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1.   INTRODUCTION 
 

Weather forecasting1 is not an exact science.  
Almost any weather forecast, whether it is for a 
dichotomous event like precipitation, or for a quasi-
continuous variable like temperature, has an element of 
uncertainty associated with it.  Whether the forecast is 
machine-generated or humanly produced, the uncer-
tainty may be hard to quantify.  Nevertheless, it has 
been recognized within the meteorological community 
for many years that some expression or measure of 
uncertainty should accompany the forecast to better 
serve the user of the forecast. 

This was well recognized by one of the earliest 
forecasters, Cleveland Abbe, who helped establish the 
U.S. Weather Service and was actually called “old 
probabilities.”  In 1965, the Weather Bureau made 
operational nationwide the probability of precipitation 
(PoP) product, by carefully defining the event as 0.01 
inch or more of precipitation at a point over a 12-h 
period.  This led the then Assistant Secretary of 
Commerce, Myron Tribus (1970), to make the state-
ment, “It was not too long ago that the major concession 
by the Weather Bureau to the existence of probability 
theory was the use of words such as ‘likely,’ ‘probably,’ 
or ‘chance.’  Fortunately, this policy has been aban-
doned.  Today we have forecasts couched in the lan-
guage of probability, which represents a distinct im-
provement over deterministic pronouncements.”2  Unfor-
tunately, the progress of probability forecasting since 
that time has been excruciatingly slow. 

There is currently a much renewed interest in prob-
ability forecasting.  The American Meteorological Soci-
ety (AMS) published a Statement in 2002 that included, 
“Much of the informational content of meteorological 
data, models, techniques, and forecaster thought pro-
cesses is not being conveyed to the users of weather 
forecasts.  Making and disseminating forecasts in prob-

                                                           
1  No distinction is made here between weather and 
climate. 
2  Tribus was well known for his book Rational Des-
criptions, Decisions, and Designs in which he promoted 
Bayesian methods. 

abilistic terms would correct a major portion of the short-
coming” (AMS 2002).  The National Research Council 
(NRC) undertook a study sponsored jointly by the Na-
tional Weather Service (NWS) and the Office of Meteor-
ological Research within the National Oceanic and At-
mospheric Administration (NOAA) to suggest how we 
might make headway on this difficult problem.  Their re-
cent report (NRC 2006) makes several good sugges-
tions that will provide guidance to the meteorological 
community. 

While it might be a chicken and egg situation, much 
of the renewed interest in probability forecasting is likely 
due to the computer power now available to run ensem-
bles of a (largely) deterministic model with slightly vary-
ing initial conditions (Toth and Kalnay 1997).  The im-
provement in weather forecasting, for more than a few 
hours in advance, has come predominantly from better 
numerical models.  Models and their output, including 
postprocessed products such as Model Output Statistics 
(MOS), have driven the forecast enterprise.  Forecasts 
for 5 days, 7 days, and even longer came about when 
the models showed some skill at those projections.  
Multiple results from a model immediately suggest, and 
provide the possibility of, probability forecasts.  The de-
sire to know and provide the uncertainty of numerical 
model output led to ensembles, a possibility suggested 
many years ago by Epstein (1969), Fleming (1971a, b),  
and Leith (1974). 

Numerical models characteristically do not provide 
forecasts of many of the weather variables needed by 
users, such as ceiling height, visibility, type of precipita-
tion, cloud amount, cloud layer amount and cloud layer 
height, nor do they provide probability output directly. 
Computing the relative frequency of an event from an 
ensemble is simple, but there is the question of skill 
and, particularly, reliability.  Dealing with continuous var-
iables, such as surface (2-m) temperature, is even more 
challenging. 
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While a tremendous theoretical and implementation 
effort has been put into producing ensembles, relatively 
little effort has been put into developing methods to in-
terpret and  postprocess  the  ensemble  output.   Early 
emphasis was put on improving the model by studying 
upper atmospheric variables such as 500-mb height 
(Atger 1999, Krishnamurti 2003) rather than the weather 
for the man or woman on the street. 

The errors in numerical model forecasts are of two 
classes—inaccuracy of initial conditions, and imperfect 
models.  Numerical models start with a three-dimension-
al snapshot of the atmosphere characterized by values 
at gridpoints or possibly in spectral components.  This 
snapshot is generated by assimilating many observa-
tions from a variety of sources, each source having cer-
tain, many times unknown, error characteristics.  This 
data assimilation has become increasingly sophisticated 
and is a science in itself.  Even so, it is not perfect; i.e., 
the snapshot picture is produced with an imperfect lens.  
It is generally believed that if several different snapshots 
are used as initial conditions, each different, but reason-
able from a synoptic and theoretical point of view, the 
evolution of the model forecasts from them will provide 
the needed basic uncertainty information.  No single 
best way to produce the multiple snapshots is known 
(Descamps and Talagrand 2007) however; the methods 
vary among those producing such forecasts and fre-
quently undergo change.  In any case, to date, the en-
semble results in general do not cover the full range of 
possibilities of the verifying weather—the ensemble 
forecasts are underdispersive (e.g., Stensrud and 
Yussouf 2003; Gneting et al. 2005). 

It is not surprising that the ensembles are underdis-
persive, given that they do not in general build in the un-
certainties inherent in the model itself. But efforts still 
remain to make the ensemble results “dispersive 
enough” to cover the solution space, and to make the 
distribution of model solutions representative of the real, 
but unknowable, probability distribution.  One wonders 
whether this is a reasonable expectation, given that the 
largest source of error, that of the model itself, is many 
times completely ignored.  This situation is sometimes 
mitigated by making an ensemble composed of runs of 
more than one model, but it is questionable whether two 
or more models will together produce a realistic and 
reliable probabilistic forecast. 

The postprocessing of model data, MOS being the 
technique most used3, can produce quite unbiased 
forecasts.  This is true for binary events as well as 
quasi-continuous variables, as was shown long ago for 
probability of precipitation (PoP) (Glahn and Lowry 
1969), and thunderstorm occurrence (Reap and Foster 
1979).  For the binary event, “unbiased” is equivalent to 
the forecasts being reliable–a basic desirable character-

                                                           
3  Actually, MOS by its very name and definition, is a 
synonym for model postprocessing except for purely 
mathematical or physically based algorithms devoid of 
statistics. 

istic of a probability forecast.4  Leith (1974) in his paper 
suggesting ensembles, states, “...any forecasting pro-
cedure can be made optimal in the least-square-error 
sense by the use of a final regression step.”  The 
Meteorological Development Laboratory (MDL) has 
been producing such probability forecasts for years 
(Carter et al. 1989), but there was not a strong pull for 
the information.  Dealing in a probabilistic sense, a bi-
nary event is relatively straightforward for MOS. 

To use regression, and other statistical models, to 
produce an objective estimate of a binary event, one 
has only to classify the event as occurring or non-
occurring, assign different values to those two condi-
tions, and apply a model that tries to put those events 
into separate categories.  Over the history of objective 
weather forecasting, (linear) regression is probably the 
most used.  If the event is classified as a “1" and the 
non-event as a “0,” then the resulting value is an 
estimate of the probability of the event occurring.  Least 
squares regression provides an estimate that minimizes 
the P-Score defined by Brier (1950).  That is, the P-
Score, or Brier Score which is more widely used and is 
½ the P-Score for a dichotomous predictand, is a mean 
square error score, which is exactly what regression 
minimizes.  This specific application was dubbed REEP 
for Regression of Event Probabilities by Bob Miller 
(1964), who was a pioneer in objective weather fore-
casting.  REEP has been used extensively by MDL and 
gives reliable results, even though the regression values 
can go outside the zero to unity range and have to be 
truncated to satisfy the definition of probability. 

REEP can also be used to deal with a quasi-
continuous variable by dividing it into several categories, 
either discrete or cumulative (see Glahn 1985, Table 3), 
and performing regression, with the same predictors in 
each equation, on each category.  When the discrete 
categories are mutually exclusive and exhaustive, the 
sum of the resulting probability estimates equals unity, 
as they should.5  These estimates together form a, 
perhaps crude, Cumulative Distribution Function (CDF), 
but is a viable means of dealing with predictands of a 
very non-normal nature, such as ceiling height, visibility, 
and precipitation amount.  However, when the predic-
tand, such as temperature, is quasi-normal, a more 
straightforward method is available. 

This paper defines a capability of producing prob-
ability forecasts of quasi-normally distributed variables 
by regression methods, both with and without ensem-
bles.  The focus is on temperature at specific times (T); 

                                                           
4  We include here the concept of “reliable in the small” 
defined by Murphy and Dann (1985), which means that 
not only the overall relative frequency is (near) correct, 
but the relative frequency of occurrence within small 
probability bands is also correct. 
5  The fact any of the estimates could go outside the 
zero to unity range may make recalibration necessary.  
Usually this has to be addressed, but is of minor 
importance for the final result. 
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(1)

(2)

dew point temperature (Td), daytime maximum (MaxT) 
and nighttime minimum (MinT) temperature were stud-
ied in less detail. 

 
2.   REGRESSION FRAMEWORK FOR 
PROBABILITY FORECASTS 
 

Relatively little has been done in producing a mea-
sure of uncertainty associated with a single value fore-
cast of a continuous variable like temperature.  Actually, 
the multiple regression framework provides for this, un-
der the usual normality assumption.  This capability has 
been used in two dimensions (e.g., see Wilks 2006, 
p. 196; Glahn 2002)—one predictor and one predictand.  
The results of such an application can be plotted along 
with underlying data.  An error band at some level of 
probability, say 95%, can be put on the linear line such 
that for a new value of the predictor the probability of the 
verifying value being within the band is 95%.  For a fairly 
normally distributed variable like temperature, the re-
sults should be quite good in this regard.  (This is de-
monstrated later in Figure 5). 

When the regression gives an estimate of Y as a 
function of X, the coefficients being computed from a 
sample of size n, the lines at probability level α can be 
placed according to the t distribution:  
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where the MSE  is the error (or residual or unex-
plained) sum of squares divided by the degrees of 
freedom, n-2, r is the multiple correlation coefficient, s is 
the standard deviation of the predictand, and the 
summations are taken over the n sample cases.  For 
samples of the size we usually deal with in meteorology, 
the normal distribution can be used instead of the 
t distribution, which is necessary when n is less than 
about 30. 

The theory for placing prediction bands for a multi-
ple regression solution is contained in various texts, 
Mongomery and Peck (1982) being especially good.  To 
illustrate with three predictors, let the predictand values 
be arranged in the vector 
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Then the regression equation that will produce 
estimates for the n points is written 
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The coefficient vector is found by 
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The error of the new prediction value is 
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for large n, and R is the multiple correlation afforded by 
the equation.  Finally, 
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can be used to put error bounds around the new value 
of Y. 
 
3.   DATA AVAILABLE 
 

The National Centers for Environmental Prediction 
(NCEP) saved a sample of their Global Ensemble Fore-
cast System (GEFS) from May 2004 until the present. 
This archive was made for the purpose of model im-
provement and not postprocessing into operational pro-
ducts; therefore, it is not optimum for the latter purpose. 
The data were retrieved and put into a format conducive 
to processing by MDL software.  Consistent with other 
MOS techniques, the data were divided into 6-month 
cool seasons; two seasons were used for development 
(October 2004-March 2005 and October 2005-March 
2006) and the third season (October 2006-March 2007) 
was used for validation.  Our study was limited to the 
0000 UTC forecast cycle, since it was the most com-
plete data set.  It is noted that several changes were 
made to the ensemble system during the sample period.  
Changes were made to the model, the model resolution, 
and the resolution at which the data were archived.  
Notably, the method of establishing initial conditions 
was changed between the developmental and indepen-
dent data sets.  Therefore, some disagreement between 
samples would be expected, even discounting any 
possible climatic change over that period.  The number 
of ensemble members was increased from 11 to 15 
starting at 1200 UTC on May 30, 2006, and increased 
again to 21 starting at 1200 UTC on March 27, 2007.  
To remain consistent with the dependent data set, only 
the first 11 members were used as the independent 
data set. 

MDL maintains an archive of observations at regu-
larly reporting sites within the United States; these 
observations furnished the predictand data.  Since they 
are not directly observed, MaxT and MinT, variables the 
NWS forecasts, were calculated from the hourly obser-
vations and the 6- and 12-h reported max and min val-
ues.  A set of 1650 stations was chosen for develop-
ment and testing, generally matching those stations 
used in recent MOS developments.  Stations were dis-
tributed throughout the conterminous U.S. (CONUS), 
Alaska, Hawaii, and U.S. territories.  In all discussions, 
the development (or dependent) data sample consists  

of the two cool seasons and 1650 stations.  The inde-
pendent sample consists of one cool season for the 
same stations. 

4. PRESENTATION OF PROBABILITY FORE-
CASTS 

 A probabilistic forecast of a dichotomous event, as 
defined in Section 1, is easily stated or communicated.  
It is just a single value, like 20 percent.  However, when 
dealing with a continuous variable, a Cumulative Distri-
bution Function (CDF), or a few values from it, is need-
ed to communicate the forecast to the user community.   

 An example of a CDF (b), the probability density 
function from which it was derived (PDF; a), and an as-
sociated quantile plot (c) are shown in Fig. 1.  These are 
presented in terms of temperature.  Here, the CDF re-
presents the probability that a particular value of tem-
perature will not be exceeded.  Many times, the full CDF 
is not known, but rather specific values on it.  These can 
be represented on a quantile plot.  In Fig. 1c, one can 
see that the following 13 probability values have been 
used to delineate the probability distribution:  0.05, 0.10, 
0.20, 0.25, 0.30, 0.40, 0.50, 0.60, 0.70, 0.75, 0.80, 0.90, 
and 0.95.  These points are marked with squares in the 
figure.  Dashed lines have been added at 0.10, 0.25, 
0.50, 0.75, and 0.90 to enhance readability.  The selec-
tion of these 13 values is important since it has an im-
pact on the evaluation techniques described below.  The 
nine evenly-spaced probability values (0.10, 0.20, etc.) 
were chosen to provide a basic outline of the distribu-
tion.  The two quartile boundaries (0.25 and 0.75) were 
added to this set so they would not have to be interpo-
lated.  Finally, two values were added (0.05 and 0.95) to 
give additional definition to the tails of the distributions.  
These last two values may be useful to users as upper 
and lower bounds for any numerical processing they 
perform on the distributions. 

The 13 points shown in Figure 1c can be manipu-
lated to yield a considerable amount of information 
about the forecast.  For simplicity, we adopt the sub-
script notation such that Tp is defined to be the non-
exceedance temperature for a given probability, p, such 
that 

( )
100
pTTP p =≤ .                   (14) 

Fig. 2a illustrates how one can interpolate T60 and 
T70 to estimate that the probability of a temperature be-
low freezing is 0.61.  Fig. 2b shows that the 90% con-
fidence interval can be determined to be 24.2 degrees 
Fahrenheit (24.2 F; 42.0 – 17.8).  Fig. 2c shows that the 
50% confidence interval is 10.0 F (35.0 – 25.0).  We find 
it useful and intuitive to define the terms “warm tail” and 
“cold tail” as (T90-T50) and (T50-T10), respectively.  
Fig. 2d illustrates these terms.  Note that the warm tail 
(9.4 F) and cold tail (9.5 F) are nearly equal, suggesting 
a symmetric forecast. 
 

(11)

(12)

(13)
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5.   METHODS OF EVALUATION 
 
 Whether a probability forecast has been made in a 
Bayesian framework or from a frequentist point of view, 
it is universally accepted that the forecast should be un-
biased.   That is, when the forecast of a well defined 
event is 20 percent, and that same forecast is made nu-
merous times, then the relative frequency (RF) of the 
event should approach 20 percent as the number of 
forecasts increases.   So, reliability is a primary compo-
nent of our evaluation.  Reliability is easily calculated for 
an event, as defined in Section 1, but the evaluation of a 
CDF is more challenging.  We have chosen three meth-
ods to represent reliability.  One is the Probability Inte-
gral Transform (PIT) histogram (Gneiting, et al. 2005).  
The PIT is essentially the value of the CDF at the value 
that is observed (Czado, et al. 2007).  A histogram can 
be generated from the PITs, given a sample large 
enough to support the number of probability bins in 
which the observations are counted. The PIT histogram 
should be uniform, and the calculated RF for each bin 
should be unity.  Visually, a PIT histogram shares many 
characteristics with the rank histogram (also known as 
the “Talagrand Diagram”).  Hamill (2001) provides use-
ful information about the interpretation of rank histo-
grams, much of which can be applied directly to PIT 
histograms.  The shape of both histograms gives a visu-
al way to identify biases, and under- and overdispersion.   

 Another way for visually identifying departures from 
reliability is to plot the cumulative observed relative fre-
quency against the cumulative probability; this gives a 
Cumulative Reliability Diagram (CRD).  Reliability on a 
CRD can be evaluated in a similar fashion as on a relia-
bility diagram (see Wilks 2005, p287):  RFs to the right 
of the dashed diagonal reference line show overfore-
casting (forecast cumulative probabilities were higher 
than the associated cumulative frequencies), while RFs 
to the left show underforecasting.  Note, however, that 
this is cumulative—a summation from below of the bins 
that are represented in a PIT histogram and that would 
be represented on a reliability diagram. 

 The discrete nature of the surface temperature and 
dew point observations gave rise to a complication in 
the generation of PIT histograms and CRDs.  Both tem-
perature and dew point are generally reported in units of 
tenths of a degree Celsius.  Our data have been conver-
ted to Fahrenheit and rounded to whole degrees.   For 
those cases where a forecast distribution exhibits a 
small variance, the verifying observation can satisfy the 
criteria for more than one bin in the histogram.  To man-
age this situation and the biases to which it can lead, we 
generate a random number from the continuous uniform 
distribution U(-0.5,+0.5) and add it to the observed value 
before computing its PIT.  This technique eliminates in-
tegers from the subsequent comparisons.  This proce-
dure is analogous to the one described by Hamill and 
Colucci (1978) for dealing with “ties” when generating 
rank histograms. 

 While the PIT and CRD give a visual check on the 
reliability, it is useful to summarize the reliability informa-
tion in a single value.  We compute a negatively orient-
ed measure we call the squared bias in RF (SB), which 
is the difference between the RF and unity, weighted by 
the width of the probability bin, summed over the entire 
range of probabilities on a PIT histogram.   

 The other measure we have used to evaluate the 
forecasts is the Continuous Ranked Probability Score 
(CRPS).  This measure (also negatively oriented) is well 
known and will not be explained in detail here (e.g., see 
Matheson and Winkler 1976, Unger 1985, Hersbach 
2000).  Suffice to say, it is a squared measure of the dif-
ference between the CDF and the verifying observation 
and degenerates to the mean absolute error in the case 
of single value (non-probabilistic) forecasts.  CRPS is 
measured with the units of the weather element, in this 
work degrees Fahrenheit. 

6.   BASELINE FOR EVALUATION 
 
 The 11 forecasts from the GEFS, referred to here-
after as the raw ensembles (RawEns), can be rank or-
dered, and as such provide a crude CDF.  This can be 
done by assigning a probability to each ensemble mem-
ber using a plotting position estimator attributed to 
Weibull (see Wilks 2005, p 41), 

1
)(

+
=≤
n
iTTP i                       (15) 

where i is the rank of the ensemble member and n is the 
number of ensemble members.  For 11 ensemble mem-
bers, this yields 11 points on the CDF, all evenly spaced 
on the probability axis.  The points derived from this es-
timator were interpolated to find non-exceedance tem-
peratures for the list of probabilities described in Section 
4, above.  Tails for this CDF were inferred by assuming 
they were half as wide as their neighboring segments. 

 Figures 3a, 3b, and 3c show, for the 48-h, 120-h, 
and 168-h projections from model run time, the PIT his-
tograms for our 1650 stations combined (see Section 3) 
for the RawEns.  The time projections were chosen to 
represent forecast days 2, 5, and 7.  The “U” shape of 
these histograms imply that the ensembles are under-
dispersed while the higher bar on the right side of each 
implies a cold bias in the forecasts (meaning too many 
observations fell outside the ensemble extremes, espec-
ially on the warm side).  Figures 3g, 3h, and 3i show the 
associated CRDs.  While the CRDs do not show the 
bias and underdispersion as readily as the PIT histo-
grams do, the unreliability of the distributions is easier to 
quantify in the CRDs.  It is easy to find regions of the 
distribution where RF deviates from the ideal by more 
than 0.15.  At some points the deviation exceeds 0.45. 

 MOS single station equations for temperature 
based on NCEP’s Global Forecast System (GFS, for-
merly Global Spectral Model) (Erickson 1996) have 
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been applied to NCEP’s raw ensembles and made 
available to forecasters as operational guidance fore-
casts for a number of years.  As with the RawEns, these 
can be rank ordered, and evaluated using the tech-
niques described above.   Figures 3d, 3e, and 3f show 
the 48-h, 120-h, and 168-h PIT histograms, respectively, 
for the Ensemble MOS (EnsMOS) and 3j, 3k, and 3l 
show the CRDs.  Like the raw ensembles, the EnsMOS 
forecasts are underdispersed.  The bars on both ends of 
the histograms are more level, however, when com-
pared to the raw ensembles, showing less bias, as one 
would expect from a MOS forecast.  The CRDs also 
show bias improvement over RawEns, but are far from 
reliable. 

 Figure 4a compares SB at each 6-h time projection 
for RawEns and EnsMOS.  Note the strong diurnal vari-
ation in the RawEns which is largely removed by the 
EnsMOS.  The SB score for RawEns lowers with in-
creasing time projection.  This indicates that the under-
dispersion in the ensemble output is worse at earlier 
projections than at later projections, as also indicated in 
the PIT histograms in Figures 3a, 3b, and 3c.  The 
EnsMOS SB scores drift upward somewhat in the later 
projections.  Since the MOS forecasts trend toward cli-
matology in the later projections, the CDFs generated 
from them exhibit less variance than the RawEns.  This 
result is unfortunate, but not unexpected, because the 
MOS ensemble spread narrows around the mean 
climatological value at large projections, resulting in 
smaller variance when larger is needed. 

 Figure 4b compares CRPS for RawEns and 
EnsMOS.  For most projections, EnsMOS handily im-
proves over RawEns although a few exceptions can be 
seen at later time projections.  The diurnal variation 
noted in SB for RawEns can also be seen in CRPS, and 
for EnsMOS as well, although the variation is out of 
phase with RawEns.   

 For comparison, both charts in Figure 4 include 
scores for a technique named Ctl-Ctl-N that is described 
below. 

7.  REGRESSION EQUATIONS BASED ON 
CONTROL ENSEMBLE RUN 

 The development of regression equations based on 
the single “control” model run, and evaluated on the 
control run is the most basic test of the probabilistic re-
gression framework.  The predictands were temperature 
and dew point, developed simultaneously at 3-h inter-
vals from 6 hours to 192 hours, and MaxT and MinT, de-
veloped independently out to 390 hours and 378 hours, 
respectively.  Simultaneous development was used for 
temperature and dew point to ensure that the same pre-
dictors were chosen for both elements, enhancing the 
meteorological consistency of the forecasts (NWS 
1985).  The potential predictors were taken from the 
control member of the GEFS and used in a forward 
selection screening procedure, which selects predictors 
for the regression equation from a pool of variables 

based on their additional reduction of variance of the 
predictand (Lubin and Summerfield 1951); no observa-
tions were used as predictors.  Table 1 shows the most 
frequently chosen predictors for each element.  We 
have found that the GEFS does not have much tempor-
al bias, so the predictors were valid at the same time as 
the predictand for the temperature and dew point, and 
covered a range of projections for the max and min.  
Because the model data were saved at 6-h resolution, 
we used a quadratic time interpolation to get projections 
at 3-h intervals. The name “Ctl-Ctl-N” was given to this 
technique to summarize how the equations were devel-
oped (on the control or “Ctl” member only), how the 
equations were applied (to the “Ctl” member only), and 
what type of distribution was applied (a normal distribu-
tion, abbreviated “N”).  Equation 13, above, gives the 
framework used to determine the two parameters of the 
normal distribution. 

 Figure 4 indicates the Ctl-Ctl-N method has very 
small square bias and its CRPS is considerably lower 
than for RawEns or EnsMOS. 

 Figure 5 shows the regression for a 24-h prediction 
of temperature at Milwaukee, Wisconsin, based on a 
single predictor, the GFS 2-m temperature.  Prediction 
intervals are shown for 50 and 95 percent.  The regress-
ion error estimation is seen to fit rather well.  While not 
noticeable, the prediction intervals are not bounded by 
straight lines, but rather by hyperbolae (see Eq. 2).  
Thus, our predictions are less certain as we move away 
from the predictor mean. 

 Figures 6a, 6b, and 6c show the PIT histograms for 
our station set for the 48-h, 120-h, and 168-h projec-
tions, respectively, for dependent Ctl-Ctl-N data.  When 
compared to the PIT histograms for the raw ensembles 
and of Ensemble MOS (Figure 3), these histograms ap-
pear relatively flat, showing an increase in reliability.  
Please note the scales for Figures 3 and 6 are different 
by about a factor of 8.  Figures 7a, 7b, and 7c show 
CRDs for the same forecasts.  The increase in reliability 
can be plainly seen here with deviations from the diago-
nal generally less than .03.  These results indicate the 
normality assumption in the regression framework holds 
quite well for temperature. 

8.  DEVELOPMENT BASED ON MEAN OF 
ENSEMBLE FORECASTS 
 
 The same procedure as described in Section 7 was 
used to develop equations based on the means of the 
11 ensemble variables (mean equations).  The equa-
tions were then applied to those means to make fore-
casts.  This technique was given the name “Mn-Mn-N.”  
Figures 6d, 6e, and 6f show the PIT histograms and 
Figures 7d, 7e, and 7f show the CRDs for dependent 
Mn-Mn-N data at the same projections as those from 
the control run from the previous section.  The Mn-Mn-N 
technique does not seem to improve the reliability of the 
forecasts over Ctl-Ctl-N;  however, below we will show 
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that forecasts made by Mn-Mn-N are more accurate at 
the longer projections. 
 
9.  MEAN EQUATIONS APPLIED TO EACH 
ENSEMBLE MEMBER 
 
 The results above show that the regression frame-
work gives quite well-behaved distributions, but they are 
symmetric and unimodal.  To attain the full benefit of en-
sembles and to achieve non-normal distributions, the in-
dividual members must be used.  All members have 
been used in developing the mean equations, so we 
now apply the mean equations to each member individ-
ually.  This gives 11 forecasts, Fi, each with an error es-
timate, σi.  We combine these using kernel density fitting 
(Wilks 2005).  We use a normal kernel in concert with 
the regression framework, and the 11 kernel functions 
are generated using Fi and σi.  This, then, provides a 
CDF which can be non-symmetric and multimodal.  We 
named this technique Mn-Ens-KDE, indicating that the 
forecast equations were developed using the ensemble 
mean, the forecast equations were applied to each en-
semble member individually, and KDE was used to 
combine the various forecasts into a single distribution. 

 Fig. 6g, 6h, and 6i show the PIT histograms and 
Fig. 7g, 7h, and 7i show the CRDs obtained from the 
Mn-Ens-KDE technique.  The Mn-Ens-KDE forecasts 
are much more reliable than RawEns or EnsMOS (see 
Fig. 3), but they are not as reliable as the Mn-Mn-N or 
Ctl-Ctl-N forecasts.  In particular, the Mn-Ens-KDE fore-
casts are overdispersed.  Fig. 8a compares SB for Ctl-
Ctl-N, Mn-Mn-N, and Mn-Ens-KDE techniques.  Note 
that the scales for Fig. 4a and Fig. 8a are quite different, 
the difference being almost two orders of magnitude.  
While all these ensemble MOS results have a low 
square bias in comparison to the raw ensembles, using 
the 11 members gives higher (worse) bias than Ctl-Ctl-N 
or Mn-Mn-N.  This was expected because when one en-
semble member has about the correct spread, adding 
the spread of the ensemble members is bound to cause 
overdispersion. 

 Figure 8b compares CRPS for the same techniques 
and time projections as Figure 8a.  Although Mn-Ens-
KDE forecasts are considerably less reliable than those 
made by Mn-Mn-N, we cannot discern a difference in 
their accuracy as measured by the CRPS.  However, 
both Mn-Mn-N and Mn-Ens-KDE improved on Ctl-Ctl-N 
beyond about 108 hours, which indicates the value of 
ensembles. 

10.  ADJUSTMENT OF DISPERSION 

 Since the spread of the Mn-Mn-KDE distribution is 
too large, we decreased the spread by a factor based 
on the spread between the most different ensemble 
members.  The adjusted distribution has a spread that is 
smaller than the original distribution by a factor of (1-x), 
based on Eq. 16: 

( ) ( )
( ) ( )minmaxmaxmin

minmaxmaxmin

3
3

FF
FFsf

x
−++
−++

=
σσ
σσ

,    (16) 

where Fmin and Fmax are the smallest and largest 
ensemble forecasts, respectively, σmin and σmax are 
the associated standard deviations of their kernels, and 
sf is a factor that can be used to tune the process.  This 
is illustrated in Fig. 9.  When the ensembles are tightly 
packed, very little adjustment is made; when they are 
widely dispersed, the adjustment is more pronounced.  
At one extreme, if the value and spread of each member 
were the same (or if there were only one member), no 
adjustment would be made, and the spread would be 
the same as for a single member.       

 We found through testing on dependent data that a 
spread factor of 0.5 produced distributions that were 
only slightly overdispersed.  Once the width of the PDF 
is adjusted, the height of the curve is then normalized so 
that the area under the curve is unity.   This technique—
Mn-Ens-KDE with an adjustment to dispersion—was 
given the name “EKDMOS” for “Ensemble-Kernel 
Density-MOS.” 

 Fig. 6j, 6k, and 6l show the PIT histograms and 
Fig. 7j, 7k, and 7l show the CRDs obtained from the 
EKDMOS technique.  These plots show that much of 
the overdispersion that was present in the Mn-Ens-KDE 
technique has been corrected.  Fig. 8a shows the SB for 
the EKDMOS technique to be on scale with the single 
member techniques.  Fig. 8b shows that accuracy as 
defined by the CRPS was not noticeably sacrificed by 
making the adjustment.  

 Figure 10 compares PIT histograms and CRDs 
generated with the EKDMOS technique on both depen-
dent and independent data.  The slight overdispersion 
that is present in the dependent data PIT histograms 
(Figures 10a, 10b, and 10c) has largely disappeared in 
the independent data (Figures 10d, 10e, and 10f), es-
pecially at the later projections.  The maximum devia-
tions present in the CRDs have also decreased from 
.025 in the dependent data (Figures 10g, 10h, and 10i) 
to .01 in the independent data (Figures 10j, 10k, and 
10l).  

 Figure 11a compares the SB for EKDMOS for de-
pendent and independent data.  The fluctuations in the 
independent data in the early projections can be ex-
plained by the slight overdispersion at some projections 
mentioned above.  The CRPS plots in Figure 11b show 
that the accuracy of independent data is within 0.2 and 
0.4 F of the dependent data, and the independent data 
results are better than the raw ensemble shown in Fig. 4 
by 1.0 to 1.2 F. 

 One can wonder why the bias characteristics were 
better on the independent data than the dependent 
data; was it fortuitous, or was it because we purposely 
set the sf value so that there was still some overdisper-
sion on the dependent data?  We thought that because 
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the regression would likely not fit the independent data 
as well as the dependent data, the dispersion would, on 
average, increase. 

 It is somewhat disappointing that although the 
EKDMOS produced non-symmetric distributions, and 
we were able to control the bias, it did not show im-
provement over the simpler technique Mn-Mn-N.  Likely, 
the majority of the distributions are quite close to normal 
and overshadow the few that depart significantly; the 
CRPS is not sensitive enough to register the improve-
ment.  This does lead to the question, though, as to 
whether the non-symmetric distributions, as derived 
from the ensemble individual members, really were an 
improvement.  Perhaps all the information is contained 
in the mean, and the distribution of the members is not 
furnishing additional information.  This deserves further 
study. 

11.  RESULTS FOR DEW POINT AND MAXI-
MUM AND MINIMUM TEMPERATURE 
 
 The EKDMOS technique was also applied to dew 
point, MaxT, and MinT.  All results shown here for these 
elements are for the independent sample.  Figure 12 
compares the PIT histograms for these three elements.  
While some bias in the distributions appears to exist in 
the early projections (Figs. 12a, 12d, and 12g), the cor-
responding CRDs (Figs. 13a, 13d, and 13g) show that 
this technique is still quite reliable for these elements, 
with a maximum deviation of less than .05. 

 Figures 14a, 14b, and 14c show the SB for Td, 
MinT, and MaxT, respectively.  Note that the height of 
each of these plots is half of that of the SB plot for tem-
perature (Figure 11a). 

 Figure 15 shows the CRPS for Td, MinT, and MaxT 
at each available time projection.  In general, these 
scores are consistent with those seen for T.  The results 
for these three elements were obtained with exactly the 
same process as with temperature; the sf determined on 
dependent data for temperature was used unchanged 
as 0.5. This shows the technique to be quite robust for 
these quasi-normally distributed variables. 

12.  SAMPLE PDFS 

 We present two case studies to demonstrate these 
techniques operating in “real world” meteorological set-
tings.  The first case centers on a frontal zone in the 
northeastern United States.  The second case shows an 
interesting temperature contrast across southern 
Alaska.  PDFs are displayed to aid in the visualization of 
the distributions.  We find PDFs to be more useful for 
visualization and CDFs more useful when seeking quan-
titative answers to specific questions. 

 Figure 16a shows the daily weather map valid at 
1200 UTC on 14 January 2007 for the northeastern 
United States.  Note the stationary front positioned east-
west across the Mid-Atlantic states.  Fig. 16b shows the 

location of three stations for which we show results; 
Buffalo, New York; Boston, Massachusetts; and Atlantic 
City, New Jersey.  At this valid time the front was 
~400 km south of Buffalo and Boston, and it was much 
closer to Atlantic City.  The temperature PDFs shown in 
Fig. 17 were generated by EKDMOS for each of these 
stations.  All are valid at 1200 UTC 14 January 2007, 
and they illustrate the evolution of the temperature 
forecasts over a 7-day period.  The Day 7 forecasts 
(156-h; 17a, 17d, 17g) cover a wider span of tempera-
tures than those with shorter lead times.  Note also that 
the Day 7 forecasts show significant skew; a hint of bi-
modality is evident in the forecast distribution for 
Boston.  The images on the second row (17b, 17e, 17h) 
were created with an 84-h lead time (Day 4).  They 
show sharper distributions and some evidence of skew.  
The images on the bottom row (17c, 17f, 17i) were 
created with a 2-day (36-h) lead time.  At this point the 
forecast PDFs are noticeably sharper than at the other 
two time projections, and they show almost no skew.  
The mode of the three forecasts for Boston and Atlantic 
City shifts between warmer and colder temperatures as 
the lead time shortens.  It is interesting to note that 
when each shift occurs, the previous PDF had a longer 
tail in the direction to which the mode shifted.  One can 
interpret these behaviors as the combination of statistics 
and ensemble modeling converging toward the final 
forecast value. 

 Figure 18a shows NCEP’s Surface Analysis for 
North America valid at 0000 UTC 28 November 2006, 
and Figure 18b shows the locations of Juneau and 
Homer, Alaska.  Note that the two stations were influ-
enced by two different weather regimes.  A cold dome of 
high pressure centered over the Yukon kept Juneau un-
seasonably cold.  Southerly flow ahead of an occluded 
low pressure system brought maritime air from the Gulf 
of Alaska to Homer. 

 Figure 19 shows a time series of eight EKDMOS 
PDFs all forecasting the 0000 UTC temperature at 
Homer on 28 November 2006 along with the verifying 
observation.  A climatological normal is not available for 
this particular weather element (temperature at a given 
time).  Since 0000 UTC occurs during the mid-
afternoon, we use the climatological normal MaxT of 
33 F for Homer for this date to represent the normal 
temperature for this time.  The earliest forecast (192 h) 
shows a mode that is remarkably close to the verifying 
observation of 36 F; however, the mean is colder be-
cause of the heavy (cold) tail of the distribution on the 
left side.  The mode of the next forecast (168-h) is not 
so close.  The six subsequent PDFs seem to quickly 
converge on the verifying observation.  Note that the 
first three PDFs show a visible skew toward colder 
temperatures.  In two of these cases the skew is 
oriented toward the climatological normal value.  It is 
interesting to see the progressive decrease in variance 
as lead time decreases; statistically, this is expected. 

 Figure 20 shows a similar time series of PDFs 
forecasting the 0000 UTC temperature at Juneau for the 
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same date.  The climatological normal MaxT for this 
date at Juneau is 35 F.  Obviously, the forecasts for 
Juneau do not converge as well as they did for Homer, 
especially at 24 hours.  Note that the 192-h forecast has 
a mode that is close to the climatological normal and is 
skewed toward colder temperatures.  The next two 
PDFs (168-h and 144-h) are closer to the verifying 
observation, but are skewed in the direction of 
climatology.  The rest of the PDFs show decreasing var-
iance as lead time decreases, but the 24-h mean and 
mode forecast was in error by about 8 F. 

 Visual examination of the PDFs for these two cases 
show that probability distributions created with 
EKDMOS exhibit characteristics that are consistent with 
their respective lead times, climatologies, and meteoro-
logical scenarios.   

13.  GRIDDED FORECASTS 

 The forecasts presented above have all been valid 
for stations.  Both the private and public sectors of the 
weather enterprise have seen a growing demand for 
digital forecasts in gridded form.  (See Glahn and Ruth 
2003.)  To support this demand, we have produced 
analyses of our station-based EKDMOS using the 
Gridded MOS approach (Glahn et al. 2008).  On 03 
January 2008 there was a potential freezing event over 
northern Florida.   Events such as this have a major 
economic impact on Florida.  The additional information 
contained in probabilistic forecasts can help users make 
better-informed decisions. 

 Figure 21 contains a series of gridded, probabilistic 
EKDMOS forecasts of MinT for Florida, all valid on 
03 January 2008.  Figure 21j shows the verifying analy-
sis.  The analyses in Figure 21d, 21e, and 21f show the 
median of the EKDMOS forecasts (MinT50).  Figures 
21a, 21b, and 21c show the cold tail (MinT50-MinT10), 
and Figure 21g, 21h, and 21i show the warm tail 
(MinT90-MinT50).   Lead times decrease from top to 
bottom in this figure and are valid for Day 7 (21a, 21d, 
21g), Day 5 (21b, 21e, 21h), and Day 2 (21c, 21f, 21i).  
When comparing forecasts of Day 7 though Day 2, one 
can see that the overall spread decreases and the 
overall median temperatures decrease as well.  On Day 
7 the warm tail has higher values indicating there is a 
higher probability of the temperatures being warmer 
than the median values.  This can be interpreted as a 
skew toward climatology which is not unusual at these 
time projections.  On Day 5 the skew is much less but 
gives slight evidence of pointing toward the cold side.  
The Day 2 forecast shows a skew toward colder 
temperatures.  By comparing 21f and 21j one can see 
that the Day 2 MinT50 EKDMOS forecast was too warm.  
By comparing 21c and 21j, however, one can see that 
the forecast skew was “pointing” in the correct direction. 

14.  CONCLUSIONS AND SUMMARY 
 
 Raw ensembles have proven to be notoriously un-
derdispersed.  A method has been developed to post-

process ensemble data that yields forecasts that have 
very good bias characteristics for weather elements that 
have a quasi-normal distribution. The method was de-
veloped on two cool seasons of temperature data for 
1650 stations and tested on one season.  Even the most 
basic regression application (the Ctl-Ctl-N) shows dra-
matic improvement in bias and CRPS (see Fig. 4). 

 The full EKDMOS method encompasses three 
significant elements: 

 (1) screening multiple regression applied to mean 
predictions of the ensembles,  

 (2) application of the equations to individual ensem-
ble members and combining the results with the 
Kernel Density fitting in which a Gausian kernel 
with a standard deviation that is produced by the 
regression is used, and  

 (3) a spread adjustment based on the spread of the 
ensemble members. 

This technique seems to be quite robust, as the 
method was developed on temperature data and then 
tested without change on independent data for dew 
point, maximum temperature, and minimum tempera-
ture.  It also surmounted the several changes in the 
model, its running and archival resolutions, and initial 
conditions made over the course of the 3-year period. 

These results have been presented in terms of PIT 
histograms, a square bias measure, SB, and a cumula-
tive reliability measure, CRD, that indicate quite good 
dispersion; the accuracy is judged by the Cumulative 
Ranked Probability Score (CRPS). 

Points on the CDF have been mapped to the NDFD 
grid, and we intend to place enough of these thresholds 
into the National Digital Guidance Database (NDGD), an 
adjunct to the NDFD, so that users can reconstruct the 
CDFs at individual points of their choice.  This will ena-
ble users to take advantage of the powerful ensemble/ 
postprocessing system to make better decisions than 
they can make with raw, underdispersed ensembles.  
This will respond directly to the NRC report (NRC 2006) 
subtitled “Characterizing and Communicating Uncertain-
ty for Better Decisions Using Weather and Climate Fore-
casts,” and the AMS Statement “Enhancing Weather 
Information with Probability Forecasts” (AMS 2002). 

15.  FUTURE WORK 
 

The results presented here are based on the 
0000 UTC forecast cycle of the GEFS and the so called 
“cool season.”  Similar results can be expected for the 
warm season and 0600, 1200, and 1800 UTC GEFS 
forecast cycles, but the work must be done and the 
results tested.  We have limited ourselves to 11 ensem-
ble members because that was the number available 
during the development period.  One might study the im-
pact of developing and implementing EKDMOS gui-
dance on a variable number of ensemble members.  We 
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did not present the results here, but we noted a de-
crease in skill of the single-valued forecasts past 180-h 
when the spatial resolution of the archived model data 
decreased.  This raises the question of how to balance 
the number of ensemble members against their spatial 
and temporal resolution. 

Early studies with quantitative precipitation fore-
casts and wind forecasts suggest that these highly non-
normal, quasi-continuous weather elements will present 
a number of challenges, but they will not be insur-
mountable. 
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TABLE 1. Commonly Used Predictors 

 
 
Element     Predictors 
 
 
Temperature, Dew Point    2-m surface temperature, 2-m surface dew point, geoclimatic predictors, 

mean relative humidity (layer), low- and mid-level lapse rates, thickness 
fields 

 
Maximum Temperature   2-m surface temperature at 6h & 12h intervals, geoclimatic predictors, 

850-mb relative humidity at 12h intervals, 850-mb u- & v-components of 
wind at 12h intervals, 850-mb equivalent potential temperature at 12h 
intervals 

 
Minimum Temperature   2-m temperature at 6h & 12h intervals, geoclimatic predictors,  

850-mb relative humidity at 6h intervals, 2-m dew point temperature at 
6h intervals, 850-mb equivalent potential temperature at 12h intervals 

 
 
TABLE 1. Predictors many times selected by the screening procedure for the development of equations. 
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Figure 1.  An example of a Probability Density Function (PDF), Cumulative Distribution Function (CDF), and a 
Quantile Function.  Temperatures represented on the x-axes of the PDFs and CDFs and the y-axis of the Quantile 
plots are in degrees Fahreneit 
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Figure 2.  Examples of Quantile Plots.  (a) displays how to calculate the probability of the temperature being at or 
below freezing.  (b) displays how to compute the 90% credible interval.  (c) displays how to calculate the 50% 
credible interval.  (d) displays how to compute the cold and warm tails.
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Figure 3.  PIT histograms and CRDs for the raw ensembles and operational ensemble MOS at 48-h, 120-h and 168-h 
projections for two cool seasons covering the dependent sample. 
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Figure 4.  Plots of Square Bias in Relative Frequency (a) and Continuous Ranked Probability Score (b) for the Raw 
Ensembles, Operational Ensemble MOS, and the Ctl-Ctl-N Technique for the dependent sample.   
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Figure 5.  Regression equation predicting temperature based on the 2-m model temperature, plotted data, and the 50 
and 95 percent prediction intervals for Milwaukee, Wisconsin for the dependent sample. 
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Figure 6.  PIT histograms for the Ctl-Ctl-N, Mn-Mn-N, Mn-Ens-KDE, and EKDMOS techniques for the dependent 
sample. 
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Figure 7.  CRDs for the Ctl-Ctl-N, Mn-Mn-N, Mn-Ens-KDE, and EKDMOS techniques for the dependent sample. 
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Figure 8.  Plots of SB in RF (a) and CRPS (b) for the Ctl-Ctl-N, Mn-Mn-N, Mn-Ens-KDE, and EKDMOS techniques for 
the dependent sample. 



 

 21

 
Figure 9.  Example of EKDMOS spread adjustment. The dispersion is adjusted by changing the total width of the 
(combined) distribution by a factor of sf that is a function of the width of the gray area. 
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Figure 10.  EKDMOS PIT histograms and CRDs for both dependent and independent samples.   
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Figure 11.  Plots of SB in RF (a) and CRPS (b) for EKDMOS for both dependent and independent samples. 
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Figure 12.  PIT histogram for EKDMOS dew point, MinT, and Max T for the independent sample 
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Figure 13.  CRDs for EKDMOS dew point, MinT, and Max T for the independent sample.  
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Figure 14.  Plots of SB in RF for EKDMOS dew point, MinT, and Max T for the independent sample.  Note that the 
projection scales are different for dew point than for MinT and MaxT. 
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Figure 15.  Plots of CRPS for EKDMOS dew point, MinT, and Max T for the independent sample.  Note that the 
projection scales are different for dew point than for MinT and MaxT. 
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Figure 16.  The Daily Weather Map for 1200 UTC 14 January 2007 (a).  Locations of Buffalo, NY (KBUF), Boston, MA 
(KBOS), and Atlantic City, NJ (KACY) are displayed on the lower image (b). 
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Figure 17.  Probability Density Functions for Boston, MA (KBOS), Buffalo, NY (KBUF), and Atlantic City, NJ (KACY).  
These forecasts verify at 1200 UTC on 14 January 2007. 
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Figure 18.  Surface Analysis for North America for 0000 UTC on 28 November 2006 (a).  Locations of Homer, AK 
(PAHO) and Juneau, AK (PAJN) are displayed on the lower image (b).
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Figure 19.  PDFs for Homer, AK (PAHO).  All of the PDFs above verify at 0000 UTC on 28 November 200611.  The 
temperature observed at this time was 36 degrees Fahrenheit, as indicated by the vertical black line above. 
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Figure 20.  PDFs for Juneau, AK (PAJN).  All of the PDFs above verify at 0000 UTC on 28 November 2006.  The 
temperature observed at this time was 15 degrees Fahrenheit, as indicated by the vertical black line above.  The 
positions of the 11 ensemble members used to create the 192-h forecast are the red vertical lines shown. 
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Figure 21. Forecast Median Minimum Temperatures for Florida on 03 January 2008 with Cold and Warm Tails.  The 
top row shows the Day 7 forecast (center) with the width of the cool tail (left) and warm tail (right).  The second and 
third rows show the forecasts for Day 5 and Day 2, respectively.  The verifying minimum temperature is shown on the 
bottom plot (j). 
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