Learning Activity for Atmosphere-Ocean Interaction National Weather Service, Shreveport, LA

Objective:

The students will discover that as the salinity increases, the density also increases.

Overview:

Fresh eggs, which are less dense than saltwater, will float, but will sink in freshwater.

Total Time:

Three minutes as a demonstration, 10 minutes if students perform the demonstration.

Supplies:

Three fresh eggs, three beakers (each around 1-1.5 liters, quart jars may also be used), one 26-oz. container of salt.

Procedure:

- 1. Fill each beaker with approximately one liter of tap water (or fill each quart jar with about one pint of tap water).
- 2. Add (approximately) three ounces of salt to one beaker and six ounces (or more) of salt to the second beaker. No salt is added to the third beaker.
- 3. Ask the students to speculate which water solution will float the eggs.
- 4. Place an egg in each solution and observe in which solution it floats.

Discussion:

Fresh eggs are more dense than fresh water and therefore will sink. However, as the salt content increases in water, the water becomes more dense. The egg will float in the two beakers with the added salt. This happens because the added salt makes the water heavier than the egg causing the egg to float.

The solution with approximately three ounces of salt could represent the salinity of the oceans. The solution with six ounces of salt could represent the Dead Sea. As salinity increases, the density increases as well. The egg in the beaker with the most salt should float higher than that in the other salty solution.

The increased density of the salty water actually increased the weight of the water. An egg will be buoyant (float) if the weight of the egg is *less* than the weight of the water displaced. The egg sinks if it weighs *more* than the weight of the water that was displaced.

The size (or weight) of a ship is determined by the weight of water that is displaced when fully loaded (reported in tons). The following are sizes of large ships.

Year	Ship	Туре	Owner	Length (ft.)	Width (ft.)	Weight (T.)
1912	Titanic	Liner	White Star Line	883	92	46,328
1934	Queen Mary	Liner	Cunard	1,019	119	81,237
1939	Bismarck	Battleship	Germany	880	120	50,000
1944	Missouri	Battleship	United States	887	108	58,000
1962	Enterprise	Aircraft Carrier	United States	1,101	133	89,600
1976	Jahre Viking	Supertanker	Jordan Jahre	1,504	226	647,955
2003	Ronald Reagan	Aircraft Carrier	United States	1,092	134	97,000
2004	Queen Mary 2	Liner	Cunard	1,132	148	150,000
2006	Freedom of the Seas	Liner	Royal Caribbean	1,112	184	160,000