

1

MDL's Winter Weather Guidance

Phillip E. Shafer, OSTI / MDL David Myrick, OSTI / MDL August 13, 2015

MOS Precipitation Type

- MDL produces GFS-based and ECMWF-based MOS guidance for precipitation type:
 - Derived from METAR present weather observations.
 - ➢ All cycles of GFS and ECMWF.
 - > NAM MOS precipitation type coming soon!
 - Used to populate short-range and medium-range alphanumeric text messages (ECWMF guidance is for internal NWS use only).
- 3-category short-range product:
 - > Conditional probability of freezing, frozen, and liquid precipitation.
 - Conditional best category.
- 4-category medium-range product:
 - Conditional probability of freezing, snow, rain, and rain-snow mix.
 - Conditional best category.

MOS Precipitation Type

Sample Message

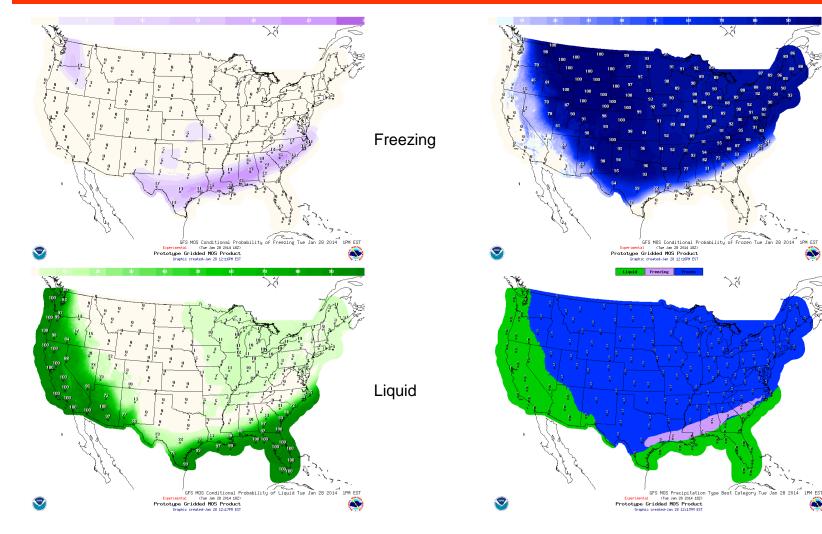
KDEN	(GFS	MO	S GL	JID/	ANCI	E	З,	/04/	/ 201	lØ	120	90 I	лтс							
DT /	MAR	4	4/M	AR	5						/M/	AR	6						/M/	٩R	7
HR	18	21	00	Ø 3	06	Ø 9	12	15	18	21	00	03	Ø6	Ø 9	12	15	18	21	00	06	12
N/X							27				53				28				51		24
TMP	48	52	51	40	35	32	30	35	47	50	48	40	38	35	32	36	45	48	45	31	27
DPT				29																	
CLD				sc																	
WDR				16																	
WSP	05	12		Ø 8		07		07		10		Ø 8		07		07		10			
P06			1		6		14		20		14		25		8		4		2	3	2
P12			_				15		_		27		_		26		_		4	_	3
006			0		0		0		0		- 0		0		0		0		0	0	0
· ·											-				-				-		
Q12						~	0				0				Ø	~			Ø	Ĩ	Ø
Q12 TØ6			/11	1/	/ 2	0,		1,	/ 2	8,	-		/ 1		-		0	2/	0 / 8	0,	
Q12 TØ6 T12	1	5,	/11	1/ 7/	/ 2 /11		0 / 1	1, 1,	/ 2 / 2		0 / 3	8	/ 1 / 4	0,	0	0	/ 0 / 1	-,	0 / 8 2/	0, / 8	0
Q12 TØ6 T12 POZ	1	5,	/11 3	1/ 7/ 2	/ 2 /11 2	7	0 / 1 8	1, 1, 3	/ 2 / 2 4	2	0 / 3 3	8, 0	/ 1 / 4 3	Ø, 3	0 / 0 4	0, 6	/ 0 / 1 3	1	0 / 8 2/ 2	0, / 8 0	0 / 0 3
Q12 T06 T12 P0Z P05	27	5, 1 16	/11 3 18	1/ 7/ 2 24	/ 2 /11 2 28	7 65	0 / 1 8 74	1, 1, 3 72	/ 2 / 2 4 31	2 20	0 / 3 3 37	8/ 0 57	/ 1 / 4 3 94	0/ 3 87	0 0 4 95	0/ 6 65	/ 0 / 1 3 41	1 18	0 8 2 2 28	0, / 8 0 50	0 / 0 3 91
Q12 TØ6 T12 POZ POS TYP	27	5, 1 16	/11 3 18	1/ 7/ 2	/ 2 /11 2 28	7 65	0 / 1 8 74 5	1, 1, 3 72	/ 2 / 2 4 31	2 20	0 / 3 3 37	8/ 0 57	/ 1 / 4 3 94	0/ 3 87	0 / 0 4 95 S	0/ 6 65	/ 0 / 1 3 41	1 18	0 8 2 2 28	0, / 8 0 50	0 / 0 91 5
Q12 TØ6 T12 POZ POS TYP SNW	27 R	5, 1 16 R	/11 3 18 R	1/ 7/ 2 24 R	/ 2 /11 2 28 R	7 65 5	0 / 1 8 74 5 0	1, 1, 3 72 5	/ 2 / 2 4 31 R	2 20 R	0 / 3 37 R	8/ 0 57 5	/ 1 / 4 3 94 S	0/ 3 87 5	0 / 0 4 95 5 0	0 6 65 5	/ 0 / 1 3 41 R	1 18 R	0 8 2) 2 28 R	0, / 8 0 50 R	0 / 0 91 5 0
Q12 TØ6 T12 POZ POS TYP SNW CIG	27	5, 1 16	/11 3 18	1/ 7/ 2 24	/ 2 /11 2 28	7 65	0 / 1 8 74 5	1, 1, 3 72	/ 2 / 2 4 31	2 20	0 / 3 3 37	8/ 0 57	/ 1 / 4 3 94	0/ 3 87	0 / 0 4 95 S	0/ 6 65	/ 0 / 1 3 41	1 18	0 8 2 2 28	0, / 8 0 50	0 / 0 91 5 0 8
Q12 TØ6 T12 POZ POS TYP SNW	27 R 8	5, 1 16 R 8	/11 3 18 R 8	1/ 7/ 2 24 R 8	/ 2 /11 28 R 8	7 65 5 8	0 / 1 8 74 5 0 8	1, 1, 3 72 5 7	/ 2 / 2 4 31 R 8	2 20 R 8	0 / 3 37 R 7	8/ 0 57 5 8	/ 1 / 4 3 94 5 8	0, 3 87 5 8	0 / 0 4 95 5 0 8	0, 6 65 5 8	/ 0 / 1 3 41 R 8	1 18 R 8	0 8 2 2 28 R 8	0, / 8 0 50 R 8	0 / 0 91 5 0
Q12 TØ6 T12 POZ POS TYP SNW CIG VIS	27 R 8 7	5, 1 16 R 8 7	/11 3 18 R 8 7	1/ 7/ 2 24 R 8 7	/ 2 /11 2 28 R 8 7	7 65 5 8 7	0 / 1 74 5 0 8 7	1, 1, 3 72 5 7 1	/ 2 / 2 4 31 R 8 7	2 20 R 8 7	0 (3 37 R 7 7	8/ 0 57 5 8 7	/ 1 / 4 94 5 8 7	0, 3 87 5 8 7	0 (0 95 5 0 8 7	0/ 65 5 8 7	/ 0 / 1 3 41 R 8 7	1 18 R 8 7	0 8 2 2 28 R 8 7	0, / 8 0 50 R 8 7	0 / 0 91 5 0 8 7

Sample Message

IAD	GF	SX M	0S @	UIDA	ICE	3/0	05/2	2013	000	90 UT	C						
FHR	24	36	48	60	72	84	96	108	120	132	144	156	168	180	192		
TUE	05	WED	06	THU	07	FRI	08	SAT	09	SUN	10	MON	11	TUE	12	CLI	emo
X/N	47	34	42	32	44	29	45	32	50	33	57	38	58	40	54	29	53
TMP	42	36	39	34	39	32	41	34	44	37	50	42	52	43	47		
DPT	23	26	28	24	29	24	25	25	29	30	34	34	38	34	28		
CLD	ov	OV	ov	ov	PC	CL	PC	CL	CL	PC	ov	OV	ov	ov	PC		
WND	5	18	20	20	16	13	22	14	8	5	8	5	10	18	14		
P12	36	99	93	36	5	0	7	5	5	7	17	30	35	31	24	24	24
P24			100		36		7		6		19		53		46		34
Q12	0	5	5	0	0	0	0	0	0	0	0	1					
Q24			5		0		0		0		0						
T12	1	1	7	2	1	0	1	1	1	1	2	1	5	4	6		
T24		1		9		2		1		1		2		6			
PZP	13	27	4	13	9	6	6	17	13	6	5	4	4	4	5		
PSN	25	4	28	16	45	64	52	32	24	16	2	3	4	4	21		
PRS	28	47	29	45	26	16	15	18	8	3	4	4	3	9	14		
TYP	RS	Z	RS	RS	5	S	5	5	RS	R	R	R	R	R	R		
SNW			4		0		0		0		0					_	

MAV

MEX

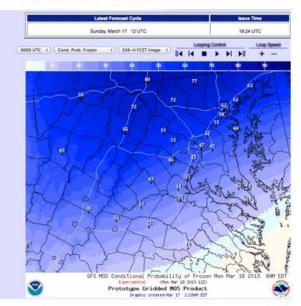

GMOS Precipitation Type

Frozen

Best

Category

GMOS Precipitation Type



67	Fol	low
- C	1 01	10.44

FINALLY A Prob of Precip Type product for local offices -"Experimental"-of course it's spring now #yearslate twitpic.com/cc86ih

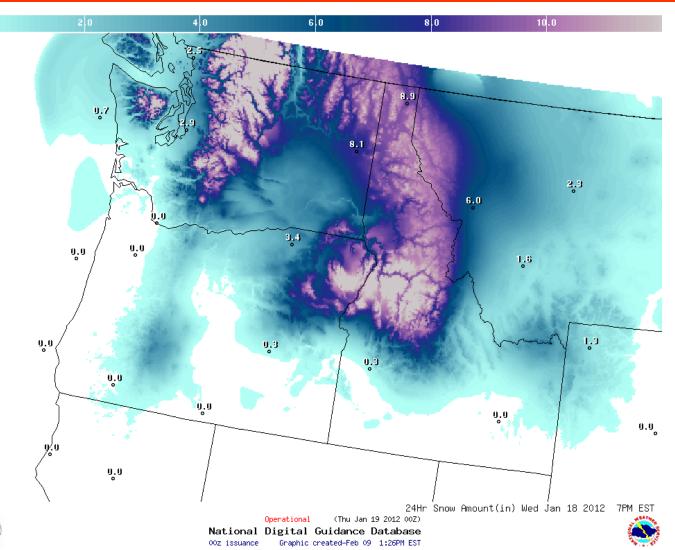
♠ Reply ♣ Retweet ★ Favorite ●●● More

By Bob Ryan @BobRyanABC7

FINALLY A Prob of Precip Type product for local offices -"Experimental"-of course it's spring now #yearslate

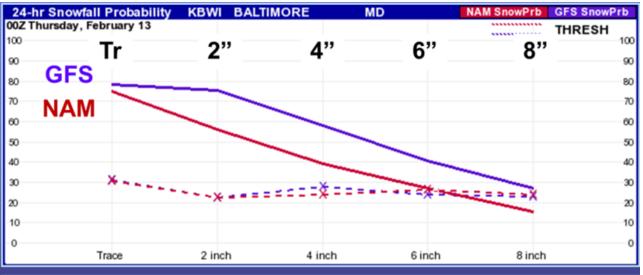
MOS Snowfall Amount

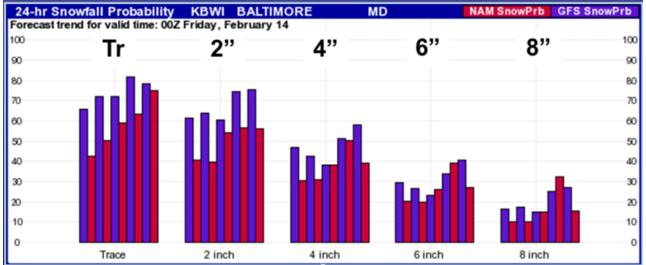
- MDL produces GFS-based and NAM-based MOS guidance for 24-h snowfall amount:
 - > Derived from daily COOP snowfall observations (NCDC).
 - > All cycles of the GFS and NAM. *ECMWF MOS snowfall coming soon!*
 - Probabilities of exceedance for various thresholds, converted to a best category to populate MAV, MEX, and MET text messages.
 - GFS-based gridded MOS guidance for 24-h snowfall amount.
- MOS snowfall categories:


>T to <2", ≥2" to <4", ≥4" to <6", ≥6" to <8", ≥8"

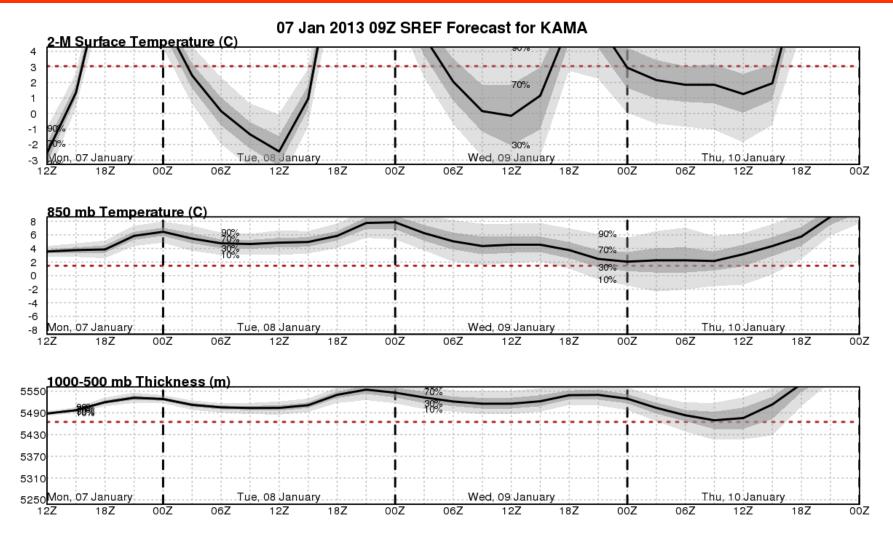
Experimental thresholds for LWX pilot project:
>T to <1", ≥1" to <2", ≥2" to <4", ≥4" to <8", ≥8 to < 12", ≥12"

GMOS Snowfall Amount



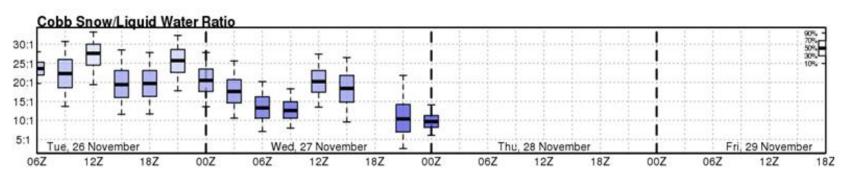

7

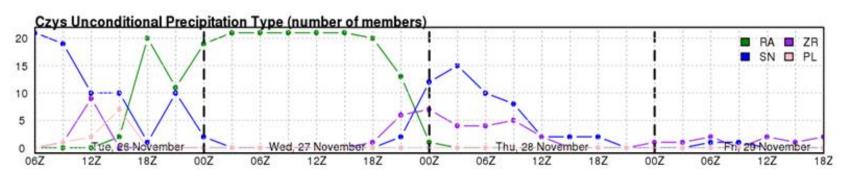
Experimental Snowfall Probability Graphs

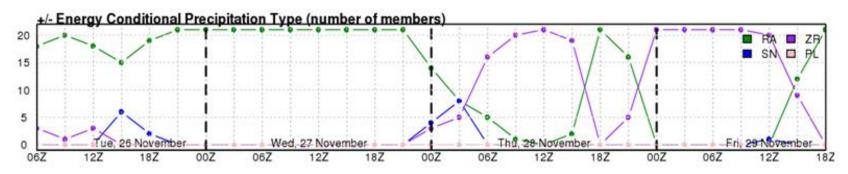

- MDL is generating calibrated probability distributions for several variables from the SREF that are traditionally used for rain/snow forecast decisions, e.g. 2-m temperature, 850-hPa temperature, various thicknesses.
- Decaying Average Bayesian Model Averaging (DABMA)

Using most recent verification...

- Correct bias of each member
- Compute relative weights for bias-corrected SREF members
- Correct forecast spread
- Compute probabilities







- MDL is seeking feedback on the usefulness of this product.
- Discontinue or move it into operations? Input during this coming winter season will help us make this decision.
- For questions or comments on MDL's SWinG products please contact John L. Wagner and Bruce Veenhuis.

John.L.Wagner@noaa.gov

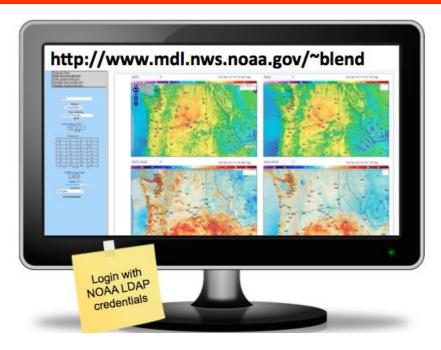
Bruce.Veenhuis@noaa.gov

National Blend of Models (NBM) Winter Weather Elements

NBM Background

- Sandy Supplemental Project
- Goal: Develop a set of next-generation foundational gridded guidance products for NDFD weather elements based on NWS and non-NWS model information
 - Beginning with the global models
 - Building upon the regional blends
 - Run centrally on WCOSS supercomputer
 - Future phases to include mesoscale/convective scale models
- Multi-year project with 70+ participants from NWS Regions, NWSEO, NCEP, OAR, STI, AFS, COMET, ...
- Includes upgrades to RTMA/URMA

NBM Development Scope



Version 1 elements (Dec. 2015):

- -Temperature
- Dewpoint
- -Daytime Max T and Nighttime Min T
- -Sky Cover
- -Wind Speed/Direction/Gust
- -Probability of Precipitation
- -Relative Humidity (derived)
- -Apparent Temperature (derived)

Version 2 elements (Fall 2016):

- Precipitation Type
- -QPF
- -Snowfall Amount
- Predominant Weather
- Oceanic Winds (Oceanic domain)
- -Expansion to AK, HI and PR NDFD domains

Initial development work to occur this Fall with prototypes available for evaluation this winter

NBM Winter Weather

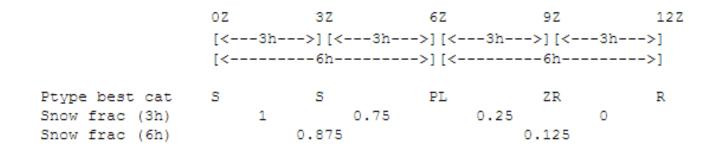
- Phase 2 of the National Blend of Models (Sept 2016) will include guidance for the following winter weather elements:
 - Precipitation type best category every 3 h out to 84 h, every 6 h out to 192 hours.
 - 2. 6-h snowfall amount every 6 h out to 84 h.
- Tom Hamill & Michael Scheuerer (NOAA-ESRL) have received funding through NGGPS to develop and study advanced postprocessing methods for precipitation type and snowfall.
 - 1. Leveraging multi-ensemble forecast data.
 - 2. Test statistical classification methods such as quadratic discriminate analysis.
 - 3. Test new methodologies against existing MOS techniques.

NBM 6-h Snowfall Amount

- Considerations:
 - 1. Observations of 6-h snowfall are very limited perhaps enough for validation, not enough for development.
 - 2. NBM 6-h snowfall grids must be consistent with 6-h QPF and precipitation type.
- Challenging forecast problem:
 - 1. Need to estimate what fraction of 6-h QPF will fall as snow.
 - 2. Need to estimate what the ratio of snow to liquid will be for what falls.

[6-h snow] = [6-h QPF] x [snow fraction] x [snow-liquid ratio] Input A Input B Input C

Input A: Grid of 6-h liquid-equivalent QPF


• Methodology being developed by Hamill/Scheuerer.

[6-h snow] = [6-h QPF] x [snow fraction] x [snow-liquid ratio] Input A Input B Input C

Input B: Fraction of QPF that will fall as snow during 6-h period. Should be derived in a way that is consistent with NBM precipitation type grid (Hamill/Scheuerer), for example:



[6-h snow] = [6-h QPF] x [snow fraction] x [snow-liquid ratio] Input A Input B Input C

Input C: Grid of snow-liquid ratio (SLR) for the 6-h period

- Many papers out there on this topic.
- Would a SLR climatology suffice (e.g. Baxter et al. 2005)?
- Develop a generalized operator (MOS or perfect prog) equation for SLR from 24-h Cooperative Observer reports?
 - Equation gets applied to each 6-h period within the 24-h period.
 - Should be more skillful than a climatology.

Discussion

- What methods does WPC use for precipitation type?
- What is WPC doing for snow-liquid ratio? Is a climatology good enough?

Phil.Shafer@noaa.gov

David.Myrick@noaa.gov