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Abstract

A Mesocyclone Detection Algorithm (MDA) and a near-storm environment (NSE) algorithm have
been developed at the National Severe Storms Laboratory. The MDA analyzes azimuthal shear in
Doppler velocity data in 3 dimensions to identify storm-scale circulations. Sometimes, though not al-
ways, these circulations are precursors to tornadoes. Marzban and Stumpf (1996) developed a neural
network based on the MDA parameters to identify which of the circulations would be tornadic using a
small set of data cases. That work was extended to cover 43 storm days in Marzban (2000) using a
more robust methodology.

In this paper, we further extend the work to use 83 storm days and introduce some variations that
improve neural network performance over that achieved by Stumpf and Marzban (2002). We also eval-
uate whether the incorporation of near-storm evironment (NSE) data from those days can improve the
predictive capability of the neural network.

On an independent test set of 27 storm days, we achieve a Heidke Skill Score (HSS) of 0.41 using
just the MDA parameters and a HSS of 0.45 using a combination of MDA and NSE parameters. The
Critical Success Index (CSI) for the MDA-only neural network is 0.29, while the CSI for the neural network
with both MDA and NSE parameters is 0.32.

1. Introduction

A classification neural network can be thought of as a non-linear function that maps real-valued input variables to
a number varying between 0 and 1. The process of “training” a network is the process of finding the optimal non-
linear function of a given form that provides values closest to the target values (0 and 1) for a set of inputs called
the training set. In neural network training, finding global optima is usually not necessary; a sufficiently deep local
minimum often suffices (Bishop 1995).

For a three-layer perceptron network, the most commonly used form of neural network, the mapping function is:

f(x1, ..., xn) = g(Σjwjh(Σiwijxi)) (1)
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where x1, x2...xn are the inputs to the network and x0 is a bias term that will be optimized in the training process
along with the weights wj and wij . The function g is called the output node activation function and the function h is
called the hidden node activation function.

Neural networks have found wide applicability in meteorology, from rainfall predicition (Venkatesan et al. 1997)
to tornado diagnosis (Marzban and Stumpf 1996) and quality-control (Lakshmanan et al. 2003).

The National Severe Storms Laboratory (NSSL) Mesocyclone Detection Algorithm (MDA) (Stumpf et al. 1998)
is designed to detect a wide variety of circulations of varying size and strength by analyzing the radial velocity data
from a Doppler weather radar. The near-storm environment (NSE) algorithm uses analysis grids from the Rapid
Update Cycle (RUC) model that is produced hourly to derive features such as the 0 - 3km storm relative helicity and
surface-based CAPE. A set of 245 attributes was considered in this study.

1a. Scalar Performance Measures

The measures reported in this paper are the probability of detection (POD), False Alarm Ratio (FAR), Critical Suc-
cess Index (CSI) (Donaldson et al. 1975) and the Heidke Skill Score (HSS) (Heidke 1926). All these are computed
on the confusion table:

Identified as
non-tornadic tornadic

Non-tornadic null fa
Tornadic miss hit

(2)

where hit and null are tornadic and non-tornadic mesocyclones respectively that were correctly identified by the
neural network. fa are mesocyclones classified by the neural network (NN) as being tornadic, but verified as being
non-tornadic, while miss are tornadic mesocyclones mis-classified by the neural network as being non-tornadic.
The four measures of skill are:

POD = hit
hit+miss

FAR = fa
hit+fa

CSI = hit
hit+miss+fa

HSS = 2∗(null∗hit−miss∗fa)
(fa+hit)∗(fa+null)+(null+miss)∗(miss+hit)

(3)

where POD is the probability of detection and FAR the false alarm ratio. The Critical Success Index, CSI (Donald-
son et al. 1975), doesn’t take into account non-tornadic mesocyclones that are correctly classified, and is therefore
a very conservative estimate of skill. The Heidke Skill Score, HSS (Heidke 1926), accounts for the relative a-
priori distribution of tornadic and non-tornadic mesocyclones. Measures commonly used in pattern recognition or
data mining (such as the classification rate) tend to exaggerate skill in rare-event situtations and are therefore not
reported here.

1b. ROC curves

In the case of neural network training, where the outputs are actually real-valued numbers in the range 0 to 1, it is
necessary to threshold that output before computing a confusion table. There is value, however, in the probablistic
output of the neural network itself. So, the complete performance at all thresholds is shown using a receiver
operating characteristic (ROC) plot (Masters 1993). See Figure 3 for an example of a ROC plot.

Classifiers with curves above the diagonal shown in the plots can be considered skilled. The closer a classifier is
squashed to the left and top boundaries of the graph (i.e. the larger the area between the curve and the diagonal),
the better it is. In the ROC plots in this paper, three different types of curves are shown. The curves labeled
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0,1,2, etc. show performance of the network on different slices of the training data set. The closer together these
curves are, the less the variability of the network’s performance when presented with different data. The curves
labeled “train” show the performance of the network on the entire training data set. The curves labeled “test” show
the performance of the network on an independent set of testing data. On each ROC curve, the performance at
three different thresholds are shown as a,b,c. The actual values of these thresholds are not relevant, but the more
clustered these points are, the better the generalization of the network when subjected to warning thresholds.

2. MDA parameters neural network

We used a fully feedforward resilient backpropagation neural network (RPROP, Riedmiller and Braun (1993)) with
one hidden layer. The hidden node activation function was the tanh function, while the output node activiation
function was the logistic function 1/(1+ exp(−x)). The error function that was minimized was a weighted sum of the
cross-entropy (which Bishop (1995) suggests is the best measure of error in binary classification problems) and the
squared sum of all the weights in the network:

E = Ee + λ(Σw2
ij + Σw2

j ) (4)

The cross-entropy error Ee is of the form suggested by Bishop (1995) and is defined as:

Ee = −
N∑

n=1

(tnlnyn + (1− tn)ln(1− yn)) (5)

where tn is the target value of the nth training pattern (0 if non-tornadic and 1 if tornadic) while yn is the actual
output of the neural network for that pattern input. N is the total number of patterns.

The second, square weights, term attempts to reduce the size of the weights, and thus improves generaliza-
tion (Krogh and Hertz 1992). The relative weight, λ, of the two measures is computed every 50 epochs within a
Bayesian framework.

The NSSL MDA was run on 83 cases in which ground truth of tornadoes exists. The output contains information
from every strength and size of 3D circulation. Tornado ground truth is based on temporal and spatial proximity.
If there was a tornado reported between the beginning and ending of the volume scan, and the report was within
reasonable distance of a circulation detection (input manually), then the ground truth value was given as 2. If a
circulation detection fell within the prediction ”time window” of -20 to +6 minutes of the ground truth report duration,
then the ground truth value is given a 1. All other circulations were given as 0 to correspond to no ground truth.
Tornadoes not detected by the MDA are unscored. For more details on the MDA or the truthing process, please
see Stumpf et al. (1998). The complete list of 245 features or attributes as well as the data containing truthed
detections from the MDA are available online1.

2a. Training Method

These were the steps taken to train the network on MDA parameters:

1. Extract out MDA detections that were truthed. In this study, both detections (truth value of 2) and predictions
(truth value of 1) were treated identifically, i.e. the mesocyclone was assumed to be tornadic. Detections
that fell over a large body of water or were of MDA rank 0 were not included in the truthing process, and are
therefore not included in the training or in the statistics.

1ftp://ftp.nssl.noaa.gov/users/lakshman/mdanse.zip (69MB)
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2. The input features were all normalized so as to have zero mean and unit variance over the entire data set.

3. Thirteen of the features were identified through prior knowledge as having a univariate tendency. For example,
it is known that high rotational velocitites at lower levels are required for circulations to be tornadic. The
rotational velocity threshold below which the apriori probability of tornadoes fell below 0.05 was applied, and all
MDA detections below this threshold were pruned. This serves to greatly limit the training data set presented
to the neural network training. In the validation and independent testing, the same thresholds are applied;
quoted results include the effect of this prior processing.

4. For every parameter, a reasonable range was established and values outside this range were treated as being
missing and replaced by the data set mean.

5. The training data were divided in the ratio 7:3. The data were divided case-wise i.e. for every 3 storm days
retained for validation, 7 storm days were used for training. Where independent testing was desired, the entire
data set was divided in the ratio 46:20:34 with 34% of the cases used for independent testing.

6. The division was repeated several times (“bootstrapping”) and the neural network trained on the training data
set. In each training run, the number of hidden nodes was varied from 1 to 2+N where N is the number of input
features. At each setting of the hidden node, five training runs with different random seeds were performed.
The training run was stopped when the validation cross-entropy started to increase (“early stopping”). The
architecture (number of hidden nodes, and weights wij) at which the globally minimum cross-entropy was
obtained on a validation set was selected as the final network.

7. The “warning threshold” was chosen as the threshold at which the maximum Heidke Skill Score (Heidke 1926)
was achieved on the validation set. This threshold was applied to the output of the network when processing
the independent test set to report performance measures.

2b. Comparision with Marzban and Stumpf

The training regimen that we followed for the neural network differs somewhat from that of Marzban (2000); Stumpf
and Marzban (2002). The main points of difference are these:

1. The error criterion minimized by us is a weighted sum of the cross-entropy and the sum of the square of
weights. The earlier study did not do any weight decay. Weight decay (Krogh and Hertz 1992) can decrease
over-fitting since smaller weights tend to generalize better.

2. Our error minimization method employed resilient propragation while the the earlier study employed a scaled
conjugate gradient (SCG) followed by simulated annealing. Recent studies (Caruana et al. 2001) show that
SCG methods can over-fit where backpropagation doesn’t.

3. We divided the training data case-wise whereas the earlier study divided the training data pattern-wise,
i.e. Marzban (2000); Stumpf and Marzban (2002) put all the MDA detections into a pot and divided it ran-
domly whereas we divide up the storm days (not the detections) randomly. We believe that our method is
better because the MDA detections from a single day (consider consecutive volume scans as an extreme
example) tend to be highly correlated. Thus, if we divide pattern-wise, the validation set could be correlated in
parts with the training set leading to a spurious global minimum.

4. We pruned input features and outliers automatically using the apriori threshold, rather than manually as was
done by Stumpf and Marzban (2002). This was done essentially to save time since there are more than 200
NSE parameters whereas the earlier study had only the MDA features.
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Method POD FAR CSI HSS
Marzban, Stumpf 0.36 0.69 0.20 0.29

This paper 0.34 0.38 0.28 0.38

Table 1: Comparision of performance of networks trained using the same 29 cases and tested on the same 14
cases used by Marzban (2000). See Section 1a for an explanation of these measures.

Figure 1: A ROC curve showing the performance of the neural network on two bootstrap runs’ validation sets, on
the entire training set and on the testing data set. See Section 1b for an explanation of ROC plots.

Since we are following a different training regimen, we believed it worthwhile to test out our training regimen on
the same data set used by (Marzban 2000; Stumpf and Marzban 2002). In that data set, consisting of 43 cases,
29 cases were used for training using cross-validation and the remaining 14 cases were used as an independent
test set. The only parameters available were from the MDA – the NSE inputs were not available for all 43 cases
in (Marzban 2000; Stumpf and Marzban 2002). It is the performance of the trained network on the independent
testing set that we report in Table 1.

The receiver operating characteristic (ROC) plot that depicts performance of the neural network developed using
the techniques described in this paper is shown in Figure 1. Notice that the training, validation and test sets all show
approximately the same performance. Although Stumpf and Marzban (2002) obtained performances similar to ours
on their validation set, their test case performance was somewhat worse, due to poorer generalization. In other
words, the changes we made to the training regimen – employing weight decay, resilient propagation and achieving
a less correlated validation set – did result in a more generalized neural network.

2c. Performance on 83-case set

The 43-case data set used in the earlier studies was comprised almost entirely of supercell storms. The 83-case
set, on the other hand, has a number of isolated events and weak tornadoes. We thus needed to make sure that
a neural network was capable of generalizing across this data set. We manually divided the 83 cases into two
pieces – a 56-case training set and 27-case independent testing set. The division was done subjectively so that
both sets covered the spectrum of tornadoes shown in the entire 83-case set. Bootstrapping was done by dividing
the 56-case set and the resulting networks were evaluated on the independent 27-case set. This served to confirm
for us that the resulting networks were sufficiently general.
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Data Set POD FAR CSI HSS
27-independent 0.44 0.53 0.29 0.41
Best Validation 0.42 0.51 0.29 0.40

Table 2: Performance of networks trained using the MDA parameters. The first line is the performance of a network
trained on 56 cases tested on an independent set of 27. The second line describes the performance of the final
network, trained using all 83 cases and chosen amongst all the bootstrapping runs by having the best validation
cross-entropy.

Figure 2: ROC curve showing the performance of a network trained with 56 cases and tested on an independent
set of 27.

At this point, the same training regimen was used to bootstrap the entire 83-case set. This network is what is
used operationally. It should be noted, however, that the ROC curve for this final network does not have any truly
independent testing cases – the best that can be shown is the variability of the network on different slices of the
83-case set. The various performance measures are shown in Table 2 and Figures 2 and 3.

3. MDA + NSE neural network

The statistics of the data set change dramatically when NSE parameters are added as inputs to the neural network.
Intuitively, there are two main reasons for this:

1. The number of inputs is about ten times more. Because the number of weights increases as a square of the
number of inputs in a single hidden layer neural network, we would actually have 100 times as many free
variables in the network training. Thus, a data set that is more than enough for training a MDA network might
prove deficient in training a MDA+NSE network.

2. NSE parameters (much more so than MDA parameters) are highly correlated across time. Detections from
the same time period will all tend to differ only slightly in their NSE variables. Thus, the variability of the input
features is driven more by the number of data cases (83) than by the number of detections (approximately
23,000).
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Figure 3: ROC curve showing the performance on various bootstrapped sets of a network trained with all 83 cases.

Thus, we decided to not use all the NSE parameters, but only a selected few. This was our strategy in selecting
the parameters:

1. Choose based on meteorological understanding which NSE parameters were likely to have some effect on
the tornado probability. This initial selection reduced the number of attributes considered from 245 to 76 (See
Appendix for this list).

2. The Pearson’s correlation coefficient was computed on each pair of features and in pairs whose correlation
coefficient was greater than 0.8, one of the features was dropped. This 0.8 threshold was chosen arbitarily.

3. All the features were considered one-by-one as univariate predictors i.e. the ability to predict based on just
this variable whether the detection was tornadic or not. The top f (fraction) of the features was chosen as
input to the network training.

To choose the ideal value of f , we again resorted to the validation set. We trained different networks using
values of f ranging from 0.1 (only the top 10% of univariate predictors) to the top 1.0 (all the NSE features). Then,
we chose the value f that yielded the minimum over-training based on the validation set. In Figure 4, the variation
of the best cross-entropy per pattern on the training and validation sets as the fraction f is varied is shown. In
general, the trend is for lower errors on both the training and validation sets as we increase the number of features.
However, lower absolute errors does not necessary mean a better generalization capability. The difference between
the training and validation error is one measure of over-fitting, and the variation of this difference with f is shown in
Figure 5. Here, the trend is for the generalization error to decrease and reach a minimum at f = 0.3 and then to
increase after that.

A value of f = 0.3 was thus chosen empiricially, and the top 30% of features based on their univariate predictive
capability were chosen as inputs to the MDA+NSE training process. It should be noted (See Table 3 and Figure 4)
that the highest Heidke Skill Score and the lowest entropy are both obtained at f = 0.9. Thus, we are sacrificing
performance for generalization by using just 30% of the inputs.

The various performance measures are shown in Tables 4 and 5 and Figures 6 and 7.
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Figure 4: Variation of the neural network training and validation errors as the number of input features is increased.
The bootstrapping run with the best validation error is shown.

Figure 5: Difference between training and validation errors as the number of input features is increased. The boot-
strapping run with the best validation error is shown. We chose to use f = 0.3 as it provides the best generalization
performance.
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Fraction POD FAR CSI HSS
0.1 0.45 0.58 0.28 0.37
0.2 0.45 0.59 0.27 0.37
0.3 0.51 0.61 0.28 0.37
0.4 0.51 0.50 0.34 0.45
0.5 0.50 0.41 0.37 0.50
0.6 0.54 0.53 0.34 0.45
0.7 0.34 0.38 0.28 0.40
0.8 0.49 0.46 0.35 0.47
0.9 0.58 0.48 0.38 0.50
1.0 0.50 0.49 0.34 0.46

Table 3: Variation of the skill scores computed on the best validation set with different pruning fractions f . The
neural networks were trained on 56 cases using a fraction f of the MDA+NSE parameters. Note that by choosing
a fraction f = 0.3, we are not choosing the best performing network (which would be at f = 0.9), but the best
generalizing network.

Inputs POD FAR CSI HSS
MDA 0.44 0.53 0.29 0.41

MDA+NSE 0.47 0.49 0.32 0.45

Table 4: Comparision of the performance of network trained using just the MDA parameters vs a network trained on
both MDA+NSE parameters. The networks were trained on 56 cases and tested on an independent set of 27.

Inputs POD FAR CSI HSS
MDA 0.42 0.51 0.29 0.40

MDA+NSE 0.44 0.52 0.30 0.41

Table 5: Comparision of the performance of network trained using just the MDA parameters vs a network trained on
both MDA+NSE parameters. The networks were trained on all 83 cases available. The skill scores reported are on
the best validation set.

Figure 6: ROC curve showing the performance of a network trained with 56 cases and tested on an independent
set of 27 using 30% of the best MDA and NSE features.
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Figure 7: ROC curve showing the performance on various bootstrapped sets of a network trained with all 83 cases
using 30% of the best MDA and NSE features.

4. Conclusions

4a. How general are the networks developed in this paper?

As all the preceding ROC plots show, the neural networks developed in this paper (both for MDA and MDA+NSE
inputs) achieve similiar Heidke skill scores on the training, validation and independent data sets. In fact, in the case
of MDA+NSE, we sacrificed higher performance on the training and validation sets in order to be confident about
the generalization capability of the networks. The low variability of the ROC plots in this paper also suggest that the
neural networks developed in this paper are robust and not over-trained.

4b. Is NSE information helpful?

As discussed in Section 3, the incorporation of NSE parameters into the training process changed the statistics of
the data set. While the dataset provided little overfitting in the case of just the MDA parameters, the neural network
training regimen would have led to over-fitting if all the NSE paramaters were used. Our choice of NSE parameters
was driven more by practical constraints (the need to have an operational neural network quickly) than by a need to
choose the optimal set of features.

Our answer to the question of whether NSE information is useful is therefore very conservative. We believe (see
Table 3 where HSS of 0.5 and CSI of 0.38 are reached) that the incorporation of NSE parameters has the potential
to dramatically improve the ability of a neural network to classify which circulations are tornadic. However, in its
current state, the neural network that we have developed does not fully realize this potential. The MDA+NSE neural
network developed in this paper is only marginally better (see Table 4) than a neural network based purely on radar
parameters.

To confirm our diagnosis, we computed the skill score on our independent 27-case test set using the two neural
networks, one trained with just 30% of input features, and the other trained with 90% of them. Recall, from Table 3,
that the 90% set produced high validation skill scores, and from Figure 5 that the 30% yielded the most general per-
formance. The skill scores on the independent test set using the two f parameters is shown in Table 6. Interestingly,
choosing f = 0.3 gave us a list of 18 features, very close to the final number of MDA parameters (16).

In this study, we reduced the number of features simply by choosing the best univariate predictors. These are
not necessarily the best features to use as inputs. In particular, there could be two NSE features that in combination
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Fraction POD FAR CSI HSS
0.3 0.47 0.49 0.32 0.45
0.9 0.55 0.80 0.17 0.21

Table 6: Comparision of the performance of neural networks trained with different fractions of NSE parameters. The
networks were trained on 56 cases and evaluated on an independent set of 27 cases. This analysis merely serves
to confirm our choice of a f threshold – it was not used in selecting the threshold.

could be a great predictor, even though each one individually is a poor predictor. Using univariate predictors allowed
us to get a handle on this problem, but is not the best possible solution. Also, we chose f empirically by observing
where the validation error was closest to the training error. As Figure 5 shows, however, this relationship is not
so clear, and this method of choosing the number of features is, at best, an educated guess. Better methods of
choosing features as inputs to a NN, by looking at capturing the variability of the data set with as few features as
possible, are currently being studied by Varahan et al (reference here ).

In the neural network (both during training and at run-time), we treat the attributes of each detection independent
of all other detections at the same time, and of the same detection at previous times. It might be possible to improve
the performance of the neural network if we can optimize the classification of a detection over time. This aspect is
being studied by Trafalis et al. (reference here ).

It is possible that studies which (a) increase the size of the dataset beyond our set of 83 or (b) find better ways
to reduce the number of features or (c) use the time history of the detections will find that neural networks that
incorporate both radar-based features and NSE inputs will achieve an improvement in tornado classification ability
on independent test data sets.
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6. Appendix

The following 76 attributes were selected from the total list of 245 parameters available as possibly having some role
in tornadogenesis and used in the NN training. The first 18 attributes are computed by the MDA while the others
are computed by the NSE algorithm. All the MDA attributes are used by the final MDA neural network. Attributes
marked with ✔ are used by the final MDA+NSE neural network.

1. Meso Range km

2. Meso base m

3. ✔ Meso depth m

4. ✔ Meso strength rank

5. Meso low-level diameter m

6. ✔ Meso low-level rotational velocity ms

7. ✔ Meso maximum rotational velocity ms

8. Meso height of maximum rotational velocity m

9. ✔ Meso low-level shear mskm

10. ✔ Meso maximum shear mskm
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11. Meso height of maximum shear m

12. Meso low-level gate-to-gate velocity difference ms

13. ✔ Meso maximum gate-to-gate velocity difference ms

14. Meso height of maximum gate-to-gate velocity difference m

15. ✔ Meso age min

16. Meso strength index MSI wghtd by avg density of intgrtd lyr

17. ✔ Meso relative depth

18. ✔ Meso low-level convergence ms

19. actual surface pressure mb

20. ✔ height of the 273 K temperature surface m agl

21. average wind speed over a specified depth ms

22. u-component of estimated storm motion vector north-relative ms

23. v-component of estimated storm motion vector north-relative ms

24. estimated 0-3 km storm relative helicity m2s2

25. surface relative humidity percent

26. surface virtual temperature Kelvin

27. downdraft CAPE dCAPE for a parcel 1 km AGL

28. dCAPE for a parcel 3 km AGL

29. dCAPE for the parcel at 0 Celsius

30. ✔ Surface CAPE for a parcel with average characteristics over the lowest X mb eg 100 mb

31. Surface CAPE except for CIN

32. Surface CAPE except for LFC

33. Surface CAPE except for EL

34. Surface CAPE except for LI

35. ✔ Surface CAPE except for EHI

36. Surface CAPE except for the average parcel

37. magnitude of the storm-relative flow for the 0-2 km agl layer kts The estimated storm motion vector is sub-
tracted from the average model wind vector of the layer
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38. same as above, except for the 4-6 km agl layer

39. same as above, except for the 9-11 km agl layer

40. Bulk Richardson Number

41. BRN shear kts2

42. Surface CAPE except for the most unstable parcel

43. temperature difference C between 700 and 500 mb

44. magnitude kts of the low-level shear vector surface to 3 km agl

45. average wind speed in the 500-300 mb layer knots

46. maximum theta-e Kelvin in the lowest 300 mb

47. mean lapse rate in the 850-500 mb layer Ckm

48. mean shear

49. deep-layer shear vector magnitude knots

50. average parcel LCL m agl See NOTE above

51. average RH percent below the average parcels LCL

52. ✔ Vorticity Generation Potential VGP using the surface-based CAPE

53. Average Mixing Ratio in 0-1 km layer gkg

54. Average Mixing Ratio in 0-3 km layer gkg

55. Average Mixing Ratio in 0-6 km layer gkg

56. estimated 0-1 km storm relative helicity m2s2

57. estimated 0-2 km storm relative helicity m2s2

58. Average Relative Humidity in 0-1 km layer

59. 0-1 km shear magnitude knots

60. 0-3 km shear magnitude knots

61. 27 most-unstable parcel

62. 55 most-unstable parcel

63. ✔ 0-18 most-unstable parcel

64. 36-55 most-unstable parcel

65. 82-100 most-unstable parcel
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66. ✔ Level of Maximum Buoyancy from most-unstable parcel m AGL

67. Maximum Buoyancy from most-unstable parcel m2s2

68. Level of Maximum Buoyancy from most-unstable parcel corresp to 0-6 km shear magnitude knots

69. 20 below Level of Maximum Buoyancy from most-unstable parcel corresp to 4-6 km storm-relative flow knots

70. 0-6km Bulk Hodograph Curvature

71. Low-Level Most-unstable-parcel LFC to Most-unstable-parcel LFC+1km Lapse Rate Ckm

72. Normalized most-unstable parcel CAPE divide by zMost-unstable parcel EL-zMost-unstable parcel LFC

73. Most-unstable parcel CAPE Most-unstable parcel CAPE from Most-unstable parcel LFC to Most-unstable
parcel LFC+3km

74. Most-unstable parcel CAPE from Most-unstable parcel LFC to Most-unstable parcel LFC+3km divided by
Most-unstable parcel CAPE age of total

75. ✔ Most-unstable parcel CAPE from sfc to 3 km AGL

76. ✔ Most-unstable parcel CAPE from sfc to 3 km AGL divided by Most-unstable parcel CAPE age of total

15


