for HRMOS are

likely due primarily to TCIA predictors and secondarily

to geographical regionalization, which were used to

FIG. 17. (Continued)
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obtain high-quality PQPFs from which the CP element is

derived. An additional contribution of regionalization

may result from its use in each of the two postprocessing

steps used to derive CP from the PQPFs. 2) The non-

improvement of GMOS on the GFS raises a concern

because the station-oriented QPF from which the cor-

responding GMOS element was derived (Glahn et al.

2009) uses the GFS as the driving model. 3) It is not

known to what degree the double interpolation of the

GFS QPF may have contributed to its poor bias scores.

This aspect of the verification also deserves investigation.

4) The small seasonal differences in TS for all products are

somewhat surprising, as larger warm season degradations in

TS have been found in other studies (e.g., Olson et al. 1995).

However, the unusually wet summer during 2009 over the

central and northern plains may have contributed to rela-

tively good warm season scores seen here (thus mitigating

the usual warm season TS degradation), as a positive cor-

relation between seasonal wetness and good QPF perfor-

mance scores was reported in Olson et al. (1995).

8. Summary and comments

The HRMOS QPF model incorporates a number of

new features into a fine-grid, GFS-based MOS application

to produce QPF elements with enhanced spatial and in-

tensity resolutions. Enhanced spatial resolution stems

from the inclusion of multiple finescale precipitation and

lightning climatologies along with detailed topography in

the predictor database. Simple product variables, which

combine finescale static information in topography and

climatology data with large-scale dynamical infor-

mation in GFS model QPFs, are shown to be quite ef-

fective predictors in the PQPF regression equations.

Tests indicate the interactive property of these ‘‘topo-

climatic interactive predictors’’ yields significantly in-

creased PQPF skill; geographical regionalization of

the PQPF linear regression equations and the derived

QPF elements also contributes to enhanced forecast

performance.

Limited tests with logistic versus linear regression to

produce the 6-h PQPFs indicated that the use of the

logistic method is feasible within the HRMOS model

context. Also, the logistic method yielded comparable

PQPF performance when a limited number of predictors

were used with each method. However, the PQPF skill

with linear regression was slightly higher than that with

logistic regression, as many predictors selected with an

objective screening procedure were used with the linear

FIG. 18. (a),(b) CONUS threat score and (c),(d) bias versus precipitation threshold (in.) for three model QPFs. The threat score in (a) is

for day 1 (light shades) and day 3 (dark shades) for the cool season (1 Oct 2008–31 Mar 2009); (b) as in (a), but for the warm season (1 Apr–

30 Sep 2009). The biases in (c) and (d) are for the cool season and warm season, respectively, and they are shown only for day 3 (day 1 bias

scores were similar).
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regression method. A similar predictor screening capa-

bility was not available with the logistic method, which is

a computational cost limitation.

High precipitation intensity resolution in the QPF ele-

ments is due fundamentally to the use of radar-based

(gauge-based in the western United States) fine-grid QPE

data, which supports the use of heavier precipitation ex-

ceedance thresholds than those used for the currently

operational MOS QPF elements. Precipitation intensity

resolution is also enhanced through derivation of a contin-

uous precipitation element, where extrapolated amounts

beyond the peak exceedance threshold can be large.

Limited comparative verification of several 6-h model

QPFs in categorical form was presented. Preliminary

results showed HRMOS QPF had better threat score and

bias than corresponding GFS and GMOS QPFs. This

finding suggests that the HRMOS QPFs may provide

useful guidance for human forecasters. Also, additional

comparative performance scoring (not discussed here) of

the HRMOS QPF guidance against other model QPF

guidance and human-produced QPFs support this find-

ing. (An article on this subject for the formal literature is

planned.) Thus, preparations are in progress to opera-

tionally implement the HRMOS model, whereby (1)

GMOS QPF elements (currently operational over the

CONUS) will be replaced by similar HRMOS QPF ele-

ments in early 2011, and 2) additional HRMOS QPF el-

ements will be made available to the operational weather

enterprise during late 2011.

The HRMOS QPF elements have been produced in

an experimental mode since June 2008, and periodic

model upgrades have been made to correct various QPF

deficiencies discovered from daily monitoring. The per-

formance of the PQPFs with the current model appears to

be reliable, especially during ‘‘core months’’ of the warm

and cool seasons. However, during season-transition

months (March–April and September–October), we have

noted instances of poor forecasts for highly unusual

weather events, especially for the CP and BC elements.

This suggests that extending the seasonal stratification in

the model from two seasons to, say, four seasons could

alleviate the problem.

Looking to the future of MOS QPF applications, we

envision small but steady improvements in the coming

years, as several opportunities show promise. These in-

clude 1) a refinement of the present HRMOS model to

extend the seasonal stratification from two to four sea-

sons, as noted above; 2) the potential use of a nonlinear

regression method such as logistic; and 3) new MOS

applications with predictors from multiple operational

NWP models, ensemble NWP model output, and me-

soscale NWP models, where convective precipitation

is explicitly modeled. An important factor in the speed

that such new MOS QPF applications can be exploited

is the availability of adequate historical samples from

stable NWP model formulations. For QPF applica-

tions, where the heavy precipitation occurrences are

rare events, at least several years of stable model out-

put are needed.
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APPENDIX A

BC Computation

A key component of the best precipitation category

derivation is the computation of threshold probability

constants. This one-time computation is performed with

the dependent sample of PQPFs through an iterative

procedure, whereby the threat score [same as the critical

success index (CSI); Schaefer (1990)] for ‘‘trial’’ cate-

gorical forecasts is optimized within a prescribed bias

range. (A trial categorical forecast denotes whether the

PQPF value exceeded a trial threshold probability.) The

prescribed bias range over all thresholds and forecast

projections was 1.0–1.3, where unbiased forecasts have a

1.0 bias value. The slight overforecasting bias is consid-

ered a desirable attribute for QPF, especially for heavy

amounts.

Another key component of the BC determination is the

application of BC specification rules to the set of eight

yes–no flags (section 6a). A long-standing practice at

MDL has been to use a simplistic specification rule where

BC is the highest precipitation threshold (category) with

a yes value. For application here, this ‘‘top down’’ rule

was modified to include the condition that all categories

below the peak also have a yes value (‘‘bottom up’’ rule).

Preliminary tests revealed the bottom-up rule yielded

coherent HRMOS BC patterns for well-behaved flag sets

(where all flags are yes below the peak yes category and

no otherwise). However, for rare occasions of ill-behaved

flag sets, a spurious (unacceptable) hole or spike could

appear in the BC map. Typical cases involve isolated

convective precipitation, where POP values are low and

PQPFs for higher precipitation categories flip-flop above

or below the associated threshold values. Experimentation
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with extended rules led to the formulation of a ‘‘decision

tree’’ rule set for application to ill-behaved flag sets. The

combination of the bottom-up and decision tree rules re-

sulted in acceptable BC patterns.

Two additional problems with the BC specification

required treatment. One was that BC bias was found to

exceed the 1.3 bias upper bound used in the threshold

probability computation. This ‘‘bias inflation’’ was most

problematic for the highest thresholds and longest

forecast projections, where forecast probability ranges

are very small. The problem, which was found to be

related to the diverse spatial scales of light versus heavy

precipitation, was addressed by fine-tuning the bias

range control used in the threshold computation. We

found that by setting the bias range control to near 1.25

for light thresholds and short forecast projections and to

near 1.10 for the highest thresholds and longest pro-

jections, the resulting BC bias fell within the targeted

1.0–1.3 range across all thresholds and projections.

Another problem that warranted treatment was that

BC fields, initially, exhibited severe discontinuities along

regional boundaries. The problem was due to the dis-

continuous spatial distribution of the threshold probabil-

ities across the CONUS [i.e., since a probability threshold

was fixed within a nonoverlapping region (Fig. 7), dis-

continuities in the threshold values arise at the regional

boundaries]. The problem was treated by applying a thresh-

old value to the associated overlapping region instead of

the discrete region and then using the regional weighting

technique to obtain smooth transitions of the thresholds

between regions. This blending of the regional threshold

constants is effective in preventing regional discontinu-

ities in the BC grids.

APPENDIX B

CP Derivation

Continuous precipitation is computed from BC with

an interpolation formula for the bounded precipitation

categories and an extrapolation formula for the un-

bounded peak category. Given BC at a grid point, the

interpolated CP is given by

CP 5 x
l
1 a(x

u
� x

l
)

(p� p
th

)

(p
mxgrd

� p
th

)
1 b(x9

u
� x9

l
)

p9

p9
th

,

(B1)

where

d xl is the lower precipitation bound for the BC value,
d xu is the upper precipitation bound for the BC value,
d p is the probability of occurrence of the BC exceed-

ance threshold at the point,

d pmxgrd is the maximum probability of occurrence of the

BC exceedance threshold over the forecast domain,
d pth is the threshold probability for the BC exceedance

threshold at the point,

and the ‘‘prime’’ notation for the same variables in the

third term indicates they apply to the next higher (not

forecasted) BC value. Thus, the third term provides

a supplemental contribution to CP from the next higher

precipitation category, where the maximum contribu-

tion occurs as the forecast probability p9 approaches

the corresponding threshold probability p9th (from be-

low). With values of 0.50 and 0.38 for the empirical

parameters a and b, respectively, CP comes close to xu

for p 5 pmxgrd and p9 / p9th. Values for the empirical

parameters were deduced from trial and error testing,

where the eye appeal of CP maps and CP forecast per-

formance scores were driving considerations.

An extrapolated CP value, which pertains to the un-

bounded peak BC, is given by

CP 5 x
l
1 (x0

u
� x

l
)

(p� p
th

)

(p
max
� p

th
)

, (B2)

where xl, p, and pth are as in (B1); x0u is an estimated

upper precipitation bound; and pmax is the maximum

attainable forecast probability for the category at the

point. From the developmental sample, the upper pre-

cipitation bound was estimated separately for the 6- and

12-h valid periods, each region, and each season from an

analysis of the conditional distribution of the peak pre-

cipitation category. For the 6-h valid period, peak x0u
values (over all regions) of 4.7 and 4.6 in. for the warm

and cool seasons, respectively, appeared in region 11

(Fig. 7); a minimum value of 2.6 (2.7) in. for the warm

(cool) season appeared in region 1 (5). The maximum

possible probability for the peak category was similarly

estimated, but its stratification was extended to include

the forecast projection and model cycle; thus, the strat-

ification for this parameter is the same as that for the

threshold probabilities (appendix A). Both x0u and pmax

were initially specified as regional constants; then, each

constant was assigned to all points in an overlapping

region, and, finally, the regional weighting technique

was used to obtain smooth transitions of the constants

across the regions.
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