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ABSTRACT

With the advent of real-time streaming data from various radar networks, including most Weather
Surveillance Radars-1988 Doppler and several Terminal Doppler Weather Radars, it is now possible to
combine data in real time to form 3D multiple-radar grids. Herein, a technique for taking the base radar
data (reflectivity and radial velocity) and derived products from multiple radars and combining them in real
time into a rapidly updating 3D merged grid is described. An estimate of that radar product combined from
all the different radars can be extracted from the 3D grid at any time. This is accomplished through a
formulation that accounts for the varying radar beam geometry with range, vertical gaps between radar
scans, the lack of time synchronization between radars, storm movement, varying beam resolutions between
different types of radars, beam blockage due to terrain, differing radar calibration, and inaccurate time
stamps on radar data. Techniques for merging scalar products like reflectivity, and innovative, real-time
techniques for combining velocity and velocity-derived products are demonstrated. Precomputation tech-
niques that can be utilized to perform the merger in real time and derived products that can be computed
from these three-dimensional merger grids are described.

1. Introduction

The Weather Surveillance Radar-1988 Doppler
(WSR-88D) network now covers most of the continen-
tal United States, and full-resolution base data from
nearly all the WSR-88D radars are compressed using
block encoding (Burrows and Wheeler 1994) and trans-
mitted in real time to interested users (Droegemeier et

al. 2002). This makes it possible for clients of this data
stream to consider combining the information from
multiple radars to alleviate problems arising from radar
geometry (cone of silence, beam spreading, beam
height, beam blockage, etc.). Greater accuracy in radar
measurements can be achieved by oversampling
weather signatures using more than one radar.

In addition, data from several Terminal Doppler
Weather Radars (TDWRs) are being transmitted in
real time. Because the TDWRs provide higher spatial
resolution close to urban areas, it is advantageous to
incorporate them into the merged grids as well. The
radar network resulting from the National Science
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Foundation–sponsored Center for the Collaborative
Adaptive Sensing of the Atmosphere (CASA) prom-
ises to provide data to fill out the �3 km umbrella of
the Next-Generation Weather Radar network (Brotzge
et al. 2005). Developing a real-time heterogeneous ra-
dar data combination technique is essential to the util-
ity of the CASA network.

Further, with the advent of phased-array radars with
no set volume coverage patterns and the possibility of
highly adaptive scanning strategies, a real-time, three-
dimensional, rapidly updating merger technique to
place the scanned data into a earth-relative context is
extremely important for downstream applications of
the data.

A combination of information from multiple radars
has typically been attempted in two dimensions. For
example, the National Weather Service creates a 10-km
national reflectivity mosaic (Charba and Liang 2005).
We, however, are interested in creating a 3D combined
grid because such a 3D grid would be suitable for cre-
ating severe weather algorithm products and for deter-
mining the direction individual CASA radars need to
point.

Spatial interpolation techniques used to create 3D
multiple-radar grids have been examined by Trapp and
Doswell (2000) and Askelson et al. (2000). Zhang et al.
(2005) consider spatial interpolation techniques from
the point of retaining, as much as possible, the under-
lying storm structures evident in the single-radar data.
Specifically, they show that a technique with the fol-
lowing characteristics suffices to create spatially smooth
multiradar 3D mosaics: (a) nearest-neighbor mapping
in range and azimuth, (b) linear vertical or bilinear ver-
tical–horizontal interpolation, and (c) weighting indi-
vidual range gates’ reflectivity values with an exponen-
tial function of distance. In this paper, we build upon
those results by describing the following:

1) how to combine the data using “virtual volumes”—
a rapidly updating grid such that the merged grid
has an (theoretically) infinitesimal temporal resolu-
tion;

2) how to account for time asynchronicity between ra-
dars;

3) a technique of precomputations in order to keep the
latency down to a fraction of a second;

4) extracting subdomain precomputations from larger
precomputations in order to create domains of
merged radar products on demand;

5) a real-time technique of combining not just radar
reflectivity data, but also velocity data; and

6) the derivation of multiple-radar algorithm prod-
ucts.

a. Motivation

Many radar algorithms are currently written to work
with data from a single radar. However, such algo-
rithms for everything from estimating hail sizes to esti-
mating precipitation can perform much better if data
from nearby radars and other sensors are considered.
Using data from other radars would help mitigate radar
geometry problems, achieve a much better vertical
resolution, attain much better spatial coverage, and ob-
tain data at faster time steps. Figure 1 demonstrates a
case where information on vertical structure was un-
available from the closest radar, but where the use of
data from adjacent radars filled in that information.
Using data from other sensors and numerical models
would help provide information about the near-storm
environment and temperature profiles. Considering the
numerous advantages of using all of the available data
in conjunction, and considering that technology has
evolved to the point where such data can be transmitted
and effectively used in real time, there is little reason to
consider single-radar vertical integrated liquid (VIL) or
hail diagnosis.

b. Challenges in merging radar data

One of the challenges with merging data from mul-
tiple radars is that radars within the WSR-88D network
are not synchronized. First, the clocks of the radars are
not in sync. This problem will be fixed in the next major
upgrade to the radar signal processors. A challenge
faced by algorithms that integrate data from multiple
radars is that the radar scanning strategies are not the
same. Thus, a radar in Nebraska might be in precipita-
tion mode, scanning 11 tilt angles every 5 min, while the
adjacent radar in Kansas might be in clear-air mode,
scanning just 5 angles every 10 min. Of course, this is
actually beneficial. If the radar volume coverage pat-
terns (VCPs) were synchronized, then we would not be
able to sample storms from multiple radars at different
heights almost simultaneously (because, in general, the
same storm will be at different distances from different
radars). Therefore, as opposed to the WSR-88D net-
work radars being synchronized, it would be beneficial
if the nonsynchronicity was actually planned, in the
form of multiradar adaptive strategies.

As a result of radar beam geometry, each range gate
from each radar contributes to the final grid value at
multiple points within a 3D dynamic grid. Because
some of the data might be 10 min old, while other data
might be only a few seconds old, a naive combination of
data will result in spatial errors. Therefore, the range
gate data from the radars need to be advected based on
a time synchronization with the resulting 3D grid. The
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FIG. 1. Using data from multiple nearby radars can mitigate the cone of silence and other radar geometry issues.
(a) A vertical slice through a full volume of data from the Dyess Air Force Base, TX (KDYX), radar on 6 Feb 2005.
Note the cone of silence; this is information unavailable to applications processing only KDYX data. (b) The lowest
elevation scan from the KDYX radar. (c) An equivalent vertical slice through the merged data from KDYX;
Frederick, OK (KFDR); Lubbock, TX (KLBB); Midland, TX (KMAF); and San Angelo, TX (KSJT). Nearby
radars have filled in the cone of silence from KDYX. (d) A horizontal slice at 3 km above mean sea level through
the merged data.

804 W E A T H E R A N D F O R E C A S T I N G VOLUME 21



data need to be moved to the position in which the
storm is anticipated to be. This adjustment is different
for each point in the 3D grid. At any one point on the
3D grid there could be multiple radar estimates from
each of the different radars.

The typical objective analysis technique used to cre-
ate multiradar mosaics has been to utilize the latest
complete volume of data from each of the radars, for
example, the method of Charba and Liang (2005). In
areas of overlap, the contributions from the separate
radars are weighted by the distance of the grid point
from the radar because beams from the closer radar
suffer less beam spreading. There are two problems
with this approach that we address. First, because the
elevation scans are repeated once every 5–6 min, the
same area of the atmosphere could be sensed as much
as 5 min apart by different radars, leading to poor spa-
tial location or smudging of the storm cells if blended
without regard for temporal differences. Figure 2 dem-
onstrates the smudging that can happen in multiradar
scans, and how accounting for storm movement can
significantly reduce such smudging. A second problem
is the reliance on completed volume scans; a periodicity
of 5 min is sufficient for estimating precipitation but is
not enough for severe weather diagnosis and warning.
For severe weather diagnosis and warning, spatially ac-

curate grids at a periodicity of at least once every 60 s
are preferred by forecasters (Adrianto et al. 2005). In
the technique described in this paper, a constantly up-
dating grid is employed to get around the reliance on
completed volume scans. Data sensed at earlier times
are advected to the time of the output grid so as to
resolve the storms better.

The rest of the paper is organized as follows. Section
2 describes the technique, starting off with a description
of “intelligent agents,” a formulation we use to address
the challenges described above. Using this technique to
merge radar reflectivity, radial velocity, and derived
products is then described in section 3. Section 4 de-
scribes extensions to the basic technique to handle
beam blockage, quality control of input radar data, time
correction, and optimizations for real-time use. Results
and future applications of this work are summarized in
section 5.

2. Intelligent agents

Our formulation of the problem of combining data
from multiple radars, in the form of intelligent agents,
provides a way of addressing the merger of both scalar
(such as reflectivity) and vector (such as velocity–wind
field) data.

FIG. 2. Maximum expected size of hail (in.; 1 in. � 2.54 cm), calculated from reflectivity at various temperature levels. The
temperature levels were obtained from the Rapid Update Cycle analysis grid. The radar reflectivity was estimated from KFDR;
Amarillo, TX (KAMA): KLBB; and Dallas/Fort Worth, TX (KFWS) on 3 May 2003 (a) without advection correction, and (b) with
advection correction. When advection correction is applied, the cores of the storms sensed by the different radars line up and the
resulting merged products are less diffuse.
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Intelligent agents, sometimes called autonomous
agents, are computational systems that inhabit some
complex dynamic environment, sense and act autono-
mously in this environment, and by doing so realize a
set of goals or tasks for which they are designed (Maes
1995). Smith et al. (1994) concisely characterize intelli-
gent agents as persistent entities that are dedicated to
specific purposes—the persistence requirement differ-
entiates agents from formulas [Smith et al. (1994) use
the term “subroutine”] because formulas are not long
lived. The specific purpose characterization differenti-
ates them from more complex “multifunction” algo-
rithms.

In the context of merging radar data from multiple,
possibly heterogeneous radars, each range gate of the
radar serves as the impetus for the creation of one or
more intelligent agents. Each intelligent agent monitors
the movement of the storm at the position that it is
currently in, and finds a place in the resulting grid based
on time difference. Then, at the next time instant, the
range gate migrates to its new position in the grid. The
agents remove themselves when they expect to have
been superseded. When new storm motion estimates
are available, the agent updates itself with the new mo-
tion vector. When multiple agents all have an answer
for a given point in the 3D grid, they collaborate to
come up with a single value following strategies speci-
fied by the end user. These strategies may correspond
to typical objective-analysis weighting schemes or tech-
niques more suitable to the actual product being
merged.

It should be clear that in the absence of time correc-
tion via advection of older data, the intelligent agent
technique resolves directly to objective-analysis or mul-
tiple-Doppler techniques. Thus, the mathematical for-
mulas in this paper will be presented in those more
traditional terms.

The use of intelligent agents creates a flexible, scal-
able system that is not bogged down even by a highly
“weather active” domain (e.g., a hurricane where most
radar grid points have significant power returns). This
technique of using an intelligent agent for each range
gate with data from every radar in a given domain was
proven to be robust and scalable even during Hurri-
canes Frances and Ivan in Florida (September 2004).
The intelligent agents (about 1.3 million of them at one
time) all collaborated flawlessly to create the high-
resolution mosaic of data, shown in Fig. 3, of Hurricane
Ivan from six different radars in Florida. Since the hur-
ricane is over water and quite far from the coastline, no
individual radar could have captured as much of the
hurricane as the merged data have.

a. Agent model

Each range gate of the radar with a valid value serves
as the impetus to the creation of one or more intelligent
agents. The radar-pointing azimuths, often termed
“rays” or “radials,” are considered objects within a ra-
dar volume that is constantly updating, and possibly
with no semblance of regularity. Not relying on the
regularity of radials is necessary to be able to combine
data from phased-array radars (McNellis et al. 2005)
and adaptive scanning strategies (Brotzge et al.
2005).

When an agent is created, it extracts some informa-
tion from the underlying radial: (a) its coordinates in
the radar-centric spherical coordinate system (range,
azimuth, and elevation angle), (b) the radial start time,
and (c) the radar the observation came from. All
this information is typically available in the radar data
regardless of the type of radar or the presence or ab-
sence of “volume coverage patterns.” The agent’s co-
ordinates in the earth-centric latitude–longitude–height
coordinate system of the resulting 3D grid have to be
computed, however. The agents obtain these values fol-
lowing the 4/3 effective earth-radius model of Doviak
and Zrnic (1993) (assuming standard beam propaga-
tion).

For a grid point in the resulting 3D grid (“voxel”) at
latitude �g, longitude �g, and height hg above mean
sea level, the range gate that fills it, under standard

FIG. 3. Image of Hurricane Ivan consisting of combined data
from six WSR-88D radars [Lake Charles, LA (KLCH); New Or-
leans/Baton Rouge (KLIX); Mobile, AL (KMOB); Tallahassee,
FL (KTLH); Tampa Bay, FL (KTBW); and Key West, FL
(KBYX)]. The images were created from the latest available
WSR-88D data every 60 s (at approximately 1 km � 1 km � 1 km
resolution).
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atmospheric conditions, is the range gate that is a
distance r from the radar [located at (�r, �r, hr) in
3D space] on a radial at an angle a from due north
and on a scan tilted e to the earth’s surface where a is
given by

a � sin�1�sin���2 � �g	 sin��g � �r	� sin�s�R	
,

�1	

where R is the radius of the earth and s is the great-
circle distance, given by (Beyer 1987)

s � R cos�1�cos���2 � �r	 cos���2 � �g	 � sin���2 � �r	 sin���2 � �g	 cos��g � �r	
. �2	

The elevation angle e is given by (Doviak and Zrnic
1993)

e � tan�1

cos�s�IR	 �
IR

IR � hg � hr

sin�s�IR	
, �3	

where I is the index of refraction, which under the same
standard atmospheric conditions may be assumed to be
4/3 (Doviak and Zrnic 1993), and the range r is given by

r � sin�s�IR	�IR � hg � hr	� cos�e	. �4	

Because the sin�1 function has a range of [��, �],
the azimuth a is mapped to the correct quadrant ([0,
2�]) by considering the signs of �g � �r and �g � �r.
The voxel at �g, �g, hg can be affected by any range gate
that includes (a, r, e).

An agent’s life cycle depends on the radar scan. If the
radar does not change its VCP, an agent can expect to
be replaced Ttot � Ti � Tlat later, where Ttot is the
expected length of the volume scan, Ti the time taken to
collect the scan that the agent belongs to, and Tlat is the
latency in arrival of the scan after it has been collected.
In practice, Tlat is estimated to be on the same order as
Ti, because otherwise, it would not be possible to keep
up with the data stream. At the end of its life cycle, the
agent destroys itself. The time of the latest input radar
data is used as the current time. If the radar VCP
changes, there will be redundant agents if the period-
icity of the VCPs decreases (because the older agents
will be around a tad longer). On the other hand, if the
periodicity lengthens, there will be a short interval of
time with no agents. Because VCPs are set up such that
periodicity decreases with the onset of weather and
lengthens when weather moves away, there is no prob-
lem as long as the technique can reliably deal with re-
dundant agents from the same radar. Redundant agents
from the same radar can be dealt with using a time-
weighting mechanism. By explicitly building in an al-
lowance for redundant agents, radars with nonstandard
scanning strategies such as a phased-array radar can
oversample certain regions temporally and sense other
regions less often.

Whenever an output 3D grid is desired, all of the

existing agents collaborate to create the 3D grid. Be-
cause heterogeneous radar networks are typically not
synchronized, the agents will have to account for time
differences. Naively combining all the data at a particu-
lar grid location in latitude–longitude–height space will
lead to older data from one radar being combined with
newer data from another radar. This will lead to prob-
lems in the initiation and decay phases of storms result-
ing in severe problems in the case of fast-moving
storms. The agents, therefore, move to where they ex-
pect to be at the time of the grid. For example, an agent
corresponding to a radar scan t seconds ago would
move to x1, y1, where

x1 � x � uxy � t
y1 � y � �xy � t, �5	

where x, y are the coordinates obtained from the raw
azimuth–range–elevation values, and uxy, xy are hori-
zontal motion vectors at x, y (scaled to the units of the
grid). Because of the difficulty of obtaining a vertical
motion estimate, the vertical motion is assumed to be
zero. The motion estimate may be obtained either from
a numerical model or from a radar-based tracking tech-
nique such as in Lakshmanan et al. (2003b). We use the
latter in the results reported in this paper.

b. Virtual volume

Whenever a new elevation scan is received from any
of the radars contributing to the 3D grid, a set of agents
is created. The elevation scan radial data are scale fil-
tered to fit the resolution of the target 3D grid. For
example, if the radial data are at 0.25-km resolution but
the 3D grid is at a 1-km resolution, a moving average of
four gates is used to yield the effective elevation scan at
the desired scale. Instead of creating an agent corre-
sponding to each range gate with valid values, we invert
the problem and create an agent for each voxel in the
3D latitude–longitude–height grid that each such range
gate impacts. The influence of a range gate from the
center of the range gate extends to half the beamwidth
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in the azimuthal direction and half the gate width in the
range direction. This is a nearest-neighbor analysis in
the azimuth and range directions. In the elevation di-
rection, the influence of this observation is given by �e,
where

�e � exp��3ln�0.005	
, with

� �
e � �i

|�i � 1 � �i|Vbi
. �6	

Here, � is the angular separation of the voxel from the
center of the beam of an elevation scan (at elevation e)
as a fraction either of the angular distance to the next
higher or lower beam or the beamwidth. The V is a
maximum operation, bi the beamwidth of the elevation
scan, and �i the elevation angle of its center. This func-
tion, shown in Fig. 4, is motivated by the fact that it is
1 at the center of the beam, goes to 0.5 at half-
beamwidth, and falls to below 0.01 at the beamwidth
(beyond which the influence of the range gate can be
disregarded). It can be seen that where the elevation
weight �e is less than 0.5, the voxel is outside the effec-
tive beamwidth of the radial. Points within the effective
beamwidth are weighted more than they would be in a
linear weighting scheme. The direction of the weighting
is neither vertical nor horizontal, but tangential to the
direction of the beam.

It should be noted that this interpolation is in the
spherical coordinate system, in a direction orthogonal
to the range–azimuth plane. Zhang et al. (2005) inter-
polate either in the vertical or in both the vertical and
horizontal directions (i.e., in the coordinate system of
the resulting 3D grid). Our technique is more efficient
computationally, but could fail in the presence of strong
vertical gradients such as bright bands, stratiform rain,

or convective anvils. Figure 5 demonstrates one case
where spherical coordinate interpolation may suffice,
but closer examination of a larger number of cases is
needed. The optimal method for interpolation might be
neither the spherical interpolation nor the vertical–
horizontal interpolation, but to interpolate in a direc-
tion normal to the gradient direction (in 3D space).

3. Combining radar data

The methodology of performing objective analysis on
radar reflectivity data is relatively clear. In section 2, we
introduced a formulation of interpolating radar data
onto a uniform grid that can address problems that
arise in being able to perform the required computa-
tions in real time. In this section, we describe the ap-
plication of the formulation described above to com-
bining radar reflectivity, radial velocity, and derived
products.

a. Combining scalar data

All of the intelligent agents that impact a particular
voxel need to collaborate to determine the value at that
voxel. In the case of scalar data, if each intelligent agent
is aware of its influence weight, this reduces to deter-
mining a weighted average. The agent can determine its
weight simply as an exponentially declining function of
its distance from the radar. However, there could be
multiple agents from the same radar that affect a voxel.
In the case of a radar like TDWR, there could be mul-
tiple scans at the same elevation angle within a volume

FIG. 4. Weighting function for interpolation between the cen-
ters of radar beams; � is the fraction of the distance to the next
higher or lower beam.

FIG. 5. Interpolation in the spherical coordinate system miti-
gates brightband effects in this stratiform event. The data are from
KDYX, KFDR, KLBB, KMAF, and KSJT on 6 Feb 2005.
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scan. In the case of voxels that do not lie within a beam-
width, there may be two agents corresponding to the
adjacent elevation scans that straddle this voxel. Also,
decaying or slowly moving storms often pile up agents
into the same voxel because of the resolution of the grid
points. Using all of these observations together, regard-
less of the reason that there are multiple agents from
the same radar, should lead to a statistically more valid
estimate.

There are two broad strategies for resolving the
problem of having multiple observations (agents) from
the same radar. One strategy is to devise a best estimate
from each radar and then combine these estimates into
an estimate for all the radars. The other is to combine
all the agents regardless of the radar from which they
come. In the case of velocity data, we use the former
technique, while in the case of scalar data, the source of
the data is ignored. However, to mitigate the problem
of multiple, repeated elevation scans, the data are
weighted both by time and distance. The influence
weight of an observation is given by

� � �eexp���t2r2��	
, �7	

where �e is the elevation angle weight [see Eq. (6)]; t is
the time difference between the time the agent was
created (when the radar observation was made) and the
time of the grid; r is the range of the range gate from
which this observation was extracted; and � is a con-
stant of 17.36 s2 km2, a number that was chosen through
experimentation. Among a range of factors that we
tried, this value seemed to provide the smoothest tran-
sitions while retaining much of the resolution of the
original data.

The weighted sum of all the observations that impact
a voxel is then assigned to that voxel in the 3D grid.
This grid is used for subsequent severe weather product
computations.

b. Combining velocity data

Unlike the methodology of combining scalar data,
the methodology of combining velocity data in real
time is not clear. Traditional multi-Doppler wind field
retrieval is computationally intractable, because of its
reliance on numerical convergence. In this paper, we
present the following three potential solutions to this
problem: (a) computing an “inverse” velocity azimuth
display (VAD); (b) performing a multi-Doppler analy-
sis, with certain approximations in order to keep it trac-
table; and (c) forgoing the wind field retrieval alto-
gether, but merging shear, a scalar field derived from
the velocity data. All three of the above techniques are
applied after dealiasing the velocity data. For both the

WSR-88D and TDWR data, we apply the operational
WSR-88D dealiasing algorithm. The intelligent agents
used for combining the velocity data are created in the
same manner as in the case of combining scalar data,
but their collaborative technique is not an objective
analysis one.

The multi-Doppler technique is based on the over-
determined dual-Doppler technique of Kessinger et al.
(1987). The terminal velocity was estimated from the
equivalent radar reflectivity factor (Foote and duToit
1969). We initially attempted a full 3D version of the
multi-Doppler technique, because severe storms do
contain regions of strong vertical motion, and it would
be advantageous to estimate the full 3D wind field.
Unfortunately, test results for the full 3D technique
were unsatisfactory. The vertical velocities in that tech-
nique, computed via the mass continuity equation,
turned out to be numerically unstable and propagated
errors into the horizontal wind fields. Instead of aban-
doning the process entirely, we decided to try a simpli-
fied version of the technique, which assumes that w �
0. Despite the fact that this assumption of w � 0 will not
be valid for some regions of severe storms, initial test
results for this 2D version of the technique were prom-
ising (Witt et al. 2005). Test results for the 2D version
of the technique on two severe weather cases showed
very good agreement between the calculated horizontal
wind field and the corresponding radial velocity data.
The 2D wind field also closely matched what concep-
tual models of the airflow in severe storms would sug-
gest.

An example of merging reflectivity and velocity data
from two heterogeneous radars—a WSR-88D at Okla-
homa City/Twin Lakes, Oklahoma (KTLX), and the
Oklahoma City, Oklahoma (OKC), TDWR—is shown
in Fig. 6. A single horizontal level, at 1.5 km above
mean sea level, is shown for the merged products. It
should be noted that the reflectivity images from the
two radars, KTLX and OKC, are different because the
KTLX scan is 5 min older than the OKC one and the
storm has moved in the time interval. The merged radar
grid does have the storm in the right location at the
reference time. Note also that the wind field retrieval
has correctly identified the rotation signature.

Because the vertical motion computed from an over-
determined dual-Doppler technique is not useful, we
sought to examine if a more direct way of computing
2D horizontal wind fields from the radar data was fea-
sible. The VAD technique may be used to estimate the
U and V wind components from the radial velocity ob-
servations using a discrete Fourier transform (Lher-
mitte and Atlas 1961; Browning and Wexler 1968;
Rabin and Zrnic 1980). The VAD technique uses a
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least squares approximation to calculate the first har-
monic from the radial velocity observations at different
azimuths as observed from the radar location. The in-
verse VAD technique similarly uses a least squares so-
lution to determine the 2D wind components at a point
in space from the radial velocity observations from dif-
ferent azimuths (i.e., as observed from different ra-
dars).

The radial velocity observed from the ith radar i is
dependent on the wind components uo and o and the
observing angles �i of the radars,

Vn�1 � Pn�2�uo�o
T, �8	

where

Vn�1 � ��1, �2, �3, . . . , �n
T �9	

and Pn�2 is given by

�
sin�1 cos�1

sin�2 cos�2

· · · · · ·

sin�n cos�n

� . �10	

If one has the radial velocity observations and the
azimuth of the observations, a least squares approxima-
tion of the wind components may be estimated using a
least squares formulation as

�uo�o
T � �Pn�2
T Pn�2	�1�Pn�2

T Vn�1	. �11	

FIG. 6. A multi-Doppler wind field retrieval is shown superim-
posed on data from two component radars: KTLX, which is a
WSR-88D, and OKC, which is a TDWR. (a) Reflectivity from
OKC on 8 May 2003 at 2235 UTC, (b) velocity from OKC, and (c)
reflectivity from KTLX. The data from KTLX are from a time 4
min earlier than that of the OKC radar. (d) Velocity from KTLX
and (e) merged reflectivity and wind field at 1.5 km above mean
sea level. The range rings from the radars are 5 km apart.
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The inverse VAD technique is viable as long as there
are some radial velocity observations from nearly or-
thogonal angles.

In Fig. 7, we demonstrate the technique on a simu-
lation of three CASA radars. The radial velocity data
were created from a network of simulated radars ob-
serving the numerical simulation (Biggerstaff and May
2005) of a tornadic storm. The inverse-VAD wind field
technique was used to retrieve the 2D wind field from
the Doppler velocity corresponding to the three simu-
lated radars. The circulation signature is clearly identi-
fiable in the wind vector plot and correlates with the
location of the shear signature in the radial velocity
data.

While it is useful to be able to perform multi-Doppler
velocity analysis or inverse-VAD analysis in real time
to retrieve wind fields, the applicability of such a pro-
cessing is limited to radars that are somewhat proxi-
mate to each other, and situated such that the radars’
viewing angles are nearly orthogonal to each other.

If we were to consider the WSR-88D network alone,
such situations are rare and made more so by the fact
that unlike reflectivity data where the surveillance
scans go out to 460 km, velocity data go out only to
about 230 km. Thus, there are few places where such
analysis may be performed. In this paper, we suggested
the use of TDWR radars in addition to the WSR-88D
network to increase areas of overlap and showed that
the results were promising, at least for horizontal wind
vectors. However, the combination of data from radars
of different wavelengths requires further study. We
demonstrated the merging of data from an S-band ra-
dar and a C-band radar in this paper, but in that par-
ticular instance there was no noticeable attenuation in
the C-band data. Besides, even in the presence of at-
tenuation in reflectivity, velocity data might still be us-
able. As CASA radars (where there will be consider-
able overlap between the radars in the network) are
deployed more widely, the real-time multi-Doppler
analysis methods described here will become more
practical.

Because of the limitations of merging velocity data to
retrieve wind fields, many researchers (e.g., Liou 2002)
have examined the use of single-Doppler velocity re-
trieval methods. It is possible that a merger of single-
radar-retrieved wind fields may prove beneficial. It is
also likely that applying single-Doppler velocity re-
trieval methods to data from a spatially distributed set
of radars might yield robust estimates of wind fields.
We have limited ourselves, in this paper, to describing
multiradar retrievals of wind fields that can be per-
formed in real time using well-understood techniques.

Traditional methods of calculating vorticity and di-

vergence from Doppler radial velocity data can yield
unreliable results. We use a two-dimensional, local, lin-
ear least squares (LLSD) method to minimize the large
variances in rotational and divergent shear calculations
(Smith and Elmore 2004). Besides creating greater con-
fidence in the value of the intensity of meteorological
features that are sampled, the LLSD method for calcu-
lating shear values has several other advantages. The
LLSD removes many of the radar dependencies in-
volved in the detection of rotation and radial diver-
gence (or radial convergence) signatures. Thus, the azi-
muthal shear that results from the LLSD is a scalar
quantity that can be combined using the same tech-
nique as is used for radar reflectivity as shown in Fig. 8.

c. Derived products

In addition to merging reflectivity and velocity data
from individual radars into a multiradar grid, it is pos-
sible to apply the same method of merging reflectivity
data to any scalar field derived from the radar moment
data. When doing so, it is essential to justify the reason
for combining derived products instead of deriving the
product from the combination of moment data since
the latter is more efficient computationally.

Shear is a scalar quantity that needs to be computed
in a radar-centric coordinate system, because it is com-
puted on Doppler velocity data taking the direction of
the radial beam into account. Therefore, it is necessary
to compute the shear on data from individual radars
and then combine them. Having computed the shear,
we can accumulate the shear values at a certain range
gate over a time interval (typically 2–6 h), and then
merge the maximum value over that time period from
individual radars. The strategy of blending such a maxi-
mum value from multiple radars is to take the value
whose magnitude (disregarding the sign) is maximum.
Such a “rotation track field” (shown in Fig. 9) is useful
for conducting poststorm damage surveys.

Once a 3D merged grid of radar reflectivity is ob-
tained, it is possible to run many severe weather algo-
rithms on this grid. For example, a multiradar vertical
composite product is shown in Fig. 3. The VIL was
introduced in Greene and Clark (1972) using data from
a single radar. A multiradar VIL product is shown in
Fig. 10. VIL estimated from storm cells identified from
multiple radars is a more robust estimate than VIL es-
timated using just one radar (Stumpf et al. 2004). Figure
11 demonstrates that the multiradar VIL is longer lived
and more robust.

Three-dimensional grids of reflectivity are created at
constant altitudes above mean sea level. By integrating
numerical model data, it is possible to obtain an esti-
mate of isotherm heights. Thus, it is possible to com-
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FIG. 7. An inverse-VAD wind field retrieval is shown superimposed on data from the component radars. (left) Reflectivity and (right)
velocity are from simulated CASA radars (top) east, (middle) west, and (bottom) north of the area of interest. The range rings are at
5-km intervals. Note that the wind field retrieved using the inverse-VAD technique has captured the thunderstorm’s rotation.
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FIG. 8. (a) Vertical slice through the azimuth shear computed from a volume of data
from the KLBB radar on 3 May 2003. (b) Azimuthal shear computed from a single
elevation scan. (c) Vertical slice through the multiradar merged azimuthal shear from
KFDR, KAMA, KLBB, and KFWS. (d) A 6-km horizontal slice through the multiradar
data.
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pute the reflectivity value from multiple radars and in-
terpolate it to points not on a constant-altitude plane,
but on a constant-temperature level. This information,
updated every 60 s in real time, is valuable for forecast-
ing hail and lightning (Stumpf et al. 2005). The inputs
for a lightning forecasting application that makes use of
these data are shown in Fig. 12.

The technique to map reflectivity levels to constant
temperature altitudes is used to transform the tech-
nique of the hail detection algorithm (Witt et al. 1998)
from a cell-based technique to a gridded field. A quan-
tity known as the severe hail index (SHI) vertically in-
tegrates reflectivity data with height in a fashion similar
to VIL. However, the integration is weighted based on
the altitudes of several temperature levels. In a cell-
based technique, this is done using the maximum dBZ
values for the 2D cell feature detected at each elevation
scan. For a grid-based technique, the dBZ values at
each vertical level in the 3D grid are used and com-
pared with the constant temperature altitudes. From
SHI we compute the probability of severe hail and the
maximum expected hail size values, which are also plot-
ted on a grid (see Fig. 2). Having hail size estimates on
a geospatial grid allows warning forecasters to under-
stand precisely where the largest hail is falling. These
grids can also be compared across a time interval to
map the swathes of the largest hail or estimate the hail

damage by combining the hail size and duration of the
hail fall. These hail swathes can later be used to en-
hance warning verification. They can also be used to
provide 2D aerial locations of hail damage to first re-
sponders in emergency management and in the insur-
ance industry.

The 3D reflectivity grids can also used to identify and
track severe storm cells, and to trend their attributes.
This is presently done using two techniques. The first is
a method similar to that developed for the storm cell
identification and tracking algorithm that uses a simple
clustering method to extract cells of a given area and
vertical extent (Johnson et al. 1998). Another technique
is to compute the motion estimate directly from derived
products on the 3D grid following Lakshmanan et al.
(2003b). For example, either the multiradar VIL or the
multiradar reflectivity vertical composite may be used
as the input frames to the motion estimation technique.
A K-means clustering technique is used to identify
components in these fields.

Once the storms have been identified from the im-
ages, these storms are used as a template and the move-
ment that minimizes the absolute error between two
frames is computed. Typically, frames 10 or 15 min
apart are chosen. Given the motion estimates for each
of the regions in the image, the motion estimate at each
pixel is determined through interpolation. This motion

FIG. 9. A rotation track field created by merging the maximum observed shear over time
from single radars. The overlaid thin lines indicate the paths observed in a postevent damage
survey. Note that the computed path of high shear corresponds nicely with the damage
observed. Data from 3 May 1999 in the Oklahoma City area are shown.
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estimate is for the pair of frames that were used in the
comparison. We do temporal smoothing of these esti-
mates by running a Kalman filter (Kalman 1960) at
each pixel of the motion estimate. The Kalman estima-
tor is built around a constant acceleration model with
the standard Kalman update equations (Brown and
Hwang 1997). This motion estimation technique is used

as a source of uxy, xy, the anticipated movement of the
intelligent agent currently at x, y in the 3D grid [see Eq.
(5)].

4. Extensions to method

While the basic technique of creating intelligent
agents and combining them yields reasonable results,
we extended the basic technique by correcting for beam
blockage from individual radars, improving the quality
of the input data, correcting for time differences be-
tween the radars, and devising optimizations to enable
the technique to be used in real time.

a. Corrections for beam blockage

A range gate from a radar elevation scan is assumed
to not impact a voxel if it falls within a beam-blockage
umbrella because of terrain. Currently, for reasons that
will become evident in section 4c, a standard atmo-
spheric model with an effective 4/3 earth radius
(Doviak and Zrnic 1993) is assumed to determine
which radar beams will be blocked by terrain features.
A terrain digital elevation map (DEM) at the scale of
the desired grid (approximately 1 km � 1 km) was used
for the results presented here, but the technique would
apply even if higher-resolution terrain maps were used.

The assumptions for a beam being blocked very
closely follow the techniques of O’Bannon (1997) and
Fulton et al. (1998). Interested readers should consult
those papers for further information. For each point in
the DEM, the azimuth, range, and elevation angle of a
thin radar beam are computed following the standard
beam propagation assumptions and tolerances as given
by O’Bannon (1997). Any thin beam above this eleva-
tion angle passes above this terrain point unblocked.
Other beams are assumed to be blocked by this eleva-
tion point. Every radial from the radar is then consid-
ered a numerical integrand of all the thin beams that
fall within its range of azimuths and elevations. The
influence of the individual thin beams follows the
power density function of Doviak and Zrnic (1993).
Thus, a fraction of the beam that is blocked is known at
each range gate. If this fraction is greater than 0.5, the
entire range gate is assumed to be blocked; the data
from such range gates are not used to create new intel-
ligent agents. However, because of advection, it is pos-
sible that a voxel that would be beam blocked might get
a value due to the movement of an agent created from
a nonblocked range gate. Beam-blocked voxels can also
get filled in by data from other nearby radars, leading
to a more uniform spatial coverage than what is pos-
sible using just one radar. Figure 13 demonstrates the

FIG. 10. Multiradar VIL product at high spatial (approximately
1 km � 1 km) and temporal (60-s update) resolution from the
latest reflectivity data from four radars: KFDR, KAMA, KLBB,
and KFWS on 3 May 2003.

FIG. 11. The VDL computed on cells detected from data
blended from individual radars is more robust than VIL computed
on storms cells identified from a single radar. As the storm ap-
proaches the radar, the single-radar VIL drops because higher-
elevation data are unavailable. The multiradar product does not
have that problem. Image courtesy of Stumpf et al. (2004).
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filling of data from adjacent radars to yield better spa-
tial coverage when some parts of a radar domain are
beam blocked.

Similar to the beam blockage correction, it should be
possible to dynamically correct for inaccurate clocks on
individual radars and for heavy attenuation from indi-
vidual radars. Our current implementation does neither

because of our initial focus on the WSR-88D network.
The inaccurate clocks on the WSR-88D network are to
be fixed with automatic time-correction software in the
radar sites. WSR-88Ds, being S-band radars, do not
attenuate as severely as X-band radars. For C-band ra-
dars such as TDWR and X-band radars such as those
that will be used in the CASA network, an attenuation

FIG. 12. (a) Current lightning density; (b) reflectivity at a height of �10°C temperature, used as input to the lightning prediction;
(c) the 30-min lightning forecast; and (d) the actual lightning 30 min later.
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FIG. 13. (a) Vertical slice through data from the Phoenix, AZ (KIWA), radar on 14 Aug
2004. (b) Elevation scan from the KIWA radar, note the extensive beam blockage. (c) Vertical
slice through multiradar data from KIWA; Tucson, AZ (KEMX); Yuma, AZ (KYUX); Flag-
staff, AZ (KFSX); and Albuquerque, NM (KABX) covering the same domain. (d) A 5-km
horizontal slice through multiradar data. Note that the entire domain is filled in.
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correction will have to be put in place to avoid an un-
derreporting bias in the multiple-radar grids.

b. Quality control of input data

Weather radar data are subject to many contami-
nants, mainly due to nonprecipitating targets (such as
insects and wind-borne particles) and anomalous
propagation (AP) or ground clutter. If the radar data
are directly placed into the 3D merged grid, these arti-
facts lower the quality of the gridded data. Hence, the
radar velocity data need to be dealiased and the radar
reflectivity data need to be quality controlled. We used

the standard WSR-88D dealiasing algorithm to dealias
the velocity data.

In radar reflectivity data, several local texture fea-
tures and image processing steps can be used to dis-
criminate some types of contaminants (Kessinger et al.
2003). However, none of these features by themselves
can discriminate between precipitating and nonprecipi-
tating areas. A neural network is used to combine these
features into a discrimination function (Lakshmanan et
al. 2003a). Figure 14 demonstrates that the neural net-
work is able to identify, and remove, echoes due to
anomalous propagation while retaining echoes due to
precipitation.

FIG. 14. Independent test cases for the Quality Control Neural Network (QCNN). (a) A data case from KAMA with significant AP.
The range rings are 50 km apart. (b) Edited using the neural network; note that all of the AP has been removed, but the storm cells
northwest of the radar are retained. (c) A typical spring precipitation case. (d) Edited using the neural network; note that even the storm
cell almost directly overhead the radar has been retained, but biological scatter has been removed.
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No current technique using only single radar-data
(ignoring polarimetric data) can discriminate between
shallow precipitation and spatially smooth clear-air re-
turns (Lakshmanan and Valente 2004). The radar-only
techniques also have problems removing some biologi-
cal targets, chaff, and terrain-induced ground clutter far
away from the radar. In addition to the radar-only qual-
ity control above, an additional stage of multisensor
quality control is applied. This uses satellite data and
surface temperature data to remove clear-air echoes.
Figure 15 demonstrates that biological returns may be
removed by using such cloud cover information. For
more details, the reader is directed to Lakshmanan and
Valente (2004).

The radar reflectivity elevation scans are quality con-
trolled, either using the radar-only quality control tech-
nique described in Lakshmanan et al. (2003a) or using
the multisensor technique described in Lakshmanan

and Valente (2004). It is these quality-controlled reflec-
tivity data that are presented to the agent framework
for incorporation into the constantly updating grid.

c. Precomputation

The coordinate system transformation to go from
each voxel �g, �g, hg to the spherical coordinate system
(a, r, e) can be precomputed as long as we limit the
input radars to be nonmobile units (so that the radar
position does not change). If the radar follows one of a
set number of VCPs, then the elevation scan can be
determined from e. If the elevation scans are indexed to
always start at a specific azimuth and each beam con-
strained to an exact beamwidth (WSR-88D scans are
not), then a, r can also be mapped to specific locations
in the radar array. In fact, the presence of a VCP is not
required to precompute the effect of data from an el-
evation angle; all that is required is that the radar op-

FIG. 15. (a) KTLX reflectivity composite showing the effects of biological contamination. (b) The cloud cover field derived from
satellite data and surface observations. (c) The effect of the radar-only quality control neural network. (d) The effect of using both the
radar-only neural network and the cloud cover field. Note that the small cells to the northwest of the radar are unaffected, but the
biological targets to the south of the radar are removed.
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erate only at a limited number of elevation angles, per-
haps in a range of [0°, 20°] in increments of 0.1°. Then,
the voxels impacted by data from an elevation scan can
be computed beforehand and stored as part of the com-
puter’s permanent memory (i.e., on the hard drive) for
immediate recall whenever that elevation angle from
that radar is received. Intelligent agents can then be
created, with coordinates assigned to them in both co-
ordinate systems at the time of creation. If the VCPs
are known or if the radar operates only at set eleva-
tions, it is possible to precompute the elevation weight
�e. However, because of the dependence on t, a time-
delay variable, it is necessary to compute � at the time
of grid creation. Similarly, the presence of t in the ad-
vection equations necessitates that the movement of
the agents to their new positions be dynamic and not
precomputed.

These precomputations have to be performed for ev-
ery possible elevation angle from every radar that will
be used as an input to the merged 3D grid. For a grid of
approximately 800 km � 800 km and about 10 radars, a
typical regional domain, the precomputation can take
up to 8 h on a workstation with a 1.8-GHz Intel Xeon
processor, 2 GB of random access memory, and a 512-
MB cache (referred to from hereon as simply Intel
Xeon). Thus, it is necessary to decide upon a regional
domain well in advance of the storm event, or to have
enough hardware available to process a large radar do-
main reflecting the threat 6–8 h in advance.

d. Extraction of subdomains

Naturally, determining the domain of interest 6–8 h
in advance is not a trivial task. Is it possible to reuse
precomputations? Because the coordinate system of
the output 3D grid is a rectilinear system (the �g, �g, hg

are additive), we can precompute the transformation of
data from any radar in the country at every elevation
angle possible onto a domain the size of the entire con-
tinental United States (CONUS). The CONUS domain
can be created at the desired resolution. We currently
use 0.01° in latitude and longitude and 1 km in height,
approximately 1 km � 1 km � 1 km at midlatitudes.
Then, the coordinates of the range gate in a subdomain
of the CONUS domain can be computed from its co-
ordinates in the CONUS domain using the offsets of
the corners. If the northwest corner of the CONUS
domain is �c, �c, hc and that of the desired subdomain
is �s, �s, hs, then the additive correction to the �g, �g, hg

entries in the CONUS cache to yield correct subdomain
entries is

�� � ��g � �c	�res�

�� � ��c � �g	�res�, �12	

where res�, res� are the resolution of the 3D grid in the
latitudinal and longitudinal directions. The only condi-
tion is that the above operations have to yield integers,
because they will be indexes into the CONUS domain
arrays. Thus, the limitation is that subdomains have to
be defined at 0.01°/1-km increments. Computation of
the CONUS domain takes about 120 h on a dual-
processor workstation and requires 77 GB of disk
space. However, this needs to be done only once and
can be farmed out to a bank of such machines to reduce
the computation time. With this precomputed CONUS
domain, we gain the ability to quickly switch domains.
See Levit et al. (2004) for how this capability is used to
get real-time access to merged 3D radar data from any-
where in the country using a single workstation.

e. Time correction

Motion estimates obtained from the technique de-
scribed in Lakshmanan et al. (2003b) are used to cor-
rect for time differences between the sensing of the
same storms by different radars using Eq. (5). This dra-
matically improves the value of derived products com-
puted from the 3D grid because, by correcting the lo-
cations of the storms, the areas sensed by different ra-
dars line up in space and time. Figure 2 demonstrates
the significant difference between an uncorrected im-
age and a time-corrected one.

The characteristics of the motion estimation tech-
nique impact the results in the merged grid. If the mo-
tion of a few storms is underestimated, then those
storms will appear to jump whenever newer data are
obtained, as the intelligent agents correct their posi-
tions. Because the motion estimation technique of Lak-
shmanan et al. (2003b) is biased toward estimating the
movement of larger storms correctly, smaller cells and
cells with erratic movements will tend to not provide
smooth transitions. However, the transition in such
cases will typically still be less than the transition that
would have resulted if no advection correction had
been applied.

Weighting individual observations by time [in addi-
tion to distance; see Eq. (7)] can have undesirable side
effects if the radars are not calibrated identically. If one
radar is “hotter” than all the others, then in those time
frames where data from that radar are the latest avail-
able, the merged image will appear hotter. This prob-
lem affects radar data from the WSR-88D network be-
cause of large calibration differences between indi-
vidual radars (Gourley et al. 2003) and is most evident
when viewing time sequences of merged radar data.

In the absence of time weighting, however, the
merged data will be a biased estimate in areas where
the storms are exhibiting fast variations in intensity be-
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cause older data are still retained. The older data are
advected to their correct positions, but no compensa-
tion is made for potential changes in intensity because
the automated extraction of the growth/decay of the
storm was found to possess very little skill (Laksh-
manan et al. 2003b). Therefore, calibration differences
still remain evident when looking at features that mi-
grate from the domain of one radar to the domain of
another, especially when these features are accumu-
lated over time.

One solution to the problem of combining time
weighting with calibration differences between radars is
to retain time weighting but to apply calibration cor-
rections to the data from individual radars. We intend
to implement such a calibration correction in future
research.

f. Timing

The time taken to read individual elevation scans,
update the 3D grid by creating intelligent agents, and
write the current state of the 3D grid periodically de-
pends on a variety of factors. We carried out a test
where the individual elevation scans and the output
grid are both compressed (as will be the case in a net-
worked environment, to conserve bandwidth), so that
all of these timing data reflect the time taken to un-
compress while reading and compress when writing.
We carried out this test for a 650 � 700 � 18 regional
domain with convective activity in most parts of the
region and using data from three WSR-88Ds. Different
tasks scale to either the domain size or the number of
radars. These are marked along with the timing infor-
mation in Table 1. The test was carried out on the
aforementioned Intel Xeon workstation.

Table 1 can be used to determine the computing
power needed for different domain sizes and numbers
of radars. On average, we require 0.5 seconds per el-
evation scan and 2.75 seconds per million voxels. It
should be noted that merging radar data using the tech-
nique described in this paper is an “embarrassingly par-

allel” problem; that is, if multiple machines are put to
work on the problem, each machine can concentrate on
a subdomain and the output grids can be cheaply
stitched together again. The subdomains do have to
partially overlap to take into account advection effects.

Using the information in Table 1, we can estimate the
computational requirements necessary to create a 5000
� 3000 � 20 domain every 60 s in real time using in-
formation from 130 WSR-88Ds. Let us estimate that we
will receive a new elevation scan from each of the ra-
dars every 30 s (in areas having significant weather, this
will be around 20 s while in areas of little weather, the
interval approaches 120 s). Thus, we will have 260 el-
evation scans per minute to read and update, which will
take about 130 wall-clock seconds on our single work-
station. Because our 5000 � 3000 � 20 domain contains
300 million voxels, creating and writing out the grid will
take 1125 more seconds. Our single workstation, if out-
fitted with enough computer memory, will be able to
create and write 3D merger grids for this domain in
1250 s. To maintain our update interval of 60 s, we
would require about 20 such workstations. The hard-
ware requirements for several scenarios are provided in
Table 2. Levit et al. (2004) used the regional configu-
ration in their study.

5. Summary

In this paper, we have described a technique based
on an intelligent agent formulation for taking the base
radar data (reflectivity and radial velocity), and derived
products, from multiple radars and combining them in
real time into a rapidly updating 3D merged grid. We
demonstrated that the intelligent formulation accounts
for the varying radar beam geometry with range, verti-
cal gaps between radar scans, the lack of time synchro-
nization between radars, storm movement, varying
beam resolutions between different types of radars,
beam blockage due to terrain, differing radar calibra-
tion, and inaccurate time stamps on radar data.

The techniques described in this paper of merging
moment data from individual radars have been tested
in real time and on archived data cases in diverse storm
regimes. They have been tested on different types of
radars as well. For example, Fig. 3 shows the technique
operating in a hurricane event. Figure 13 shows the
technique operating on late-summer monsoon events in
an area with terrain. Figures 2, 9, and 10 illustrate the
use of this technique in convective situations, while Fig.
5 illustrates a stratiform one. One of the radars in Fig.
6 is a TDWR while the others are WSR-88Ds, while
Fig. 7 shows simulated CASA radars.

With the continuing improvements in computer pro-

TABLE 1. Timing statistics collected in real time for reading
radar data and creating 3D merged grids of reflectivity.

Aspect CPU time (s) Clock time (s) Scaling

Read radar
scan

0.012 � 0.001 0.254 � 0.023 One elevation
scan

Update grid
with scan

0.075 � 0.007 1.28 � 0.135 One elevation
scan

Create 3D
grid

0.594 � 0.127 9.179 � 2.056 8-m voxels

Write 3D
grid

1.257 � 0.268 20.68 � 4.62 8-m voxels
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cessors, operating systems, and input–output perfor-
mance, preliminary tests indicate that a 2-min CONUS
3D merger can be implemented using a single 3-GHz
64-bit processor with 8 GB of RAM. Thus, we plan to
start utilizing this technique to merge scalar fields, both
reflectivity and derived shear products, from all the
WSR-88D radars in the continental United States. We
now have the ability to ship the merged products in real
time to Advanced Weather Interactive Processing Sys-
tem (AWIPS) and National Centers for Environmental
Prediction AWIPS (N-AWIPS) workstations at
weather forecast offices and national centers. Because
these workstations will be unable to handle the data at
its highest resolution and spatial extent, we may have to
subsect the data before shipping it to operational cen-
ters. The merged products created using the technique
described in this paper are now available in real time
(online at http://wdssw.nssl.noaa.gov/).

Also note that the software implementing this tech-
nique of combining data from multiple radars is freely
available online (at http://www.wdssii.org/) for research
and academic use.
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