Visibility Estimation through Image Analytics

Intermountain West Aviation Weather Safety Workshop

Michael Matthews

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Using Edges for Visibility Estimation

10+ miles

1/4 mile

Technical Concept: Relate Image Edge Strength to Visibility

Edge strength is a function of marker distance and visibility

Challenges using Edge Detection

- Generating a translation function from edge strength for every marker and every camera to visibility would be daunting
 - Method must be portable to scenes without truth source
- Transient objects create edges that can corrupt the results
 - People, vehicles, aircraft, clouds
- Seasonal variation in scene can alter available markers
 - Winter vs summer
- Low sun angle creates solar glare
- Only available in daylight conditions

Example of Transient Edges Palmer AK (Northeast)

June 1, 2015

July 4, 2015

Seasonal Variation in Clear Day Images

Snow cover has a significant impact on the edges in the image

Mitigations

- Generate a running composite image over a several day period
 - Removes variability in image due to transient objects
 - Captures reliable edges for normalizing edge strengths
 - Captures seasonal variation in reliable edges
 - Reduces impact of extended periods of low visibility

- Evaluate image using entire scene not specific markers
 - Automatic identification of "edges of importance" to serve as benchmarks (e.g., mountains, buildings, roadways)
 - Generate a single metric for each image representing the collective image edge strength

Composite Image Generation

February Composite

May Composite

10 day window selected as compromise for composite generation

VEIA Flow Chart

VEIA Flow Chart

VEIA Flow Chart

Example Observed Reduced Visibility Day

Homer, Alaska (Northeast)

Clear Day

Now

- A large number of markers are required to accurately identify the visibility in a scene
- Visibility can vary significantly within single scene (prevailing visibility)

Accurately estimating the visibility takes months of experience with specific local knowledge

Example Solar Glare on Camera Imagery

Solar Glare Impact on Camera Visibility

Solution: Implement weighting scheme based upon sun angle and agreement between co-located cameras

Combining Multiple Cameras into a Site Estimate

Improving Performance Using Multiple Cameras

Example of Highly Variable Conditions

McGrath, AK

Scenes and Camera Orientations Impacting VEIA Performance

Power Lines, Towers and Foreground Clutter

Kivilina, AK East

Minto, AK Northwest

Open Water, Limited Foreground Objects, and Disproportionate Sky Views

Misty Fjords, AK South

St. Michael, AK Northeast

Bradley Lake, AK South

Metlahatla, AK West

Transient Camera Issues Impacting VEIA Performance

Visibility Estimation through Image Analytics Team

Lincoln

Michael Matthews Robert Hallowell James Kuchar Thomas Reynolds Allison Chang Gabriel Elkin LLSC Team

FAA Jenny Colavito Randy Bass

Robert Hallowell

Michael Matthews

Legal Notices

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the Federal Aviation Administration under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Federal Aviation Administration.

© 2022 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.