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1.  Introduction*

 
   Probabilistic forecasts are used to convey the 
uncertainty associated with the forecast of a given 
weather element.  Several techniques have been 
described recently to express forecasts in terms of 
probability, including Hamill’s analog forecasting 
technique (Hamill et al. 2006; Hamill and Whitaker 
2006) and Bayesian Model Averaging (Mass et al 
2009).  The Meteorological Development Labora-
tory (MDL) of the National Oceanographic and 
Atmospheric Administration’s (NOAA) National 
Weather Service (NWS) has developed a technique 
that creates probability density functions (PDF) 
and cumulative distribution functions (CDF) from 
an ensemble of members from a single model or 
from multiple models.   
   This technique, known as Ensemble Kernel Den-
sity Model Output Statistics (EKDMOS) (Glahn et 
al. 2009), uses the MOS technique (Glahn and 
Lowry 1972) to create forecast equations and error 
estimates for a particular weather element and 
forecast projection associated with a set of ensem-
ble members.  These errors and the single value 
forecasts from the members can be used to create 
an ensemble of distribution functions.  These indi-
vidual functions can be combined with kernel den-
sity fitting to arrive at the PDF and CDF for that 
weather variable and time projection. 
   The EKDMOS technique has been applied to the 
American and Canadian components of the North 
American Ensemble Forecast System (NAEFS).  A 
sample was obtained that consisted of the control 
member and 20 perturbations from each compo-
nent model of the ensemble.  This paper shows the 
similarities and differences when the EKDMOS 
technique is applied to these two ensemble compo-
nents and provides a comparison of their reliability 
and accuracy.  In addition, the EKDMOS forecasts 
for both components of NAEFS have been com-
bined into a single probabilistic forecast and the 
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gain in accuracy and reliability achieved by using 
both instead of one independently are shown. 
 
2.  Data 
 
   The NAEFS is a multinational ensemble predic-
tion system (EPS) that combines the National Cen-
ters for Environmental Prediction’s (NCEP) Global 
Ensemble Forecast System (GEFS) with the Cana-
dian Meteorological Centre’s ensemble prediction 
system (CMCE).  Since July 2007, both models 
consist of a control member and 20 perturbed 
members.  Both models contain a unified set of 
output fields so that they could be readily com-
pared and combined. 
   In order to keep the number of members consis-
tent for both models, a data set of available weather 
elements for use as predictors was obtained starting 
on July 11, 2007, and running through September 
30, 2009.  For development purposes, these data 
were then divided into 6-month seasons consistent 
with other MOS developments:  two cool seasons 
(October 2007-March 2008 and October 2008-
March 2009) and roughly two and a half warm 
seasons (July 2007-September 2007, April 2008-
September 2008, and April 2009-Septempber 
2009).  All data were taken from the 0000 UTC 
runs of the GEFS and CMCE.  These data were 
also converted into a format suitable for use with 
MDL software and comprise our dependent sam-
ple.  Through previous testing, we have found that 
at least two seasons of dependent data are needed 
to generate reliable forecast equations.  Since a 
third season of data was not available in time for 
this publication, independent data will not be 
shown.   
   Observations were obtained from an archive 
maintained by MDL.  A set of 2280 stations was 
chosen for testing.  These stations are located 
throughout the conterminous United States 
(CONUS), Canada, Alaska, Hawaii, and the U.S. 
territories.   
 
3.  The EKDMOS Technique 
 
   The EKDMOS technique uses screening multiple 
linear regression to generate forecast equations 
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based on the mean of the ensemble members for 
the given weather element.  The regression also 
provides an estimate of error variance.  In this in-
stance, temperature and dewpoint equations were 
developed simultaneously for each of the GEFS 
and the CMCE.  Simultaneous development is a 
term used to denote selecting predictors in a way 
that ensures the same predictors are chosen for 
both elements, enhancing the meteorological con-
sistency of the forecasts (National Weather Service 
1985).  The most frequently chosen predictors from 
both models include 2-m temperature and dew-
point, low level wind components and speed, 
thickness fields, and 2-m relative humidity.  The 
predictands were temperature and dewpoint obser-
vations.  Equations were made at 3-h intervals from 
6 to 192-h. 
   EKDMOS forecasts were then generated for each 
ensemble member by applying the regression equa-
tion for each model to the 21 ensemble members 
associated with that model.  Kernel density estima-
tion (KDE) was then used to combine the forecasts 
with their corresponding error variance into a PDF.  
For verification purposes, each PDF was converted 
into a CDF. 
   As stated earlier, the regression equations and 
error variances for each model are based on the 
mean of the ensemble members.  When they are 
applied to all 21 ensemble members of each model, 
the resulting PDF contains more spread than was 
accounted for in the initial regression.  Figure 1a 
shows the average 80% credible interval (CI) for 
each model over two cool seasons. The average 
80% CI is the average difference between the tem-
perature associated with the 90th percentile (T90) 
on our CDF and the temperature associated with 
the 10th percentile (T10) on our CDF.  The amount 
of dispersion is shown to be greater in the CMCE 
than the GEFS.  To correct for the extra dispersion 
caused by applying the equation to each member, a 
spread adjustment factor (Glahn et al. 2009) was 
applied to each forecast.  Since the GEFS and 
CMCE are shown to have different dispersions, 
different spread factors were needed to correct their 
dispersions.  Through testing, values of 0.4 for the 
GEFS and 0.2 for the CMCE were found to pro-
vide the best adjustment.  Figure 1b shows the av-
erage 80% CI for each model after the spread ad-
justment has been applied.  At this point, the fore-
casts from both models contain approximately the 
same amount of spread.  
 
4.  Methods of Evaluation 
 
   There are several techniques for verifying the 
accuracy and reliability of a probabilistic forecast.  

The probability integral transform (PIT) histogram 
and cumulative reliability diagram (CRD) can be 
computed to show the reliability of a set of fore-
casts.  A PIT is the percentile location of the veri-
fying observation on the forecast CDF.  A histo-
gram, similar to a Talagrand diagram, can be cre-
ated from these values, the shape of which can be 
used to identify biases, over-dispersion, and under-
dispersion (Hamill 2001). 
   A CRD is a visual representation of cumulative 
departures of the probability forecasts from the 
observed relative frequencies associated with a 
probabilistic forecast.  A line running diagonally 
across the plot acts as a reference of perfect reli-
ability.  It is evaluated like a reliability diagram in 
that relative frequencies (RFs) that fall to the left of 
the diagonal line denote under-forecasting (prob-
ability forecasts less than the observed relative 
frequencies) while RFs that fall to the right of the 
line show over-forecasting.   
   While PIT histograms and CRDs make it easy to 
visualize the reliability of a single model, it is not 
always easy to use them to compare the reliability 
of multiple models.  Reliability can be more easily 
compared by calculating the square bias of the RF.  
This is done by computing the squared difference 
between the RF of each bin in a PIT histogram and 
unity, weighted by the width of the probability bin, 
summed over the entire range of probabilities 
(Glahn et al. 2009).  These values can then be plot-
ted by projection time, making it easy to compare 
several models. 
  The continuous ranked probability score (CRPS) 
is another single-valued score that can be computed 
to show accuracy.  The CRPS is a squared measure 
of the difference between the CDF and the verify-
ing observation (Unger 1985; Hersbach 2000).  It 
takes into account both the accuracy of the median 
of the distribution (T50) and the amount of uncer-
tainty in the forecast. 

  
Fig. 1.  (a) The average 80% credible interval (CI) without 
spread adjustment for the GEFS and the CMCE and (b) the 
average 80% CI after spread adjustment has been applied.  The 
spread adjustment factor is 0.4 for the GEFS and 0.2 for the 
CMCE.



5.  GEFS and CMCE Comparison 
       
     Plots a and b in figures 2, 4 and 6 show CRDs 
for the GEFS and the CMCE for cool season tem-
peratures for 48-h, 120-h, and 168-h, respectively, 
which represent forecast days 2, 5, and 7.  Plots d 
and e in figures 2, 4, and 6 show the same results 
for cool season dewpoint.  Figures 3, 5, and 7 show 
PIT histograms for the same elements and projec-
tion hours.  The CRDs show that applying the 
EKDMOS technique to the GEFS and CMCE yield 
very reliable forecasts, with a maximum departure 
from perfect reliability of 3.3% occurring at 120-h 
for the GEFS cool season dewpoint, as seen in Fig. 
4d.  The PIT histograms provide more information 
about where the differences between the RFs of the 
forecasts and perfect reliability exist.  Perfect reli-
ability on the PIT histogram is denoted by a dashed 
horizontal line at 1.  Most histograms show a slight 
hump to the right of center, denoting some over-
dispersion as well as a slight cool bias to the fore-
cast.  Images for the warm season are not shown 
here but were very similar. 
   The square bias in RF for the GEFS and the 
CMCE is compared in figures 8 and 9 for tempera-
ture and dewpoint, respectively.  Note that all val-
ues are very low, showing little bias in agreement 
with the CRDs.  The differences in the square bi-
ases of the two models differ by projection hour 
and element and are overall very similar.   With the 
exception of the high values at the early projections 
for cool season dewpoint in figure 9a, the CMCE 
results are slightly lower in terms of square bias 
and therefore slightly more reliable than the GEFS. 
   The CRPS values for the GEFS and the CMCE 
are compared in figures 10 and 11 for temperature 
and dewpoint, respectively.   This time the GEFS is 
slightly better than the CMCE at most projections.  
This is more noticeable for the cool season tem-
perature and dewpoint than the warm season.  
Overall, the EKDMOS technique produces slightly 
more accurate forecasts when applied to the GEFS. 
 
6.  NAEFS 
          
   The NAEFS probabilistic forecasts were pro-
duced using kernel density estimation to combine 
the 21 GEFS ensemble members with the 21 
CMCE ensemble members.  Through testing, it 
was found that a spread factor of 0.2 was needed to 
correct for over-dispersion.  Figures 12a and b 
show the temperature forecasts for the GEFS and 
the CMCE ensemble members for a 72-h forecast 
for Baltimore, Maryland with the PDF that was 
generated for each of them. No spread adjustment 
has been applied to the PDFs shown here.  As dis-

cussed with Fig. 1a, the GEFS ensemble forecasts 
show less dispersion and uncertainty as compared 
to the CMCE forecasts, which have more disper-
sion and result in a PDF with more spread.  Figure 
12c shows how the same ensemble members were 
combined to form the NAEFS PDF.  The result is a 
PDF that takes on the characteristics of both of the 
EPSs used to create it.  Figures 12d, e, and f show 
the same results for Atlanta, Georgia.   
   Figure 2 compares the CRDs for 48-h cool sea-
son temperature and dewpoint for the GEFS, 
CMCE, and NAEFS while Fig. 3 shows the PIT 
histograms for the same data.  Both figures show 
the NAEFS to have the same reliable forecasts that 
the GEFS and CMCE had individually.  Figures 4 
through 7 show that this reliability also exists at 
projection hours 120 and 168.  Results for the 
warm season were very similar. 
   Figures 8 and 9 compare the square bias in RF 
for temperature and dewpoint respectively.  Here 
again the NAEFS is shown to be as reliable as the 
GEFS and the CMCE.  At some projection hours, 
the NAEFS is more reliable.  Note again that all 
values are extremely low, indicating very little 
bias. 
   The CRPS scores are shown for the GEFS, the 
CMCE, and the NAEFS in figures 10 and 11 for 
temperature and dewpoint, respectively.  Here the 
NAEFS forecasts are shown to be more accurate 
than the GEFS and the CMCE at every projection 
hour.  This increase in accuracy is show for both 
temperature (Fig. 10) and dewpoint (Fig. 11). 
 
7.  Conclusions 
 
   The EKDMOS technique has been shown in the 
past to produce accurate and reliable probabilistic 
forecasts when applied to the GEFS (Glahn et al. 
2009).  When the same technique is applied to an-
other EPS, the results are very similar.  PIT histo-
grams, CRDs, and square bias in RF and CRPS 
plots have all been used to show that the CMCE 
EKDMOS forecasts are reliable and accurate, with 
the GEFS being slightly more accurate and the 
CMCE being slightly more reliable. 
   The benefits of combining NCEP’s GEFS with 
the CMCE to gain a more skillful probabilistic 
forecast have already been shown (Candille 2009).  
These benefits are also present when the EKDMOS 
technique is applied to the NAEFS forecasts.  
When these two ensemble systems are combined 
into a single EPS, the strengths that each system 
possesses are carried over into the combined sys-
tem.  The end result is a probabilistic forecast that 
is as reliable as and more accurate than the 



 
Fig. 2.  48-h CRDs for cool season temperature and dewpoint for the GEFS, the CMCE, and their combination into the NAEFS. 
 

 
Fig. 3.  48-h PIT histograms for cool season temperature and dewpoint for the GEFS, the CMCE, and their combination into the 
NAEFS.
 



 
Fig. 4.  120-h CRDs for the cool season temperature and dewpoint for the GEFS, the CMCE, and their combination into the NAEFS. 
 

 
Fig. 5.  120-h PIT histograms for cool season temperature and dewpoint for the GEFS, the CMCE, and their combination into the 
NAEFS. 
 



 
Fig. 6.  168-h CRDs for cool season temperature and dewpoint for the GEFS, the CMCE, and their combination into the NAEFS. 
 

Fig. 7.  168-h PIT histograms for cool season temperature and dewpoint for the GEFS, the CMCE, and their combination into the 
NAEFS.



 
Fig. 8.  Square bias in RF for (a) cool season and (b) warm 
season temperature for the GEFS, the CMCE, and the 
NAEFS. 

 
Fig. 9.  Square bias in RF.  Same as Fig. 8, except for dew-
point. 

 
Fig. 10.  CRPS in degrees F for (a) cool season and (b) warm 
season temperature for the GEFS, the CMCE, and the 
NAEFS. 

 
Fig. 11.  CRPS in degrees F.  Same as Fig. 10, except for 
dewpoint. 



 
Fig. 12.  PDFs for the GEFS, CMCE, and NAEFS for Baltimore, Maryland (KBWI) and Atlanta, Georgia (KATL) for the 72-h fore-
cast on October 1, 2007.
 



individual ensemble forecast systems from which it 
was created. 
 
8.  Future Work 
 
  Results shown in the paper were for dependent 
data only.  The next step will be to apply the equa-
tions and techniques to independent data.  These 
data will start to become available in April 2010.  
Results were also shown for the 0000 UTC run of 
the NAEFS only.  These same techniques can also 
be applied to the 1200 UTC run of the NAEFS.  
Glahn, et al. (2009) also showed the EKDMOS 
technique to be successful for maximum and 
minimum temperature forecasts.  Forecasts for 
these elements will also be produced from the 
NAEFS model.  The intent is to make these fore-
casts available to field forecasters through the Na-
tional Digital Guidance Database. 
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