Motivation

The development of orographically induced
cirrus clouds east of the southern Appalachian
Mountain chain can result in areas of
unanticipated cloudiness downstream from the
higher terrain across the Carolinas and Virginia.
Both the degree of cloudiness and its impact on
surface temperatures can have an adverse
Impact on forecast accuracy. This study will
attempt to quantify the conditions necessary for
orographic cirrus development across the
southern Appalachian Mountains. This study will
also evaluate null events of orographic cirrus
when atmospheric conditions are conducive for
cirrus development but none occurs. A case
study will be presented from October 2008
Illustrating a classic orographic cirrus event and
Its Impacts on local forecast variables.

Data and Results

A total of 23 unique cases of orographic cirrus
were observed in part | of the experiment along
the southern Appalachians from March 2009
through February 2010. Atotal of 42 unique
cases were observed in part Il of the experiment
from September 2011 to April 2012. 65 total
cases were observed. 123 atmospheric
soundings were collected from these events.
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Figure 1: Frequency of orographic cirrus events
by month (a), duration (b), start time (c), and
end time (d).
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Figure 2: Histograms showing cirrus event
Inversion statistics including (a) inversion
base (b) top and (c) depth.
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2011-2012 Prevailing Winds at Tropopause
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Figure 3: Wind roses for (left) 2009-2010 and
(right) 2011-2012. Frequency and strength of
wind speed and direction at the (top)

tropopause and at the (bottom) inversion top.

Observed vs. Null Variable Frequency
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| IWD =Wind Direction at Inversion
1 TWD =Wind Direction at
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SIH = Wind Speed Increases with
Rt Height
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Figure 4: Observed (black) vs. null (grey)
variable frequency for orographic cirrus
events during the 2011-2012 cool season.
Each bar represents a variable from the list
on the right.
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Figure 5: 500 hPa geopotential height

composite of (a) cirrus days and (b) non-cirrus

days from NCEP/NCAR Reanalysis data. 500
hPa geopotential height anomaly field as
compared to 1981-2010 climatology for (c)
cirrus and (d) non-cirrus days.
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Figure 6: 300 hPa relative humidity composite of
(a) cirrus days and (b) non-cirrus days from
NCEP/NCAR Reanalysis data. 300 hPa relative
humidity anomaly field as compared to 1981-
2010 climatology for (c) cirrus and (d) non-cirrus
days.
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Figure 7. 300 hPa vector wind composite of (a)
cirrus days and (b) non-cirrus days from

NCEP/NCAR Reanalysis data. 300 hPa vector
wind anomaly field as compared to 1981-2010

climatology for (c) cirrus and (d) non-cirrus days.

700 hPa Vector Wind Composite (ms™)
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Figure 8: 700 hPa vector wind composite of (a)
cirrus days and (b) non-cirrus days from
NCEP/NCAR Reanalysis data. 700 hPa vector
wind anomaly field as compared to 1981-2010
climatology for (c) cirrus and (d) non-cirrus days.

Case Study: 29 October 2008
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Figure 9: GOES infrared satellite imagéry from (a)
1415 UTC and (b) 1815 UTC 29 October 2008 with
overlay of METAR station observations.
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Figure 10: GOES infrared satellite imagery from (a)
1401 UTC and (b) 1815 UTC 29 October 2008
along with GOES visible satellite imagery from (c)
1815 UTC and (d) water vapor imagery from 1745
UTC. The upstream moisture plume and an
example of a moisture enhancement are annotated
in (d).
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Figure 11: Atmospheric sounding from
Greensboro, NC (KGSO) from 1200 UTC 29
October 2008 from the University of Wyoming. Key
requirements for potential orographic cirrus are
highlighted on the figure as well as the level of

-50 C brightness temperatures seen in Fig. 9b and
Fig. 10Db.
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Figure 12: 500 hPa analysis from 29 October
2008 courtesy of the Storm Prediction Center.

Conclusions

» Orographic cirrus outbreaks can affect
temperatures by as much as 10°F.

» OQutbreak events usually set up in a
stable environment with a mid to upper-
level low pressure system to the northeast
and a strong upper level ridge to the west.

* An inversion typically exists between 850
and 700 hPa.

* Winds are generally unidirectional from
the northwest with some slight backing
throughout the profile from the top of the
Inversion to the tropopause.

A pre-existing upper-level upstream
moisture source Is usually necessary to
trigger the onset of an orographic cirrus
outbreak.

» Orographic cirrus events most frequently
occur In the cool season, last between 4
and 8 hours, typically begin during the
evening or early morning hours and
dissipate during the morning or early
afternoon hours.

* In addition to forecast and observed
soundings, satellite data is a vital
component to the process to identify the
potential for orographic cirrus.

* An operational forecasting technique for
orographic cirrus has been outlined and
Implemented at WFO Raleigh.
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