Anticipating Winds Near Complex Terrain

David Craft Aviation Program Leader National Weather Service Albuquerque

Overview

1. Terrain-forced flows:

- Flow over and around terrain,
- Mountain waves and lee waves,
- Visible signs,
- Mechanical turbulence,
- Gap Winds.
- 2. Diurnal mountain winds:
 - Downslope and downvalley winds,
 - Timing.

Altocumulus Standing Lenticular Cloud Indicating the Presence of Mountain Wave Near Gallup, NM, 1 FEB 06

Terrain-Forced Flow

Mountain Meteorology, C. David Whiteman

AND ATMOSPL

ПОАА

LEPARTMENT OF CON

Air Force Manual 51-12, Weather for Aircrews (1974)

Mountain Wave Features

©The COMET Program

Low-level turbulent zone

• Sign of severe turbulence.

NOAA

SPARTMENT OF CO

- Near top of rotor circulation:
 - Near or below mountain-top level,
 - Within 20 miles downwind of ridgeline,
 - Often under a lenticular cloud.
- May makeup the entire low-level turbulent zone.

Trapped Lee Waves

GOES Satellite Visible Loop

Trapped wave clouds indicate turbulence more than 100 miles downstream from mountain ranges

Trapped Lee Waves

Mountain Wave Intensity

AND ATMOSE

ПОАА

CS-DEPARTMENT OF COMMERCE	ountain vva	ave intens	SILY
<u>Intensity</u>	Up/Down Draft <u>Speed</u>	Aircraft Speed Change	Aircraft Altitude <u>Change</u>
Moderate:	350-599 FT/MIN	+/- 15-24 KT	500-999 FT
Severe: Altocumulus Stan	<u>> 600 FT/MIN</u> ding Lenticular Clouds (AC	+/- 25 KT SL) • Criteria consis	> 1000 FT a for forecast tency,
		No "off for cor	icial" ICAO criteria isistency exists,
		PIREP importa wave f	details are very ant for mountain orecasts.

N

Decoders May Miss Lenticular Clouds

• METAR:

KABQ 051456Z 00000KT 10SM FEW001 SCT050 SCT100 BKN200 M05/M09 A2998 RMK AO2 SLP177 FU FEW001 MTN TOPS OBSC NE-E SCSL NE-E ACSL NE AND SE T10501094 56010

• **DECODED METAR (**http://aviationweather.gov/adds/metars/index.php):

Conditions at: KABQ (ALBUQUERQUE, NM, US) observed 1456 UTC 05 February 2011 Temperature: -5.0°C (23°F) Dewpoint: -9.4°C (15°F) [RH = 71%] Pressure (altimeter): 29.98 inches Hg (1015.3 mb) [Sea-level pressure: 1017.7 mb] Winds: calm Visibility: 10 or more miles (16+ km) Ceiling: 20000 feet AGL Clouds: few clouds at 100 feet AGL scattered clouds at 5000 feet AGL broken clouds at 20000 feet AGL Weather: no significant weather observed at this time

Visible Signs of Terrain-Forced Flow

February 20, 2010 around 5:30pm Clouds over the Mogollon Mountains. Image taken from Pleasanton, NM (Photo Courtesy of David Thornburg)

Mountain Meteorology, C. David Whiteman

Visible Signs of Terrain-Forced Flow

Waterfall clouds overtopping the Capitan Mountains

Cold front banked up against east slopes of the Sandia Mountains (not a cap cloud or waterfall cloud)

G-12 IMG 3 1 MAR 06060 141500 02706 09261 01.00

https://wx.erau.edu/faculty/mullerb/Wx365/Mountain_waves/mountain_waves.html

Aviation Weather Center's Graphical Turbulence Guidance

 Rapid Refresh Model (RAP) forecast for:

NOAA

- Clear air turbulence,
- Mountain wave turbulence,
- Combo CAT/MTW
- No forecaster in the loop, so monitor
 SIGMETs for actual mountain wave forecast.
- Valid on the hour, not for a time range.

https://aviationweather.gov/turbulence/gtg

Mechanical Turbulence

Meteorology for Aviators, R.C. Sutcliffe

R.C. Sutcliffe's Rule of Thumb

- MDT TURBC: Wind > 30 KT
 < 3,000 FT AGL,
- SVR TURBC: Wind > 45 KT
 < 3,000 FT AGL.

Where Local Speedups Occur*

- On hillsides where flow parallels the crest's contour.
- Over crests:
 - o Greatest speedups over gently inclined triangular shaped hills,
 - Intermediate speedups over rounded mountain tops (KCQC),
 - Smallest speedups over flat-topped mesas.
- Channeling through passes and gaps in the ridgeline.

Adapted from Mountain Meteorology, C. David Whiteman

*Assuming relatively stable flow

Gap Winds

REAL OF COMMERCE

- Strong winds through openings in mountain ranges, channels between subranges, or through mountain passes.
- Produced by:
 - Strong pressure differences either side of the range,
 - Thunderstorm outflow rushing through the gap.
- Strongest winds typically occur at the gap exit region.

ABQ East Canyon Wind

NOAA

MENT OF C

- High impact on the ABQ Sunport and Santa Fe Airport.
- Stronger events also impact Taos, Grants, and Carrizozo Airports.
- Over-the-top events can cause hurricane-force winds in Albuquerque:
 - 124 mph in 1987 at base of Sandia Peak Tramway,
 - 108 mph in 1990 in ABQ's eastern foothills,
 - 90 mph (sustained) in 1943 at KABQ.

Coastal Range Gap Winds

- Winter Strong east winds develop due to higher pressure and colder air over higher elevation, inland basins.
- **Summer** Moderately **strong west** winds develop due to lower pressure and hot air over inland basins with colder air and higher pressure over the Pacific Ocean.
- Other famous gap winds:
 - Cascade Mountains:
 - Snoqualmie Pass,
 - Naches Pass,
 - Stampede Pass,
 - Fraser Valley,
 - Strait of Juan de Fuca,
 - Caracena Strait.
- Monitor TAFs and Aviation Forecast Discussions for gap wind information.

Columbia River Gorge Topo Map

Downslope & Downvalley Winds

Peaks during the evening. 2 to 5 mph

From the S290 Intermediate Wildland Fire Behavior Course (www.meted.ucar.edu)

Starts after midnight, then peaks during early morning. 5 to 10 mph

Time of Downvalley Wind Varies by Valley Aspect

Valley Aspect	Time of Max Upvalley Wind	Time of Max Downvalley Wind
East	8-11 am	2-6 am
South	12-3 pm	5-9 am
West	3-7 pm	6-10 am

Times valid at the peak of summer.

Summary

1. Terrain-forced flows:

- Flow over and around terrain,
- Mountain waves and lee waves,
- Visible signs,
- Mechanical turbulence,
- Gap Winds.
- 2. Diurnal mountain winds:
 - Downslope and downvalley winds,
 - Timing.

Sandia and Manzano Mountains, NM

Anticipating Winds Near Complex Terrain

David Craft Aviation Program Leader National Weather Service Albuquerque (505) 243-0702 ext. 0 David.Craft@NOAA.Gov

Mountain Wave Sounding

Altocumulus Standing Lenticular Cloud Indicating the Presence of Mountain Wave Near Gallup, NM, 1 FEB 06 Albuquerque's 12Z Sounding 1 FEB 06

Separation Eddies

- Form over steep slopes or cliffs on either the windward or leeward side.
- Elongated, horizontal-axis eddies that can extend along entire length of barrier.
- The eddies reduce near ground wind speeds on the slopes, even though flow above the eddies speeds up as it crosses the barrier.
- Indicated by sand-dune-like deposits, snow cornices and/or banner clouds.

Mountain Meteorology, C. David Whiteman

Vortex Pairs

Mountain Meteorology, C. David Whiteman

Slope Winds Diurnal Cycle

- EZ = top of mixed layer
- Orange wavy lines = thermals
- Blue lines = slope winds

Adapted from Mountain Meteorology, C. David Whiteman

ND ATMOSA

NOAA

Meteorology for Aviators, by R.C. Sutcliffe

heights downwind*

*From Mountain Meteorology, C. David Whiteman

Foehn Wall

Foehn - A warm, dry wind on the lee side of a mountain range.

Common Western U.S. Foehn Winds