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PREFACE 

It is with great pleasure that the Climate Prediction Center and the Office of Science and 
Technology offer you this synthesis of the 35th Climate Diagnostics and Prediction Workshop.  The 
CDPW has become an important institution in the climate prediction community.  As is clearly 
evident in this digest, considerable progress is being made both in our understanding and in our 
ability to simulate and predict climate.  The purpose of this digest is to help ensure that climate 
research advances are both shared with the broader climate community and also transitioned into 
operations.  This is especially important as NOAA works to enhance climate services both across the 
agency and with external partners.  We hope you find this digest to be both useful and stimulating.  
And please drop me a note if you have suggestions to improve the digest. 

Finally, I would like to thank Dr. Jiayu Zhou of the Office of Science and Technology / NWS, 
for developing the concept for the digest and seeing it through to completion.  This partnership 
between OST and CPC is an essential element of NOAA climate services. 

Wayne Higgins 
Wayne Higgins 

Director, Climate Prediction Center 
National Centers for Environmental Prediction 
NOAA’s National Weather Service 
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OVERVIEW 

The 35th Annual Climate Diagnostics and Prediction Workshop was held in Raleigh, North 
Carolina, on 4-7 October 2010. The workshop was hosted by the Cooperative Institute for Climate 
and Satellites (CICS) and North Carolina State University; and co-sponsored by the Climate 
Prediction Center (CPC) of the National Centers for Environmental Prediction and National Climatic 
Data Center (NCDC). The American Meteorological Society is a cooperating sponsor. 

 A diverse group of about 165 scientists from more than 40 domestic and international institutes 
gathered to explore current operational climate prediction capabilities, identify opportunities for 
advances, and discuss new products needed to support regional decision makers.   

The workshop addressed the status and prospects for advancing climate monitoring, assessment, 
and prediction, with emphasis in three major themes: 

1)  Use of climate data records including satellite data, climatologies for improving climate 
predictions/predictability, and understanding and attribution of climate variability and its 
impacts;  

2)  Improving climate services through development and delivery of climate models, 
applications, and products in support of adaptation strategies;  

3)  Improving coastal monitoring and prediction in support of assessing climate impacts in the 
coastal zone.   

This Workshop is continuing to grow and expect to provide a stimulus for further improvements 
in climate monitoring, diagnostics, prediction, applications and services. 



1.  RECENT CLIMATE EVENTS 
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The Rise and Fall of “Drought David”: A Review of Recent 
Drought Events across the United States 

Michael Hayes 
National Drought Mitigation Center 

School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE  

Most people in the United States know that Atlantic and eastern Pacific hurricanes are named.  Once 
named, these storms have the attention of the people in their path, and if they are severe enough, they leave 
memories of their impact.  In contrast, focusing attention on droughts during and after an event has been more 
difficult and, sometimes, frustrating.  This presentation discussed the potential reasons for this difficulty 
within the larger context of recent drought events and the recent progress toward drought risk management 
that has taken place in the country.   

It is first necessary to understand drought 
and its characteristics.  Drought is a natural 
hazard.  In a list of natural hazards put 
together by the National Climatic Data 
Center (NCDC), the “billion dollar” drought 
events cause as much damage per event as do 
hurricanes, and this per-event price tag is 
much higher than that of tornadoes, floods, 
fires, or winter-related storms (NCDC 2010; 
http://www.ncdc.noaa.gov/oa/reports/billionz
.html).  But droughts are different from these 
other hazards in terms of several key 
characteristics.  First, droughts often have a 
slow onset and have been called the 
“creeping phenomenon”.  Second, unlike the 
other natural hazards, they lack a universal 
definition, and drought severity is best 
described by multiple indicators.  Third, the 
impacts of drought are often non-structural 
and spread over very large areas.  Because of 
these unique characteristics, two things occur.  
First, it is often difficult to get attention 
focused on drought events as they are 
happening.  Second, progress on drought risk 
management has been slow.  As a result, 
Senator Ben Nelson of Nebraska developed the idea that droughts, like hurricanes, should be named.  As early 
as January 2003, when the U.S. High Plains was in a serious drought situation, Senator Nelson named that 
drought event “David”.  Senator Nelson continues to highlight “David” on his website 
[http://bennelson.senate.gov/issues/rural_security/drought.cfm], in an effort to maintain attention on the 
drought hazard across the United States. 

Droughts have been a normal part of the United States’ climate.  Figure 1 shows the percent of the United 
States in either severe or extreme drought, according to the Palmer Drought Severity Index, between 1895 and 
August 2010.  On average, about 14% of the United States is in severe to extreme drought at any one time.  
The major droughts also stand out in this figure.  What has happened is that these major drought events have 

Fig. 1  The percent area of the United States in “severe” to 
“extreme” drought, as classified by the Palmer Drought 
Severity Index, between 1895 and 2010.  Data provided by 
the National Climatic Data Center in Asheville, North 
Carolina. 



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

 

4 

often been “windows of opportunity”.  For example, after the 1930s drought, the Soil Conservation Service 
(now the Natural Resources Conservation Service, NRCS, within USDA) was formed and a new standard for 
conservation, particularly with agricultural soils, evolved.  Thus, in the 1950s drought, soil erosion and dust 
storms were not as prevalent.  Likewise, following the 1950s and 1970s droughts, irrigation evolved in the 
Plains, and Nebraska is now the number one state in terms of irrigated acres in the country. 

 Recent drought events have also contributed in part to the development of proactive and innovative 
drought monitoring and drought risk management strategies.  The western drought in 1994 and the drought in 
the southwest United States in 1995-96 provided some great opportunities.  Following a recommendation that 
was made at a national drought conference in Portland, Oregon, in 1994, the National Drought Mitigation 
Center was formed in 1995 at the University of Nebraska-Lincoln.  The Western Governors’ Association met 
in 1996, and the Western Drought Coordination Council (WDCC) was formed in 1997.  One of the outcomes 
of the WDCC was a quarterly report named the “Western Climate and Water Status”, which was an important 
precursor to the U.S. Drought Monitor (USDM) product.  Momentum continued and the National Drought 
Policy Act, forming the National Drought Policy Commission (NDPC), was passed in 1998.  The NDPC 
issued a final report to Congress in 2000 containing multiple recommendations to improve the nation’s 
drought risk management capability.  Finally, the first USDM map was released in August 1999, and this 
product continues to be issued weekly, providing a standard for current drought assessment and an instrument 
for policy-related decision making.  

Beginning in late 1999, and establishing a stronghold in 2000, drought developed again across large parts 
of the United States (Figure 1).  This drought peaked in 2002, when in July all 50 states had some type of 
dryness or drought according to the USDM map, with other peaks in 2000, 2004, and 2006.  As with the 
droughts a decade before, this drought resulted in a couple of very important events.  In 2001, 2003, and 2005, 
a National Drought Preparedness Act was introduced in Congress, in part to help implement the 
recommendations that had been proposed by the NDPC.  This act did not pass, likely for numerous reasons 
each time. 

In 2004, however, an idea was proposed to the Western Governors’ Association for “Creating a Drought 
Early Warning System for the 21st Century” (http://www.westgov.org/wga/publicat/nidis.pdf).  The outcome, 
the National Integrated Drought Information System (NIDIS), was passed by Congress in December 2006, 
and the NIDIS Implementation Plan was released in 2007 (http://www.drought.gov/pdf/NIDIS-IPFinal-
June07.pdf).  Since 2007, NIDIS has moved forward in a variety of ways.  Multiple knowledge assessments 
and workshops have taken place across the country, and working groups have been established to focus on the 
issues of 1) a national drought portal, 2) integrated monitoring and assessment, 3) interdisciplinary research, 
4) public awareness and education, and 5) engaging the preparedness communities.  The approach NIDIS is 

Fig. 2  The percent of the High Plains region in dryness and drought according to the U. S. Drought 
Monitor map between 2000 and 2010.  Categories: D0 (abnormal dryness) is yellow; D1 (moderate 
drought) is tan; D2 (severe drought) is orange; D3 (extreme drought) is red; and D4 (exceptional 
drought) is dark red. 
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taking to address these issues across all the local, state, tribal, and federal agencies dealing with drought and 
water is to establish pilot projects focused on a region with specific drought-related needs.  The three pilot 
projects that have been established at this point include the Upper Colorado River Basin, the Apalachicola-
Chattahoochee-Flint (ACF) River Basin, and California. 

In spite of these advancements--all of them resulting from recent drought events--the overall movement 
toward proactive drought risk management in the United States has been very slow.  And this brings us back 
to “Drought David”, and the need to name droughts.  The characteristics of drought, described earlier, make it 
difficult to provide the definition and distinction of a drought event: its beginning, end, and spatial evolution 
through time.  Figure 2 shows a time series for the U.S. Drought Monitor for the High Plains Region between 
2000 and 2010.  The beginning of the drought is evident before 2000, continuing and building into 2002, 
lasting through 2006, and waning in 2007 and 2008.  One could maybe say that the drought event was “over” 
in 2009.  Therefore, with the purpose of providing a name for this drought event, is “David” then the same 
event that began in Nebraska in 2000, spread coast-to-coast in 2002, still existed in the High Plains in 2006, 
ravaged the Southeast in 2007-08, and established pockets of severe drought in Hawaii, California, Texas, and 
the Upper Midwest in 2009?  This illustrates some of the issues that might be faced if names are going to be 
attached with specific drought events.   

One tool that may provide a little guidance and assistance, at least in the identification of the start and end 
of drought events in a particular location, is the Drought Impact Reporter (DIR), which has been available at 
the NDMC since 2005 (http://droughtreporter.unl.edu/).  Figure 3 shows what the DIR tool looked like on 
October 5, 2009.  At that time, a very serious drought was taking place in southern Texas.  If one scrolls over 
the map on the website with a mouse, the number and type of drought impacts taking place appears.  If one 
clicks on a state, a county-
level map appears.  The 
mouse can also be used to 
highlight the number and 
type of impacts taking place 
in each county.  Most of the 
impacts within the DIR 
database come from 
newspaper accounts, but 
partnering with organizations 
to receive local impact 
information is also an 
important objective.  In 
spring 2010, the Community 
Collaborative Rain, Hail, and 
Snow (CoCoRaHS) network 
[http://www.cocorahs.org/] 
provided the capability to 
their nearly 15,000 observers 
across the country to enter 
drought impacts they are 
experiencing into the DIR 
database. 

Figure 4 shows an example of how the U.S. Drought Monitor and the DIR tool can be combined to 
highlight important drought characteristics.  In this case, the drought in Texas is featured with a time series 
between mid 2007 and early 2010.  For the most part, the reported impacts ebb and flow with the drought 
severity levels, although a rise in impacts during winter 2007-08 precedes a significant increase in severity 
during the spring 2008.  Another interesting feature is that while the D0, D1, and D2 areas significantly 
reduced in size during 2009 (indicating an improvement in drought conditions for large parts of northern and 
central Texas), the D3 and D4 areas increased (indicating that the drought was becoming much more severe in 

Fig. 3  The Drought Impact Reporter for October 5, 2009. 
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southern Texas) during this same 
time.  The number of reported 
impacts also reflected the worsening 
of conditions in southern Texas, and 
peaked during this time as well. 

In the end, although we are 
unsure about the efficacy of naming 
this most recent drought “David”, 
what is the legacy of this recent 
drought?  One of the biggest areas 
of improvement during the past 10 
years has been in the area of drought 
monitoring.  In addition to the U.S. 
Drought Monitor product, multiple 
other advancements have occurred 
in drought monitoring, and this 
trend is expected to continue.  
NIDIS is also a huge success story 
of recent years, and the NIDIS 
efforts and pilot projects hold great 
promise. There have been successes 
in terms of proactive risk 
management activities, in planning for example, particularly at the state and local levels.  Recent droughts 
have highlighted the opportunities that exist in terms of drought prediction, and the drought prediction 
community is making progress in terms of attribution of various events.  In terms of climate change, the 
recent drought events around the country have provided the opportunity for climatologists to address issues of 
climate variability and change in areas and to audiences that would otherwise be quite skeptical to these issues.  
Finally, as 2011 approaches, the developing dryness and drought in the Southeast, combined with the 
evolving La Nina, provides another opportunity for potential lessons learned and advancements in drought 
risk management across this region.  To address Senator Nelson’s concerns, and to focus attention on this 
drought, should it also be given a name like “David”? 

 
 

Fig. 4  The severity levels of the U.S. Drought Monitor combined with 
the number of drought impacts within the NDMC’s DIR database 
for Texas between September 2007 and February 2010. 
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Extremely Negative Arctic Oscillation Persisting during the 
Winter 2009/2010 and the Spring 2010  

Shingo Ushida 
Japan Meteorological Agency 

1. Observed extremely negative Arctic Oscillation in the winter 2009/2010 

 In the boreal winter (Dec.-Feb.) 2009/2010, extremely cold waves hit a lot of areas in the middle latitude 
of the Northern Hemisphere, especially around Europe, Siberia and the eastern United States where low 
temperature anomalies persisted during 
the winter (Figure 1).  These cold waves 
were caused by the extremely negative 
Arctic Oscillation (AO).  The negative 
AO was characterized with an annular 
pattern of high-pressure anomalies over 
the Arctic region and low-pressure 
anomalies in the middle latitudes.  
Associated with the negative AO, the 
polar front jet was weaker than normal 
and the subtropical jet was stronger than 
normal (Figure 2). 

2. Performance of JMA’s operational 
one month forecast 

The atmospheric global circulation 
model (AGCM) which is operated at the 
Japan Meteorological Agency (JMA) for 
one month forecast showed the 
extremely good performance in the 
boreal winter 2009/2010.  It is worthy of 
mention that the JMA’s operational 
AGCM appropriately predicted the 
pressure pattern of the negative AO for 
the third and fourth week (17 – 30 day). 

For the last half of February 2010, 
the anomaly pattern of 500-hPa height 
predicted by the AGCM was similar to 
that analyzed by the JMA’s climate data 
assimilation system (Figure 3).  The 
anomaly correlation between the 
prediction and observation was 0.78.  As 
shown in Section 1, the weak polar jet 
and strong subtropical jet persisted 
during the boreal winter in 2009/2010.  
To examine the contribution of high 
frequency eddies to the persistence of 
the anomalous jets, the diagnosis was 

Fig. 1  Normalized surface temperature anomalies in the boreal 
winter 2009/2010. 

Fig. 2  Vertical-latitude cross-section of zonal-mean zonal wind in 
the boreal winter 2009/2010.  The contours show zonal-mean 
zonal wind (m/s) and the shading shows its anomaly. 
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made using the E-vector.  The 
left panel of Figure 4 indicates 
that the subtropical jet was 
accelerated (divergence of E-
vector) by the high frequency 
eddies with the cycle of less 
than 10 days over the North 
Pacific and North Atlantic.  On 
the other hand, easterly wind 
anomalies in the high latitudes 
were maintained by the 
deceleration (convergence of 
E-vector) of the high 
frequency eddies.  The JMA’s 
operational AGCM was able to 
appropriately forecast such 
feedback of the high frequency 
eddies to the mean flows in the 
boreal winter 2009/2010 (the 
right panel of Figure 4).  The 
hindcast experiment of the 
JMA’s operational AGCM 
shows the model has the ability 
to predict the contribution of 
the high frequency eddies to 
the subtropical jet, in particular 
when negative AO already 
appears on the initial day of 
the prediction (Figure 5).   

3. Summary 

From this diagnostic 
analysis, it was identified that 
the persistence of the 
extremely negative AO during 
the boreal winter 2009/2010 
was contributed by the high 
frequency eddies with cycle of 
less than 10 days.  According 
to the hindcast results, it was 
revealed that the JMA’s 
operational AGCM has high 
skill to predict the maintenance 
of the negative AO with a 
couple of weeks lead time after negative AO 
appeared.  However, it is required to improve 
the AGCM prediction skill for AO evolution 
of transition from neutral or positive phase to 
negative phase and vice versa. 

Fig. 5  Time series of zonal mean divergence of E-vector meridionally averaged between 30˚N and 40˚N for the 
last half of February. The white and red points show the analysis and hindcast (the third and fourth week with 
initial date of 31 January), respectively.  The points for 2010 are the average for 13 – 26 February 2010. 

Fig. 4  Analysis (left) and prediction (right) of the divergence of E-vector 
and zonal wind anomaly at 300-hPa.  The contours show the divergence 
of E-vector (m2/s2). The red and blue color shading shows the westerly 
and easterly wind anomaly (m/s). E-vector was based on the high 
frequency eddies with the cycle of less than 10 days. The right panel is 
the prediction by the JMA’s operational AGCM, and the left panel is the 
analysis by the JMA’s climate data assimilation system. The time period 
and initial date are the same as in Figure 3. 

Fig. 3  Analyzed (left) and predicted (right) 500-hPa height and anomaly for 
13 – 26 February 2010.  The contours show 500-hPa height (m) and the 
shading shows its anomaly. The right panel is the JMA’s operational 
AGCM prediction for the period from 13 to 26 February 2010 (initial 
date: 28 January 2010). The left panel is the analysis by the JMA’s 
climate data assimilation system for the same period of time. 
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The 2009-10 El Niño and Florida Dry Season Tornadoes:  
A Reality Check for the Limits of Predictability  

Bartlett C. Hagemeyer 
NOAA/National Weather Service, Melbourne, Florida 

1. Introduction 

Extratropical storms can produce various societal impacts during Florida’s dry season (1 November – 30 
April), including deadly tornado outbreaks, hailstorms, damaging thunderstorm winds, coastal flooding, 
hazardous marine conditions, strong gradient winds, and both beneficial and flooding rains.  The lack of 
extratropical storms can cause drought and increased wildfire risk. 

The author (Hagemeyer 2006 and 2007) has 
documented a very strong relationship between the phase of 
the EL Niño Southern Oscillation (ENSO) and the number 
of extratropical storms affecting Florida during the dry 
season.  He has made forecasts of the number of significant 
dry season extratropical storms based on ENSO phase since 
2002 with considerable success (see Dry Season Forecast 
for Florida, http://www.srh.noaa.gov/media/mlb/pdfs/ 
Florida_Dry_Season_Forecast.pdf). 

The environment necessary for the development of 
tornadic supercell thunderstorms during the Florida dry 
season: strong vertical motion and wind shear with plentiful 
low-level moisture and vertical instability, is typically 
found only in the warm sectors of extratropical storms 
(Figure 1, Hagemeyer, 1997).  Thus it is not surprising that 
a strong positive correlation between El Niño and the 
occurrence of severe weather such as tornadoes, damaging 
convective wind gusts, and lightning has also been 
documented by the author (Hagemeyer 1998 and 2000) and 
others (see for example: La Joie, 2008 and Cook and 
Schaefer, 2008). However, it is the impact of violent 
tornadoes that is of most concern.  

The two deadliest Florida tornado outbreaks, 
responsible for 63 deaths, occurred during the recent El 
Niño winters of 1997-98 and 2006-07. Figure 2 shows the 
distribution of dry season tornado deaths in peninsular 
Florida since 1950 by ENSO phase with 90% of the deaths 
occurring during El Niño’s. On a seasonal scale, the greater 
the number of extratropical storms affecting Florida the 
greater the chances that one or several of them will produce 
the sufficient conditions for violent tornadoes. An explicit 
dry season forecasts of severe weather is not made, 
however, the Florida NWS offices use the forecast of an El 
Niño – and the expected increase in storminess and severe 
weather – to raise awareness of, and preparedness for, 

Fig. 1 Conceptual model of favorable synoptic 
conditions for ≥EF2 tornadoes in the 
Florida Dry Season (from Hagemeyer 
1997). 

Fig. 2  Peninsular Florida dry season tornado 
deaths (1950-2008) by ENSO phase (from 
Hagemeyer et. al. 2010). 
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strong tornadoes in their outreach activities. 

As another El Niño developed during the 
summer of 2009 and was expected to 
strengthen into winter, NOAA/NWS 
established an El Niño Communications 
Campaign Team of which the author was a 
member. The El Niño impacts graphic 
developed for educational and outreach use 
highlighted the “increased chances for severe 
weather in Florida” for the first time (Figure 3). 
The Florida NWS offices, in partnership with 
emergency managers and the media, conducted 
an unprecedented campaign to prepare the state 
for the expected increase in severe weather 
during the upcoming dry season.  The goal was 
to avoid the large loss of life in tornado 
disasters of the previous El Niño winters. 

As expected, the number of extratropical 
storms affecting Florida was well above normal.  Indeed, the 2009-10 El Niño winter tied the record of 18 
extratropical storms set during the 1997-1998 El Niño.  While the forecast of above normal extratropical 
storms was accurate, the tornado activity was actually below normal, with only 18 weak tornadoes reported.  
By contrast, 71 tornadoes, ten of which were strong and violent, occurred during the 1997-98 El Niño dry 
season.  The 2009-10 El Niño dry season was the first since 1972-73 without any severe weather-related 
fatalities. 

Conventional thinking has been that sufficient warm, moist, low-level air would be available during an El 
Niño winter to produce several significant severe weather outbreaks from passing extratropical cyclones.  
However, the development of a persistent strong, negative Arctic Oscillation (AO) in late 2009 and early 
2010 (L'Heureux et. al. 2010 and Cohen et. al. 2010) was responsible for significantly modifying the typical 
impact of El Niño on Florida through frequent incursions of cold continental air masses deep into the southern 
latitudes, resulting in cold and wet conditions.  Indeed, there were two deaths attributed to exposure to cold in 
Florida.  As a result of the deep penetration of the cold air masses, the warm sectors of the majority of the 
developing extratropical storms that affected Florida were unable to supply enough low-level moisture and 
instability to fuel the deep convection in a high-shear environment needed to produce significant tornadoes.  

The following sections will discuss the 2009-10 El Niño and the implications of the persistent negative 
AO pattern that likely spared Florida from the impact of violent tornadoes and instead brought record cold 
spells. The dominance of the negative AO, while rare, raises significant questions regarding the limits of 
predictability of seasonal impacts based primarily on the ENSO phase and brings into sharp focus the need to 
improve the prediction of other intraseasonal oscillations such as the AO, the North Atlantic Oscillation 
(NAO) and the Pacific-North American (PNA) pattern (Hagemeyer and Almeida, 2004) and related blocking 
phenomena. An expanded version of this paper with detailed case studies and comments on communicating 
with decision-makers will be included in the preprints for the AMS 23rd Conference on Climate Variability 
and Change.  

2. The impact of the 2009-10 strong El Niño and record negative Arctic Oscilation on Florida 

It is well-documented that El Niño has a profound effect on Florida’s dry season weather by increasing 
the strength of the subtropical jet stream and shifting it and the associated  storm track southward on average 
over the Gulf of Mexico and Florida. The Florida Peninsula is ground zero for the impact of increased 
storminess during El Niño and coincidently has the greatest concentration of old-code manufactured housing 
units, campgrounds and travel trailer parks in the United States. This convergence of vulnerable housing and 

Fig. 3  Graphic of expected winter impacts from the 2009-
10 El Niño developed by the NOAA/NWS El Nino 
Communications Campaign Team. 
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climatic factors favoring violent nocturnal tornadoes has resulted in tragedies during past El Niño winters.  A 
detailed discussion of these issues is contained in Hagemeyer et al. 2010. 

2.1 Record El Niño jet stream and Florida storminess 

To put the 2009-10 El Niño into historical perspective  the 250 mb zonal mean wind (U) chart for 
February and March (typically the peak severe weather season) is compared with the two greatest El Niño’s 
of 1983 and 1998 (Figures 4). The typical bull’s-eye of maximum 250 mb U during El Niño is found right 
over the Florida peninsula in each case. However, the jet stream during 2010 was considerably larger and 
stronger over Florida than during the two greatest El Niño’s on record (55 m/s vs. 50 m/s). The 250 mb jet 
during early 2010 also showed a significant eastward extension over the Atlantic compared to 1983 and 1998.  

 
Fig. 4  250 mb zonal mean wind (m/s) for February and March 1998 (left), 1983 (middle), and 2010 (right). 

The result of the persistent, strong jet stream was 
18 significant extratropical storms affecting Florida, 
tying the record set in the 1997-98 dry season.  
Figure 5 shows the daily gridded mean sea level 
pressure (MSLP) over Florida for the dry season 
with the temporal location of the 18 storms.  Typical 
of strong El Niño’s February and March were 
exceptionally stormy with a trend of successively 
deeper storms leading to a “climax low” for the 
season in mid-March.  

At first glance, successive severe weather events 
might be expected across Florida with the warm 
Gulf of Mexico providing ample low-level moisture. 
However, the 2009-10 dry season had a below 
normal 18 weak (none ≥EF2) tornadoes on 10 days 
(normal is 22 tornadoes with 3≥EF2) compared to 
the 1997-98 dry season with 71 tornadoes on 21 
days with 10 ≥EF2. The lack of significant severe 
weather despite the record strength jet stream and 
number of extratropical storms was a result of the 
persistent, strongly negative AO.  

2.2 Record negative Arctic Oscillation – Below 
normal temperature and tornadoes 

Daily AO values during the Florida dry season 
plotted against the daily mean temperature for 
Orlando, Florida and the temporal location of the 10 
Florida tornado days are shown on Figure 6. The AO 
index was negative from the 1st of December 
through early March, more than half of the dry 
season. There were two major negative AO events 

Fig. 5.  Average daily dry season MSLP for Florida 
with the 18 significant extratropical storms 
(<1012mb) indicated by large red “L’s”.   

Fig. 6  Daily AO index and Orlando mean temperature 
from 1 November 2009 through 30 April 2010 with 
the 10 tornado days indicated. 
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with just a very brief respite between them in late 
January. In comparing the daily AO values with 
Orlando mean temperature it is easy to see the 
relationship between the leading negative AO 
pattern and cold weather in Florida. Indeed, 
Hagemeyer (2007b) noted there was only one way 
to get sustained cold weather in Florida: the high 
amplitude meridional trajectory associated with 
the negative AO pattern.  

As the first negative AO event starting in 
December strengthened, each subsequent 
extratropical storm and cold front brought 
reinforcing cold air deep into Florida and beyond. 
There were 3 weak tornado days during the first 
half of December with passing extratropical 
storms which is not unusual. However, as the 
negative AO strengthened and persisted there were 
no more tornado days until it briefly abated in 
mid-January allowing warmer weather to return. 

The cold air intrusions associated with the first 
negative AO event resulted in significantly colder 
than normal shelf waters by late January, 
particularly in the northeast Gulf of Mexico 
(Figure 7), and very cold soil temperatures as far 
south as the Florida Everglades (Figure 8). In real-
time, the author and his colleagues speculated that 
the cold water could weaken convection with 
future ET Cyclones in Gulf of Mexico as the dry 
season progressed.  

After two weak tornado days during the brief 
warm period in the second half of January 2010, 
the strong negative AO pattern returned and 
reinforcing cold air masses following the passage of strong storms again continually impacted Florida. It 
would be 47 days until another weak tornado day occurred in mid-March. The total lack of tornadoes in 
February in an El Niño winter was unprecedented. This second negative AO event insured that the shelf 
waters of the Gulf of Mexico would not recover to normal through the end of the dry season. The average 4 
inch soil temperature from 1 January through 31 March at the Everglades Agricultural Research Center was 
17.7°C in 2010 versus 21.6º during the last El Niño in 2007. 

Interestingly, as soon as the strong negative AO abated in mid-March, weak tornadoes again occurred 
with the passing extratropical storms. This illustrates the propensity for strong extratropical cyclones to 
produce severe weather in Florida. The record negative AO pattern ended in mid-March and the typical 
seasonal trend of steadily rising temperatures without significant cold air intrusions occurred. However, the 
cold shelf water and soil temperatures persisted until very late into the dry season. The cumulative effect of 
the cold weather had a major impact on the ability to develop a warm, moist, unstable airmass in the warm 
sectors of passing storms to fuel the deep convection needed to produce supercell thunderstorms capable of 
spawning violent tornadoes. The net result of the frequent incursions of cold air into, and well south of, 
Florida was the modification of the typical maritime tropical (mT) airmass deep into the tropics. This resulted 
in a huge positive instability anomaly (more stable +5°K) right over Florida during the peak severe weather 
season of February and March (Figure 9) that greatly reduced severe local storm potential. The cold weather 
had a negative societal impact, but the lack of violent tornadoes was a very positive consequence. 

Fig. 7  Sea surface temperature (SST) anomaly for 27 
January, 2010. 

Fig. 8  Soil temperature (°C) from January 1 to March 
31 at the Everglades Agricultural Research Station 
for the 2010 (red) and 2007 (green) El Niño’s.
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3. Concluding renarks: A reality check for the limits of predictability 

The author (Hagemeyer 2007a) found that the AO had 
a significant correlation to jet stream strength over Florida 
that was additive to the impact of El Nino. In other words, 
a negative AO would tend to make the jet stream stronger 
over Florida during an El Niño and presumably increase 
the chances for stronger extratropical cyclones and severe 
weather. The record strong, persistent, negative AO 
pattern indicative of blocking of early 2010 did indeed 
result in a jet stream of record strength over Florida during 
the peak severe weather season.  However, while not 
significantly modifying the traditional tracks of 
extratropical storms up to the point of impacting Florida, 
the influence of the record negative AO resulted in higher 
amplitude storms downstream of Florida compared to past 
El Niño’s. This influence can be seen in the significant 
eastward extension of the jet stream into the Atlantic 
Ocean east of Florida that is not present in the two greatest 
El Niño’s of 1983 and 1997 (see Figs. 4a-c). This pattern 
left Florida largely on the cold side of the mean upper 
level jet circulation. It is perhaps not a coincidence that 
rare winter tornadoes, stronger than any in Florida, struck 
both the Bahamas and Bermuda during these unusual 
mean conditions. 

Historic deadly tornado events in the El Niño’s of 
1966, 1983, 1998, and 2007 all occurred when the AO was 
weakly negative. It is a subject ripe for more research, but 
it is reasonable to conclude that a little bit of negative AO 
during El Niño’s favors increased chances of severe 
weather in Florida, but a very strong negative AO is a 
limiting factor. This would be very important information 
for seasonal preparedness. The reality is that the AO and 
other teleconnections are not reliably predictable beyond a 
few weeks and a negative AO the likes of the 2009-10 
event had never been seen before.   

It would, of course, be scientifically incorrect to state that El Niño causes violent tornadoes in the Florida 
dry season, but it might not be incorrect to say that a strong negative AO can limit them. Figure 10 is a simple 
conceptual schematic time/space scale diagram illustrating the predictability of tornadoes in Florida. There is 
a cascade of environmental processes on various scales that must take place to produce a violent tornado in 
Florida, but there are certain basic requirements that must be met such as the synoptic setting of the warm 
sector of an extratropical cyclone (Figure1).  To this extent El Niño certainly sets the stage for increased 
severe weather in Florida, but all the various actors from the synoptic scale to the sub-storm scale have to play 
their parts a certain way.  

The rarity of violent killer tornadoes is testament to the difficulty of all the right atmospheric conditions 
coming together in space and time and striking vulnerable housing. El Niño significantly tilts the odds that 
this will happen in Florida. While El Niño increase the chances that the necessary conditions for severe 
weather will be more likely, the repeated cold outbreaks associated with the strong negative AO can mean 
that sufficient low-level moisture and instability in the warm sectors of extratropical storms is impossible – 
hence the total lack of tornadoes in February despite record storminess.  

Fig. 10 Simple conceptual predictability 
considerations for conditions leading to strong 
tornado development over Florida.

Fig. 9  Composite surface Lifted Index (ºK) 
anomaly from 1 February through 31 March, 
2010.
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How many ≥ EF2 tornadoes would have impacted Florida during the 2009-10 dry season without 
persistent cold air outbreaks and cooling of land and sea, and would any of them have struck vulnerable 
housing resulting in fatalities?  It is impossible to know. Insight might be gained into this hypothetical 
question by considering that on the morning of March 29th, 2010 supercell thunderstorms in the warm sector 
of an extratropical storm caused several strong tornadoes that killed three people on Grand Bahamas Island 
just east of Florida where all the sufficient atmospheric conditions finally converged in space and time to 
produce strong tornadoes that intersected with a vulnerable population.  

The phases and combinations of ENSO, AO/NAO, PNA, and the MJO can greatly affect the odds off 
certain extreme weather events occurring in a region such as Florida on a seasonal scale and there would be 
tremendous benefits to be gained in their reliable prediction. Until significant progress is made in this area the 
reality check on ENSO-based forecast schemes remains. 
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More accurate forecasts of climate conditions over time periods of weeks to a few years could help 
people plan agricultural activities, mitigate drought, and manage energy resources, amongst other 
activities; however, current forecast systems have limited ability on these timescales.  Models for such 
climate forecasts must take into account complex interactions among the ocean, atmosphere, and land 
surface. Such processes can be difficult to represent realistically.  To improve the quality of forecasts, 
this report makes recommendations about the development of the tools used in forecasting and about 
specific research goals for improving understanding of sources of predictability. To improve the 
accessibility of these forecasts to decision-makers and researchers, this report also suggests best 
practices to improve how forecasts are made and disseminated.   

1. Best Practices 

 Operational forecasting centers produce regular forecasts of climate for periods of weeks to years, called 
intraseasonal to interannual timescales.  These centers provide information on drought conditions in the 
coming seasons or forecasts of the effects of El Niño. This type of information can be useful to both public 
and private decision-makers, such as farmers, insurance firms, or water resource managers. This report 
suggests best practices for the procedures and protocols associated with making forecasts, with the goals of 
increasing transparency and improving forecast quality.   

Increase collaboration between operational centers and the research community to encourage the 
exchange of ideas between the two cultures. For example, operational centers could hold workshops 
focused on forecast development and grant short-term appointments to visiting researchers. 

Enhance transparency by establishing public archives of forecasts, comparisons of past forecasts to 
actual climate conditions, the measurements used to produce forecasts, and the details of forecasting 
models.  Archives of the inputs, outputs, and tools used in forecasts can help quantify and identify sources of 
forecast error, assist users as they interpret forecasts to their own needs, and document how forecasts are 
made using a variety of climate prediction tools. 

Broaden the metrics used to assess forecast quality. No perfect metric exists to convey all the 
information about a forecast; therefore multiple metrics should be used. 

2. Improving the Building Blocks of Forecast Systems 

 Intraseasonal to interannual forecast systems are composed of several “building blocks,” including 
observational systems, models, and data assimilation schemes, systems that expand the types of data that can 
be used for a forecast. The committee recommended improvements to the building blocks that would enhance 
forecast quality.  

Use statistical techniques to complement predictions from models. Statistical techniques, especially 
non-linear methods, can be used to identify errors in dynamical models, sets of equations that describe the 

The following is a summary of the recently released report from the National Research 
Council entitled, “Assessment of Intraseasonal to Interannual Climate Prediction and 
Predictability”.  The full report is available online at http://www.nap.edu. 
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motions of the atmosphere and ocean. 
Statistical techniques can also be used 
to translate forecasts to more local 
scales, which can benefit decision-
makers. 

Investigate and correct errors in 
the representation of physical 
processes in dynamical models. For 
example, models often fail to represent 
important processes associated with 
clouds, which can impact climate on 
regional and global scales. Sustained 
observations of complex climate 
processes are needed to better diagnose 
and correct these errors.  

Continue exploration of multi-
model ensembles, tools that combine 
predictions from different climate 
models when making a forecast. 
Work is needed to develop standards 
and metrics that could help determine 
the optimal selection and weighting of 
ensemble members. 

State-of-the-art data assimilation 
systems should be used by forecast 
centers, and the types of data used to 
make forecasts should be expanded. 

3. Research Goals for Sources of 
Predictability 

 Climate forecasts are based on “sources of predictability,” variables or processes in the atmosphere, 
ocean, or land surface that can influence climate in predictable ways on intraseasonal to interannual 
timescales. To better understand key processes that are likely to contribute to improved forecasts, 
research is needed in several areas, represented by the questions listed below. 
• How could the Madden-Julian Oscillation, a recurrent pattern of tropical rainfall and atmospheric 

circulation, be used to predict climate on intraseasonal to interannual timescales? How does the Madden-
Julian Oscillation interact with other recurrent climate processes, such as El Niño and the Indian 
monsoon? 

• How do interactions between the stratosphere and lower layers of the atmosphere impact climate on 
intraseasonal to interannual timescales? 

• How do interactions between the ocean and the atmosphere, for example the exchange of heat and 
moisture between the ocean’s surface and the atmosphere, impact climate processes? Similarly, how do 
conditions on the land surface, such as those associated with soil moisture, influence atmospheric 
conditions, and vice versa? 

• How do forecasts represent unexpected events such as volcanic eruptions or nuclear explosions?  These 
events can alter the composition of the atmosphere with consequences for climate in the weeks, months, 
and years that follow. 

• How should forecast systems incorporate information on long-term changes in the climate system, such as 
increases in greenhouse gas concentrations or alterations in the types of land cover? 

Figure 1. This chart shows predictions of tropical sea surface  
temperature associated with El Niño and La Niña events over a  
period of about two years, generated by various statistical 
(colored circles) and dynamical (colored diamonds) models, 
along with observations of actual sea surface temperatures 
(black circles). Many of the models predicted the evolution of 
sea surface temperature relatively accurately, but the spread 
among the different models is large. 

      Source: International Research Institute for Climate and Society. 
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1. Introduction  

The Madden Julian Oscillation (MJO) is 
an eastward propagating intraseasonal (i.e., 
~ 30-90 days) oscillation in tropical winds 
and convection, which is strongest during 
the boreal cold season months of November 
through April (Madden and Julian 1994). 
MJO influences are many and include 
impacts on global tropical cyclogenesis 
(Maloney and Hartmann 2000; Vitart 2009), 
North American and Asian monsoon 
systems (Zhang and Dong 2004), 
midlatitude stormtrack variations (Lin and 
Brunet 2009), and the evolution of El Niño-
Southern Oscillation (ENSO) variability 
(Pohl and Matthews 2007). As such the MJO 
offers enhanced prospects for improving 
intraseasonal to interannual climate 
prediction. 

In this study, we conduct an assessment 
of MJO variability in different National 
Centers for Environmental Prediction 
(NCEP) reanalysis and simulations from the 
coupled atmosphere-ocean Climate Forecast 
System (CFS). We use seasonal and 45-day 
retrospective forecasts from two systems: 
CFS version 1 (CFSv1, Saha et al. 2006) and 
an updated version of the CFS (CFSexp) 
which is under consideration to become the 
next generation CFS version 2. Recently, 
NCEP has also completed a state of the art 
coupled reanalysis, the Climate Forecast 
System Reanalysis (CFSR) (Saha et al. 
2010). The evaluation of an updated CFS 
and a new long-term reanalysis and 
reforecast dataset is an added benefit to this 
analysis, effectively documenting MJO characteristics in an analysis system, i.e., the CFSR, and MJO 
simulation and prediction in the counterpart coupled climate model. 

2. Data and methodology 

To assess the observed features of MJO variability we use the NCEP/DOE Reanalysis-2 (R2) (Kanamitsu 
et al. 2002) and the NCEP CFSR (Saha et al. 2010). In addition to the various improvements in the model 

Fig. 1 Lag correlations of 20-100 day filtered 10ºS-10ºN 
averaged precipitation (shaded) and 850 hPa zonal winds 
(contoured) with respect to the Indian Ocean precipitation 
index. (a) R2 850 hPa zonal winds and GPCP precipitation, 
(b) CFSR 850 hPa zonal winds and GPCP precipitation, (c) 
R2 850 hPa zonal winds and R2 precipitation, and (d) CFSR 
850 hPa zonal winds and CFSR precipitation. Warm (cold) 
colors indicate positive (negative) correlations for 
precipitation, while solid (dashed) lines indicate positive 
(negative) correlations for 850 hPa zonal winds and are 
contoured at 0.1 intervals. 
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physics, the CFSR is produced based on a coupled atmosphere-ocean-land guess forecast with a much higher 
atmospheric horizontal resolution (T382) and includes direct assimilation radiance data (Saha et al. 2010).  
The reliance on two NCEP reanalysis systems is twofold: To assess potential differences in MJO features 
between the R2 and CFSR, and to provide the proper benchmark data for the CFSv1 and the updated CFSexp 
simulation and predictionss, as these reforecasts are initialized by the R2 and CFSR respectively. We also 
employ the use of observed outgoing longwave radiation (OLR) data from the NOAA AVHRR (Liebmann 
and Smith 1996) and GPCP precipitation data (Xie et al. 2003). The assessment of MJO simulations and 
predictions is based on 4-member ensemble reforecast datasets from the NCEP coupled climate models, 
CFSv1 and CFSexp. For the simulation analysis the initialization is in early October and the target dates are 
November 1 – April 30 effectively eliminating the influence of the initial conditions, however, retaining the 
potential influence of realistic ENSO variability throughout the simulation.  

3. MJO variability 

Quasi-observed1  MJO variability is examined in Figure 1 via lagged correlations of the reanalysis and 
observed 20-100 day bandpass filtered daily anomalies (i.e., MJO timescale) of precipitation and 850 hPa 
zonal winds against an Indian Ocean precipitation index, representing the area averaged daily precipitation 
anomalies over the domain 70º-100ºE and 10ºS-10ºN (Waliser et al. 2009). The analysis is carried out over 
the years 1982-2006 for the months of November – April. Figures 1a and 1b display the lag correlations using 
the observed GPCP precipitation with reanalysis 850 hPa zonal winds from the R2 and CFSR respectively. 
The 850 hPa zonal wind propagation from R2 and CFSR compare quite nicely when used in conjunction with 
the same observed precipitation, and similarly capture known features of the MJO evolution, for example 
robust precipitation propagation to the dateline and faster 850 hPa zonal wind propagation in the western 
hemisphere.   

Significant differences emerge when the lag correlations are computed using internally consistent 
reanalysis fields, i.e., reanalysis derived winds and precipitation. Figures 1c and 1d highlight this feature as 

Fig. 2  Power spectra of 850 hPa zonal winds and OLR for the Indian Ocean in the CFSexp (black), CFSv1 
(blue) NCEP R2 (red), and NCEP CFSR (purple), and NOAA AVHRR (cyan dashed). The units for 850 
hPa zonal winds are  m2 s-2 day while for OLR is w2 m-4 day. 850 hPa zonal winds are area averaged over 
the domain of 15ºS-Eq and 70ºE-100ºE in panel a, while OLR is area averaged 10ºS-5ºN and 70ºE-100ºE  
in panel b. 

──────────── 
1 The reference to “Quasi-observed” reflects the uncertainty in reanalysis based fields over sparsely observed areas (i.e., 
Indian Ocean) as they are highly model dependent there. 
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evidenced by the weak propagation of both precipitation and 850 hPa zonal winds in the R2-only 
representation (Fig. 1c) as compared to the more robust propagating features depicted in the CFSR-only 
representation (Fig 1d).  Particularly noteworthy in the R2-only depiction is the lack of any coherent eastward 
propagation of an 850 hPa zonal wind anomaly at any lead time prior to t minus 10 days. The eastward 
propagation of precipitation to the dateline (albeit weaker) and stronger 850 hPa zonal wind propagation into 
the western hemisphere in the CFSR-only analysis demonstrates the improvement in the depiction of tropical 
intraseasonal variability in this new reanalysis system. Since the R2 and CFSR 850 hPa zonal winds show 
similar lag correlations with the GPCP rainfall (Figs 1a and 1b), the improved CFSR-only correlations 
indicate a better rainfall simulation.  Due to the mutual interaction between convection and large-scale 
circulation, the improved rainfall in the CFSR implies an enhancement of model physics or rainfall-related 
dynamical processes such as the low-level moisture convergence, or both.   

Another useful diagnostic to assess the MJO is to compare the power spectra of selected fields from 
observations, reanalyses, and climate simulations. Figure 2 a and b shows the power spectra of unfiltered 
daily anomalies of 850 hPa zonal winds and OLR in the various observed and simulated datasets for the 
November – April period of 1982-2006 over the Indian Ocean. The extended winter daily anomalies exhibit a 
maximum in spectral power in the 30-90 day band, representative of the MJO timescale. Both the CFSv1 and 
CFSexp simulate a similar peak in the power spectra of 850 hPa zonal winds when compared to reanalysis 
data, however their amplitude is much stronger, although the CFSexp shows some amplitude improvement 
over its predecessor. The observed power spectra from the NOAA satellite data exhibit a broadened spectrum 
with a double peak in the 30-90 day band. While both reanalysis products show less power in the 
intraseasonal band, the structure of the CFSR representation follows that from the observations more closely, 
i.e., the broadened spectrum and double peak. The NCEP R2, CFSv1 and CFSexp all produce sharp 
intraseasonal peaks at lower frequencies as compared to observations and the simulations have greater 

Fig. 3  Same as Figure 1 except for the lag correlations with respect to the Western Pacific precipitation index and 
for El Niño (left column) and La Niña (right column) years.  
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amplitude. 

4. ENSO/MJO interaction  

MJO variability has the potential to be significantly modulated by interannual variations of the climate 
system, and in particular by ENSO, given the co-location of the MJO and ENSO climate variability modes 
over the tropical Indian and Pacific oceans. To separate the impacts of ENSO on the structure of MJO 
variations we first stratify the daily anomaly fields by positive and negative ENSO phases. The classification 
is gleaned from the Climate Prediction Center (CPC) historical Niño 3.4 indices from 1982-2006.   

 Figure 3 shows the observed representation (top), and the CFSv1 (middle) and CFSexp (lower) during El 
Niño (left) and La Niña (right) years respectively. Given our focus on ENSO modulation the lag correlations 
are performed against a western Pacific precipitation index, calculated as the area averaged precipitation in 
the 160ºE-185ºE 10ºS-10ºN domain. Striking differences in the propagation features are noted between El 
Niño and La Niña years. During El Niño the intraseasonal anomalies of precipitation and 850 hPa zonal winds 
propagate coherently through the Indian Ocean, across the Maritime Continent, and into the western Pacific, 
separating as they enter the eastern Pacific domain.  During La Niña years the propagation of the precipitation 
and 850 hPa zonal wind anomalies appears to be thwarted as they enter the western Pacific, perhaps a 
consequence of the negative feedback via coupling of the atmosphere to a cold ENSO SST anomaly. 

The model responses are mixed. 
Both versions of the CFS capture 
the propagation features over the 
Eastern Hemisphere during El Niño, 
however tend to speed up the 
propagation of 850 hPa zonal wind 
anomalies upon crossing the 
dateline. The situation during La 
Niña is not as clear. Neither version 
of the CFS seems to coherently 
propagate the 850 hPa zonal wind 
and precipitation anomalies over the 
Indian Ocean as in the observed 
depiction. This indicates that the 
simulated intraseasonal activities in 
the western Pacific are less 
connected to the variability in the 
Indian Ocean than that in the 
observed, a manifestation of the 
model’s failure to propagate across 
the Maritime Continent.  The 
simulated features east of the 
Dateline do exhibit some degree of 
fidelity, mostly in the wind field. 
The interruption to the eastward 
propagating intraseasonal anomalies 
near the Dateline is captured to 
some degree, more so in the 
CFSexp. 

The observed power spectra of 
850 hPa zonal winds (15°S-Eq; 
165°E-190°E) and OLR (20°S-5°S; 
160°E-185°E) over the western 

Fig. 4  Western Pacific power spectra as a function of ENSO phase 
over the domain of 15ºS-Eq and 160ºE-185ºE for 850 hPa zonal 
winds, and 20ºS-5ºS and 160ºE-185ºE for OLR. The unit is w2 m-4 
day for OLR and m2 s-2 day for 850 hPa zonal winds. 
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Pacific in Figure 4 shows 
much more significant 
variability as a function of 
ENSO phase, with El Niño 
winters exhibiting stronger 
spectral density, and in the 
case of 850 hPa zonal winds 
a peak at slightly lower 
frequency than that of La 
Niña phases. Furthermore, 
during El Niño the OLR and 
850 hPa zonal winds do not 
have the same spectral peak, 
with 850 hPa zonal winds 
maximizing at a lower 
frequency than that of OLR. 
This characteristic is absent 
during La Niña. The relative 
amplitude of the power 
spectra as a function of 
ENSO phase is captured by 
both versions of the CFS for both OLR and 850 hPa zonal winds. 

5. MJO prediction  

While we cannot claim significant improvements in MJO simulation from CFSv1 to CFSexp the notable 
gains in representing the MJO in the new NCEP/CFSR reanalysis system offer the prospect for enhancement 
in near term (i.e. ~ 1-3 weeks) prediction of the MJO in the CFSexp, given the noticeable improvement in 
MJO related propagation characteristics in the CFSR-only depiction (Fig. 1). The forecast skill is calculated 
from several experimental 45-day runs for the CFSexp initialized daily between November 9-December 13 
and February 9-March 13 for the years 1982-2006. For the CFSv1 it is only possible to calculate the skill for 
the common days of the period (~40 for each year) as daily initialized runs are not available.  Figure 5 shows 
the forecast skill of the first two principal components of 20-100 day bandpass filtered 200 hPa velocity 
potential in the CFSv1 (left panels) and CFSexp (right panels). These structures typically represent the likely 
pattern of MJO variability (not shown). The red and blue curves denote the November-December runs and 
February-March runs respectively (to assess any potential seasonality), while the black curve is the average 
skill over all runs. There is a significant increase in useable skill of the CFSexp version in predicting the MJO 
(~ 16 days) as compared to the CFSv1 (~ 6 days). The skill was not affected by the increased number of 
forecasts in the CFSexp (i.e., 62 vs. 40) as it remained similar when only comparing the common days 
between the two versions of the model (not shown). Another improvement is seen at the initial timestep where 
the CFSexp has a higher correlation, apparently a reflection of the improved initial conditions when compared 
to R2, and minimization of initialization shock due to the use of a similar model for the initializing CFSR and 
the predicting CFSexp, a situation that doesn’t occur for the CFSv1, as the generation of R2 used a 
significantly different model than that of the CFSv1. A more in depth investigation of the MJO forecast skill 
in the CFS is currently underway and will be reported on in a forthcoming paper. 
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1. Introduction 

There are many sensible weather consequences of fluctuations in the zonal extent of the Pacific jet 
including a modulation of extreme precipitation events along the west coast of the United States (Higgins et 
al. 2000) as well as precipitation extremes in Hawaii, where a Pacific jet of limited zonal extent has been 
linked to active kona storm genesis periods in the central subtropical Pacific (Otkin and Martin 2004). 

 The Pacific jet undergoes rapid, sub-seasonal fluctuations in its zonal extent with the jet exit region 
potentially located anywhere from the western Pacific near 160°E to 120°W, off the west coast of the North 
American continent. In this study the evolution of the large-scale environment within which rapid jet 
retraction events occur will be described by means of a composite analysis of such events.  

2. Data and methodology 

The present study employs daily values of 
the horizontal wind (u,v), geopotential height (z), 
and sea-level pressure (SLP) (NDJFM from 
1979-1980 to 2006-2007) taken from the 
NCEP/NCAR Reanalysis Dataset (Kalnay et al. 
1996), daily values of outgoing longwave 
radiation (OLR) provided by NOAA/OAR/ESRL 
(Liebmann and Smith 1996), and a storm track 
dataset (K. Weickmann, personal 
communication) that provides pertinent records 
related to the lifecycle of cyclones in the 
Northern Hemisphere.    In addition to daily data 
smoothed using a five-day running mean, 
anomaly data sets were also created in which a 
daily climatology was removed from the 
smoothed daily data (five-day running mean) in 
order to reveal the perturbation from mean 
conditions.  

Two methods were used to identify jet 
retraction events.  The first, visual inspection, 
identified a jet retraction event whenever the 40 
m s-1 isotach of the 300 hPa zonal wind retreated 
west of 180° for five or more consecutive days.  
The first day in such a series of days was 
regarded as the beginning of a retraction event 
and was designated Day 0 for that event.  The 
second method used to identify jet retractions, 
the “box-average” method, identified retraction 
events based upon the area-averaged zonal wind speed in a box defined over the central Pacific Ocean (25°-
40°N, 180°-160°W).  Using the box-average method, a jet retraction event was identified when the average 

Fig. 1  Time series of the behavior of the composite 
zonal wind at 300 hPa.  Solid line is the departure 
from climatology of the mean box-averaged 300 hPa 
zonal wind (m s-1) over the 41 days comprising the 
analysis period for the 19 jet retraction events.  
Surrounding shaded area bounds the one standard 
deviation of the same variable for each of the 41 
days comprising the analysis period for each of the 
19 events. 
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zonal wind speed in the box was 10 m s-1 slower 
than the climatological wind speed for at least five 
consecutive days and dropped below climatology 
by at least 18 m s-1 at some point during the period.  
The nineteen events that were identified in both the 
visual and box-average methods were used for 
subsequent analysis. The significance of jet 
retraction events is further supported by EOF/PC 
analysis, applied to the 300 hPa zonal wind field, 
where the dominant mode of variability of the 
upper-level zonal wind is found to be a 
strengthening/weakening of the zonal wind in the 
jet exit region. 

Figure 1 shows a time series of the departure 
from climatology of the mean box-averaged zonal 
wind speed for all 19 retraction events bounded by 
one standard deviation from the mean for each day 
with respect to Day 0.  The rapidity of the jet 
retraction is unmistakable: the zonal wind speed is 
at or above its climatological value before the 
retraction, suddenly decreases by ~20 m s-1 at the 
retraction, and then increases toward 
climatological values after the retraction.  Such a 
time series testifies to an initial jet of 
climatological zonal extent, which rapidly retracts 
and then slowly recovers back toward climatology.  
Also, a correlation analysis (not shown) 
demonstrates that the predominant weakening of 
the zonal wind speed is concentrated near the jet 
exit region and does not reflect a uniform 
weakening of the entire jet structure.  
3. Results of the composite analysis 

The composite analysis was performed such 
that the 19 jet retractions were averaged together 
with respect to Day 0, forming the composite mean 
jet retraction event. The significance of the 
structures identified in the composites was 
assessed using a two-tailed student’s t-test and 
only structures that are statistically significant at 
the 95% confidence level are discussed. 

a. 500 hPa geopotential height and sea-level 
pressure 

Figure 2 shows the composite structure of the 
associated 500 hPa geopotential height anomalies. 
The height field is initially characterized by an 
expansive negative height anomaly of -75 m that 
stretches over the entire mid-latitude north Pacific 
basin at Day –10 (Fig. 2a).  The negative height 
anomaly is replaced by a growing positive height 
anomaly (Fig. 2c), which grows rapidly between 

Fig. 2  Composite structure of 500 hPa geopotential 
height anomalies (m) associated with a jet retraction 
event at Day (a) -10 (b) -5 (c) 0 (d) +5 (e) +10.  Solid 
(dashed) lines indicate positive (negative) height 
anomalies, contoured every 25 m with the zero line 
removed. 
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Day 0 and Day +5 into a 225 m positive height 
anomaly south of the Aleutian Islands (Fig. 
2d).  A transformation broadly similar to that 
observed at 500 hPa occurs in the SLP 
composite as well (not shown), with a nearly 
20 hPa positive SLP anomaly centered at 35°N, 
160°W at Day +5, dominating the central 
north Pacific basin. 

b. Ertel potential vorticity (PV) 

The first feature of interest in this 
composite of the 200-250 hPa Ertel potential 
vorticity (PV) anomaly, shown in Figure 3, is 
a negative PV anomaly that appears over the 
southern Rocky Mountains at Day -10 (Fig. 
3a) and moves to the northwest, weakening 
slightly by Day -5 (Fig. 3b).  Meanwhile a 
negative PV anomaly originating over 
Mongolia (Fig. 3a) moves eastward along the 
jet (Fig. 3b) and intensifies as it is stretched 
along the jet axis.  Between Day -5 and Day 0 
these two negative PV anomalies merge, with 
the Rocky Mountain anomaly retrogressing 
westward and the Mongolian anomaly moving 
into the jet exit region (Fig. 3b-c).  As these 
negative PV anomalies merge they also 
amplify, forming a zonally elongated negative 
PV anomaly in the northern jet exit region by 
Day 0 (Fig. 3c).   

A simultaneous progression occurs 
involving two positive PV anomalies located 
to the south of the jet core, forming a large-
scale, north-south PV anomaly couplet in the 
central Pacific basin at Day +5 (Fig. 3d).  Both 
the negative and positive PV anomalies 
become more isotropic between Day 0 and 
Day +5 (Fig. 3c-d).  The development of this 
couplet implies anomalous easterly flow in the 
central Pacific consistent with a retraction of 
the Pacific jet.  It is likely that interactions 
between the PV anomalies and the circulations 
associated with the jet exit region are 
fundamental to initiating jet retraction events. 

c. Storm tracks 

Using the storm track dataset cyclones 
were identified as local sea level pressure 
minima of 1010 hPa or less.  A storm track 
density was then calculated, where the number 
of storms crossing each grid box was 
computed for periods encompassing 20 days before and after a jet retraction event. The difference in storm 
track density between those two periods is shown in Fig. 4, where dark (light) gray circles indicate that more 

Fig. 3  Isertels of the composite perturbation 200 – 250 hPa 
Ertel potential vorticity associated with a jet retraction 
event at Day (a) -10 (b) -5 (c) 0 (d) 5 (e) 10.  Solid 
(dashed) lines indicated positive (negative) perturbation 
PV, contoured every 0.3 PVU (1 PVU = 10-6 m2 K kg-1 
s-1) with the zero line removed.  Gray shading 
represents the 40 m s-1 isotach of the composite 250 hPa 
zonal wind. 
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storms passed through a 
given point before (after) 
the jet was retracted.  In 
general, Fig. 4 illustrates 
a shift in storm activity 
from the eastern Pacific 
(prior to the jet retraction) 
to the central Pacific 
(after the retraction).  
After the jet is retracted, 
there is a notable 
reduction in storm track 
density downstream and 
poleward of the location 
of the original jet, to the 
south of the Aleutian 
Islands. Another region 
of distinct change in the 
storm track density is 
located in the central subtropical Pacific (near 30°N, 180°E) where there is an increase in storm track density 
after the jet retraction occurs (Fig. 4), corroborating the relationship between the zonal extent of the jet and 
subtropical cyclone activity presented in Otkin and Martin (2004).   

Fig. 4  Difference in storm track density associated with the composite jet 
retraction event (after – before) and the mean 40 m s-1 contour of the zonal 
wind before and after the event.  Dark (light) gray signifies that more storms 
occur before (after) a jet retraction event at a particular grid point.  The solid 
(dashed) black lines show the 40 m s-1 isotach of the composite 300 hPa 
zonal wind before (after) a jet retraction as in Fig.6. 

Fig. 5  Composite structure of OLR anomalies (W 
m-2) associated with a jet retraction event at Day 
(a) -10 (b) -5 (c) 0 (d) +5 (e) +10. Solid 
(dashed) lines indicate positive (negative) OLR 
anomalies contoured and shaded every 10 Wm-2 
with the zero line removed. 



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

 

28 

d. Outgoing longwave radiation (OLR) 

Figure 5 shows the composite OLR anomalies associated with jet retraction events. The quasi-stationary 
negative OLR anomaly over Indonesia is first observed at Day 0 (Fig. 5c) and indicates anomalous 
convection in that region.  Since it is relatively stationary, it is most likely not related to the MJO, which has a 
characteristic wave speed of 5 m s-1 (Zhang 2005).   

The large negative OLR anomaly located over the central/eastern Pacific after the jet retraction, strongly 
visible at Day +5 and Day +10 (Fig. 5d-c), is most likely an effect of altered storm track activity related to the 
retraction of the jet (Fig. 4).  

A large positive OLR anomaly, which is first apparent over northern Australia at Day -5 (Fig. 5b) is the third 
feature in the OLR composite and is not easily explained.  The positive anomaly moves gradually eastward 
through the jet retraction period (Fig. 5b-e) and is located in the tropical central Pacific at Day +10 (Fig. 5e).  
A positive OLR anomaly in that location is consistent with a localized decrease in the strength of the Hadley 
cell compared to climatology that could contribute to a decrease in the intensity of the Pacific jet. 

4. Summary and conclusions 

Composite analysis of jet retraction events 
shows that the centers of extratropical circulation 
in the North Pacific basin rapidly undergo a 
complete reversal within a two-week period in 
association with jet retractions as a dominant 
negative anomaly becomes a dominant positive 
anomaly across the North Pacific in both the 500 
hPa geopotential height and SLP fields.  The 
results are consistent with the composite 200 – 250 
hPa Ertel PV anomaly field, in which a jet 
retraction event is characterized by the formation 
of a zonally elongated, meridionally oriented PV 
anomaly couplet in the central North Pacific that 
becomes increasingly isotropic in the jet exit 
region as the jet retracts.  

Variability in the Pacific storm track is found 
to accompany jet retraction events.  When the jet 
is retracted, a substantial reduction in storm track 
density occurs poleward and downstream of the 
climatological jet exit region and subtropical 
cyclone activity in the central subtropical Pacific 
increases.  Examination of composite OLR 
anomalies during jet retraction events reflects the 
changes in storm track activity observed in the 
region.  

Two other features seen on the OLR 
composite are a quasi-stationary negative OLR anomaly located over the Indian Ocean, with a maximum 
amplitude at Day +5 and a positive OLR anomaly over Australia, maximized at Day 0.  Only the positive 
OLR anomaly over Australia significantly precedes the jet retraction events.  The physical connection 
between the Indonesian and Australian OLR anomalies and jet retraction events is not yet clear. 

Though characterizing the structure and evolution of jet retraction events has been the focus of the present 
study, there are connections to elements of the large-scale circulation that suggest physical mechanisms, 
operating in the jet exit region, that may underlie these rapid retractions.  Proposed mechanisms include 
barotropic instability (Hoskins et al. 1983; Otkin and Martin 2004) and the relaxation of the mean PV gradient 

Fig. 6  Conceptual model of the effect of a meridional 
dipole of perturbation PV on the structure and 
circulation of the jet exit region during jet retraction 
events.  Dashed lines are isertels of tropopause-
level PV.  Thick black lines represent schematic 
isotachs of the jet.  Circular regions labeled “+” and 
“-“ are perturbation PV features associated with jet 
retraction events (i.e. the PV dipole).  The dark gray 
arrow is the perturbation easterly flow at the jet exit 
region arising from the meridional juxtaposition of 
the perturbation PV anomalies.  The light gray 
arrows show the perturbation deformation 
associated with the PV dipole that weakens the PV 
gradient at and west of the jet exit region. 
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in the jet exit region (shown conceptually in Fig. 6).  Future research will explore these mechanisms and their 
possible connection with jet retraction events. 
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1. Introduction 

An accurate description of model physics, more quality observational data, and the efficiency of the 
assimilation techniques are essential to the data assimilation system success. For these reasons, advances in 
the model physics, developments on the analysis scheme, and more available observations almost always 
prompt a necessity that data from the recent past are being reanalyzed using the state-of-the-art “frozen” 
model to develop a climate record and understand climate variations. 

Over the past decades, the reanalyses developed at the National Centers for Environmental Prediction 
evolve from the National Centers for Environmental Prediction and the National Center for Atmospheric 
Research (NCEP-NCAR) Global Reanalysis I (GR1; see Kalnay et al., 1996), then the National Centers for 
Environmental Prediction and the Department of Energy (NCEP-DOE) Global Reanalysis II (it is an error-
fixed GR1; hereinafter referred to as GR2; see Kanamitsu et  al., 2002), and the North America Regional 
Reanalysis (hereinafter referred to as NARR; see Mesinger et al., 2006), to the most recent global Climate 
Forecast System Reanalysis (hereinafter referred to as CFSR; see Saha et al., 2010). The evolution represents 
decadal efforts on developing advanced model physics, improving the data assimilation technique, and 
utilizing more observational datasets to help understand the water and energy climate and its variations. 

In this study, these efforts are combined and the large-scale average surface water and energy budgets are 
compared explicitly with each other and with the available observations to assess the ability of forecast 
models to estimate the energy and hydrometeorological balances for the large Mississippi basin, which has 
been a key objective and a focused region of the past Global Energy and Water Experiments (GEWEX) 
Global Continental-Scale International Project (GCIP), the subsequent GEWEX Americas Prediction Project 
(GAPP), and presently the Climate Prediction Program for the Americas (CPPA). Of particular social and 
economic importance, understanding the water and energy budgets is helpful to the water use management 
and in the preparation of emergency (drought and flood) response.  With recent release of the most advanced 
CFSR dataset with a continuous coverage of 31 years (1979-2009), it is desirable to examine how the coupled 
high-resolution global reanalysis performs in developing regional budgets. Comparisons among the analyses 
and with measurements can yield new insights. Since surface water and energy processes are physically 
coupled. The differences in land model physics (section 2) and approach used to assimilate the observations 
(section 3) lead to notable differences in the surface water (section 4) and energy (section 5) budgets. 

2. Land surface models 

There are two land surface models used in the three reanalyses. One is the Oregon State University land 
surface model (OSU LSM, Pan and Mahrt, 1987), which is used in the GR2.  The other is the Noah LSM. It 
originated from the OSU LSM with many physical improvements and updates added by many researchers. 
The Noah LSM has the same soil depth of 200 cm as in the OSU LSM, but is configured with four vertical 
soil layers (at depths of 10, 30, 60, and 100cm). More details are described in Chen et al. (1996), Koren et al. 
(1999), and Ek et al. (2003). The Noah LSM is used in both CFSR and NARR. The only difference is that the 
version used in CFSR is a problem-fixed (fluxes over patchy snow) version of that was used in NARR. 

3. Assimilation of Observed Precipitation and Snow 

Basically, there are three broad approaches to assimilate observed precipitation. The first is being the 
coupled land/atmosphere 4DDA approach where observed Sea Surface Temperature (SST) is used with 
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interactive land and the atmosphere (AMIP style). This method was adopted by the GR2 wherein the 
precipitation forcing at land surface is from its parent atmospheric model. To prevent long-term climate drift 
of soil moisture, the GR2 first computes 5-day mean precipitation. The average is then compared with the 
corresponding observed “pentad” dataset of the Climate Prediction Center (CPC)’s Merged Analysis of 
Precipitation (CMAP, Xie and Arkin 1997) that merges satellite and gauge measurements on a 2.5° x 2.5° 
latitude-longitude grid. The difference is used to adjust (“nudge”) the first-layer soil moisture during the 
following pentad.  Water equivalent snow depth is handled on a weekly basis as only a weekly Northern 
Hemisphere analysis of snow cover (without snow depth) was available for ingest. In the GR2, the model 
snow depth was used (including model predicted snow accumulation) where it was consistent with the input 
snow cover analysis. When model snow cover disagrees with observation, the model snow depth was adjusted 
to the snow cover analysis by either removing or adding the model snow without affecting the soil moisture. 
The GR2 is run on T62 Gaussian grid (approximately 200-km grid) with 28 levels, and retrospectively from 
1979 to the present. 

The second approach is a hybrid coupled land/atmosphere 4DDA approach (also AMIP style) that was 
used in the NARR. Unlike the direct use of observed precipitation in the GR2, the NARR assimilates 
precipitation for driving the land surface, where observed hourly observed precipitation is first converted to 
latent heat, and then the latent heat is used to adjust the Eta model’s low-level moisture and cloud water fields 
(Lin et al. 2005). The hourly precipitation is mainly developed from the real-time 4-km U.S. precipitation 
analysis (Baldwin and Mitchell, 1997), hourly precipitation estimates from the WSR-88D radar network, and 
the hourly reports from the approximately 2,500 automated rain gauges via the GOES Data Collection 
Platform. The NARR uses the operational NCEP Eta model as the background model to better resolve 
orographic features, and runs on the Eta grid at horizontal space of 32 km with 45 vertical levels. Except the 
precipitation, most observed data in the GR2 were also used in the NARR (see Mesinger et al. 2006 for 
details on the observational data used in the NARR). The U.S Air Force Weather Agency’s 47-km snow 
analysis was used to replace the model snow depth daily at 00z.  

The third method is the uncoupled Land 4DDA (land model only) used in the CFSR. This approach is 
well-illustrated in the Global Soil Wetness Project (GSWP) of the late 1990's (Dirmeyer et al., 1999). Such 
approach has become known as Land Data Assimilation Systems (LDAS)  that do not actually assimilate 
observations to directly update the land states, but rather let the LSM-simulated land states physically evolve 
freely in response to the external analyses of near-surface atmospheric forcing, especially the precipitation 
analysis.     

Two sets of global precipitation analyses are used in the CFSR land surface analysis. One is the CMAP 
dataset used in the GR2. The other data set used is the CPC unified global daily gauge analysis, constructed 
on a 0.5° x 0.5° latitude/longitude over the global land. The model precipitation (and snow) is also used in 
combination with the two precipitation analyses to produce daily global observed precipitation using a 
blending technique (with different weights given to each product depending on the quality of the analysis, see 
Saha et al. 2010 for details). The optimal interpolation (OI) algorithm of Xie et al. (2007) is employed to 
partially account for the orographic enhancements in precipitation. The resulting precipitation product is used 
to drive the offline Noah model to provide “observed” soil moisture that updates the CFSR soil moisture 
every day at 00z. The near-surface atmospheric forcing data for the Global LDAS (GLDAS) are from the 
NCEP’s Global Data Assimilation System (GDAS). An external snow analysis (see Saha et al., 2010 for a 
description of the analysis) is also used to update the snow depth in such a way that if model guess snow 
depth was greater than twice (or less than half) the analyzed value, then the model snow depth was set to 
twice (half) the analyzed value, otherwise, the model snow depth was not affected. In contrast to the direct 
replacement of model snow depth, this treatment tends to let the model have a relatively smooth evolution of 
the snowpack and reduce the artificial addition of snow water into the system if the land model has a quick 
snow meltdown problem. The CFSR is run on T382 Gaussian grid with 64 levels, and respectively from 1979 
to the present. The high horizontal resolution (about 35 km) makes possible the direct comparison with the 
NARR (32 km). Note that as the all the water and energy budget terms are basically a function of the model 
parameterizations, the direct use of soil moisture from the uncoupled land data assimilation system in a 
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coupled system requires that the off-line Noah LSM be identical to the version used in the background model 
to avoid undesirable discrepancies. 

Table 1  CFSR, NARR, and GR2 reanalyses and Obs annual means (1979-2009) for the Mississippi basin, 
and correlations among the three (CFSR vs. NARR; NARR vs. GR2; and NARR vs. GR2) and 
observation (CFSR vs. Obs; NARR vs. Obs; and GR2 vs. Obs). Correlations are calculated from time 
series that have the climatological mean removed, the runoff correlation is based on the period from Oct 
1979 to Sep 1999). Shortwave radiation is SW, longwave radiation is LW, sensible heat is SH, latent heat 
is LH, ground heat is G, snow melting energy is SNOHF, surface temperature is Ts, and unbalanced 
energy forcing is UE. Precipitation is P, runoff is R, evaporation is E, total surface water W is composed 
of soil moisture and snow equivalent water, surface water tendency is ΔW/Δt, and the unbalanced surface 
water is UW. 

4. Surface water 

a) Model formulation 
The universal equation for computing surface water budget is 

      0 = –ΔW/Δt + P + Residual – E – R                    (1) 
The temporal change in surface water ΔW/Δt is equal to precipitation plus Residual (discussed below) minus 
evaporation P and runoff R (including surface and subsurface flow). The surface water includes total soil 
moisture in various soil layers (two in OSU and four in Noah), lakes and rivers which is relatively small 
compared to the total soil moisture and snow water equivalent. The evaporation includes direct evaporation 
from bare soil, evapotranspiration from vegetation (using the Jarvis-Stewart canopy resistance approach), 
direct evaporation from canopy surface (very small on a monthly basis; not considered in the present study), 
and snow sublimation (which is absent in the OSU LSM).  The residual term has two sources. One is from the 
explicit or implicit insertion of the observations (i.e., precipitation and snow analysis). The insertions include, 
the direct use of observed “pentad” data over a 5-day period and weekly snow update in the GR2, the daily 
snowpack update in the NARR (the modification of low-level moisture profile is needed to be accounted for 
in the atmospheric water budget), and the daily replacement of model soil moisture and snow update in the 
CFSR. The other part of the residual comes from model errors (e.g., unrealistic parameterizations) and post-
processing errors (such as interpolation of variable from one grid to another).  

  
CFSR 

 
NARR 

 
GR2 

 
Obs 

CFS 
vs. 

NARR 

CFSR
vs. 

GR2 

NARR
vs. 

GR2 

CFSR 
vs. 

Obs 

NARR 
vs. 

Obs 

GR2
vs. 

Obs 

SW (W m 2− ) 149.57 158.13 162.83  0.87 0.84 0.84    

LW (W m 2− ) -68.53 -77.08 -79.12  0.91 0.89 0.89    

-SH (W m 2− ) -32.49 -34.66 -9.13  0.77 0.61 0.60    

-LH (W m 2− ) -49.29 -55.34 -68.92  0.73 0.60 0.52    

G (W m 2− ) 2.28 -0.39 -0.38  0.25 0.43 0.34    

-SNOHF (W m 2− ) -1.26 -1.08 -2.51  0.82 0.47 0.39    
Ts (K) 283.46 284.38 283.14  0.98 0.97 0.96    

UE (W m 2− ) 0.28 -10.42 2.77  -0.03 0.08 0.23    

P (W m 2− ) 2.24 1.92 2.32 2.07 0.81 0.76 0.71 0.64 0.69 0.53 

R (mm day 1− ) 0.19 0.22 0.42 0.43 0.84 0.54 0.40 0.41 0.34 0.27 

E (mm day 1− ) 1.68 1.91 2.38 1.64 0.70 0.61 0.48    
W (mm) 484.82 484.89 434.50  0.84 0.75 0.67    

-ΔW/Δt (mm day 1− ) 0.37 0.01 0.04  0.96 0.84 0.83    

UW (mm day 1− ) 0.0 -0.22 -0.44  0.94 0.81 0.79    
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Comparisons of the monthly 
mean surface hydrologic 
components for the 31 years 
(1979-2009) are shown below. 
Monthly anomalies are 
calculated with the monthly 
mean climatology for each 
individual month subtracted. 
Table 1 provides the annual 
means for the same variables and 
the correlations of monthly time 
series among the three analyses, 
and those between the 
precipitation and stream flow 
observations and each analysis. 
Table 1 also shows that the 
evaporation in the CFSR (1.68 
mm/day) is in closer agreement 
with the estimate (1.64 mm/day; 
found by taking the difference of 
the observed precipitation and 
stream flow) than the other two 
analyses (1.91 mm/day in the 
NARR and 2.38 mm/day in the 
GR2, respectively). 

b) Comparison of reanalysis 

Figure 1 shows the mean 
annual cycle of the terms in Eq. 
(1) in the surface water budget of 
the three analyses. The observed 
precipitation is the precipitation 
used for driving the off-line 
Noah LSM (1979-2009) in the 
CFSR, and the observed runoff is based on the observed daily stream flow at the gauge at Vicksburg, 
Mississippi covering a 21-yr period from 1979 to 1999.  

The mean seasonal cycle of precipitation is accurately described in the NARR, which is the outcome of 
frequent adjustments to the low-level atmospheric moisture profile and cloud fields using the hourly observed 
precipitation; has slightly low bias in warm season and high bias in cold season in the CFSR, which are 
probably related to the atmospheric responses to soil moisture changes in summer and the stable boundary 
formulations in winter;  and has high bias in warm season in the GR2, which is a known problem (e.g. Betts et 
al., 1996), could be attributed to the convection and planetary boundary parameterizations. There also are 
indeed large differences in the total runoff. The CFSR and NARR runoffs are persistently lower and has 
smaller annual cycle compared to the observed stream flow, despite both analyses have relatively realistic 
precipitations, suggesting that the total runoff is mainly from the subsurface where soil moisture has smaller 
seasonality. Given the Noah LSM has four soil layers, it may also indicate that too much precipitation goes to 
the storage and the surface runoff may be underestimated. As a result, even with the large snowmelt in early 
spring (March), the total runoff in both NARR and CFSR is still low.  Further study is necessary to confirm 
this. By contrast, the GR2 has an amplified annual cycle. It is too high during the summer and low during the 
winter and correlates well with the precipitation bias. Unlike in the CFSR and NARR where total runoff peaks 
in March to April, the total runoff in GR2 peaks in June.  It may have multiple causes including high bias in 
summer precipitation, the 5-day delay in the nudging scheme, and possibly low bias in the predicted snow 

Fig. 1  Seasonal surface water budget terms of CFSR (green), NARR(blue), 
and GR2(red) Reanalysis for the Mississippi basin: (a) precipitation 
(P); (b) Runoff; (c) evaporation (E); (d) residual; (e) total soil water 
plus snow (W+S); and (f) surface water tendency ΔW/Δt (-d (W+S)/dt). 
In (a) and (b) precipitation and stream flow observations are shown as 
black lines where the observed runoff climatology is based on the 
stream flow at Vicksburg, Mississippi covering a period from Oct 1979 
to Sep1999.
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water, among others. Consistent 
with the precipitation cycle, total 
evaporation in the CFSR and 
NARR is lower than in the GR2, 
even the total surface water is 
considerably higher, is probably 
related to more controls over 
canopy transpiration in the Noah 
LSM. The higher (lower) 
evaporation in winter (summer) 
in CFSR than in NARR is also 
consistent with the precipitation 
biases. It is not surprising to see 
that there are very good 
agreements in surface water 
amount and variation between 
the CFSR and NARR as the 
success of NARR in assimilating 
precipitation (Messinger et al. 
2006) is equivalent to using the 
observed hourly precipitation to 
drive the off-line Noah LSM 
except the time interval is daily 
in the CFSR. Given the OSU and 
the Noah LSM have the same 
soil depth (2m), the considerably 
low in total surface water and the 
smaller seasonal cycle in the 
GR2 may be due to the larger 
evaporation (less control on 
surface evaporation) and higher 
runoff in the OSU LSM. In spite 
of the differences in assimilating observed precipitation, surface water in the three analyses has a more or less 
exaggerated seasonal cycle, because of the “nudging” of soil moisture towards an imposed seasonal cycle, 
which removes water in summer and adds surface water in winter when the model runoff has a low bias. Even 
in the CFSR where winter precipitation shows a high bias,  the excessive precipitation (mainly liquid over the 
large basin) goes to the deeper soil layers and adds to the seasonal variability and summer precipitation has a 
low bias, but with the much lower bias in runoff, the soil is still too wet. This cycle acts to damp the seasonal 
changes in water storage.  Note that for the residual in CFSR has the artificial updates removed (the dotted 
line with solid green dots in the storage change panel). As discussed earlier, it mainly comes from the model 
errors. During the summer months, the residual is more associated runoff with heavy rain (no routing scheme 
in this version of Noah LSM), whereas in the cold season, it is possibly more related to the snowpack physics. 
The post-processing process may contribute a small portion as well. On average, as shown in Table 1, the 
water budget in CFSR is closed on an annual basis. In the NARR, in addition to the artificial forcing (snow 
updates), the interpolation from the Eta grid to other user-friendly grids (the output is not on the native Eta 
grid) may have large errors, especially over steep and high mountains, so it is not surprising to see the highest 
residual in the summer. The reason of relatively low residual in the GR2 may be partially due to its coarse 
resolution. 

Figure 2 shows the variations of the monthly anomalies in the surface hydrological cycle. Despite the 
disparities in the seasonal means, the anomaly fields show greater similarity in amplitude and variation than 
do the corresponding means, which provides some renewed confidence in the value of the reanalyses. In 
particular, the precipitation in both NARR and CFSR has similar interannual variability and is closer to the 

Fig. 2  As in Fig. 1 for monthly anomalies of surface water budget terms 
from Oct. 1979 to Sep.1999 (three-month running means for the 
presentation only) for CFSR, NARR, GR2, and observations [(a) and 
(b) only]. 



YANG ET AL. 
 

 

35

observation (Table 1). In 
comparison, the GR2 
precipitation has more extreme 
years and larger interannual 
variation and thus has a lower 
overall correlation with respect to 
the observation (Table 1). 
Similar to precipitation, the GR2 
runoff has an amplified 
interannual variation than do the 
other two analyses, particularly 
in the summer months. In spite of 
the low bias of mean runoff in 
both NARR and CFSR, the 
anomaly correlates well with the 
observation (Table 1). The 
evaporation in the three analyses 
seems to agree well over the 
most years, e.g., the US Drought 
of 1988 (April to June 1988 
from the Midwest to the Great 
Plains) and the Great Flood of 
1993 (April to October 1993 
along the Mississippi and 
Missouri rivers and their 
tributaries). The disagreements 
between GR2 and the other two 
analyses from late summer of 
1996 to early spring of 1997 are 
associated with the negative 
precipitation anomaly in GR2, 
which are also reflected in the 
surface water. An examination of 
the observed precipitation data 
during this period is needed to 
find the causes. Despite the lower total surface amount in GR2, the interannual variation has similar 
amplitude to what is shown in the CFSR and NARR. Note that the unrealistic interannual variation of soil 
moisture at the beginning of GR2 might have two causes. One is the spin down of soil moisture from the GR1 
that was used to initialize GR2 on December 1, 1978. The other could be the pentad precipitation analysis in 
which missing rain gauge observations were mistakenly reported to zero. Thus, the use of GR2 soil moisture 
in the earlier period is cautioned (Kanamitsu et al. 2002). 

The change in surface water is comparable among the three analyses. Consistent with their mean seasonal 
cycles, the interannual variability in both CFSR and NARR is slightly higher than that in GR2. The water 
residual in CFSR has the smallest interannual variability. Unfortunately, the artificial forcings in both NARR 
and GR2 can’t be removed from the calculations, which make it hard to discern the causes that both NARR 
and GR2 have larger tendency terms. 

5. Surface energy 

The corresponding surface energy budget can be written as:          

      0 = SW + LW – SH - LH – G – SNOHF                                (2) 

Fig. 3  Seasonal surface energy budget terms of CFSR (green), NARR 
(blue), and GR2 (red) Reanalysis for the Mississippi basin: (a) Net 
surface solar radiation (SW); (b) net surface longwave radiation 
(LW); (c) sensible heat (SH); (d) latent heat (LH); (e) surface 
temperature (T s ); and (f) residual. 
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The net shortwave heating SW is balanced by net longwave cooling LW, the sensible heat SH, the latent heat 
LH, the ground heat G, and the snowmelt heat SNOHF. The analyses compute surface skin temperature 
diagnostically from the surface energy balance. On the monthly timescales, the variation in surface 
temperature Ts is closely tied to the changes in surface skin temperature. 

As shown in Fig. 3, there is almost a complete seasonal energy balance, where solar radiation provides 
large positive input; this input is slightly smaller in CFSR and larger in GR2 compared to NARR. This solar 
flux is balanced by net longwave radiation, sensible heat, latent heat (including snow sublimation), ground 
heat (see Table 1), and snow melting energy (see Table 1). All act to cool the surface, especially during the 
summer. Sensible heat and ground heat also help to warm the surface during the winter. The higher SW in 
GR2 is consistent with higher LH, lower SH, Ts, and LW. Also the lower SW leads to lower LH and LW, and 
higher Ts in the CFSR. The higher longwave cooling in GR2 during the cold months may be due to high 
sensible heat exchange that could be related to the stable boundary transfer coefficients. Compared to the 
NARR, there are stronger (weaker) sensible heating of the atmosphere during the summer (winter) and less 
(more) latent heat during summer (winter) in the CFSR, although the Ts in CFSR is generally lower. This is 
probably due to the adjustment to the atmospheric low-level moisture profile, which will impact boundary 
clouds and the partitioning of the net radiation flux. Note that the seasonal variation of surface temperature is 
similar in the three reanalyses with slightly larger in the NARR. The residual in GR2 is large during the early 
months. It is probably due to the lower thermal boundary condition and the absence of snow sublimation 
physics in the OSU LSM. The NARR has the largest residual in the relatively cold months. It is related to an 
error involved in flux calculations over patch snow. Unfortunately it was found too late to catch the NARR 
production phase. The 
modification of lower boundary 
moisture profile while 
assimilating the observed 
precipitation, especially during 
the summer, may also contribute 
to the error as well. The CFSR 
residual seems to have a seasonal 
cycle, which is positive during 
warm months and negative in 
cold months. It is probably more 
related to the ground heat flux. 
As shown in Table 1, the CFSR 
don’t have a near-zero annual 
ground flux compared to the 
other two reanalyses. As might 
be expected, with the coupled 
nature of the CFSR and the 
equipment of advanced physics 
in the Noah LSM, the CFSR has 
the smallest annual residual 
heating of 0.28 Wm-2, which is 
also consistent with its zero 
residual in the annual water 
budget. Considering other 
possible post-processing errors, it 
is assumed that the energy 
budget is closed on an annual 
basis in the CFSR. 

Figure 4 shows the variation 
of the anomalies in the energy 

Fig. 4  As in Fig.3 for monthly anomalies of surface energy budget terms 
(three-month running means for presentation only). 
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terms, which again have remarkable consistency among the three analyses. The anomalies in the energy 
budget have clear phase relationships which are in consistence with their climatologies. Note that shortwave 
and longwave components have almost opposite variations with each other. So do the sensible heat and latent 
heat, which probably means that they mirror variations in cloudiness, since less could cover gives more 
incoming shortwave and more outgoing longwave radiation. Actually, the radiation variations are somewhat 
similar to the surface water variation, which also suggests that increased surface water produces increased 
cloudiness. This conclusion also needs further study. The variation in residual heating is comparable with 
slightly larger in GR2. Table 1 shows the CFSR radiation fluxes are more like the NARR in the correlation of 
energy terms. 

6. Summary and discussion 

In this paper, the three analyses developed at the NCEP are compared with each other and with available 
observations for the Mississippi basin for the period 1979-2009. There are a number of noticeable differences 
and similarities. The GR2 precipitation, runoff, and possible evaporation are too high compared to the 
observations, whereas the CFSR and NARR runoff are too small even the precipitations are closer to the 
observations. The discrepancies are caused by physical parameterizations used in the land models and the 
approaches in which the observations are ingested in the data assimilation systems. There are large 
differences in the water budget, the disagreements on water budget terms between GR2 and the other two 
analyses are mainly caused by the OSU LSM physics, especially surface evaporation control and runoff 
parameterizations. The nudging scheme used in GR2 is not efficient and the imposed water climate might be 
quite different from the model’s climate, which will adversely impact surface evaporation and subsequent 
precipitation. These problems have been corrected by using the advanced Noah LSM and an alternative 
assimilation technique. The success of NARR in assimilating the highly quality observed precipitation 
through highly controlling the lower boundary moisture profile is a good example. The direct insertion of 
observed snow depth may also contribute to a slightly better water climate. In contrast, the CFSR assimilates 
precipitation via changing soil moisture obtained from the uncoupled land data analysis, it imposes less 
restriction on daily precipitation. However, because soil moisture has long memory and the correlation 
between soil moisture and precipitation could be very different over different climate regimes, thus this 
method is also susceptive to background model biases. So is the use of model snow depth within specified 
range, particularly in the cold months. 

    Focusing on the large Mississippi basin, this study shows that the CFSR and NARR depict better water 
climate than the previous GR2.  Despite the seasonal differences in water budget among the three reanslyses, 
the energy terms are comparable and highly correlated with each other (Table 1). Unfortunately, the 
reanalyses, more or less, carry errors, even in the CFSR where the water and energy budgets can only be 
balanced on an annual basis. Further study is needed to better represent land surface physics in future 
reanalyses. Nevertheless, the comparison shows that the CFSR achieves a large improvement over the 
previous GR2, and compares well with the NARR, and thus can be used in the global climate studies. 
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1. Introduction 

Understanding the transport of water over the surface of land is an ongoing subject of research. 
Freshwater flux has a direct effect on salinity in the ocean, which affects climate and water cycles. It modifies 
the density of water, mixed layer depth, and mixing and entrainment, all of which can affect sea surface 
temperature (SST) (Zhang and Busalacchi 2009). Moreover, freshwater flux is an important component 
forcing source driving thermohaline circulation (Yang et al. 1999). Studies have been done to determine the 
quantity of flow along rivers at various points in time and space. Most of them have focused on small 
watersheds or regional models (e.g., Liston et al. 1994; Oki et al. 1999; Lucas-Picher et al. 2003). For 
example, Liston et al. (1994) presented a runoff routing model that produced discharge hydrographs from 
regional gridded runoff data. Oki et al. (1999) calculated the mean runoff estimated by the Land Surface 
Models (LSMs) for drainage areas upstream of 250 operational global gauging stations. 

Recently, the climate modeling community has found the importance of freshwater forcing from 
precipitation or river to track the flow of water to the ocean on a global scale (e.g., Yang et al. 1999; Zhang 
and Busalacchi 2009). Yang et al. (1999) showed that the inclusion of freshwater input from precipitation 
could lead to increases in SST by as much as 0.5 K in the tropical ocean in an oceanic general circulation 
model (OGCM). They also suggested that the effects of salinity should not be neglected for realistic forecasts 
of tropical oceans. There are only a few modeling studies considering freshwater forcing and its salinity-
related effects on climate variability. Zhang and Busalacchi (2009) found that the impact of freshwater flux 
forcing leads to enhanced interannual variability and ENSO cycles. However, this was investigated using a 
hybrid coupled model constructed from the OGCM and the simplified atmospheric model. Using the fully 
coupled ocean-atmosphere GCM, the mechanisms response to the western tropical Pacific freshwater flux 
forcing were investigated by Wu et al. (2010). However, they imposed an idealized forcing over the limited 
region in the coupled model. 

The purpose of this study is to investigate the effects of river routing processes on simulated climatology 
in the Hadley Centre Global Environmental Model version 2 (HadGEM2) (Collins et al. 2008) in conjunction 
with a river routing scheme using the Total Runoff Integrating Pathways (TRIP) (Oki and Sud 1998). 

2. Experimental design 

Two experiments are designed to investigate the effects of river flow on a climate system. The run (RIV) 
with river routing scheme and the experiment (nRIV) without TRIP were performed. The simulations were 
initialized and spun up from an ocean state, corresponding to climatological fields of September mean 
potential temperature and salinity (Levitus et al. 1998). The atmospheric initial data was from analysis field 
by Met Office. The atmospheric initial data is largely irrelevant in climate simulations, certainly after the first 
few months. A more detailed description of the initial data is available in the study of Johns et al. (2006). The 
model integrations were run for an 11-year period from 1 September 1978, with an approximate 4-month lead 
time. The results for 10-year are analyzed because the key feature in 1979 (1-year) is similar to those during 
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1979-1988 (10-year) 
although it tends to be 
smoothed. It means the 
thermodynamic response 
between ocean and 
atmosphere is more 
dominant than ocean 
dynamics feedback in this 
study. 

3. Results and discussion 

The river routing 
processes in the RIV 
experiment affect salinity 
through the discharge of 
freshwater. Vertical 
distributions of salinity and 
temperature from the RIV 
and nRIV experiments over 
the tropical eastern Pacific 
(15°S ~ 15°N, 70°W ~ 
110°W) are shown in Fig. 1. 
The salinity from the RIV 
simulation is significantly 
decreased near the sea 
surface to around 0.6 
(PSU*1000), and slightly 
increased below 55 m 
compared to that from the 
nRIV simulation (Fig. 1a). 
In the RIV run, the 
temperature profile shows a 
warming about 1°K near sea 
surface and a cooling about 
1~2°K between 20 m and 
150 m compared to that 
from the nRIV run (Fig. 1b). 
It is clear that the RIV 
experiment results in a 
shallower ocean mixed layer 
depth (roughly 20 m) than 
the nRIV experiment 
(roughly 55 m). The reduced 
salinity from the RIV run 
causes an increase in SST 
due to shallower mixed 
layer depth. This leads to a 
weakening of trade winds, 
and consequently reduction 
of upwelling, which may further raise the SST by reducing the inflow of cold subsurface water into the mixed 
layer. 

(a) (b) 

Fig. 1 Vertical distributions of (a) salinity ((PSU-35) × 1000) and (b) 
temperature (K) averaged for the latitudinal band (15°S ~ 15°N) and the 
zonal band (70°W ~ 110°W) from the RIV and nRIV experiments. Solid 
line with open circles for the nRIV run, solid line with closed circles for 
the RIV run, and gray solid line for the Levitus (1994) observation data, 
respectively. 

(a) Salinity (log-scale) (b) SST 

(c) MLD (d) NET_SFC_Flux 

(e) SH (f) LH 

Fig. 2  The distribution of difference in the (a) salinity (PSU), (b) sea surface 
potential temperature (K), (c) mixed layer depth (m), (d) net surface heat 
flux (W m-2), (e) sensible heat flux (W m-2), and (f) latent heat flux (W m-2) 
between the RIV and nRIV experiments. Shading region shows the 95% 
significance level. 
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Figure 2 shows the 
horizontal distributions of 
differences in salinity, 
temperature, mixed layer 
depth, and fluxes for the 10-
year period between the RIV 
and nRIV runs. To estimate 
‘noise’, it shows the 95% 
significance thresholds as 
shading area. The significant 
reduction of salinity is 
observed in the eastern and 
western Pacific coastal 
regions, especially western 
Ecuador (Fig. 2a). It is due to 
the fact that the runoff is 
increased over the Papua New 
Guinea in the western Pacific 
region and the Gulf of 
Guayaquil west of the 
Ecuadorian coast in the 
eastern Pacific region. There 
is a positive feedback between the freshwater runoff and precipitation since the result from the land surface 
algorithm affects runoff from the TRIP. The runoff over these regions shows a noticeable distinction due to 
heavy rainfall (not shown). Reduced salinity over the coastal regions in the RIV run leads to an increase in 
SST over the eastern equatorial Pacific (120°W ~ 80°W), that is, an upwelling region (Fig. 2b). 

This is related to a decrease in the upwelling of cold seawater due to a reduction of trade winds. The 
resultant shallow mixed layer depth can cause the anomalous warming. It is consistent with the finding of 
previous studies. Yang et al. (1999) found that increased freshwater input from ocean precipitation produces a 
decrease in salinity and an increase in temperature in the upper ocean. Wu et al. (2010) indicate that a 
negative freshwater flux can lead to a tropical cooling. Meanwhile, an increase in SST over the mid-latitude 
central Pacific region is noticeable although changes in salinity are not significant. It is due to the shallower 
mixed layer depth over the mid-latitude (Fig. 2c) or to the change in the atmospheric teleconnection 
associated with the anomalous equatorial eastern Pacific warming. The reduced mixed layer itself also leads 
the warming of SST as long as no change in net heat fluxes (Yu et al. 2006). Although net surface heat fluxes 
are reduced over the eastern Pacific region (Fig. 2d), a reduction of mixed layer depth leads to an increase in 
SST. 

The RIV run reveals larger sensible and latent heat fluxes over the eastern equatorial Pacific regions 
(80°W ~ 120°W) than those from the nRIV run (Figs. 2e and f). A dipole pattern of heat fluxes difference 
appear over the central Pacific (120°W ~ 150°W). The ocean surface warming over the eastern Pacific 
induces the increase of latent and sensible heat fluxes, forming unstable conditions near lower atmosphere, as 
compared to the nRIV experiment. Meanwhile the differences in heat fluxes over the western Pacific are not 
significant. 

Simulated precipitation from the nRIV and RIV experiments for the 10-year period and Climate 
Prediction Center (CPC) Merged Analysis Monthly Precipitation (CMAP) data (Xie and Arkin 1997) are 
compared (Fig. 3). The nRIV simulation satisfactorily reproduces the distribution of precipitation (Fig. 3a). 
Two precipitation peaks appear in the tropics, indicating a double inter-tropical convergence zone (ITCZ), 
which is a typical defect observed in many GCMs (e.g., Dai 2006). Results from the nRIV experiment exhibit 
exaggerated precipitation over the central tropical ocean, western South America, and central Indian Ocean, 
whereas precipitation over the eastern equatorial Pacific and Atlantic Ocean is underestimated (Fig. 3c). 
Results from the RIV experiment show a better agreement with the observed than those from the nRIV 

(a) nRIV (b) RIV 

(c) nRIV – CMAP (d) RIV – CMAP 

Fig. 3  Precipitation distribution (mm day-1) averaged for the 10 yr (1979-
1988) period for (a) nRIV experiment, (b) RIV experiment, (c) the 
difference between the observation and nRIV experiment, and (d) the 
difference between the observation and RIV experiment. Contour line 
indicates difference fields and shading region shows the 95% 
significance level in (c) and (d). 
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experiment, due to a decrease in precipitation over the north of the equator in the central Pacific (Figs. 3b and 
d). However, the amount is exaggerated over the eastern equatorial Pacific region. It can be due to that 
precipitation activity leads to an increase in the runoff, which in turn raises the SST due to shallow mixed 
layer depth, and consequently enhances precipitation activity again. Meanwhile the distribution of 
precipitation in the middle latitudes is not altered distinctly by the introduction of freshwater runoff. 

4. Concluding remarks 

Our results suggest that the inclusion of freshwater routing from the continents to oceans is not negligible 
in climate simulation since it alters the SST, which is the external boundary condition for the atmospheric 
model. Resulting changes in the large-scale structure and precipitation are promising. However, there are a 
few issues to be cleared. First, the structure of thermohaline needs to be verified over an available observation. 
Further, modulation of surface evaporation due to the runoff over land needs to be considered. Despite these 
uncertainties, our study demonstrates that the freshwater runoff and its interaction with atmosphere should be 
considered in climate simulation. 
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1. Introduction 

 The Indian monsoon is a summertime (June – September) phenomenon that features an annual reversal 
of the winds over India along with the occurrence of 75% to 90% of the country’s annual precipitation 
(Mooley and Parthasarthy 1984). Because of its enormous contribution to total rainfall, the monsoon has 
widespread impacts on the Indian economy as well as on the robustness of a given year’s agricultural yield 
(Krishnamurthy and Shukla 2000). Variability of 
the monsoon on interannual and intraseasonal time 
scales is a well-documented and common 
occurrence (Krishnamurthy and Shukla 2000) and 
has large implications for the population of India. 
Interannual variability of the monsoon is 
characterized by flood or drought years, when all-
India receives above- or below-average rainfall. 
Intraseasonal variability is characterized by active 
and break periods. During an active period, central 
India (northern and southern India) receive 10 – 
30 days of above- (below-) average rainfall; break 
periods feature the opposite phenomenon. 
Intraseasonal oscillations have been correlated 
with the presence or absence of tropical cyclones 
(TCs) (Goswami and Mohan 2001). There is also 
significant debate regarding the existence of 
interannual variability in the intraseasonal 
oscillations (Goswami and Mohan 2001; Jones et 
al. 2004). Thus, variability studies are necessary 
for understanding and prediction of the seasonal 
and intraseasonal changes in the monsoon’s 
character. 

To improve the understanding of Indian 
monsoon variability, we set out to quantify the 
changes in evaporative sources for the 
summertime precipitation events over central 
India. Evaporative sources are the sum total of 
water molecules for precipitation events over a 
given region and are both local and remote in 
origin. Dirmeyer and Brubaker (1999) stated that 
since evaporation contributes to overall rainfall 
and soil moisture controls evaporation, rainfall is a 
direct function of soil moisture. They also claimed 

Fig. 1 Seasonal (JJAS) total evaporative source as 
estimated by R2 in all years (a), dry years (b), and 
wet years (c). The square box outlines the region 
from which we released parcels. 

A

B

C
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that soil moisture acts as a source of 
water for precipitation and can change 
the thermodynamics as well as the 
atmospheric circulation of a given state. 
We assume that isolating moisture 
sources by using back trajectories will 
help us infer changes in source regions 
and explain which mechanisms of 
monsoon variability are responsible for 
the variation in rainfall that we observe. 

2. Data and Methodology 

This study incorporates the Indian 
Meteorological Department (IMD) high-
resolution daily gridded rainfall dataset 
over the Indian region. The dataset was 
originally created by Rajeevan et al. 
(2006) for their analysis of active and 
break spells during the Indian monsoon. 
It is an IMD rain-gauge-based dataset 
that has been interpolated to a 1o latitude 
x 1o longitude grid over India and spans 
each day from 1951 – 2003.  

 This study also uses three different 
reanalysis products to provide input 
parameters for use in the back-trajectory 
program described below. These include 
the National Centers for Environmental 
Prediction/Department (NCEP/DOE) 
Reanalysis-2 (R2), the NCEP Climate 
Forecast System Reanalysis (CFSR), and 
the Modern Era Retrospect-analysis for 
Research and Applications (MERRA) 
datasets. From these datasets, we work 
with surface latent heat flux, surface 
precipitation rate, surface pressure, 
specific humidity, temperature, and the 
u- and v- components of the wind. CFSR 
and MERRA are considered 
improvements over R2, and we incorporate them into this study to check consistency of the results between 
datasets. We regrid each dataset to the T62 grid for intercomparison and also convert the data from pressure-
level to sigma-level for use in our program. 

Rainfall data from the IMD gridded dataset were area-averaged over all-India from 1 June to 30 
September for each year from 1951 to 2003. The five wettest, driest, and most-neutral years after 1979 were 
selected and labeled as wet, dry, and neutral years, respectively. Rainfall anomaly data from the IMD were 
area-averaged over central India for each day (15 May to 15 October) for each year of interest. We then 
extracted the low-frequency, 20-60-day mode from the time series using a simple recursive first-order 
butterworth filter to isolate nonperiodic oscillations of that length (Krishnamurti et al. 1995). Next, we 
recorded an active (break) period if a continuous string of 10–30 days was above (below) a zero mm day-1 

anomaly.  

A D

B E

C F

Fig. 2 Percentage difference in evaporative source between wet 
years and all years for R2 (a), CFSR (b), and MERRA (c), 
and between dry years and all years for R2 (d), CFSR (e), and 
MERRA (f). Areas of 90% significance are hatched. We used 
a mask to remove small values of evaporative source to 
eliminate artificially high percentage differences. 
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We used a quasi-isentropic back 
trajectory (QIBT) program to locate the 
evaporative sources of precipitation 
events over central India. Dirmeyer and 
Brubaker (1999) developed this method 
for a similar study of evaporative source 
variability over the central United States. 
The program releases saturated parcels 
wherever and whenever rain falls over 
central India and traces them backward 
isentropically using reanalysis winds. 
Moisture is removed from the parcels at 
a rate proportional to local evaporation at 
the current grid point to precipitable 
water at the current  grid point, and the 
parcels advect backward until they lose 
90% of their moisture or until 15 days 
have passed. 

3. Results 

Plots of evaporative source are 
shown only for R2 (Figure 1). Most 
evaporative source is concentrated 
locally over central India and extends 
westward and southward toward western 
Africa as well as eastward toward 
southeastern Asia. Evaporative source is 
higher (lower) in wet (dry) years 
compared to all years (Figure 1).  
Evaporative source plots for CFSR and 
MERRA (not shown) are similar to those 
of R2 but feature more remote and less 
local moisture sources. 

Next, we isolate differences in the 
magnitude and location of the 
evaporative source in dry years and in wet years. Here, we see patterns that are relatively consistent in each of 
the datasets. First, we compare wet years to all years in R2 (Figure 2a). We observe a general increase in the 
evaporative source along the low-level cross-equatorial flow region extending from central India southward 
and westward toward the coast of Africa. The results are similar for CFSR, but the enhancement of 
evaporative source does not extend as far to the south and instead extends farther to the east (Figure 2b). For 
MERRA, we see a pattern similar to that observed for R2 (Figure 2c). None of these results is statistically 
significant outside central India or the Arabian Sea. We make the claim that wet years feature an overall 
enhancement of monsoon flow. All regions supply increased moisture in this case, but the largest increase 
originates from the previously mentioned regions. For dry years, we observe an overall decrease in the 
magnitude of the evaporative source compared to all years. For R2 and MERRA (Figure 2d, f), the 
evaporative source is significantly reduced over northwestern India, and for CFSR, the source is significantly 
reduced over the Arabian Sea (Figure 2e). We conclude that all regions feature reduced moisture contribution 
in dry years and that the greatest reduction occurs over the cross-equatorial flow region.  

Furthermore, we observe the differences in location and strength of the evaporative source for active and 
break rainfall events. For both R2 (Figure 3a) and CFSR (Figure 3b), we see that active periods feature a 
significant increase in evaporative source over the western-central Bay of Bengal, which extends westward 

A D 

B E 

C F 

Fig. 3 Same as Figure 2, but for active and break evaporative 
sources. 
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over the Arabian Sea. This result is seen 
in MERRA as well (Figure 3c), but the 
difference is more significant than in the 
other datasets. We see the opposite result 
for all break periods (Figure 3d–f). In 
this case, there is a decrease in 
evaporative source and most significance 
lies over the western-central Bay of 
Bengal. At this time scale, we assume 
that TC activity over the Bay of Bengal 
acts as the dominant moisture source. 

Finally, we compare the 
intraseasonal oscillations on an 
interannual time scale and focus on the 
MERRA dataset for this paper. We see a 
distinct interannual signal in the 
intraseasonal oscillations. First we 
compare all active periods from wet 
years (Figure 4a) to all periods. There is 
a significant increase in the evaporative 
source remotely over the northwestern 
Bay of Bengal and a general increase 
over all of central India extending into 
the Arabian Sea. When we look at all 
active periods from dry years, however, 
we see a different picture (Figure 4c). 
There is a slight reduction in evaporative 
source remotely over the northern 
Arabian Sea and northern India. In these 
cases, we see contributions of both the interannual and intraseasonal signals in our evaporative sources, and 
we therefore conclude that there is interannual variability in the evaporative sources of the active periods of 
the monsoon. The patterns are similar, but reversed, for the break periods (Figure 4b, d) with cross-
correspondence of dry and wet years. These results are consistent among our three datasets (not shown). 

4. Summary and Conclusions 

In this study, we isolated interannual and intraseasonal changes in the location and magnitude of 
evaporative sources for rainfall events during the summertime Indian monsoon, and we intended to improve 
our understanding of the variability of the monsoon. 

The location and strength of the evaporative source for interannual rainfall events changes most 
significantly over central India and parts of the Arabian Sea in all three datasets, which suggests changes in 
the character of the overall monsoon circulation and the cross-equatorial flow. We saw an enhancement in 
evaporative source for wet years and a reduction in evaporative source in dry years. The location and strength 
of the evaporative source for intraseasonal rainfall events changes most significantly over the western-central 
Bay of Bengal in all three datasets, which suggests the influence of landfalling TCs in providing moisture 
during the active periods. We saw an enhancement of the evaporative source for all active periods and a 
reduction in evaporative source for all break periods.  There is convincing evidence suggesting interannual 
variability of the evaporative sources for intraseasonal events. 

We observed that the dominant changes in the location of the evaporative sources on interannual and 
intraseasonal time scales are not collocated. This result has implications for climate predictability over the 
Indian monsoon region. Models require improved prediction of interannual and intraseasonal variations, 

Fig. 4 Same as Figure 2, but for active periods from wet years and 
all periods (a), break periods from wet years and all periods 
(b), active periods from dry years and all periods (c), and 
break periods from dry years (d) for R2. For MERRA only. 
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especially over the Bay of Bengal and the Arabian Sea, to improve overall predictability and moisture 
analyses of the monsoon. 
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1. Introduction 

 Many years ago we noticed in CPC practice that the specified temperatures (as per Bill Klein’s equations) 
started to come out cooler than observed temperatures (Van den Dool, O’Lenic and Klein 1993). 
Temperatures were specified from 500mb heights (this is a long tradition). The Klein equations were 
obviously based on years past, representing the climate of 1948-1980, so the impression we got is that climate 
change may become evident in the relationship between upper level flow patterns and surface air temperature. 

We re-address this question, as the 2001-2010 decade comes to a close, and almost 20 more years are 
available. Specifically, to drive the point home, we ask how much colder winter 2009/10 would have been if 
that extreme and unusual circulation pattern had happened 35 years earlier. The question may sound curious, 
because winter 09/10 was already quite cold in parts of the US and Europe. But if global warming is an issue 
we should not only ask these questions when LA breaks an all time high temperature, but in fact during all 
circumstances, including a cold winter. We can take the earth’s atmosphere’s temperature continuously. The 
exact same question, for Europe only, has been addressed by Cattiaux et al. (2010). 

The circulation of 09/10 has never happened before. At least not if we consider the domain 20N-pole 
which contains many degrees of freedom, i.e. much more than an extreme (N)AO alone. Instead of seeking a 
natural analogue during years past 
(which is a mission improbable) we 
‘construct’ an analogue (CA) 
making a linear combination from 
years past (Van den Dool 1994) to 
reproduce winter 09/10. This CA 
procedure replaces the Klein 
equations. Moreover, CA is applied 
to Ψ-500, the 500mb streamfunction, 
which we think is better for this 
purpose than Z500, because if the 
climate is warming, 500 mb heights 
go up, so the Klein equations will 
show warmer temperatures 
automatically. However, Ψ-500 has 
zero global mean by definition, no 
matter how much climate change 
happens.  

Equation (1a) expresses the idea 
of a constructed analogue. It states 
that ΨCA can be written as a linear 
combination of streamfunction 
anomaly fields that have occurred in 
the past.  

Fig.1  The observed streamfunction anomaly in February 2010 ( (a) 
upper left), the same truncated to 50 EOFs ((b), upper right)), the 
constructed analogue ((c), lower left) and the difference of (a) and 
(c) in the lower right (d). 
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Fig.2 The observed temperature anomaly at 850mb for February 2010 (left), the specified temperature 
anomaly (using the weights in Table 1, middle), and the difference (right). 

ΨCA  =  Σ αiψi,    i = 1, 90      (1a) 

The coefficients αi are calculated so as to minimize the distance between ΨCA and the state for which we seek 
an analogue. (We skip the many details of this process, but see Van den Dool 2007, chapter 7). We use 30 
years in the past, 1961-1990, but make it into a sample of 90 by including the month before and after 
(“pooling”). Given the αi  (based on streamfunction only), the temperature is simply specified by: 

TCA = ΣαiTi ,       i = 1,90        (1b)                                                               

Our working definitions are that the CA temperatures, specified from Ψ-500 during 1961-1990 and 
inflated for the estimated damping inherent in specification, are the temperatures nature would have produced 
if the 09/10 circulation had happened in the 1961-1990 era. The difference between observed and specified is 
then our estimate of climate change, although we recognize that other factors, not already expressed in Ψ-500, 
may have an impact on near surface temperature (soil moisture in summer, snow cover and sea-ice, solar 
variations etc).  In addition to winter 09/10 we do CA for all years since 1990 (but will show maps only for 
09/10). All years are used to judge the inflation required and give a better statistical basis to the climate 
change estimate. 

Table 1 Weights assigned to 90 Januaries, Februaries and Marches to reproduce the February 2010 
streamfunction anomaly over the NH. 

Note that any warming in the specified temps (which we do find! in all months!) has to come from 
preferentially warm circulation types, circulation types that did also occur during 1961-1990, but not as 
frequently as during 1991-2010.  This we do not consider climate change, admittedly a debatable point of 
view.  

JAN  JAN  JAN   FEB  FEB  FEB  MAR  MAR  MAR    
1961 -0.05 1971 0.02 1981 0.02  1961 0 1971 -0.01 1981 0.06 1961 -0.14 1971 -0.01 1981 0.01 0 sum α 
1962 0.02 1972 -0.02 1982 -0.11  1962 -0.1 1972 0.06 1982 -0.06 1962 -0.09 1972 -0.05 1982 -0.04 0.47 sum α**2
1963 0.01 1973 -0.11 1983 -0.03  1963 -0.04 1973 0.07 1983 0.04 1963 0.09 1973 0.04 1983 0.1 5.58 sum |α| 
1964 0.12 1974 -0.03 1984 -0.04  1964 -0.02 1974 0.07 1984 -0.04 1964 0.06 1974 -0.08 1984 0.09   
1965 0.02 1975 0.04 1985 -0.06  1965 -0.02 1975 -0.09 1985 0.07 1965 -0.11 1975 -0.03 1985 0.03   
1966 0.11 1976 0.07 1986 0.03  1966 0.11 1976 -0.09 1986 -0.02 1966 0.05 1976 -0.05 1986 0.02   
1967 -0.07 1977 0.03 1987 -0.04  1967 0.01 1977 -0.08 1987 0.16 1967 -0.11 1977 0.12 1987 0.06   
1968 0.15 1978 -0.04 1988 0.06  1968 0.08 1978 -0.12 1988 0.11 1968 0.12 1978 -0.05 1988 -0.08   
1969 -0.01 1979 0.04 1989 -0.04  1969 -0.05 1979 -0.02 1989 -0.07 1969 0.1 1979 0.09 1989 -0.03   
1970 -0.05 1980 -0.03 1990 -0.02  1970 -0.04 1980 0.12 1990 -0.06 1970 -0.11 1980 0.09 1990 -0.12   

                     
 0.25  -0.03  -0.22   -0.07  -0.1  0.18  -0.13  0.07  0.06   
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2. Example of specification 

Table 1 shows the weights αi required to reproduce 
the February 2010 500mb streamfunction anomaly 
over 20N to the pole. The calculation refers to the 
maps shown in Fig.1 which has the observed 
streamfunction anomaly in panel (a). Clearly this is a 
case with highly negative (N)AO, as reported 
extensively by others in this workshop (Wolter 2010). 
The construction is done in a space truncated to 50 
EOFs, so the answer is very accurate; the difference of 
the CA and the untruncated observed anomaly (Fig.1 
panel (d)) is almost blank. We use the 2 surrounding 
months (after the appropriate monthly climatology has 
been removed) so Table 1 shows 90 weights, all small 
(<=0.15). If a natural analogue existed we would find a 
+1.0 for that case, and zeros for all other 89 cases. The 
Table has some marginal totals at the bottom, and three 
pieces of information on the right about the sum of the 
weights, sum of squared weights, and sum of absolute 
weights. The latter three parameters signal any 
problems there might be in solving an ill-posed matrix 
problem which was treated by ridging the matrix (Van 
den Dool 2007).  

Figure 2 shows the observed and specified 
temperature anomaly for February, and their difference 
in the lower right. The specification entails the 
multiplication of 90 temperature anomaly field (in Jan-
Feb-Mar 1961-1990) by the 90 coefficients in Table 1 
(which are based on simultaneously occurring 
streamfunction only), as per Eq 1b. Clearly the 
observed temperatures are generally warmer than specified nearly everywhere in the NH. Instead of surface 
air temperature we actually show T850 because R1 (the data we use throughout) has known technical 
problems at the surface.  Fig.3 show specified and observed surface air T-anomaly over the US only, using 
the NCDC monthly Climate Division data. This shows the same as Fig.2 for T-850, i.e. observed 
temperatures were generally warmer than it would have been had this circulation happened 35 years ago (in 
the center of 1961-1990 period). Note that neither Fig.2 nor Fig.3 specified temperatures have been inflated. 

3. How much warming? 

Figure 2 and 3 is only one example. But we find typically that observed is warmer than specified. Using 
CA for all Februaries in the period 1991-2010 we analyze the results as follows.  For February we find that T-
specified is 0.09, i.e. the circulation alone made 1991-
2010 0.09K warmer than 1961-1990 averaged over the 
area 20N-pole. T-observed, however, was 0.61K above 
the 1961-1990 normal. 

We assume that  

T-observed  =  T-specified * 1/d + delta          (2)  

which means that we assume that the specified 
anomalies are damped. Multiplication by 1/d will undo 
the damping. The offset delta is the mean temperature 

   T-specified T-observed damping Delta 

 January   0.06K 0.62K 0.64 0.52K 

February   0.09K 0.61K  0.67 0.48K 

Fig. 3  The observed (top) and specified (bottom) 
surface air temperature over the US for 
February 2010.  

Table 2  Specified and observed temperature anomaly 
(K) from 1961-1990 mean, the degree of damping 
and climate offset (delta in K) derived for the 
entire extratropical NH 1991-2010. 
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change unexplained by circulation considerations.  1/d and offset are determined from a regression using all 
20 years, and all gridpoints between 20N and the pole, a lot of material.  At this point we consider d and delta 
to be constant in time and space (this can be finessed later). 

We find the damping in February to be 0.67, and after inflation we find the offset to be 0.48K. Our 
estimate (mean over all years and whole extratropical NH) is thus that temperature has gone up by 0.48K and 
this has to be caused by something other than the circulation. Table 2 also shows the same calculation for 
January, and the result is essentially the same. We appear to be about 0.5K warmer in winter than can be 
expected on the basis of the circulation anomalies alone.  
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1. Background 

 The recent increase in Atlantic hurricane activity has generated intense scientific debate as to its origin. 
Following a relatively quiescent phase in the 1970s/80s, the number of Atlantic tropical cyclones (TCs) has 
steeply increased in the recent 1–2 decades (e.g., Mann and Emanuel 2006). Annual TC numbers averaged ~7 
during 1986–95 and ~11 during 1996–2005, i.e., a 50% increase in one decade. The intensity of TCs 
measured by the number and/or proportion of the most intense ones has also increased during recent decades 
(Goldenberg et al. 2001, Webster et al. 2005, Kossin et al. 2007, Elsner et al. 2008). An increase in hurricane 
destructiveness has also been noted (Emanuel 2005). 

The cause of the recent increase in Atlantic TC activity is intensely debated in context of climate change. 
Some studies (e.g., Goldenberg et al. 2001, Zhang and Delworth 2006) suggest that increased TC activity is 
related to the natural variability of Atlantic sea surface temperatures (SSTs), especially the Atlantic 
Multidecadal Oscillation (AMO; Enfield et al. 2001, Delworth and Mann 2000, Guan and Nigam 2009), 
while others attribute the increase in activity to anthropogenic climate change (Webster et al. 2005, Trenberth 
and Shea 2006, Mann and Emanuel 2006, Holland and Webster 2007). It has also been argued that annual TC 
counts do not presently exhibit any low-frequency variability beyond the range expected from a random 
Poisson process (Elsner 2008). The attribution of heightened TC activity to natural variations and/or secular 
change of climate thus remains challenging, especially in view of the short length of the observational record 
and its uneven quality (Landsea 2007, Mann et al. 2007, Chang and Guo 2007, Veechi and Knutson 2008, 
Landsea et al. 2010), and the modest simulation skill of current climate models; leaving much to debate.  

The TC activity in the Atlantic is closely related to SST variations in the main development region (MDR; 
Mann and Emanuel 2006; 6°-18°N, 20°-60°W; marked in Figs. 1 and 3) where ocean waters above 26.5°C are 
generally required for TC formation (Gray 1979). More than half of the decadal time-scale variance in the 
annual Atlantic TC count can be explained by SST variations in the main development region (MDR, Mann 
and Emanuel 2006).  The nonlocal SSTs, i.e., the ones outside MDR are also influential as indicated by 
analyses that show the MDR SST variations relative to the global tropical average to be more pertinent 
(Emanuel 2005, Swanson 2008, Vecchi et al. 2008, Vecchi and Soden 2007), and studies that document the 
impact of Pacific SST on tropospheric circulation (vertical shear and stability) over the tropical-subtropical 
Atlantic (e.g., Elsner et al. 2001, Aiyyer and Thorncroft 2006, Camargo et al. 2007). Swanson specifically 
cautions against a singular focus on MDR SSTs by showing improved accounting of the TC power dissipation 
index using the ‘relative’ MDR SST variations. The following features of current analyses of Atlantic TC 
count variability motivate the present study: 

• Natural variability is generally estimated, statistically, as a residual from detrending the observational 
record. The residual approach can be problematic as there is no assurance that natural variability is 
not aliased into the detrending index/marker or the linear trend. If such aliasing did occur, it would 
preclude the possibility of obtaining decadal-to-multidecadal trends from natural variability alone. 
For robust attribution, especially to secular change, the analysis scheme must allow for this possibility; 
flexibility not found in current analyses.  

• The focus is almost exclusively on the recent increase in TC activity whereas causes of a similar 
(percentage wise) increase in the 1930s when the annual TC count increased from ~7 in the 1910s/20s 
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to ~10 in the 1930s (cf. Fig. 2a) has generally not been addressed. Although TC counts in this period 
are somewhat uncertain, the jump is too large to be ignored (Goldenberg et al. 2001).  

• Inter-basin interaction is ignored when investigating the origin of the recent warming of SSTs in the 
main hurricane development region (in the northern tropical Atlantic)1 – this despite evidence for the 
Pacific’s influence on the Atlantic at both interannual (e.g., Lanzante 1996, Enfield and Mayer 1997, 
Ruiz-Barradas et al. 2000, Kossin et al. 2010) and decadal time scales (Latif 2001, Guan and Nigam 
2008, 2009). 

Interestingly, the authors recently concluded an analysis of natural variability and secular trend in the 
Pacific and Atlantic SSTs (Guan and Nigam 2008, 2009) – one where both components are simultaneously 
characterized, i.e., contextually, as opposed to residual estimation of the former. By focusing on spatial and 
temporal recurrence but without imposition of any periodicity constraints, their analysis discriminates 
between biennial, ENSO, and decadal variabilities in the Pacific, leading to refined evolutionary descriptions 
and, equally importantly, separation of natural variability and the secular trend; all without any advance 
filtering (and potential aliasing) of the seasonally resolved SST record.2 The implicit accommodation of 
natural variability leads to a nonstationary SST secular trend, one that includes mid-century cooling. The 
physicality of decadal variability modes – of key interest here – was evaluated using analog counts and fish 
recruitment records (Guan and Nigam 2008, hereafter GN2008).  

The Atlantic SSTs were subjected to a similar spatiotemporal analysis but after removal of the Pacific 
basin’s influence; footprints of the seven Pacific variability modes (including SST-trend) on Atlantic SST 
were linearly removed. The leading mode – a multidecadal oscillation focused in the extratropical basin with 
a period of ~70 years, and referred as the AMO-Atl – differs from this mode’s conventional description (e.g., 
Enfield et al. 2001, Enfield and Cid-Serrano 2010) in the near-quiescence of the tropical-subtropical basin 
(which includes the MDR). The different signal strengths in this region in current and previous analyses 
indicate, implicitly, the significant influence of the Pacific basin on this region. The related principal 
components and modal structures are shown in Guan and Nigam (2009, hereafter GN2009) where robustness 
of the analysis, including the impact of pre-filtering the Pacific influence, is also assessed.3 

The Pacific basin influences Atlantic TC activity through its impact on Atlantic SSTs as well as the 
overlying atmospheric circulation. The impact on SST during ENSO episodes is well documented in the 
aforementioned studies. For instance, ENSO accounts for ~20% of the record-high warming of the tropical 
North Atlantic in 2005 in the multivariate regression analysis of Trenberth and Shea (2006), surpassing the 
AMO contribution. The Pacific’s influence on the Atlantic atmosphere is also pronounced during ENSO 
when it impacts the 200–850-hPa zonal-wind shear (e.g., Aiyyer and Thorncroft 2006) and tropospheric 
temperatures (Tang and Neelin 2004) over the tropical Atlantic, and consequently TC activity in the basin. 
The Pacific’s influence on decadal time scales is of more interest in context of the low-frequency fluctuations 
and trends in Atlantic TC activity, but such influences have not been extensively studied. Latif (2001) made a 
case for inter-basin links using a low-pass filtered ENSO index. More recently, the authors have presented 
                                                 
 1 Mann and Emanuel’s (2006) diagnosis, for instance, seeks evidence for AMO’s role in the spectrum of the residual 

obtained after fitting SST variation in the main hurricane development region with a large-scale warming index (the 
global SST trend) and an anthropogenic aerosol index (a hemispheric cooling mechanism), but not one representing 
the influence of Pacific decadal variability.  

 2 Canonical ENSO variability is captured as two modes, the growth (ENSO−) and decay (ENSO+) modes. Departure 
from canonical development, especially in the 1976/77-onward period, is identified as a distinct mode, referred as 
ENSO Non-Canonical (ENSO-NC), hereafter. Pacific decadal variability is resolved into two modes, Pan-Pacific and 
North Pacific. The former exhibits connections to the tropical-subtropical Atlantic resembling the AMO. The latter, 
capturing the 1976/77 climate shift, is close to Pacific Decadal Oscillation in structure, but with interesting links to the 
North Atlantic as well as the western tropical Pacific and Indian Ocean SSTs. The nonstationary secular trend consists 
of wide-spread but non-uniform warming of all basins along with a sliver of cooling in the central equatorial Pacific. 
See Guan and Nigam (2008) for additional details. 

 3 The second and third mode capture the growth and decay of interannual variations in the eastern tropical Atlantic, the 
Atlantic Niño, while the fourth describes lower-frequency variability whose mature phase resembles the SST footprint 
of the North Atlantic Oscillation. The fourth mode is referred as the low-frequency NAO (LF-NAO). 
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observational evidence for a significant link between Pacific decadal SST variability and the Atlantic SSTs 
via the Pan-Pacific mode (see Fig. 11 in GN2008).  

The present study seeks to clarify the relationship of Atlantic TC activity (annual count) with global SST 
variations in the 20th century using improved characterization of natural variability in the Pacific and Atlantic 
basins, and a simultaneously obtained, and thus, more consistent estimate of the nonstationary SST secular 
trend. The goal of the study is to obtain a refined estimate of the secular change in Atlantic TC activity as well 
as resolve its natural variability into components linked with the well-known modes of SST variability in both 
basins. The present study thus moves away from the traditional focus on MDR SST which, interestingly, is 
also a reconstruction target but after the Atlantic TC count. 

2. Data sets and analysis method 

The North Atlantic TC count data set developed by Landsea, Veechi, Bengtsson, and Knutson (2010, 
hereafter LVBK2010) is analyzed in this study. It is based on the National Hurricane Center’s best track data 
set (HURDAT; Jarvinen et al. 1984) which is the longest available and relatively reliable measure of Atlantic 
TCs, dating back to late 1800s. The earlier part of this record has however been questioned, particularly with 
respect to the upward trend in annual TC count. Veechi and Knutson (2008) used statistical methods to 
account for the potentially missing TCs in the pre-satellite period of the record. Meanwhile, LVBK2010 
showed the increasing TC count to result, in part, from the growing number of short-lived storms (duration ≤ 
2 days) in the recent period; arguably, from improvements in observational platforms and techniques. Based 
on these adjustments, a new TC count data set was developed – the LVBK2010 record. It factors for TC-
subsampling in the earlier period and seeks to track the count of moderate-to-long lived TCs. The 1900-2008 
record of LVBK counts is analyzed here.  

The SST data come from the U.K. Met Office’s (UKMO) Hadley Centre Sea Ice and Sea Surface 
Temperature dataset (HadISST) 1.1 (Rayner et al. 2003). In two recent papers (GN2008; GN2009), the 
authors characterized the 20th century SST variability in the Pacific and Atlantic basins from spatiotemporal 
analysis of the seasonal anomalies, using the extended EOF technique (Weare and Nasstrom 1982). A total of 
11 principal components (PCs) constitute the analysis backbone. Of these, 7 (including the nonstationary SST 
Trend mode) are from the Pacific analysis while the remaining 4 come from the analysis of residual (i.e., 
Pacific basin uninfluenced) SST variability in the Atlantic basin. The intra-basin PCs are temporally 
orthogonal (assured by the analysis method) while the inter-basin ones are nearly so (ensured by filtering of 
Pacific’s influence from Atlantic SSTs prior to latter’s analysis); the largest inter-basin PC correlation is 0.11.  

The present analysis is for the fall season (September-November), and not the preferred peak hurricane 
season (August-October; e.g., Mann and Emanuel 2006), as the underlying SST analysis was based on the 
conventionally defined seasonal anomalies. Simple linear regressions of the fall season SST PCs (unsmoothed) 
on the annual Atlantic TC count and concurrent SST anomalies in the full record (1901-2005) constitute the 
building blocks in reconstruction of the TC count and MDR SST variations, respectively. The reconstruction 
proceeds, simply, from the multiplication of each SST PC (fall value) with its above-obtained ‘fixed’ 
regression pattern (number, in case of TC count), followed by the summing of the 11 (or any subset thereof) 
elemental contributions.  

3. Atlantic TC count: Secular trend and natural variability 

The annual Atlantic TC count in the LVBK record is shown in Fig. 1a (TC-Tot Observed, solid black), 
after 10 applications of the 1-2-1 smoother. Raw counts are also plotted, as departure from the full-record 
average (~8), using lightly shaded vertical bars and the right scale.  An abrupt increase in count is seen in the 
1990s. Before that, counts are relatively stable but suppressed over a ~30-yr period beginning in the mid-
1950s, albeit with decadal modulation. A strong abrupt increase occurred also in the early 1930s. Both this 
and the recent count increase will need attribution using a common framework to advance understanding of 
count variability.  

The annual TC count is reconstructed from SST variability in the Pacific and Atlantic basins using fall 
season regressions of the secular trend and natural variability modes, as discussed in section 2d. The full 
reconstruction (dashed black) accounts for as much as 60% of the decadal variance in view of the 0.78 
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correlation between the reconstructed and observed TC-Tot. Increased counts during 1930s-50s and the 
decline since then are broadly captured in the reconstruction; suppressed counts in the 1950s-60s are however 

Fig. 1  Reconstruction of the annual Atlantic TC count (Landsea et al. 2010, referred as LVBK2010) from 
Pacific and Atlantic SST variability: a) Observed (solid black) and reconstructed (dashed black) total 
counts are shown after smoothing, using the left scale. Partial reconstruction from the SST secular trend 
(solid red), and from four decadal time-scale SST principal components (SST Trend, AMO-Atl, ENSO 
Non-Canonical, and Pan-Pacific decadal; dashed green) is also shown; the dashed black and green curve 
are correlated at 0.93. Lightly shaded vertical bars in the background depict the raw (i.e., unsmoothed) 
TC counts using the right scale, with the horizontal line marking the long-term count-average (8.2) in 
both; b) Observed (solid black) and reconstructed (dotted black) natural count variations. Subtraction of 
the SST secular trend related counts (red curve in the above panel) from TC-Tot Observed yields the 
former, while the latter is based on SST natural variability in the Pacific and Atlantic basins. The SST-
unrelated count variability (TC-Residual, ‘x’ marked) is obtained by subtracting the dotted black curve 
from the solid one in this panel. Contribution of Pacific SST natural variability (blue), AMO-Atl (green), 
and the Atlantic Niño plus Low-Frequency NAO (purple) to TC-Nat Reconstructed are also shown. 
Time series in both panels are smoothed by 10 applications of the 1-2-1 smoother, which leads to record 
truncation at both ends. Correlations of the smoothed reconstructed and observed records are indicated 
next to line labels in each panel. 
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a notable exception. The SST Trend mode (red) contributes negligibly to this reconstruction given its near-
zero correlation (−0.002); all curves are smoothed as TC-Tot Observed, the target. The steep increase in TC 
count in the 1930s is partially reconstructed. Smoothing related record truncation, unfortunately, precludes 
assessment of the reconstruction of the 1990s count increase.  

The natural variability in TC count (TC-Nat) is the focus of Fig. 1b, which shows both the observed (solid 
black) and reconstructed (dotted black) counts sans the SST Trend mode contribution. Their 0.81 correlation 
indicates that ~65% of the natural decadal variance in TC count is related to the basin-scale natural variability 
of SST, in particular, the 6 Pacific and 4 Atlantic modes of recurrent variability mentioned above. The Pacific 
contribution to count variance (~35%) is not too far behind the AMO-Atl one (~53%). The SST-unrelated 
variability in TC count (TC- Residual, marked by ‘x’s), obtained from subtraction of the dotted from solid 
black curves, must arise from other factors, including SST-unrelated meteorological phenomena (e.g., quasi-
biennial oscillation in the lower stratosphere) and, potentially, aerosol’s influence on clouds/convection. 

The components in reconstruction of TC-Nat are also shown in Fig. 1b, using color. The AMO-Atl 
contribution to TC activity (green) shows both its long time scales and considerable influence, including 
suppression of TC count in the late-1960s onward period and its enhancement in the 1930s. The other Atlantic 
modes, Niño and the low-frequency NAO, contribute quite weakly (purple curve), in comparison. Pacific 
natural variability (blue) is more influential, contributing to increased counts during 1935-45 and diminished 
activity around 1980 and 1990. Further decomposition (not shown) indicates the Pan-Pacific decadal mode 
and the ENSO Non-Canonical mode of variability to be largely responsible for the Pacific contribution.  

The reconstruction of annual TC counts is formally based on individual regressions of all 11 SST PCs (7 
Pacific plus 4 Atlantic, all unsmoothed) but decadal count variations are, in fact, shaped by the contributions 
of only a select few: SST-Trend, AMO-Atl, ENSO Non-Canonical, and perhaps, the Pan-Pacific mode, i.e., 
just 4 of the 11 modes. A partial reconstruction of TC counts based on these 4 modes (dashed green line in 
Fig. 1a) closely tracks the full reconstruction at decadal time scales (correlation 0.93), supporting our 
assertion of the importance of a select few modes of SST variability for annual TC counts in the Atlantic.    

a. The 1930s count increase  
The SST-based reconstruction can partially account for the steep count-increase in the early 1930s and the 

precipitous decline in the late 1930s (a signal in the natural variability realm given its short duration?). About 
one-half of the signal can be linked to SST natural variability which can, evidently, generate the rapid build-
up but not the steep decline in counts in the latter part of that decade; the former from in-phase contributions 
of the Pan-Pacific and AMO-Atl modes. Interestingly, Veechi and Knutson (2008) have argued that some of 
the steep decline in counts is an artifact of undercounting during/preceding World War II.  

b. The 1950s-60s count decrease  
The large variance in observed and reconstructed counts during the 1950s-60s – largest in the century-

long record (see TC-Residual in Fig. 1b) – remain puzzling, not because fields other than SST cannot be 
influential, but because it is difficult to conceive of factors that can be so singularly influential; in just one 
sub-period of the 20th century? The 1950s and 1960s are, of course, well known as the period when “average 
global temperatures leveled off, as increases in aerosols from fossil fuels and other sources cooled the planet.” 
(IPCC 2007, WG1). The cooling is manifest in SST – see the SST secular trend in Fig. 1a – but aerosol’s 
influence on TC counts need not be transmitted only through its SST impact; aerosol induced changes in 
cloud condensation nuclei distribution can directly impact the strength of deep convection (Cotton et al. 2007). 

c. The early 1990s count increase  
The TC count increased from the early 1990s, in part, from the abatement of count-suppression 

maintained by SST natural variability in the preceding decades (Fig. 1b, black curves). Were it not for this 
suppression, TC counts would have risen steeply since the 1970s itself, tracking the secular trend contribution 
(Fig. 1a, red). The abatement of count suppression in early-1990s is captured in the reconstruction and results 
mostly from SST natural variability (Fig. 1b). Both basins contribute but the AMO-Atl contribution dominates, 
tracking the combined basin impact (TC-Nat Reconstructed).  
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d. Count increase during 1996-2005  
Smoothing related truncation of TC counts precludes analysis of increased TC activity during 1996-2005, 

a recent period of considerable interest. A perspective on the relative influence of SST natural variability and 
secular trend on this period’s TC counts can nonetheless be obtained by focusing on the average value of the 
unsmoothed reconstruction components in this 10-year period; all values are relative to the 1901-2005 long-
term mean (~8). The analysis indicates that high TC activity during 1996–2005 (a 3.1 count increase over the 
mean) is as much linked with the SST secular trend (1.5 counts, or ~50% of the observed increase) as with 
SST natural variability and other effects (which together contribute 1.6 counts, or the remaining 50% 
increase). As SST-based reconstruction accounts for only 2.1 of the observed 3.1 count increase in this period, 
the SST secular trend contribution (1.5) dominates the SST natural variability one (0.6). Interestingly, AMO-
Atl contributes to a 0.9 increase but this is offset by Pacific SST effects, a −0.4 count contribution. 

4. Summary and concluding remarks 

Consistent estimates of natural variability and secular trend in Tropical Cyclone (TC) count in the 
Landsea et al. (2010) data set are obtained using modes of observed decadal-multidecadal SST variability in 
the Pacific and Atlantic basins. The analysis scheme permits development of multidecadal trends from natural 
variability alone -- a flexibility needed in attribution studies. We show that  

• TC counts can be more closely reconstructed from Pacific and Atlantic SSTs than SST of the main 
development region (MDR); the former account for ~60% of the decadal count variance vis-a-vi 
~30% from MDR SST. An expansive influential SST region is indicated, extending well beyond the 
MDR. 

• Atlantic Multidecadal Oscillation (AMO) dominates count-reconstruction, accounting for ~55% of 
the natural decadal variance; it is followed by the non-canonical ENSO and PDV contributions. These 
together with the non-stationary SST Secular Trend account for almost all of the reconstructed counts. 

• Some count features are reasonably reconstructed. These include the late-60s to mid-80s count 
suppression (principally from AMO's cold-phase) and the early-90s increase (from the abatement of 
AMO-related count-suppression and the increasing secular change contribution since late-80s). [A 
notable feature that could not be reconstructed was the pronounced count-decrease in 1950s-60s, 
which we deductively attribute to increased aerosols of the period.] 

• Our analysis suggests that when counts get augmented in the flip-phase of SST natural variability 
(e.g., the AMO warm-phase since the late-1990s) -- some evidence for which exists -- decadal TC 
counts could rapidly increase unless offset by SST-unrelated effects; SSTs account for only ~60% of 
the decadal count variance. 
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1. Introduction 

 Sea breezes play an integral part for convection 
in the summer, especially for Florida.  They form 
due to land-sea temperature contrasts, which for the 
case of a summer afternoon, creates a pressure 
gradient with low pressure over the relatively 
warmer land.  In the Florida peninsula, two sea 
breeze fronts can form due to two gradients on 
either side of the peninsula (Blanchard and Lopez 
1984).  Recent anecdotal observations compare the 
convection based on sea breezes from year-to-year, 
suggesting interannual variability.  While sea 
breezes exist every year regardless, they are affected 
by the background conditions, or synoptic scale 
motions, as mentioned in Blanchard and Lopez 
(1984).  Another study by Nicholls (1991) observes 
that sea breezes are affected by the prevailing winds.   

 Using this knowledge, a hypothesis is made 
that the interannual variations of the Atlantic Warm 
Pool (AWP) could affect the sea breeze 
characteristics.  The AWP is defined as the area in 
the Gulf of Mexico, Caribbean Sea, and tropical 
North Atlantic in which the sea surface temperature 
(SST) is at least 28.50C.  The years in which the 
AWP is large have weaker background trade winds 
(Wang and Enfield 2001).  The warmer waters also 
hint that the temperature contrast may also be 
smaller.  This study will look at the diurnal 
variations of winds and precipitation plus 
composites of large and small AWP years to verify 
the AWP variability impacts. 

2. Data and methodology 

The model used is the NCEP Scripps Regional Spectral Model (RSM; Kanamitsu et al. 2005) forced with 
NCEP-DOE Reanalysis II (R2; Kanamitsu et al. 2002).  The R2 reanalysis is dynamically downscaled to 10 
km.  The spatial domain of the RSM-R2 model consists of the southeastern United States and the majority of 
the Gulf of Mexico, and the temporal domain is 23 years (1979-2001).  While the data was available year-
round, the focus of the study was the summer months of June, July, and August (JJA).  SSTs were available 
from the National Oceanic and Atmospheric Administration (NOAA) Extended Reconstruction Sea Surface 

Fig. 1  Average SST from ERSSTV3 and 850hPa winds 
from NCEP-DOE reanalysis for 5 large AWP years 
(1981, 1987, 1995, 1998, 1999) (top), 5 small AWP 
years (1984, 1986, 1989, 1993, 1994) (middle) and 
the difference between the two (bottom). 
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Temperature analysis version 3 (ERSSTV3; Smith et al. 2008).  
For verification the precipitation used is from the Climate 
Prediction Center (CPC) and the NCEP/EMC US gridded radar 
estimates (Lin and Mitchell 2005). 

 To examine the data and the sea breeze variability, two 
groups of figures were made.  The first set includes 3-hour 
climatology to examine the diurnal variability of the convection 
and sea breeze-related phenomenon.  Two different cross-
section latitudes were chosen:  one along 260N to represent the 
Florida peninsula, and the other along 30.50N for the Florida 
panhandle.  The second group of figures consists of large and 
small AWP composites.  These were chosen by grouping the 
years with average SSTs of more (less) than one standard 
deviation away from the mean to be classified as a large (small) 
AWP year.  Typical conditions for each composite are shown in 
Figure 1.  The large AWP years typically have the warmer 
SSTs dipping into the tropical North Atlantic, while the small 
AWP years have 28.50C SSTs confined to mainly the Gulf of 
Mexico and parts of the Caribbean.  The main defining features 
are the weaker winds and warmer Gulf temperatures for large 
AWP years.  In Figure 2, the CPC rainfall observations show a 
decrease in convection for large AWP years, especially along 
the Florida panhandle, which suggests weaker sea breeze events.  

3. Results 

The first objective was to validate the model choice by 
comparing it with an observational data set.  This is 
accomplished in Figures 3, which compare the 3-hourly 
climatology of rainfall for JJA in Florida.  The RSM-R2 model, 
though it does not display correct magnitudes, captures the 
diurnal variability of the precipitation shown in the 
observations.  Both show a peak in rainfall at 4 pm, with a 
decline in precipitation afterwards.  These diurnal patterns are 
also found in Figure 4, in which the vertical motion associated 
with the circulations peaks at 4pm for the Florida peninsula.  
While the panhandle cross-section is not shown, the vertical 
motion peaks at the same time.  The diurnal change in the sea 
breeze is also consistent between the two locations, in which 
the circulations increase throughout the day, and decrease 
rapidly by 7 pm.  The planetary boundary layer (PBL) also behaves as expected given the previous results:  it 
expands during the day with diurnal heating and increased vertical motion, and peaks around 1pm.  As 
stronger mixing occurs due to convection, the PBL decreases in height starting at 4 pm, and continues to do 
so over land as the solar heating decreases.   

A composite JJA plot for precipitation rates for large and small AWP years was made using the RSM-R2 
model to compare with the CPC results in Figure 2.  The RSM-R2 model composite (not shown) does fairly 
well in modeling the difference in precipitation between the composites, capturing the decrease in 
precipitation for large AWP years over the panhandle.  However, this model shows an increase in 
precipitation over most of the peninsula for large AWP years in comparison to small, which does not reflect 
the patterns found in the CPC composite.   

One of the reasons why the model is capturing the lower amounts of convection for large AWP years is 
hinted at with Figure 5.  The land temperature plots show that on average, large AWP years have cooler 

Fig. 2  Average rainfall from CPC rain 
gauge-based rainfall (Higgins et al. 
2000) for 5 large AWP years (top), 5 
small AWP years (middle), and 
difference between the two (bottom). 
The units are in mm day-1. 
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temperatures on land than the small AWP years.  As mentioned previously, the land-sea temperature gradients 
cause the sea breezes and that land temperatures are much higher than ocean temperatures during a summer 
afternoon.  However, the Gulf of Mexico is warmer for large AWP years, and the land temperatures are cooler 
over the panhandle.  This hints that, on average, the land-sea temperature gradient is smaller in magnitude for 
large AWP years, leading to a weaker pressure gradient and sea breeze circulation.  This would, in turn, yield 
to less convection.  More plots are necessary for confirmation, however, to show that the weaker gradient 
does occur during the afternoon hours.     

Another plot that highlights this decrease in precipitation and convection for large AWP years is shown in 
Figure 6.  The time of 4pm was chosen because other diagrams have shown that the highest difference in 
precipitation between the two composites was at 4pm.  The most noticeable feature in Figure 6 is that there is 
a positive difference in PBL height between large and small, indicated by two bottom panels.  This is 
occurring because there is weaker convection occurring over land for large AWP years, and thus less mixing 
is taking place to shrink the PBL depth.  This would indicate that the sea breeze circulation is weaker for large 
AWP years than for small, for both the peninsula and panhandle of Florida. 

4. Conclusions 

This study examined the interannual variations of convection over peninsular and panhandle regions of 
Florida, with the understanding that in the summer months the main driver for daily convection is the sea 
breeze.  The NCEP-Scripps RSM forced with downscaled NCEP-DOE R2 data proved to portray the diurnal 

Fig. 3  The observed and RSM-R2 model simulated climatology of summer season (June-July-
August) rainfall at 3-hour interval. The former was computed for the available period of 2002-
2008 and the latter was from 1979-2001.  The units are in mm day-1. 

Observation RSM - R2
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variations of precipitation quite well when 
compared to the NCEP/EMC US gridded 
observations.  The model also showed that 
for large AWP years, there is less 
convective precipitation over Florida, 
especially over the panhandle.  Possible 
contributions to this lack of rainfall are the 
weaker winds exhibited in large AWP 
years, plus a weaker sea-breeze 
temperature gradient, both of which lead 
to a weaker sea breeze circulation.  Also, 
these differences are most pronounced at 4 
pm, the time of day with the highest 
rainfall amounts.  The results of this study 
demonstrate the importance of interannual 
variations of sea breeze convection to 
rainfall totals in the summer over Florida. 
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Fig. 5  Same as Fig. 2 but for land 
surface temperature and from RSM-
R2 simulation. The units are in 0C.  

 

Fig. 6  Composite means of variables as in Figure 4 at 4 pm for 
the 5 large AWP years (top), the 5 small AWP years 
(middle), and the difference (bottom) from the RSM-R2 
simulation at 26ºN (left column) and 30.5ºN (right column), 
respectively. 



Science and Technology Infusion Climate Bulletin 
NOAA’s National Weather Service  
35th NOAA Annual Climate Diagnostics and Prediction Workshop  
Raleigh, NC, 4-7 October 2010 

______________ 
Correspondence to:  Zeng-Zhen Hu, Climate Prediction Center, NCEP/NWS/NOAA, 5200 Auth Road, Camp Springs, 
MD 20746; E-mail: Zeng-Zhen.Hu@noaa.gov. 

Impact of Low Clouds on Tropical Climate in the NCEP CFS  
Zeng-Zhen Hu1,2, Bohua Huang2,3, Yu-Tai Hou4, Wanqiu Wang1 

FanglinYang4, Cristiana Stan2, and Edwin K. Schneider2,3  
1Climate Prediction Center, NCEP/NWS/NOAA, Camp Springs, MD 

2 Center for Ocean-Land-Atmosphere Studies, Calverton, MD 
3Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, Fairfax, VA 

4Environmental Modeling Center, NCEP/NWS/NOAA, Camp Springs, MD 

1. Introduction 

 Stratocumulus cloud decks in the southeastern Pacific and Atlantic Oceans have been documented by 
Klein and Hartmann (1993), Norris (1998), and Xie (2005). Climatologically, the daytime frequency of the 
existence of stratocumulus clouds reaches 30-70% in the southeastern tropical Pacific and Atlantic (Klein and 
Hartmann 1993; Norris 1998). The existence of these stratocumulus clouds substantially reduces the 
shortwave radiation reaching the sea surface and cools the ocean, which reinforces the inversion stratification 
(Siebesma et al. 2004; Huang and Hu 2007). Underestimation of the amount of stratocumulus clouds over the 
tropical oceans is a common defect of contemporary coupled climate models (Huang et al. 2007; Hu et al. 
2008a), which seems to be tied to pronounced warm biases in the tropical eastern oceans (e.g., Neelin et al. 
1992; Mechoso et al. 1995; Davey et al. 2002; Collins et al. 2006; Deser et al. 2006; Huang et al. 2007; Hu et 
al. 2008a). For example, warm biases can reach 4-5ºC in the southeastern tropical Pacific and Atlantic in 
versions 2 and 3 of the Community Climate System Model (Collins et al. 2006). Furthermore, Hu and Huang 
(2007) and Hu et al. (2008a) found that these biases can reduce climate prediction skill and may alter the 
southern subtropical variability mode in the tropical Atlantic. Thus, it is necessary to examine the impact of 
the stratocumulus clouds on model systematic errors.   

In this work, using the CFS, we examine the sensitivity of the tropical mean climate and seasonal cycle 
not only to the change of low cloud cover, but also to the change of cloud liquid water path (CLWP). Through 
these experiments, a scheme of model bias correction is proposed and its efficiency is tested. 

2. Observation-based data, model, and experimental design 

Observation-based monthly cloud coverage data used in this work were produced by the International 
Satellite Cloud Climatology Project (ISCCP) (Rossow and Dueñas 2004). The CLWP data, termed the 
University of Wisconsin climatology (O’Dell et al., 2008), are adopted. Also, the simulations are compared 
with observation based data, such as the NCEP/NCAR re-analysis (Kalnay et al. 1996), ER-v2 SST (Smith 
and Reynolds 2003), and analyzed precipitation (Xie and Arkin 1997). 

 The ocean-atmosphere coupled general circulation model used in this work is the NCEP CFS (Wang et 
al. 2005; Saha et al. 2006). For the atmospheric component, the horizontal resolution is T62 and there are 
total 64 vertical sigma levels with about 20 sigma levels below 650 hPa. The oceanic component is 
configured from the MOM3 of GFDL. There are 40 levels vertically, with 27 in the upper 400 meters for the 
ocean model. The domain of the ocean model is from 74ºS to 64ºN with a horizontal grid of 1ºx1º poleward 
of 30ºS and 30º N, and with gradually increased meridional resolution to 1/3º between 10ºS and 10ºN. The 
atmospheric and oceanic components are coupled by exchanging surface fluxes on a daily interval without 
flux adjustment.  

To investigate the impact of prescribed low-level cloud cover and CLWP on tropical climate in the CFS, a 
set of coupled integrations were conducted (see Table 1). CONTROL is a 101 year integration using the 
same version of the CFS as Wang et al. (2005) and Saha et al. (2006). In cloud cover modification 
experiments, CFS simulated low clouds are replaced by global climatological low cloud amount of ISCCP in 
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LCA1, and by observed global monthly low clouds of ISCCP in January 1984-December 2004 in LCA2. The 
vertical distribution of cloud amount in the layers between surface and 650 hPa is prescribed by the following 
equation: CFScloud(z)=α*ISCCPlow cloud*cos(β), where, β = 2

π * PtPm
PzPm

−
− . Pz is the pressure in layer “z” in hPa. 

Pt and Pm are the pressures of the top and middle layers with cloud prescribed, respectively. According to 
diagnostic results, we use following parameter values: Pt=650 hPa, Pm=850 hPa, and α=1.0 here. 

Table 1  Experiments 

To examine the impact of CLWP, we conduct two CLWP experiments (CLWP1, CLWP2). In CLWP1 
and CLWP2, similar to LCA2, the low cloud portion of observed monthly CLWP over the oceans is used to 
build vertical profiles of cloud using the above equation with α=0.0824 in order to keep the accumulation of 
the vertically interpolated CLWP between the surface and 650 hPa equal to the low cloud portion of the 
observed CLWP. Model low cloud portion of CLWP is modified by adding observed monthly low cloud 
CLWP for global oceans in CLWP1, and just for the southeastern Atlantic Ocean in CLWP2. Then, we 
propose a scheme to eliminate the model biases by prescribing climatological CLWP in the model and test it 
in experiment: CORRECTION. It is similar to CLWP2 (only the CLWP in the southeastern Atlantic is 
prescribed), but uses annual mean climatology of observed CLWP. More details about the experiment design, 
refer to Table 1 or Hu et al. (2010). 

3. Impact of low cloud on tropical mean climate 

3.1 Impact of low cloud cover 

Figure 1 shows the mean low cloud amount, as well as mean and difference of net shortwave radiation at 
the surface in observations, CONTROL, and LCA2. As indicated by Hu et al. (2008a, 2008b), although the 
seasonal variations of the low clouds are reasonably well simulated in the southeastern Atlantic Ocean, CFS 
underestimates the mean low clouds by about 25%, which is connected to the warm biases there. On the other 
hand, the mean low cloud amount in the whole tropical Atlantic Ocean and the interannual variation in the 
southeastern Atlantic Ocean are almost perfectly presented in LCA2, as well as in LCA1 for the mean low 
cloud amount (not shown), which is a significant improvement compared with CONTROL. This demonstrates 
that a realistic 3-dimensional low cloud distribution is successfully prescribed in the CFS. 

Experiment Name Experiment Description Length of the integration and 
Initial Condition 

CONTROL no modification for clouds 101 years, Jan. 1985 

LCA1 model global low clouds replaced by ISCCP 
climatological low clouds 5 years, Jan. 1985 

LCA2 similar to LCA1, but replaced by 
ISCCP monthly low clouds 21 years, Jan. 1984 

CLWP1 

model low cloud portion of CLWP  
over global oceans is modified by 
adding observed monthly low cloud 
CLWP 

20 years, Jan. 1988 

CLWP2 similar to CLWP1, but modified only in the 
southeastern Atlantic 20 years, Jan. 1988 

CORRECTION 
similar to CLWP2, but modified by using 
observed annual mean climatology of 
CLWP in the southeastern Atlantic 

50 years, Jan. 1988 
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Nevertheless, the improved 
low cloud cover only has a 
minor influence on the amount 
of net shortwave radiation 
reaching the surface (Figs. 1d-
1f) in the southeastern Atlantic. 
This result suggests that low 
cloud cover plays a secondary 
role in blocking and absorbing 
the radiation in the radiation 
parameterization of the CFS. 
The absorption and reflection of 
shortwave radiation by clouds 
mainly depend on optical depth 
which is largely determined by 
cloud liquid water content (Hou 
et al. 2002), that is confirmed 
by the results in next subsection. 

3.2 Impact of CLWP 

Compared with CONTROL, 
modifying CLWP can improve 
the simulation of low clouds, 
because the low cloud in the 
CFS is diagnosed from cloud 
condensation. The improvement 
of low clouds and CLWP 
consistently reduces the biases 
of net shortwave radiation at the 
ocean surface. The radiation 
change causes cooling in the 
troposphere. Meanwhile, the 
cold tongue becomes much 
stronger and warm biases are 
reduced significantly in the 
eastern tropical oceans, and the 
easterly surface wind stress is 
enhanced along the equator 
compared with CONTROL 
(Figs. 2c, 2f, 2g, 2j). However, 
when CLWP is prescribed only 
in the tropical Atlantic, 
improvement of SST and intensification of easterly surface wind stress are found only in the tropical Atlantic 
and changes in other regions are relatively small (Figs. 2d, 2e, 2f, 2h, 2i). 

Also, the simulation of the inter-tropical convergence zone (ITCZ) in the tropical Atlantic is improved in 
CLWP1, CLWP2, and CORRECTION compared with CONTROL (Fig. 3). For example, there are double 
ITCZs in March-June in CONTROL, and the unrealistic southern branch of the ITCZ in 5ºS-10ºS (Fig. 3b) is 
largely eliminated in CLWP1, CLWP2, and CORRECTION (Fig. 3c-3e). The northward movement of the 
ITCZ is steady in the observations (Fig. 3a), but is more abrupt in CONTROL due to a sudden enhancement 
of the southerly wind in June (see the thick line in Fig. 3b). In the CLWP prescribed experiments (CLWP1, 
CLWP2, CORRECTION), the northward movement of the ITCZ is in between that of the observations and 

Fig. 1 Left column: Mean cloud amount in observations (ISCCP) (a), 
CONTROL (b), and LCA2 (c). Right column: Net shortwave radiation 
at the surface for observation (COADS) (d), the differences of 
CONTROL-COADS (d) and LCA2-CONTROL (e). Bottom: regional 
averaged monthly low cloud amount in ISCCP (solid), LCA2 
(dashed), and CONTROL (dot). The averaged region is the square in 
(a-c). Contour interval is 5% in (a-c), 10 W/m2 in (d-f). 
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CONTROL (Figs. 3c-3e). The improvement of the ITCZ is mainly associated with the enhancement of the 
southerly wind in the early part of the year. 

4. Concluding remarks 

In this work, we examined the impact of low clouds and CLWP changes on tropical mean climate and 

Fig. 2  Left column: Mean of SST (shading and contour) and surface wind stress (vector) in observations 
(NCEP/NCAR reanalysis and ERv2) (a), CONTROL (b), CLWP1 (c), CLWP2 (d), and 
CORRECTION (e). Right column: Difference of SST and surface wind stress between CONTROL and 
observations (f), between CLWP1 and observations (g), between CLWP2 and observations (h), 
between CORRECTION and observations (i), and between CLWP1 and CONTROL (j). Contour 
intervals of SST are 1OC in (a-e) and 0.5OC in (f-j). The scales of the vectors are shown at the top of 
each column. 
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seasonal cycle by prescribing 
them in the NCEP CFS. It is 
found that the change of low 
cloud cover alone has a minor 
influence on the amount of net 
shortwave radiation reaching the 
surface and on the warm biases 
in the southeastern Atlantic. 
Further experiments show that 
shortwave radiation absorption 
by CLWP is mainly responsible 
for reducing the excessive 
surface net shortwave radiation 
over the southern oceans in the 
CFS. By prescribing CLWP in 
the CFS, the cold tongue and 
associated surface wind stress in 
the eastern oceans become 
stronger and more realistic. The 
seasonal cycle in the tropical 
Atlantic is also improved. It 
seems that prescribing CLWP in 
the CFS is an effective interim 
technique to reduce model 
biases and to improve the 
simulation of seasonal cycle in 
the tropics. This could then 
serve as a model bias correction 
approach. 
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1. Introduction 

 During the winter season, heavy rainfall events in the western United States are known to be associated 
with the intraseasonal oscillation (ISO) (Mo and Nogues-Paegle 2005).  In the Intermountain West, a different 
weather event is gaining increasing attention, i.e. persistent inversions.  Deep inversions often develop in 
valleys and mountain basins and frequently lead to poor air quality.  In 2007, in order to forecast winter 
inversions along with expected air quality, the National Weather Service (NWS) at Salt Lake City began 
periodic special weather briefings before the onset of and during inversion situation1: In the briefings, it has 
been regularly mentioned that estimating inversion duration and pollution intensity is frequently difficult to 
specify in definitive terms.  Recently, a close linkage between the occurrence of wintertime persistent 
inversions and the 20-40 day ISO was identified (Gillies et al. 2010; hereafter GWB).  The 20-40 day ISO is a 
pronounced mode in the midlatitude circulations (Horel and Mechoso 1988; Lau and Nath 1999) but more so, 
its intraseasonal timescale implies that forecasting persistent inversions in the Intermountain West is beyond 
the ~10 day horizon of weather forecast models.   

A number of studies (e.g., Weickmann et al. 1985; Mo 1999) suggest that the ISO in North America is an 
atmospheric response to diabatic heating anomalies associated with the Madden-Julian Oscillation (MJO; 
Madden and Julian 2005).  Empirical and dynamical forecasts of the MJO exhibit skill at lead times beyond 
two weeks, including the operational Climate Forecast System (CFS; Saha et al. 2006) of the National 
Centers for Environmental Prediction (NCEP) which has demonstrated credible skill in predicting the MJO 
circulations as far out as one month (Seo et al. 2007, 2009).  Additionally, the CFS shows similar skill in 
forecasting west coast winter rainfall events (Jones et al. 2009).  Such circumstances, together with the 
inversion-ISO relationship observed in GWB, imply that the CFS may exhibit potential in predicting the 
inversion development with a lead time beyond that of ~10 days.  These circumstances lead us to undertake 
an investigation of the CFS’s performance skill in predicting persistent inversions for Salt Lake City, Utah. 

2. Data sources and the inversion-ISO relationship 

For each predicted period, the CFS hindcast is initialized from three ensemble means (denoted by μ1, μ2, 
and μ3) of five consecutive days computed from days 10–14, 20–24 of a particular month, and from days 1-4 
of the following month.  Observed atmospheric variables were obtained from the NCEP–DOE Global 
Reanalysis 2 (GR2; Kanamitsu et al. 2002).  Upper-air soundings at Salt Lake City International Airport 
(KSLC) were utilized to analyze inversion conditions over the period from December 1980 to February 2008, 
as identified in GWB.  Criteria for deep stable layers were utilized by GWB to classify surface inversion with 
a neutral or increasing temperature profile extending from the ground level up to a certain height (Wolyn and 
McKee 1989).  The dates and classification of inversions are summarized in GWB.  Air quality measurements 
in Salt Lake City were adopted from daily observations of particulate matter of 2.5 micrometers in diameter 
or smaller (PM2.5) from a Utah Division of Air Quality station (site ID 4-035-3006).   

GWB established an index via bandpass filtered KSLC geopotential height at 300 mb (20-40 days; 
hereafter Z30d), and used the index to conduct a composite analysis for the inversion frequency and PM2.5 
concentrations.  The composite was made of eight phases that evenly divide the Z30d “index cycle”.  The 
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selection of this 20-40 day spectrum is due to the fact that the 
North American circulation responds only to the higher-
frequency end (~30 days) of the MJO (Mo and Nogues-Paegle 
2005).  The results of GWB are summarized in Fig. 1 and show 
that the occurrence of surface inversions and the PM2.5 
concentrations in Salt Lake City are profoundly modulated by 
the ISO which are coherent with the Z30d index.  The surface 
inversion probability (SIP) in Fig. 1 was obtained from the 
relative frequency of surface inversions at each phase within a 
full cycle of the Z30d index, through all identified cycles over the 
1981-2008 period. 1 

 Following GWB, we used the 200-mb Z30d index at KSLC 
(since the CFS hindcasts do not have data at 300 mb) and 
derived a second-order polynomial regression to estimate the 
SIP, 

SIP = 0.00001 (Z30d)2 + 0.003 (Z30d) + 0.237.   (1) 

The SIP regression was derived from the composite mean Z30d at 
200mb for each phase from all significantly strong cycles, 
defined by the one standard deviation criterion in GWB.  The 
obtained SIP was then regressed to estimate the PM2.5 
concentration as, 

PM2.5 = 52.16 (SIP)2 + 24.82 (SIP) + 10.54.   (2) 

Regression models (1) and (2) have the largest R2 (the 
proportion of variance explained) values over linear and higher-
order models.  As an example, the estimated SIP and PM2.5 
concentrations during the 2003-04 winter are shown in Fig. 2.  A 
persistent surface inversion event occurred in mid-January 2004 

that lasted for 14 days (denoted by a 
sequence of black dots).  Two shorter 
events also occurred around 20 
December 2003 and 16 February 
2004.  The estimated SIP from the 
KSLC Z30d (blue shaded area) 
corresponds well with all three 
persistent surface inversion events, 
with a higher probability centered 
around the 14-day event.  Moreover, 
the estimated PM2.5 concentrations 
(Fig. 2b; yellow shaded area) are in 
good agreement with observed 
PM2.5 (black line) and both strongly 
coincide with the observed persistent 
surface inversion events.  Since 
Eqs.(1) and (2) use the filtered 
geopotential height, short-term 
variations in the inversion and PM2.5 
estimates are inevitably smoothed out.  

                                                 
1  http://www.wrh.noaa.gov/slc/projects/AQ_Briefing/AQ_Briefing.htm 

Fig. 1  Composite 300-mb Z30d index at 
KSLC and the evenly divided 8 
phases (red line), probability of 
surface inversion days (blue bars), 
and PM2.5 concentrations at the Salt 
Lake City site (black line).  Error bars 
are added to the probability and 
PM2.5 fields.  Modified from Gillies 
et al. (2010). 

Fig. 2  (a) Estimated surface inversion probability (SIP) from Eq.(1) 
using the KSLC Z30d at 200 mb (blue shaded curve) overlaid with 
surface inversion days (dots) during December 2003-February 
2004.  (b) Estimated PM2.5 concentrations for Salt Lake City 
from Eq.(2) (green shaded curve) superimposed with the 
observed PM2.5 concentrations (black line).  Three CFS 
ensembles (μ1, μ2, μ3) are plotted as color lines.  
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Nevertheless, short inversion events, such as 
observed on 24-25 January, are coupled with 
synoptic modes which are not as crucial as the 
30-day cycle. 

3.  CFS prediction skill 

To predict the SIP, we constructed the Z30d 
index using the CFS’s 200-mb geopotential 
height at the grid point nearest to KSLC 
(112.5°W, 40°N).  For each CFS member, two 
months of the observed (GR2) data prior to the 
initial day were added to the CFS output before 
filtering in order to avoid “ends of data” 
problems associated with the bandpass filter.  
The predicted SIP from all three CFS 
ensembles for January 2004 (Fig. 2a) captures 
the mid-January persistent surface inversion 
event, but the CFS nearly misses the mid-
February event.  The predicted PM2.5 
concentrations (Fig. 2b) are similar to the 
estimated ones, indicating that the CFS exhibits 
reasonable skill in predicting the ISO for up to 
one month.  Thus, forecast skill for the 
synoptic circulation pattern was assessed by 
calculating the spatial correlation between the 
CFS and the verifying values of the GR2.  For 
the domain defined as 150°-80°W and 20°-
65°N (over western North America), 
correlations computed between the CFS 
hindcast and the GR2 for December, January, 
and February from 1981 to 2008 are shown in 
Fig. 3a: The CFS correlation skills are positive 
beyond seven weeks of lead time.  Using a 
threshold of 0.5 for the correlation skill, as was 
used in Seo et al. (2009), the CFS appears to predict the synoptic pattern that pertains to persistent inversion 
events for up to about four weeks.   

The CFS forecast skills were compared with various empirical forecast skills, including a principal 
component (PC)–lagged regression model (PCRLAG) which uses the first two PCs of the filtered 
geopotential height at 200 mb, an auto-regression (AR) model with the filtered geopotential height at each 
grid point, and the Persistence forecast.  We used three months of the GR2 data prior to the initial day of each 
ensemble and applied these to the empirical forecasts.  As shown in Fig. 3a, the CFS skill is consistently 
greater than all other competing forecasts. 

Next, we evaluated the CFS’s prediction of persistent surface inversion events by averaging the 
composite SIP during peak ISO phases 2-4 (see Fig. 1), which yields a value of 35%, and subsequently used 
this 35% as the threshold SIP in the prediction of persistent surface inversion events.  Such events were 
defined as any consecutive four days of surface inversions.  On either the second or the third day of a 
persistent surface inversion event (events identified in GWB), if the predicted SIP is greater than or equal to 
35% then this event was defined as a “hit”; otherwise the event was a “miss”.  For any persistent surface 
inversion event lasting longer than four days, the hits and misses were computed independently within each 4-
day period.  For instance, a 7-day persistent surface inversion event would be evaluated as four individual 4-
day events.  After obtaining such hits and misses we constructed a simple score,  

Fig. 3  (a) Spatial correlation of the 200-mb geopotential 
height as a function of forecast  lead time for the CFS, 
PCRLAG, AR, and Persistence forecasts.  The shaded 
area outlines one standard deviation of the CFS skill.  
(b) Scores of persistent surface inversion forecasting 
(lines) for the CFS, PCRLAB and AR, superimposed 
with the number of hits of persistent surface inversion 
events by the CFS (gray bars).  The computation was 
performed for DJF over the 28-yr (1981-2008) period.    
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to evaluate the CFS’s forecast skill for 
predicting persistent surface inversion 
events via Eq.(1).   

Figure 3b shows the number of hits 
(histogram) and the score (time series) of 
the CFS prediction with respect to lead 
time.  The CFS’s score exhibits a similar 
downward tendency but remains above 
50% until week 4 and rising again to 
above 50% near week 6.  Such prediction 
skill is consistent with the 2004 case in 
which the CFS successfully predicted the 
persistent surface inversion events out to 
five weeks (cf. red line in Fig. 2a), yet 
barely predicted the mid-February event 
with a similar lead time (cf. blue dashed 
line in Fig. 2a).  Such forecasts echo the 
50% skill scores between weeks 5 and 6 
in Fig. 3b.  Nevertheless, skill scores of 
the CFS are consistently higher than 
those obtained from the empirical models, 
suggesting that the CFS offers a better 
forecast of persistent surface inversion 
events with a 4 week lead time.  Such a 
skill greatly surpasses the current 
inversion prediction procedure that relies 
on weather forecast models.  Moreover, 
since Eq.(2) is practically a function of 
Eq.(1), the results also indicate an 
extended predictability of prolonged, 
high concentration events of PM2.5 by 
the CFS. 

4. Summary 

How does the CFS’s skill in 
capturing the MJO contribute to its skill 
in predicting the midlatitude circulations 
over western North America?  To 
investigate, the circulation responses to 
the MJO were analyzed through a 
compiled composite of the 200-mb 
streamfunction and velocity potential, 
following the eight phases of the Z30d 
index at KSLC (cf. Fig. 1).  Each phase 
covers three days centered on the second 
day (dates of the composite are identical 
to those analyzed in GWB).  Prior to the 
composite analysis, the streamfunction 
and velocity potential were bandpassed 

Fig. 4  Composite eight phases of the 200-mb Z30d index at 
KSLC in terms of the filtered streamfunction (ST30d, 
contours) and velocity potential (VP30d, shadings) at 200 
mb superimposed with the divergent winds (vectors; above 
the 10% significance level).  The calculation was based on 
the 28-yr GR2 data.  The contour interval (CI) of ST30d is 
1.5x106 m2 s-1 while zero contours are omitted.  The golden 
line at 120°W indicates the approximated position of the 
winter mean ridge.  The ST30d wave train is illustrated by a 
red dashed arrow at Phases 3 and 7. 
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with 20-40 days, denoted respectively as ST30d and VP30d.  As shown in Fig. 4, the eight phases of the 
composite depict a clear eastward propagation of VP30d with predominant zonal wavenumber-1 patterns.  
Embedded in this typical MJO structure is a series of short-wave VP30d cells across the northeast Pacific 
Ocean and North America.  These regional short wave cells are accompanied by similarly definite, yet 
spatially in-quadrature, wave trains of ST30d.  At phases 2-3 when the SIP in Salt Lake City is elevated, the 
ST30d wave trains appear to follow the classic “great circle” route leading to a prevailing ridge in western 
North America.  An oppositely signed circulation anomaly is also evident at phases 6-7.  Despite the 
pronounced eastward propagation of global VP30d, the regional wave trains of both VP30d and ST30d appear 
quasi-stationary.   

Such a feature underscores the fact that the semi-permanent ridge over western North America fluctuates 
in response to the tropical–extratropical linkages of the MJO.  These results strongly suggest that the 
occurrence of persistent inversions in the Intermountain West is “phase locked” with the MJO evolution.  As 
a result, the CFS’s documented skill in predicting the MJO likely assists in predicting the circulation systems 
that lead to persistent inversions.  In addition, past studies of the MJO prediction have noted that forecast skill 
of precipitation typically declines faster than atmospheric circulation.  This is attributable to precipitation’s 
sensitivity to high-frequency weather disturbances which have little long term predictability.  The proposed 
regression scheme with the CFS output, to predict persistent surface inversion events in the Intermountain 
West, may bear relatively high skill also because such inversion events are coupled with slow-moving 
circulation patterns (i.e. ridges) in contrast to unstable, highly variable precipitation systems (such as fronts). 
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1. Introduction 

Drought and persistent wet spells are costly disasters in the United States. Losses are easily in the tens of 
billions.  If drought can be predicted a few months in advance, then the losses can be reduced. In the recent 
decade, advances have been made in hydrologic prediction of streamflow and soil moisture by using climate 
forecasts at seasonal lead times (Wood and Lettenmaier 2006; Luo et al. 2007).  In this present work, we will 
extend the hydrologic prediction to cover the meteorological drought measured by precipitation (P) deficits 
based on the CFS forecasts.  The meteorological drought is often measured by the standardized precipitation 
index (SPI) (Hayes et al. 1999).  The advantage is that it is a function of precipitation alone and can be 
applied to both station and gridded data.      

The impacts of drought are regional. Therefore, drought assessment and prediction need to be at as high 
as the local County level.  Because the atmospheric model for the CFS has the horizontal resolution of T62 
which is approximately 250 km, it is too coarse for this purpose.  To provide regional drought information, 
spatial downscaling is needed.  In general, there are two categories of downscaling techniques (Wilby and 
Wigley 1997).  One is statistical downscaling based on the historical relationship between global model 
hindcasts and high-resolution observation, and the other one is dynamic downscaling method using limited 
area, high-resolution models.  

In this study, four statistical downscaling methods were tested.  The statistical downscaling methods will 
be compared with the dynamic downscaling based on the NCEP regional spectral model (RSM) (Juang and 
Kanamistu 1994, Juang et al. 1997) for April-May initial conditions. They are also compared with the CFS 
T382 model forecasts directly. 

2. Data sources and procedure 

Monthly mean time series of P are obtained from the CFS hindcast archive (Saha et al. 2006). Hindcasts 
monthly means have 15 members for the period from 1982 to 2008.  The NCEP RSM (Juang et al. 1997) is a 
regional spectral model with similar dynamic core and same physics package to the NCEP GFS. Lateral 
boundary condition is obtained from the CFS forecasts every 6 hours. The spatial resolution of the NCEP 
RSM is 50 km and 5 members initialized from 29April to 3 May each year.  High-resolution coupled global 
climate model (CGCM) was the operational version of the 2007 GFS model with T382L64 resolution coupled 
with the GFDL MOM 3 ocean model. The high resolution hindcasts were initialized from 19-23 April each 
year from 1981 to 2008. There are 5 members in the ensemble.  The ensemble mean is the equally weighted 
mean of five members.  The observed P data set used in this study is the CPC unified P analysis (Xie et al. 
2010). The spatial resolution is 50-km.  It covers the period from 1950 to present.  For verification, the 
monthly mean P anomaly is defined as the departure from the monthly mean climatology from 1981-2008 for 
that month.  

The downscaled P and SPI are cross validated for our analysis period from 1981 to 2008. Hindcasts with 
initial conditions from October-November, January-February, April-May and July-August were evaluated. 
The cross validation was done for each lead time and each set of initial conditions separately with both 
anomaly correlation (AC) and the root mean square error (RMSE).  In validation process, we exclude the 
target year.  
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3. Precipitation downscaling and bias 
correction 

a) Bilinear interpolation (BI) 

The precipitation anomaly Pa (Ty, τ, 
M) for month M, target year Ty and lead 
time τ is defined as the departure from 
the model climatology averaged over the 
ensemble means of hindcasts for the 
same lead time τ from the training period.  
The hindcasts at year Ty were not 
included in the climatology.  We 
bilinearly interpolated Pa (Ty, τ, M) to a 
50-km grid.  It should be verified against 
the observed P anomaly at month τ -
1+M and year Ty.  

Figure 1 shows an example of 
hindcast anomaly at τ =1 for November 
1988. November 1988 was a cold El 
Nino Southern Oscillation (ENSO) 
month.  The BI downscaling P hindcast 
captures the ENSO signal well, but the 
magnitudes of anomalies are too weak to 
be useful and cannot capture terrain 
related features over the Pacific 
Northwest.  But this BI method can be 
used as a building block and reference 
for other methods.  One potential 
shortcoming of correcting model’s 
climatology is that the corrected total 
precipitation can be negative when the 
model climatology is much wetter than 
the observed climatology.  

b) Bias correlation and spatial 
downscaling (BCSD) 

Before applying BCSD, all P 
hindcasts were bilinearly interpolated to 
the 50-km grid first.  For the month M 
and lead time τ, to modify P (Ty, τ, M) 
for the target year Ty, the Cumulative 
Distribution Function (CDF) was computed at each grid point using all ensemble members with the lead time 
τ based on CFS hindcasts in the training period.  At each grid point, the percentile of P (Ty, τ, M) for the 
target year Ty was determined according to the CDF (hindcast).  Given the same percentile, we computed P 
backward from the CDF (obs).  In comparison to BI, the BCSD method corrects both the mean and the 
standard deviation of the ensemble hindcasts in the normal space.  The hindcasts have higher amplitudes and 
they are terrain adjusted.  Because of its simplicity and robustness in correcting terrain related features, this 
method has been applied in hydrologic forecast application (Wood et al. 2002).  

c) Schaake linear regression method (Schaake method) 

The BCSD method does not take into account of the forecast skill of hindcasts. Both the Schaake method 
and the Bayesian method do. For the Schaake method, the idea is to use a simple linear regression to calibrate 

Fig. 1 (a) 1988 November precipitation anomaly from the P 
analyses.  Contour interval is 1 mm day-1. Contours -0.5 -0.2, 
0.2 and 0.5 mm day-1 are added.  November P forecast at 1 
month lead produced by downscaling from the T62 CFS 
forecasts with (b) Bilinear interpolation (BI), (c) BCSD, (d) 
Bayesian method including spread, (e) Schaake linear 
regression, (f) Bayesian method without spread and with 
screening the CFS forecasts, and (g) same as (f), but the multi-
method ensemble mean of (c), (e), and (f). Contour interval in 
(b)-(g) is 0.5 mm day-1. Contours -0.2 and 0.2 mm day-1 are 
added. Zero contours are omitted. 
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raw hindcast ensembles in the normal space for hydrologic prediction (Wood and Schaake 2008).  The first 
part of the procedure is the same as the BCSD.  Difference is to consider correlation between hindcasts and 
analyses.  For November 1988, anomalies from the Schaake method (Fig.1e) have the similar pattern as 
anomalies downscaled with BCSD, but there are certain differences.  It shows some improvements over the 
Great Lake area.  Negative anomalies over Northern California, which are not verified, illustrate the weakness 
of this method. The negative anomaly is caused by the negative correlation.  In reality, it is unlikely that the 
forecasts and the corresponding observations are systematically opposite in sign.   

d) Bayesian merging  

The methodology is described in details in Luo et al. (2007).  Bayes’ theorem updates the probability 
distribution on P based on the hindcasts in the training period.  Computation is similar to the Schaake method.  
But, it uses Bayes’ theorem to update probability distribution of forecast based on the likelihood function, 
which is determined by least square fit of the ensemble mean hindcasts to the corresponding observation 
(Coelho et al. 2004, Luo et al. 2007).  For the multi-model ensemble forecasts, the Bayesian merge will adjust 
the distribution function by weighting the skill of the hindcasts from different models and the spread of 
forecasts accordingly (Luo et al. 2007).  For the unskillful forecasts, the distribution function will be close to 
observed P, just like Schaake method.  The spread among members of CFS hindcasts are very large because 
the CFS hindcasts have low skill especially in midlatitudes over a small domain (Luo and Wood 2006).  
Another reason is that initial conditions for members in the CFS hindcast ensemble are far apart, up to 30 
days.  If spread is used, then the P anomalies after the Bayesian merging are very weak. For example, the 
1988 November forecast for one month lead (Fig. 1d) shows a similar pattern as BI (Fig.1b), but the 
magnitudes are very weak. Therefore, the spread is not used in our present study.  Instead of using spread, we 
eliminate members in the ensemble that are very different from the ensemble mean before applying the 
Bayesian method.  For the 1988 November case (Fig. 1f), amplitudes of anomalies are higher than those with 
spread (Fig. 1d).  If we do not screen forecasts, the skill is on average lower.  In this work results are given for 
the Bayesian method without spread but with screen.  

e) Multi-method ensemble 

All three downscaling methods have advantages and disadvantages.  They also show skill in different 
areas during different seasons.  Therefore, we can form a multi-method ensemble as the equally weighted 
mean of hindcasts treated by BCSD (Fig. 1c), Bayesian (Fig. 1f) and Schaake methods (Fig. 1e).  Fig. 1g 
shows the example of the 1988 November hindcast with one month lead.  It is terrain adjusted and has 
comparable amplitudes as hindcasts downscaled with BCSD. 

4. The SPI prediction 

a) Method 

The computation of the SPI is based on Mckee et al. (1993, 1995).  The procedures to forecast SPI from 
month M and year Ty out to the lead time τ is outlined in Fig. 2.  We explain in detail by using the 1988 
November case as an example. 

1. Obtain the monthly mean observed P 
climatology for the base period Ty -30 to 
Ty.  For 1988 November forecasts, the 
base period is from 1957 to 1987. One 
can easily extend the base period to 
longer period. The only limitation is the 
record length of historical observational 
data. 

2. Add the observed monthly mean P 
climatology from the base period to the 
downscaled forecast P anomaly from 
lead month τ (τ =1 - 9). For 1988 Fig. 2  A schematic diagram of SPI forecast procedure. 
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November forecasts, the first lead 
month is November so the 
November climatology is added to 
the downscaled P anomaly.  

3. The forecast time series then is 
appended to the observed P time 
series which covers the period from 
year Ty -30 month M to year Ty 
month M-1. For November 1988, 
the observed time series lasts from 
1958 November to 1988 October 
and followed by forecast time series.  

4. Compute SPI from this combined 
time series. 

The important point is that observed P 
data set after year Ty is not used because the 
information will not be available in the 
actual forecast situation.  By definition, the 
one-month lead SPI6 has P which contains 5 
months observed P and one month forecast.  
Therefore, for the first few month lead, the 
SPI6 forecasts are expected to be skillful, 
with analogy to influence from initial 
condition in the land/hydrologic forecast 
system.  Figure 3 shows anomaly 
correlation (AC) in space and root mean 
square error (RMSE) of SPI6 hindcasts 
averaged over the U.S. as a function of the 
lead time for hindcasts initialized in four 
different seasons.  When SPI6 at a give time 
is below (above) the threshold -0.8 (0.8), it 
is classified as extreme dry (wet) event.  If 
we use this criterion, then SPI6 forecasts are 
on average skillful up to the lead time of 4 
months.  The winter forecasts are more 
skillful than summer in general. There is no 
statistical significant difference in skill for 
forecasts downscaled with different methods 
for the first 4 months when forecasts are 
skillful. After 4 months, the forecasts are 
unskillful so differences in skill among 
different downscaling methods do not 
matter much.  

To show the forecast skill for SPI6 from P downscaled with different methods in regional details, the 
RMSE for forecasts initialized in April-May is given in Fig. 4.  This set of forecasts is chosen because they 
have the lowest skill in comparison with forecasts initialized in other months (Fig. 3).  For the first two lead 
months, skill is comparable.  They all show that forecasts are more skillful over the Southeast. Over the West 
coast and the Southwest, spring is not their rainy season so low RMSE is expected. For May to June, raining 
season starts over the Great Plains. The forecast skill decreases along 100oW-115oW. After 3 months, 
forecasts over the Great Plains become less skillful. Among three different methods, the forecasts downscaled 
with Bayesian deteriorate slower than the BCSD or the Schaake linear regression method. 

Fig. 3  (a) Anomaly correlation of SPI6 as a function of the lead 
time for initial conditions in (a) October-November, (c) 
January-February, (e) April-May, and (g) July-August. 
SPI6 is derived from P forecasts produced by downscaling 
with the BCSD (blue), Schaake linear regression (red), 
Bayesian (green) and multi-method ensemble (black). (b), 
(d), (f), and (h) are the same as (a), (c), (e), and (g), but for 
RMSE, respectively.     
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Fig. 4  Spatial pattern of RMSE for SPI6 forecast in function of lead time. Forecast initialized from April-
May with three different methods are displayed: BCSD in (a)-(d), Schaake linear regression in (e)-(h), 
and Bayesian in (i)-(l). First column (a), (e), and (i) shows forecast with the lead time of one month, 
which is followed by three columns of forcast (from left to right) with the lead time of 2, 3 and 4 months, 
respectively. 

5. Forecasts from the NCEP RSM and the CFS T382 model 

In this section, we compare hindcasts from statistical downscaling with dynamic downscaling with the 
NCEP RSM and hindcasts from a T382 model directly.  Only Hindcasts initialized in April-May are available 
from the high resolution T382experiments. 

a) NCEP RSM 

The 50-km RSM is nested in the CFS hindcasts to produce downscaled precipitation. The boundary 
conditions from the CFS were given every 6 hours.  The initial conditions were taken from the CFS hindcasts 
initialized from the period 28 April to 3 May each year in this study.  For May P forecasts, the correlation 
between the P anomalies and the corresponding observations indicates that the RSM downscaled hindcasts 
(Fig. 5a) are overall more skillful than the 15 member ensemble downscaled with BCSD (Fig. 5c). It is noted 
that the skill comes from the initial conditions, because the RSM members are the youngest members in the 
ensemble initialized at the end of April or early May. If the RSM downscaled forecasts are compared with the 
same 5 youngest members in the ensemble downscaled with BCSD, then skill is more comparable (Fig. 5e). 
For lead times longer than one month when the influence of initial conditions diminishes, the differences 
between the dynamic downscaled and the statistical downscaled hindcasts are small. The differences in skill 
for the SPI6 forecasts are also small (Fig. 5b and 5d). The overall RMSE of SPI6 forecasts shows that the 
RSM forecasts have comparable skill with the 15 member ensemble downscaled with BCSD and slightly 
more skillful than the CFS with 5 youngest members after the first month.  (Fig. 5f)     

b) CFS T382 model 

For CFS T382 forecasts, there are five members initialized from April 19-23 each year for the period of 
1982-2008.  The overall skill is slightly worse than the 15 member ensemble CFS forecasts downscaled with 
BCSD (Figs. 6a and c). However, it is comparable in skill in comparison with the 5 member ensemble with 
the same initial conditions (Fig. 6e). This indicates again for the first month, the initial conditions are 
important. The interesting point is that forecasts from T382 are worse than from the RSM (Fig. 5a).  For SPI6, 
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the T382 forecasts are more skillful 
than the T62 forecasts with the 
same initial conditions after 
downscaled with BCSD. However, 
they are not as skillful as the 15 
member CFS forecasts after 
statistical downscaling (Fig. 6f).   

6. Conclusion 

The Standardized Precipitation 
Index (SPI) has been used routinely 
to classify the meteorological 
drought by national and 
international forecast centers and 
authorities.  Based on the P 
seasonal forecasts from the NCEP 
CFS, a method is developed to 
forecast SPIs to predict the 
meteorological drought over the 
United States.  Before predicting 
SPI, the P forecasts from a coarse 
resolution global model CFS are 
downscaled and bias-corrected to a 
regional 50-km grid. Four different 
methods of statistical downscaling 
and error correction are tested, 
which are: (1) bilinear interpolation 
(BI), (2) a bias correction and 
spatial downscaling based on the 
probability distribution functions 
(BCSD), (3) a linear regression 
method by Schaake (Schaake) and 
(4) the Bayesian method used by 
the Princeton University group and 
the EMC/NCEP. We tested cases 
with initial conditions in October-
November, January-February, 
April-May and July-August. 
Because drought means persistent 
dry conditions, we are interested in 
6-month SPI (SPI6) and short term 
drought measured by 3-month SPI (SPI3). 

The skill is regionally and seasonally dependent. Overall, the 6 month SPI is skillful out to 3-4 months. 
For the first 3 month lead times, there is no statistical significant difference among different methods of 
downscaling. After 4 months, forecasts downscaled with Schaake method have slightly less skill and forecasts 
downscaled by Bayesian deteriorate slower than others. Overall, the multi-method ensemble has the best skill. 
For P downscaling, the simple BCSD method does well. This implies that the systematic errors of the CFS 
forecasts are in the mean and the standard deviation which are largely caused by the terrain. The Schakke 
method did well only if the CFS forecasts are skillful. The occasional negative correlation between the 
hindcasts and the corresponding observations hurts forecast skill because this is not a systematic feature of 
forecasts. Bayesian method does not stand out in this comparison because the CFS forecasts have low skill 
and large ensemble spread. Even though the spread is not included here, the method still tends to dump to 

Fig. 5  (a) Correlation between P forecasts from the NCEP RSM five 
member ensemble and the corresponding P analysis for forecasts 
initialized in 28 April – 3 May each year. Contour interval is 0.1. 
Values less than 0.3 are omitted. (b) same as (a), but for 2 month lead 
SPI6 derived from the RSM forecasts, (c) same as (a), but for the 
downscaled T62 CFS P forecasts from 15 member ensemble 
downscaled based on BCSD, (d) same as (b), but for SPI6 forecasts 
derived from (c) , (e) same as (c), but  for 5 members initialized at 
late April and early May, (f) RMSE for SPI6 forecasts averaged over 
forecasts from 1982-2007 and averaged over the United States. SPI6 
were derived from P from the RSM (black), the 15 member ensemble 
downscaled T62 CFS forecasts initialized from April-May using the 
BCSD method (green) and from the 5 member T62 forecasts 
initialized from late April and early May using the BCSD method 
(blue).     
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climatology. The multi-method 
ensemble has the best skill because 
forecasts with different 
downscaling methods show skill in 
different locations, so the average 
has an advantage. 

The NCEP RSM and the CFS 
T382 model have comparable skill 
with statistical BCSD downscaling. 
For the first month, the initial 
conditions dominant, the ensemble 
with 5 youngest members has the 
best skill. After the first month, 
ensemble with 15 members has a 
slight edge. Large number of 
ensembles or better initial 
conditions could reduce potential 
forecast errors. The importance of 
initial conditions suggests the needs 
to have better observational system 
and better data assimilation 
schemes. 
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Fig. 1  The JAS seasonal mean errors of the AWP 
area computed relative to observed SST.  (Misra 
and Chan 2009) 
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1. Introduction 

 The Atlantic Warm Pool (AWP) is considered as a potential source of seasonal predictability in the 
western hemisphere during the boreal summer season (Wang and Enfield 2003; Wang et al. 2006). In addition, 
it is suggested that the interannual variation of the AWP area is independent of El Niño Southern Oscillation 
(ENSO) variability in the eastern Pacific Ocean (Wang et al. 2006). This feature also encourages the 
exploration of the AWP as a potential alternative source of boreal summer season predictability in the western 
hemisphere.   

This study is aimed at understanding the seasonal predictability of the AWP in the National Centers for 
Environmental Prediction (NCEP) Climate Forecast System (CFS). NCEP has provided the community with 
an extensive set of seasonal hindcasts from its CFS (Saha et al. 2006), which provides an opportunity to 
analyze the predictability of the AWP. Furthermore, Misra et al. (2009) showed that the NCEP CFS has a 
reasonable climatology of the AWP. In contrast, many of the Intergovernmental Panel on Climate Change 
Fourth Assessment Report (IPCC AR4) models showed significant cold bias in the AWP region, which made 
even defining the AWP difficult (Misra et al. 2009). 

2. Data 

 In this study we used 23 years of seasonal hindcast (SH) data (Saha et al. 2006) covering the period 
between 1981-2003. A SH consists of 15 ensemble members (Saha et al. 2006), which are initialized from 15 
initial conditions that span each month of the year. 
The length of each SH is 9 months. We specifically 
examine the SHs that start in the months of January, 
February, March, April, May, June, and July, 
because the AWP matures in the July-August-
September (JAS) season (Wang and Enfield 2001). 
These SHs correspond to lead times of 6, 5, 4, 3, 2, 1, 
and 0 month for the JAS season. We also make use 
of the long-term NCEP CFS integrations that consist 
of 4 ensemble members, each integrated to a period 
of 32 years (Wang et al. 2005; hereafter referred as 
LT).  For observations, we use the NOAA Extended 
Reynolds SST version 3 following Smith et al. 
(2008).  When we compare SH with observations, 
then we match the observation period with the SH. 
But in comparing with the LT integration we use the 
modern era of 1958-2008 for observations.  

3. Results 

a) Seasonal errors 

The seasonal AWP error in the SH is shown as a function of lead-time and year in Fig. 1. This figure 
shows that in many years the seasonal AWP error grows with lead-time. Also, in the period from 1997 to 
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2003, the SH displayed an under representation of the 
AWP area that is largely unprecedented (Fig. 1).  This 
change in sign of the seasonal errors is, we contend, a 
result of the Atlantic Multi-decadal Oscillation not being 
properly simulated or initialized in the SH. 

The evidence of such a decadal oscillation in the 
observed SST in the region is clearly evident from Fig. 2. 
This figure indicates that the linear trend from 1950 to 
2003 is relatively small compared to the changing slope of 
the decadal trends from 1950 to 1981 and 1982 to 2003 in 
the region, which is also confirmed in other studies 
(Enfield et al. 2001; Kerr 2000). The mean JAS SST 
climatology for the periods 1982-1996 and 1997-2003 
from the observations and the SHs (at 0 lead time for 
example) are shown in Fig. 3. Clearly, the mean observed 
SST for the two periods shows significant differences in 
Figs. 3a and b.  In contrast, the SH shows insignificant 
differences in the seasonal mean climatology between the 
two periods (Figs. 3c and 3d). The climatological seasonal 
mean errors of the SH reflect this difference in 
observations in Figs. 3e and f, which indicates positive 
SST bias in the 1982-1996 period compared to the negative 
bias in the 1997-2003 period. This is consistent with Wang 
et al. (2008) who show that the AMO manifestation  is also 
visible in the AWP variations on decadal time scales. 

b) Interannual variability 

A measure of the deterministic signal to noise ratio is 
plotted in Fig. 4a as the ratio of the ensemble mean of the 
AWP area to its ensemble spread (standard deviation about 
the ensemble mean) as a function of lead time and year of 
the SH. Here it is seen that for a majority of the years, at 
short lead times (0 and 1) the ratio is relatively larger than 
at longer lead times. In 1983, 1987 and 1998, this ratio is 
relatively large at all lead times, indicating the possible 
influence of the ENSO variations in the eastern equatorial Pacific Ocean. The ensemble spread (noise) about 
the ensemble mean in Fig. 4b clearly indicates that it increases with an increase in lead-time. In 1983, 1987 
and 1998, the relative increase of this noise with lead-time is less compared to the other years. In Figs. 5a and 
b, the correlations of the JAS seasonal mean AWP area with the previous DJF global SST correlations are 
shown for the CFS LT integration and observations. The CFS clearly shows the stronger influence of ENSO 
variations over the AWP region in Fig. 5a, which is unsubstantiated in the observations (Fig. 5b). Given such 
an ENSO teleconnection pattern, it is not surprising to observe ENSO’s influence on the seasonal 
predictability of the AWP in the NCEP CFS seasonal hindcasts. 

The concept of ensemble integrations for seasonal prediction is not new (Moore and Kleeman 1996). In 
fact, the indeterminate nature of seasonal predictability warrants that sufficient ensemble integrations are 
performed so that robust probabilistic forecast measures can be computed (Palmer et al. 2000; Kirtman 2003; 
Misra 2004; Saha et al. 2006). Here, the probabilistic skill is evaluated using the area under the Relative 
Operating Characteristic (ROC) curves (Graham et al. 2000; Hanley and McNeil 1982). Owing to decadal 
variations in the seasonal errors, we compute the ROC curves (Fig. 6) for SH covering the whole period from 
1981-2003 and for the period 1981-1996 (when the decadal variations of the observed SST over the AWP 
area are in one phase). In Fig. 6a, it is apparent that the skill of predicting the AWP area in the SH is rather 

Fig. 2  The observed linear trend (per decade) 
in the July-August September SST over the 
period of a) 1950-2003, b) 1950-1981, and c) 
1982-2003.  (Misra and Chan 2009)
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disappointing, when considering the 
whole period of 1981-2003. However 
when using the truncated period of the 
SH, Fig. 6b shows that the SH has 
skill (when area exceeds 0.6 for 90% 
confidence interval) in predicting the 
large AWP events (defined in the 
upper tercile) at all lead times. For 
small (defined in the lowest tercile) 
and normal (in between the upper and 
lower tercile) AWP events, the 
significant probabilistic skill at 90% 
confidence level is restricted to lead 
times of 0 and 1. This yet again shows 
that the observed robust decadal 
variation in the AWP area is 
detrimental to the CFS SH prediction 
skill of AWP. 

4. Conclusions 

The NCEP CFS Seasonal 
Hindcasts (SH) produce a reasonable 
climatology of the AWP. The SH lack 
the robust decadal SST variations 
observed over the AWP region.  This 
points to a possible issue with model 
error (possibly with the ocean model 
dynamics) and/or the inadequacy of 
the ocean initialization procedure to 
capture the decadal variations in the 
sub-surface oceans. In majority of the 
years of the SH, the ensemble spread 
of the area of the AWP increases with 
lead time, with a consequent decrease 

Fig. 3  Climatological July-August-September (JAS) seasonal mean 
SST from observations computed over the period of a) 1982-
1996, and b) 1997-2003. Similarly, climatological JAS seasonal 
mean SST from the SH at 0 lead time computed over a period of 
c) 1982-1996, and d) 1997-2003. Climatological JAS seasonal 
mean SH errors computed over a period of e) 1982-1996, and f) 
1997-2003.  (Misra and Chan 2009) 

Fig. 4  a) The ratio of the ensemble mean of the AWP area (<AWP>) to its ensemble spread  (σAWP) and b) 
the ensemble spread of SH as a function of lead time and year.  (Misra and Chan 2009) 
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in signal to noise ratio with lead time. However such linear relationship of the seasonal errors of the area of 
AWP with lead time is found lacking in the SH. In contrast, the signal to noise ratio decreases with lead time, 
which is most likely a result of the noise (ensemble spread) increasing with the lead time. However, in some 
of the major ENSO years, the SH displays significant increases in signal to noise ratio at all lead times 
relative to other years. This seems to suggest that large ENSO events, as seen in 1998, 1987, and 1983, may 
have some influence on the predictability of the AWP events in the NCEP CFS. It is seen that the NCEP CFS 
displays erroneously stronger influence of ENSO on the interannual variation of the AWP area. The 
probabilistic skill as measured by the area under the ROC curve clearly indicates the absence of any useful 
skill in predicting the modulation of the AWP area in the SH. However, it is found that when we examine a 

Fig. 6  The Area Under the Relative Operating Curve (AUC) for a) the full hindcast period of 1981-2003, 
and b) for the period 1981-1996 when the decadal variations of observed SST in the AWP region are in 
one phase.  (Misra and Chan 2009) 

Fig. 5  The lead-lag correlation of the JAS seasonal mean area of the AWP with the previous DJF mean 
global SST from a) NCEP CFS LT integration, and b) observations (Smith et al. 2008). Only 
significant values at 95% confidence interval according to t-test are plotted. The Niño3.4 region is 
outlined over central Pacific.  (Misra and Chan 2009) 

ba 
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truncated period of the SH (1981-1996 when the observed SST is one phase of the prevalent decadal 
variation) then some useful skill for the large AWP events (that occur in the upper tercile) at all lead times of 
the SH is noticed. But in this truncated period of the SH the significant probabilistic skill for the small AWP 
events (that occur in the lower tercile) and for normal AWP events (that occur in between the lower and upper 
terciles) is restricted to lead times of 0 and 1month. These results clearly suggest the importance of decadal 
variations of Atlantic SST and its lack of adequate representation in the NCEP CFS SH that reflects in its 
prediction skill of the AWP modulation at interannual scales. 
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1. Introduction 

Extreme (or heavy) precipitation events are frequently accompanied by floods or crippling snowfall, 
which increase the potential for loss of life and property. The Madden-Julian Oscillation (MJO) is the most 
prominent form of tropical intraseasonal variability that impacts weather and climate (Carvalho et al. 2004; 
Lau and Waliser 2005; Zhang 2005). 

Important linkages have been identified between the MJO and the occurrence of heavy precipitation 
(Higgins et al. 2000; Jones 2000; Carvalho et al. 2004; Jones et al. 2004a). Since the MJO involves intense 
tropical convective heating anomalies, tropical-extratropical interactions are significant during its life cycle. 
Consequently, the MJO modulates the skill of weather forecasts in the medium and extended ranges (Jones 
and Schemm 2000; Jones et al. 2000; Vitart and Molteni 2010) as well as the potential predictability at these 
time ranges (Jones et al. 2004a, 2004b). 

Recently, Jones et al. (2010) investigated the MJO and the forecast skill of extreme precipitation in the 
contiguous United States (CONUS) during boreal winter. Forecast skill is usually higher when the MJO is 
active and has enhanced convection occurring over the western 
hemisphere, Africa, and/or the western Indian Ocean. Heidke skill 
scores (HSS) greater than 0.1 extend to lead times of up to two weeks 
in these situations. Approximately 10-30% of the CONUS has HSS 
greater than 0.1 at all lead times from 1 to 14 days when the MJO is 
active. This study applies a simple decision model to examine the 
relationships between the MJO and the relative value of deterministic 
forecasts of extreme precipitation in the CONUS. 

2. Data 

The observed occurrence of extreme precipitation events was 
analyzed with the NCEP Climate Prediction Center (CPC) unified 
precipitation dataset. Daily precipitation over the CONUS was used for 
the period 1 November–31 March, 1981-2008. Extreme precipitation 
was defined when the daily precipitation exceeded the 90th percentile 
of the gamma frequency distribution. The MJO was studied with daily 
averages of zonal winds at 850-hPa (U850) and 200-hPa (U200) from 
the NCEP/NCAR reanalysis. Figure 1 displays composites of outgoing 
longwave radiation (OLR) anomalies and illustrates the life cycle of 
the MJO. Forecasts of extreme precipitation were analyzed with 
reforecasts of the Climate Forecast System model (version 1) (Saha et 
al. 2006).  

3. Forecasts of extreme precipitation 

For each winter season, the monthly mean model bias was 
subtracted from the forecasts of precipitation. Next, each forecast was 

Fig. 1  Phase composites of OLR 
anomalies.  Yellow (red) 
indicates positive (negative) 
anomalies.  Contour interval is 
2.5 Wm-2. 
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analyzed and a forecast of extreme precipitation was identified when the daily precipitation exceeded an 
adjusted 90th percentile of the frequency precipitation.  

The validation consisted of binary pairs of forecasts and observations (1=occurrence, 0=non-occurrence). 
Forecasts were validated separately on days in which the MJO was active and inactive. In active cases, the 
validation was performed on each MJO phase and lead times from 1-14 days, regardless of the state of the 
MJO in the initial conditions. Statistical significance between forecasts of extreme precipitation during active 
and inactive MJO days was assessed by a resampling technique. The results suggested that when the MJO is 
active and in phases 1 or 8 (Fig. 1), CFS forecasts of extreme precipitation are more skillful than in inactive 
MJO periods. HSS ≥ 0.1 extend to 14 day lead times, which contrasts to the overall skill of 7-8 days during 
inactive MJO days. 

4. The relative value of deterministic forecasts of extreme precipitation 

A simple cost/loss ratio decision model was applied to investigate the potential influence of the MJO on 
the value of forecasts of extreme precipitation.  The model envisions a decision maker who is sensitive to 
hazardous weather and has two possible courses of action. If extreme precipitation occurs and protective 
action is not taken, a loss L will happen. If protective action is taken, it will cost an amount C in addition to 
normal expenses. For a given set of [forecasts, observations], four possible combinations exist: 1) action 
taken-event occurs with cost C, 2) action taken-event does not occur with cost C, 3) action not taken-event 
occurs with loss L, and 4) action not taken-event does not occur with no cost or loss. The relative value (V) of 
deterministic forecasts in this simple model is:  

  

 
where α = C/L is the decision maker’s cost/loss ratio, s is the climatological probability of the weather event, 
H and F are hit rate and false alarm rate in the forecasts, respectively. In addition, maximum value (Vmax) 
occurs when α = s and given by: Vmax= H-F. Vmax can be interpreted as potential forecast value or forecast 
quality. The reader is referred to Richardson (2003) for an extensive discussion of the model above. 

The relative value (V) of 
deterministic forecasts of 
extreme precipitation was 
evaluated on the samples of 
active and inactive MJO days. 
Figure 2 shows V when the 
MJO was active and in phases 1, 
2, 7 or 8. The curves indicate V 
averaged on 1-3, 5-7, 9-11 and 
12-14 day lead times and 
averaged over the CONUS only 
on gridpoints where there were 
statistically significant (5% 
level) differences in HSS 
between active and inactive 
MJO days. While the results are 
comparable for all four phases, 
slightly higher values are 
noticed when the MJO is in 
phase 8, particularly on 1-3 day 
leads than in other phases. A 
decision maker with C/L ratios 
between 0.1-0.7 would observe 
value between 0.0-0.4 for 

Fig. 2  Relative value of deterministic forecasts of extreme precipitation in 
the USA.  Horizontal and vertical axes denote cost/loss ratio and value, 
respectively.  Panels show value when the MJO is active and in four 
specific phases.  Each curve corresponds to value averaged in four lead 
times as described in the inset in panel (d). 
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forecasts on 1-3 days lead when the MJO was active. 
Although the magnitudes of V decrease with increasing lead 
times, relative value V remains positive and extends to Week-
2 lead times. 

Figure 3 shows V during inactive MJO days on 1-3, 5-7, 
9-11 and 12-14 days lead times and averaged over the entire 
CONUS. A decision maker with C/L=0.15, would observe 
V=0.2 at 1-3 days lead during inactive days (Fig. 3), whereas 
V=0.4 when the MJO was active and in phases 1, 2, 7 or 8 (Fig. 
2). Also, when the MJO is inactive, V nearly decreases to zero 
for forecasts at 7-days (Fig. 3).  

To summarize the importance of the MJO on the potential 
relative value of forecasts of extreme precipitation, Figure 4 
shows Vmax when the MJO was active, in phases 1, 2 , 7 or 8 
and lead times from 1 to 14 days. Although there are some small variations among these four MJO phases, 
Vmax remains above 0.1 by 14-day lead times. In contrast, during inactive MJO days, Vmax, which was 
averaged only over grid points with statistical differences of 5% or higher from inactive MJO, starts from 0.3 
at 1-day and decreases to less than 0.1 at 7-day lead time. 

5. Conclusions 

The MJO is the most important mode of 
tropical intraseasonal variations and plays a 
significant role in global precipitation variability 
(e.g., Jones et al. 2004b). This study applied a 
simple decision model to estimate the relative value 
of deterministic forecasts of extreme precipitation 
over the CONUS during winter. The results clearly 
show the influential nature of the MJO. This 
influence is particularly important when enhanced 
convection associated with the MJO is located over 
the western hemisphere, Africa, and/or the western 
Indian Ocean. In these situations, relative values in 
the forecasts are larger and extend to longer leads 
than when the MJO is inactive. 
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1. Introduction 

Intraseasonal variability (ISV) plays a 
significant role in the tropical atmosphere. While 
the strongest ISV is found to be associated with 
the Asian monsoon, vigorous intraseasonal 
variations in winds and convection have also 
been widely reported over the eastern Pacific 
(EPAC) inter-tropical convergence zone (ITCZ) 
during boreal summer (e.g., Maloney and 
Esbensen, 2003, 2007; Jiang and Waliser, 2008, 
2009; and many others). The ISV over the EPAC 
exerts significant influences on regional 
weather/climate, including tropical cyclone 
activity, the summertime wind jets in the Gulfs 
of Tehuantepec and Papagayo, the Caribbean 
Low-Level Jet and precipitation, and the North 
American monsoon. If the predictability of the 
EPAC ISV is similar to the Madden-Julian 
Oscillation (MJO; about 2-4 weeks; Waliser, 
2006), therefore, a better understanding of the 
ISV over the EPAC would greatly benefit the 
improved predictive skill for regional climate.  

Our previous observational study identified 
two dominant ISV modes over the EPAC (Jiang 
and Waliser, 2008, 2009), i.e., a 40-day mode 
and a quasi-biweekly mode (QBM). The 40-day 
ISV mode (see Fig. 1a) is generally considered a 
local expression of the MJO. In addition to the 
eastward propagation, it is illustrated that 
northward propagation of the 40-day mode is 
also evident (Jiang and Waliser, 2008), 
exhibiting a strong resemblance to its counterpart 
over the Asian summer monsoon region (Jiang et 
al., 2004). The QBM mode bears a relatively 
smaller spatial scale than the 40-day mode, and 
is largely characterized by northward 
propagation (Fig. 1b).  

While the study of the capability of general 
circulation models (GCMs) to represent the MJO 

Fig. 1  Evolution of anomalous rainfall (shading) and 
850hPa winds (vectors) associated with (a) the 40-
day ISV mode and (b) the QBM over the EPAC. The 
time interval between two neighboring panels is 3 
days. 

(a) 40-day mode (EEOF1) (b) QBM (EEOF3)
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has been the subject of widespread interest in the climate research community, much less effort has been 
placed on the assessment of GCM simulations of the ISV over the EPAC. In the present study, we assess 
capabilities of current GCMs in simulating the dominant ISV modes over the EPAC. 

2. Participating models, observational datasets, and methods 

A brief description of the six uncoupled (CAM3.5, CAM3z, GEOS5, SNU, SPCAM, HIRAM) GCMs 
and three coupled (CFS, CM2.1, ECHAM4/OPYC) GCMs analyzed in this study is given in Table 1. Note 
that while the sub-grid cumulus processes in the parent GCM of SPCAM are explicitly represented based on 
the embedded 2-D CRMs, they are parameterized based on mass-flux-type schemes in all other eight 
conventional GCMs. In eight of the nine models except HIRAM analyzed herein, MJO variability was 
evaluated by the Climate Variability and Predictability (CLIVAR) MJO Working Group (Kim et al., 2009). 
The ninth model analyzed herein, i.e., HIRAM, is a new high resolution AGCM developed at NOAA’s GFDL. 
We will evaluate how well the observed two leading ISV modes over the EPAC are represented in these 
models. In addition, model output from a low resolution version of HIRAM (~2.5 degrees; hereafter HIRAM-
lores) is also analyzed to explore the sensitivity to horizontal resolution on simulation of the ISV over the 
EPAC. 

Table 1  Participating models and brief descriptions 

Most of the above nine models are integrated for 20 years. Daily output of rainfall over the EPAC from 
these models are analyzed and compared to observations including the mean state and intraseasonal variances. 
Rainfall observations are based on Tropical Rainfall Measuring Mission (TRMM, version 3B42; Huffman et 
al., 1995) during the period from 1998 to 2008.  

The approach to identify the leading ISV modes in both observations and each model is based on an 
EEOF analysis for boreal summer rainfall (May-October) over the EPAC (140oW-90oW; EQ-30oN) following 
our previous study (Jiang and Waliser, 2009; hereafter JW09). Prior to the EEOF analysis, 3-day mean 
anomalous rainfall data (non-overlapping) are calculated from the daily 10-90 day band-pass filtered 
anomalies for both the TRMM observations and GCM simulations. The EEOF is conducted with 9 temporal 
lags of the 3-day mean anomalous data.  

Each leading ISV mode over the EPAC based on observed rainfall is represented by two EEOF modes 
that are in quadrature to each other, suggesting the propagating nature of these ISV modes. The first (second) 

Model Horizontal 
Resolution 

Vertical
Levels Cumulus Scheme Reference 

CAM3.5 (NCAR) 1.9o lat × 2.5o lon 26 Mass flux Neale et al. (2008) 

CAM3z (SIO) T42 (2.8º) 26 Mass flux Zhang and Mu (2005) 

CFS (NCEP) T62  (1.8º) 64 Mass flux Wang et al. (2005) 

CM2.1 (GFDL) 2o lat × 2.5o lon 24 Mass flux Delworth et al. (2006) 

ECHAM4/OPYC 
(MPI via PCMDI) T42 (2.8º) 19 Mass flux Roeckner et al. (1996) 

Sperber et al. (2005) 

GEOS5 (NASA) 1o lat × 1.25º lon 72 Mass flux Rienecker et al. (2008) 

SNU-AGCM (SNU) T42 (2.8º) 20 Mass flux Lee et al. (2003) 

SPCAM (CSU) T42 (2.8º) 26 Super-parameterization Khairoutdinov et al. (2005) 

HIRAM 
HIRAM-lores (GFDL) 

0.5o lat × 0.6o lon 
2.0o lat × 2.5o lon 32 Mass flux Zhao et al. (2009) 
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pair of the EEOFs represents the first (second) leading ISV mode. The evolution patterns of anomalous 
rainfall and 850hPa winds associated with the two observed leading ISV modes are depicted by EEOF1 and 
EEOF3 in Fig1a, b, respectively.  

To identify model counterparts of the two observed leading ISV modes, we calculate pattern correlations 
between each of the first ten leading EEOF modes from each model simulation and observed EEOF1 / EEOF3. 
The EEOF mode with largest pattern correlation coefficient against the observed EEOF1 / EEOF3 will then be 
selected as the corresponding first / second ISV mode in each model. Note that as in the observations, each 
leading ISV mode in GCM simulations is also usually described by a pair of EEOF modes quadratic to each 
other. In addition, to consider the possible phase differences between the EEOFs based on each dataset, which 
is not unexpected, we conduct lead/lag pattern correlations of the model EEOFs against the observed 
reference. Then, the maximum absolute value of these lead/lag correlation coefficients is selected to represent 
the pattern correlation between model EEOF mode and the observed EEOF1/EEOF3.  

3. Results 

Model skill in simulating 
summer mean rainfall and the 
ISV variance (10-90 day 
filtered) patterns over the 
EPAC is summarized in Fig. 2 
by showing pattern 
correlations of these fields 
between GCM simulations and 
observations over the domain 
of 150oW-60oW, 5oS-30oN. 
SPCAM, HIRAM, and 
GEOS5 exhibit relatively 
better performance in 
simulating both mean rainfall 
and the ISV variance patterns 
than other GCMs. For SNU, 
although it shows moderate 
skill in mean rainfall pattern, the distribution of the 
ISV variance over the EPAC is well simulated in this 
model. 

The pattern correlation coefficients of the first 
and second ISV modes between model simulations 
and observations are illustrated in Fig. 3. The results 
suggest that four GCMs, including CFS, SPCAM, 
HIRAM, and SNU, show the best skill in capturing 
the observed evolution pattern of the first ISV mode, 
i.e., the 40-day mode, with pattern correlations 
surpassing 0.8. Particularly noteworthy is that both 
the standard and low-resolution versions of HIRAM 
exhibit excellent skill in depicting the observed 40-
day ISV mode. This result may suggest that model 
physics rather than the horizontal resolution may play 
a more essential role in faithfully simulating the 40-
day mode over the EPAC. On the other hand, three 
GCMs, SPCAM, HIRAM, and GEOS5, demonstrate 
the best skill in simulating the second ISV mode, i.e., the QBM, with pattern correlations greater than 0.6. It is 
interesting to note that while the QBM is well represented in the standard HIRAM, it is not well captured in 

Fig. 2  Pattern correlation coefficients for mean precipitation and 
precipitation standard deviation during summer (May-Oct) between 
TRMM observations and model simulations. The region for pattern 
correlation is 5ºS-30ºN, 150ºW-80ºW.
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its lower resolution version. This result may 
suggest the importance of fine horizontal 
resolution in simulating the observed QBM 
over the EPAC, which may be due to the 
smaller scales of the QBM versus the 40-day 
ISV mode. The relatively better simulation of 
the QBM in GEOS5 could also be ascribed to 
the relatively higher resolution in this model 
(1o×1.25o). Despite the coarse resolution (T42) 
of the parent GCM of SPCAM, the QBM is 
also well simulated by the SPCAM, indicating 
that an improved simulation of the convective 
processes by the embedded 2D CRMs could 
represent another method for improving 
simulations of the ISV over the EPAC.    

Spectral analyses are further applied to 
corresponding principal components (PCs) 
from the EEOF to derive the dominant 
periodicities of the two leading ISV modes in 
each dataset. Figure 4 illustrates the spectral 
density profiles based on both observed and 
model simulated rainfall, which have been 
normalized by their corresponding maximum 
values such that the peak value is unity in 
each profile. Spectral analysis based on 
TRMM rainfall (left columns in Fig. 4a, b) are 
consistent with JW09 and further confirm the 
dominant periods of about 40 and 16 days 
associated with the observed first and second leading ISV modes over the EPAC. For the first ISV mode (Fig. 
4a), CFS realistically captures the observed 40-day spectral peak, while CAM3z, SNU, SPCAM, and 
HIRAM_lores simulate dominant periods of about 35 days for the first ISV mode, reasonably comparable to 
the observations. Note that although a peak spectrum of about 25 days is noticed in the standard HIRAM run, 
a second peak of about 35 days can also be detected. Meanwhile, a second 25-day peak is also noticed in the 
HIRAM_lores run, suggesting coexistence of these two prevailing periods in HIRAM and a shifting between 
each other with the change of the model horizontal resolution.  

For the dominant periods of the second ISV mode, most of GCMs, except CM2.1 and HIRAM-lores, 
reasonably capture a quasi-biweekly period of the second ISV mode (Fig. 4b). In GEOS5, a higher-frequency 
mode with a period of 12 days is dominant, while a period of about 30 days is found in CM2.1 and HIRAM-
lores. It is of particular interest to note again that while a biweekly period of the second ISV mode is 
realistically simulated in the standard HIRAM run, it is not captured in its lower resolution version. This 
result further suggests that the increased horizontal resolution could be conducive to a better representation of 
the QBM over the EPAC.  

In Fig. 5, the eastward propagation associated with the first ISV mode is illustrated by displaying time-
longitude profiles of rainfall anomalies based on both observations and GCM simulations. The rainfall in each 
panel is averaged between 8oN-15oN and the slope of the dashed line represents the observed eastward phase 
speed of 4 deg day-1 between 120oW and 140oW (Fig. 5a). To the east of 100oW, the westward propagating 
signal of the 40-day ISV mode is also observed. It is shown that the four GCMs that exhibit relatively higher 
pattern correlation coefficients for the 40-day mode, i.e., CFS, SNU, SPCAM, and HIRAM as shown in Fig. 2, 
generally simulate a more realistic eastward propagation of this mode. Both the HIRAM versions capture well 
the eastward propagation of the first ISV mode. While the eastward propagation is reasonably well 
represented in SPCAM, the westward propagation near 100oW tends to be slightly overestimated in this 
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model. A very fast eastward propagation 
speed of about 15 deg day-1 is found in 
SNU. The eastward propagation associated 
with the 40-day ISV mode is not well 
defined in several other GCMs, including 
CAM3.5, ECHAM4/OPYC, CAM3z, 
GEOS5, and CM2.1. 

4. Summary and discussion 

In this study, the model fidelity in 
representing the two dominant ISV modes 
over the EPAC is assessed by analyzing six 
atmospheric and three coupled GCMs, 
including one super-parameterized GCM 
(SPCAM) and one recently developed high-
resolution GCM (GFDL HIRAM) with 
horizontal resolution of about 50km. While 
it remains challenging for GCMs to 
faithfully represent these two ISV modes 
including their amplitude, evolution 
patterns, and periodicities, very 
encouraging simulations are also noted.  

In general, SPCAM and HIRAM 
exhibit relatively superior skill in 
representing the two ISV modes over the 
EPAC. It is generally considered that the 
explicit representation of the sub-grid 
cumulus process by the embedded 2-D 
CRMs in SPCAM could be largely 
responsible for its improved performance. 
Similarly, the improved simulations of the 
ISV over the EPAC achieved in HIRAM 
could be largely ascribed to the improved 
cumulus parameterization schemes, most 
likely by adopting a strongly entraining 
plume cumulus scheme following the 
parameterization of shallow convection by 
Bretherton et al. (2004) instead of the 
relaxed Arakawa-Schubert convective 
closure in GFDL CM2.1 (Zhao et al., 2009). 
By adopting a strongly entraining cumulus scheme in HIRAM, the plume can only provide deep convection 
when the atmosphere is sufficiently moist; it thus limits the loss of buoyancy due to the entrainment. As a 
result, deep convection is sufficiently inhibited such that a substantial fraction of the rainfall in the tropics 
(30-40% in both HIRAM and HIRAM_lores runs) occurs through the large-scale (stratiform) cloud module 
rather than through the convection module in HIRAM (Zhao et al., 2009), which is largely comparable to the 
observed stratiform rainfall partitions. In contrast, only 7.5% of the total rainfall is through the large-scale 
condensation in CM2.1. Moreover, as previously mentioned, an increase of the horizontal resolution appears 
to further help the simulation of the ISV over the EPAC, particularly for the second ISV mode.   

For future study, further investigations are warranted for improved understanding on various aspects of 
the ISV over the EPAC, including role of the MJO on the ISV over the EPAC, how the two ISV modes 

Fig. 5 Longitude (x-axis) - time (y-axis; units: day) evolution 
of rainfall anomalies over the EPAC (8oN-15oN) 
associated with the first ISV mode based on observed and 
GCM simulated rainfall. Dashed lines represent an 
eastward propagation speed of 4 deg day-1. 
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interact to make impacts on regional climate/weather events, and the role of multi-scale interaction associated 
with the ISV over the EPAC. 
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Seasonal Temperature Forecast Skill of OCN and EOCN with 
Seasonally Dependent and Yearly Updated Parameters  
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1. Introduction 

Rapid changes of climate in last 30 years 
has made the WMO recommended climate 
normal (i.e., 30-year mean and updated every 
10 years) no longer appropriate. The average 
over shorter period may be more 
representative of current state and a better 
estimate of the upcoming expected value.  
Based on this perspective, the optimal climate 
normal (OCN) method (i.e., taking average 
over optimal shorter period) has been 
developed as a tool of seasonal climate 
forecast (Huang et al. 1996).  In an effort to 
take account of multiple time scales in 
climate variability and avoid the spatial 
discontinuity of the optimal averaging time in 
OCN method, Peng and van den Dool (2002) 
modified the OCN tool by invoking EOF-PC 
decomposition technique, that is, applying 
OCN method to principal components (PCs) 
of temperature field and then combining the 
forecasted PCs with their associated EOFs to 
construct a temperature forecast.  This EOF 
based OCN method is called EOCN. 

The length of the optimal averaging time 
(OAT) used in current operational OCN 
method (i.e., 10 years) was determined with 
the data before 1994 and has been kept in use 
thereafter.  Similarly in the EOCN, the EOF 
dependent OATs were determined with the 
data before 2003 and also not changed.  
Considering that the climate record may not 
be very stationary in terms of its statistics, we 
expect that having the OATs updated may be 
helpful to catch some secular changes in the 
data.  Also, because of the limited data length 
back to the time, the skill of the OCN and EOCN were estimated with the data not quite independent of that 
used for training the tools, we therefore feel it is time to have a more objective skill assessment for the tools 
with the data added in recent years. 

The purpose of this study is to examine the impact of the yearly updated OAT onto the performance of 

Fig.1  Seasonal cycle of Heidke skill score over the period of 
1995-2009 for the temperature forecast with EOCN, 
OCN with K=10 years and OCN with yearly updated K. 

Fig.2  Spatial distribution of HSS for EOCN seasonal 
temperature forecast. 
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OCN, assess the forecast skill of both OCN and EOCN in past two decades and then have a comparison with 
some other seasonal forecast tools used in the Climate Prediction Center (CPC). 

2. Data and methodology 

The data used in this study are the 
seasonally averaged daily temperature of 102 
United States’ climate divisions from JFM of 
1931 to DJF of 2009/2010. The skill 
assessment is performed over the period of 
JFM 1995- DJF 2010, aligned with the 
assessment for CPC official seasonal forecast. 

In the OCN method, the forecast for a 
given season is simply the average of the same 
season data over the most recent K years.  The 
K, or the length of OAT, corresponds to the 
minimum root-mean-square error of all the 
retrospective forecast since 1961 and for all 
the 102 climate divisions.  Therefore, it is 
seasonally dependent and yearly updated. 

In the EOCN method, the temperature 
anomaly of a given season in year n and at 
climate division i  is expressed as 
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where Em and α m  are the mth rotated EOF 
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where  the Km(n),  depending on both mode 
and time, corresponds to the minimum root-
mean-square error of all the retrospective 
forecast since 1961.  The anomalous 
temperature forecast thus is given by 
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For the forecast verification, the Heidke skill 
score (HSS) is used to measure the skill. Denoting n as the number of observation and h as that of hit (correct 
forecast), the skill score is written as 
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Its range is from -50 to 100, with 0 as non-skill and 100 as perfect.  

Season JFM AMJ JAS OND 

OAT 10 8-10 10 to 8 9 to 8 

Fig.3  Seasonal cycle of HSS over the period of 1995-2009 
for the temperature forecast with EOCN, CPC official 
and CFSv1. 

Fig.4  HSS difference between EOCN and CPC official 
with former minus later.

Table 1  Optimal averaging time (in years) in OCN method 
for the 1995-2009 period 
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3. Results 

(a) Variations of OAT 

For the OCN method, as shown in Table 
1, the OAT of JFM season has kept 10 years 
over the whole verification period (1995-
2009); for AMJ season, it fluctuated between 
10 and 8 years; while for other two seasons, it 
gradually got little bit shorter to 8 years. The 
fluctuation in AMJ may be due to the 
sampling error, while the tendency towards 
shorter period in JJA and SON may reflect the 
non-stationary characteristics of the data.   

For the EOCN method, table 2 gives the 
OAT averaged over the verification period for 
the 6 modes and the four seasons.  Except the 
season to season change as in the OCN 
method, the OAT in EOCN also changes 
from one mode to the other, with a range 
from 5 to 10.  This mode dependence may 
indicate that the EOCN method is able to 
catch some variability with multiple time 
scales. 

(b) Skill comparison for EOCN and OCN 

Fig.1 shows the seasonal cycle of HSS 
over the verification period (1995-2009) for 
the EOCN, the OCN with 10-year OAT and 
the OCN with yearly updated OAT.  
Obviously, EOCN is the best for almost all 
the seasons, with annually averaged score to 
be 19.4, about 4 points higher than the OCN 
with 10-year OAT.  On the other hand it is 
somewhat disappointed that the OCN with 
yearly updated OAT is only slightly better 
than that with OAT=10 in summer seasons. 

Fig.2 gives the spatial distribution of HSS for the EOCN.  It shows the higher skill in southwest and the 
lower skill in northeast.  Both versions of OCN has a similar skill distribution to the EOCN, except the 
OCN’s is significantly lower in middle and south whereas slightly higher in northeast than the EOCN’s (not 
shown). 

(c) Comparison of EOCN with CPC official forecast and CFSv1 

Fig.3 presents the seasonal cycle of HSS for CPC official forecast, CFSv1 and EOCN.  Once again, 
EOCN performed the best among the all for most seasons.  Its skill score averaged over all the seasons is 
about 8 points higher than the CPC official and 11 points higher than the CFSv1.  CFSv1 is superior only for 
MAM season.  CPC official did pretty good job for JJA and JAS seasons, but is still in the shadow of EOCN.  
The spatial distribution of the HSS differences between EOCN and CPC official is shown in Fig.4, where it 
can be seen that the EOCN is superior almost everywhere except in a narrow strip in southwest.  Fig.5 shows 
the same type of information but for CFS v1, which lost to EOCN in central, west and south, but won in 
northeast. 

 

Season JFM AMJ JAS OND 

RPC1 10 10 8 8 

RPC2 9 8 8 9 

RPC3 9 7 10 7 

RPC4 8 9 9 9 

RPC5 5 9 5 8 

RPC6 5 5 9 5 

Table 2  Optimal averaging time (in years) in EOCN method 
for the 1995-2009 period. The numbers are time averaged.  
There is 10-20% fluctuation for some modes in some 
seasons. 

Fig.5  HSS difference between EOCN and CFSv1 with 
former minus later.
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4. Summary 

The skill scores averaged over the period 
of 1995-2009 and the 102 climate divisions 
for all the forecast tools discussed above are 
compared in Fig 6.   It turns out that the 
impact of the OAT updating is quite limited.  
The EOF adjustment is still the major player 
in the skill improvement for OCN.   

It is quite surprising that the skill of 
CFSv1 is so much lower than the OCN and 
EOCN methods.  The failure of CFSv1 in 
predicting low frequency climate variability 
may be partially due to its fixed CO2 content.   
Some improvement can be expected from 
CFSv2, which has been in operational 
recently.  The modest skill of CPC official 
forecast may reflect the difficulty in the 
consolidation of different forecast tools.   
How to optimally combine the forecasts from 
different tools is still a challenging issue. 
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1. Introduction 

 The Winter of 2009/2010 saw record negative values of the North Atlantic Oscillation (NAO), and 
associated with these large departures of the NAO, there was record cold temperatures in the Eastern United 
States and throughout Europe.  The recently completed 20th Century Reanalysis allows for an in-depth 
analysis of the atmosphere’s circulation dating back to 1871.  The questions we aim to answer is how unusual 
was the Atmosphere’s circulation during the winter of 2009/2010, and are the NAO and the Arctic Oscillation 
just different terms for the same phenomena? 

2. Data 

Monthly mean near surface and upper-air fields from the NCEP/NCAR Reanalysis (Kalnay 1995) and 
20th Century Reanalysis (Compo et al. 2010) are used to calculate the NAO/AO indices and correlations.  
Also, the Thompson Wallace AO Index (Thompson and Wallace 2000) is also used for comparison.  In 
addition, daily fields from the 20th Century reanalysis are used to calculate daily indices. 

The two indices calculated in the study are the Arctic Oscillation (AO) and the North Atlantic Oscillation 
(NAO).  The spatial pattern of the AO is defined as the leading EOF of monthly surface pressure (or 1000 hPa 
Height) poleward of 20oN for the years 1979-2000.  Monthly and daily values of the AO index are derived by 
projecting anomalies onto the leading 
EOF and normalizing by the standard 
deviation of the AO index over the 
base period. 

The North Atlantic Oscillation has 
several definitions.  Four of them are 
used in this study, and they are 
referred as the CPC method (CPC-
NAO), sector EOFS of 500 mb Height 
(z500-EOF) and Surface pressure 
(PSF-EOF) and box averages (Boxes).  
The CPC method is a regression of 
standardized 500 hPa height onto 
sliding 3 month windows of the first 
10 rotated EOFs pole-ward of 20oN.  
The Sector EOFs are a projection of 
500 hPa height or surface pressure 
anomalies onto the leading EOF of 
Dec-Jan-Feb means over the Atlantic 
sector (20oN–90oN;120oW-60oE), and 
the box averages are defined as the 
monthly sea-level pressure anomaly 
difference (35oN-45oN, 10oW-70oW) 
– (55oN-70oN,10oW-70W).  

Fig. 1  Monthly values of the NAO index from four different 
methods.  There is disagreement among the indices for 
December.  The values in the title are the correlation of the 
CPC-NAO index with the others.
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3. Results 

Monthly values of the NAO index for the 
months of December, January and February (Fig. 1) 
show that the different methods give similar values 
for January and February, but December has less 
agreement.  The CPC method has been determined 
to be an outlier and CPC has been contacted out 
this issue. 

The spatial structure of the wintertime (DJF) 
AO and NAO show very similar correlations 
across much of the Northern Hemisphere (Fig. 2), 
with negative correlations over the polar region, 
and positive correlations in the mid-latitudes.  
Even the loading pattern of the AO has more 
explained variance in the Pacific sector.  
Regressions of the NAO and AO index also show 
similar patterns, and the difference of the 
regressions (Fig. 3) show no coherent structure, 
which provides more evidence that these two 
indices are capturing the same physical process, 
but we are unable to say which one does a better 
job. 

Since the 20th Century reanalysis is available 4 
times a day, a daily AO or NAO index is able to be 
calculated back to 1871.  Several other years that 
had extremely negative monthly values of the AO 
are shown (Fig. 4) in order to put the winter of 2009/10 into a historical context.  This analysis shows that 
although the seasonal mean for the winter of 2009/10 is the lowest on record, there have been periods in 
previous years with much lower daily values.  It was the combination of the low values along with the 
persistence of these values that made 2009/10 the record year. 

4. Conclusions  

The 20th Century reanalysis allows for daily AO indices to be calculated back to 1871.  A look at the daily 
values shows that this past winter did not have extremely negative daily AO values, but was very persistent 
compared to other extremely negative winters.  Also, the winter (DJF) seasonal mean AO value was -3.4, 
which is a record 
for the past 140 
years. 

The AO and 
NAO indices 
calculated from 
the 20th Century 
Reanalysis are 
indistinguishable, 
and the difference 
to the CPC NAO 
index is limited to 
the Pacific Sector.  
We have not been 
able to determine 

Fig. 2  Spatial correlation averaged for December-
January-February for 3 different NAO indices and 
the AO index for 500 hPa height.  All indices show 
similar spatial correlations.

Fig. 3  DJF averages of 500 hPa height regressed onto the monthly CPC NAO (left 
column), AO (middle column) and difference (right column). 
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which index captures the physical 
mode of the atmosphere. 
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Fig. 4  Daily AO values for select years.  Although the winter 2010 had 
the lowest seasonal AO on record, individual daily values have 
been lower in other years.   
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1. Introduction 

The potential predictability of the dry phase of South American 
monsoon (SAM) has been studied relatively little when compared to the 
wet phase. In fact it was not until Zhou and Lau (1998) that South 
America (SA) was recognized as having a monsoon climate. The SAM 
went unrecognized for such a long period due to the fact that it does not 
exhibit a distinct seasonal reversal of winds. It is not until the annual mean 
is removed from the seasonal mean that a wind reversal appears. Although 
the SAM does not exhibit a seasonal reversal in the wind field, it does 
exhibit a distinct seasonal cycle in precipitation; a wet phase occurs during 
Austral summer [December-February (DJF)] and a dry phase occurs 
during the winter [June-August (JJA)]. A rapid increase in precipitation 
occurs during the spring [September-November (SON)] and a decrease 
during March-May (MAM). Additionally, the SAM exhibits large-scale 
land-sea temperature differences, a large-scale thermally direct circulation 
with a continental rising branch and an oceanic sinking branch, land-
atmosphere interactions associate with elevated terrain and land surface 
conditions, surface low pressure and an upper level anticyclone, and 
intense low-level inflow of moisture to the continent (Vera et al. 2006). 

In this study we 
wish to investigate 
the predictability of 
the dry phase of the SAM (JJA) in two climate models 
and the potential improvement that dynamical 
downscaling and bias correction processes can have on 
forecasts. New research suggests that the dry phase of 
the SAM may be more significant than previously 
anticipated. Strong positive correlations exist between 
JJA rainfall and the following DJF rainfall particularly 
over north east Brazil (Figure 1). Additionally, strong 
negative correlations exist between DJF rainfall within 
the box in Figure 1 and JJA SSTs in the region of the 
Atlantic Warm Pool (AWP; Figure 2). This implies that 
higher than normal precipitation during JJA is followed 

by higher than normal precipitation during the following DJF and a cooler than normal AWP during the 
following JJA.  

Prior research has shown that dynamical downscaling can improve model output primarily through 
improved resolution and model physics (Chan and Misra 2009). Anomaly nesting (i.e. bias correction) should 

Fig. 1 Correlation of JJA rainfall 
with the following DJF 
rainfall. Only statistically 
significant values are shaded. 
The box represents the 
middle-lower reaches of the 
Amazon River. 

Fig. 2  Correlation of JJA ERSSTv3 with DJF
Climate Research Unit (CRU) Rainfall. Only
statistically significant values are plotted. 
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also improve model output by reducing the bias of the global climate model (GCM) before the downscaling is 
performed with the regional climate model (RCM) (Misra and Kanimitsu 2004). 

2. Data and Methodology 

Model reforecasts from eight dry seasons (2000-2007) are analyzed in this study.  Reforecasts are 
performed using the NCEP Climate Forecast System (CFS) and the NCEP Scripps Regional Spectral Model 
(RSM). A second integration of the RSM (RSM-AN), which uses a bias correction process, is also used for 
comparison. The bias correction process used in this study is based on the Anomaly Nesting method from 
Misra and Kanamitsu (2004). This method replaces the GCM climatology with the climatology from 
reanalysis before the downscaling process is performed. In this study, CFS climatology is replaced with 
NCEP NCAR Reanalysis I (atmosphere) and ERSSTv2 (ocean). The CFS is run at triangular spectral 
truncation T62 and the RSM is run at a 60km resolution. Both models use six ensemble members which are 
generated by perturbing the initial atmospheric conditions. Atmospheric conditions are perturbed by resetting 
the initial date of the atmospheric restart file after integrating the model for a week. Land and ocean states 
remain unchanged between ensemble members. 

The fidelity of the three 
models’ reforecasts is 
investigated. Particular attention 
is paid to the two regions 
outlined in figure 3 (Amazon 
River Basin (ARB) and the 
subtropical region (ST)). Using 
CFSR (temperature and 
precipitation) and TRMM 3B-43 
(not shown) and CMAP (not 
shown) regions of significant 
model bias for the fields of 
temperature and precipitation are 
identified.  Fields are averaged 
over JJA, 2000-2007 so as to 
provide an eight-year seasonal 
average. The Relative Operator 
Characteristic (ROC) curves are 
plotted and the area under the curve (AUC) is calculated as a measure of the model’s skill at predicting an 
event (Mason and Graham, 1999). ROC curves are scatter plots of hit rate to false alarm rate for varying 
thresholds of accuracy. In this study, events are defined as above normal, normal, and below normal 
temperature and precipitation. The threshold used to determine whether or not a model will predict a “yes” or 
“no” occurrence of an event is the number of ensemble members required to have correctly identified an event. 
For example, if the threshold were “4 ensemble members” and observations identified a particular year to 
have had above average precipitation, we would require 4 or more members to predict above average 
precipitation in order to say that the model got a “hit”. A model can “perfectly” predict an event for a given 
threshold if it gets a “hit” for each of the 8 years in our study.  

3. Results 

a. Model Bias 
Precipitation patterns are realistic in all three models (Figure 4). The ITCZ is well defined around 8ºN. 

All models also show precipitation minima over a majority of the ARB and the ST regions as well as over the 
equatorial South Pacific Ocean.  

When compared to the CFSR, regions of significant model bias become evident (Figure 5). All three 
models show a significant positive bias over mountainous terrain and large negative biases over the tropical 
South Pacific Ocean. The CFS and the RSM-AN have similar patterns of bias. Both have large negative bias 

Fig. 3 Topography (gpm) is plotted with the land surface mask applied for
the CFS (left) and RSM (right). The blue box represents the Amazon
River Basin region and the red box represents the subtropical region. 
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in the northern SA, negative bias 
in the La Plata Basin, and weak 
positive bias over southeastern 
Brazil. The anomaly nesting 
process in the RSM-AN is 
potentially responsible for the 
observed reduction in the 
magnitude of positive and 
negative biases in the CFS in 
southeastern Brazil and points 
further south. The RSM has large 
positive bias over most of Brazil, 
with the exception of extreme 
northeastern coastal regions. At 
first glance, it appears that the 
bias in the models is very large, 
with many regions having over 
100% difference when compared 
to CFSR. However, it is 
important to remember that the 
precipitation rates in many of 
these regions are very small (i.e. 
<1mm/day) and a large 
percentage difference is easily 
achieved.  

Bias maps of temperature are 
much nosier than precipitation 
(Fig. 6). One similarity between 
all three models is positive biases 
in equatorial regions. Both the 
RSM and RSM-AN have less 
bias than the CFS in this region. 
Interestingly, the RSM reduces 
the bias more than the RSM-AN. 
All models also show small 
negative biases in southern Brazil. 
In subtropical regions the CFS 
has primarily negative biases 
while the RSM and RSM-AN 
have positive biases.  
b. Model Skill 

In this study the RCM shows 
some improvement over the 
GCM at forecasting temperature 
but not necessarily when 
forecasting precipitation. In the 
ARB the CFS predicts above average temperatures most skillfully (Table 1; AUC=0.667). While the RSM 
and RSM-AN also forecast above normal temperatures best, they improve upon the CFS with scores of 0.792 
and 1 respectively. In the ST region, the CFS has AUCs of 0.5 for all 3 events, which indicates no skill. The 
RSM and RSM-AN again improve upon the CFS; both have AUCs around 0.9 when predicting below normal 
temperatures. 

Fig. 4  Precipitation rate (mm/day) averaged over JJA and over all eight
years (2000-2007). Values less than 1mm/day are masked. CFS (left), 
RSM (center) and RSM-AN (right). 

Fig. 5 Shows the percentage difference between the climatologically
averaged JJA precipitation rate of the model (CFS[left], RSM[center],
RSM-AN[right]) and CFSR averaged over the same period. Only
significant values are plotted. Each plot is normalized using the CFSR. 

Fig. 6   Same as Figure 5 except for temperature (°C). 
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AUCs are generally much 
less when predicting precipitation 
due to the random nature of this 
field. This characteristic is 
replicated in our results. In the 
ARB the CFS predicts only 
below normal precipitation with 
some skill (AUC=0.792). It is 
interesting to see that the RSM 
shows very little skill in this 
region for any event while the 
RSM-AN improves upon the CFS 
significantly with an AUC of 
0.958 when forecasting above 
normal precipitation. In the ST, 
only the RSM achieves an AUC 
above 0.5, with a score of 0.67 
when forecasting above normal 
precipitation. The fact that no 
model has high AUCs in the ST 
is consistent with signal to noise 
ratio plots (not shown), which 
show significantly more signal in the ARB than the ST during the dry season. 
4. Concluding Remarks 

All 3 models produced realistic looking fields of temperature and precipitation. However, bias plots show 
that all models are strongly biased in particular regions when compared to CFSR. As expected, biases of 
precipitation were significantly larger than those of temperature. This is most likely due to two factors. 
Precipitation is a noisy field that is not resolved well, particularly in climate models. Additionally, values of 
rain rate during the dry season are low; therefore, large percentage differences between data sets are easily 
achieved.  

We have found that for both regions of interest, the downscaling process improves predictability of 
temperature, but not necessarily precipitation. In both the ARB and ST, AUCs for temperature increased from 
the CFS, to the RSM and RSM-AN. The anomaly nesting process improved upon the RSM, but only in the 
ST.  It was not as clear whether the downscaling and anomaly nesting processes significantly improve the 
predictability of precipitation. 
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Table 1 Shows the area under the ROC curves for the ARB (top) and ST
(bottom). Areas are calculated by comparing models with CFSR. Areas
are calculated for three events, above normal (A; orange), normal (N;
white), and below normal (B; blue) and are calculated for temperature 
and precipitation. Values less than or equal to 0.5 indicate that the model
has no skill at forecasting the variable for that particular event  and the
user would be better off using climatology as a forecast. A value of 1 
means that the model is close to being perfect. 
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1. Introduction 

The Pacific decadal oscillation (PDO) is the leading EOF of monthly mean SST anomalies in the North 
Pacific (Mantua et al. 1997).  With much focus on the low-frequency evolution of the PDO, its seasonal 
variation has received less attention.  A better understanding of the seasonality of the PDO is important for 
potential improvements in our understanding of its predictability, its interaction with ENSO SST variability, 
and its global impacts. 

This study aims to characterize the seasonality of the 
PDO and potential mechanisms.  Our hypothesis is that 
the PDO seasonality is dominated by the combined 
influence of the seasonal variations in atmospheric 
forcing and oceanic mixed layer depth (MLD).  Our 
emphasis is on the PDO evolution from spring to 
summer because there are significant changes in the 
characteristics of the PDO, the strength of the 
atmospheric forcing, and the MLD between the two 
seasons. 

2. Data and methodology 

Our analysis is based on data from observations and 
a coupled model simulation.  The SST includes the 
NOAA OISST (Reynolds et al. 2002), NOAA ERSST 
(Smith et al. 2008), and simulated data from the NCEP 
Climate Forecast System (CFS; Saha et al. 2006).  The 
OISST is over 28 years from 1982 to 2009.  The 28-yr 
period of the satellite observations may be too short to 
represent PDO.  The ERSST, with a longer record is also 
employed, which covers 100 years from 1910 to 2009.  
The last 480 years of SST from a 500-yr CFS coupled 
simulation are used in the analysis.  The data from the 
CFS is divided into 16 segments of 30-yr periods.  Each 
shorter-period segment is comparable with the 28 years 
of the OISST, and the analysis of PDO seasonality over 
16 such realizations provides an estimate of variability in 
results due to sampling.   

Monthly mean oceanic and atmospheric fields from 
the CFS are utilized to analyze their roles in the PDO 
seasonal variation.  Ocean temperatures (5–300 m) are 
used to characterize the vertical structure of the PDO and 
to derive the MLD, which is estimated as the depth at 
which the temperature change from the ocean surface is 

Fig. 1  (a) Spatial pattern of SST associated with the 
first EOF of monthly mean SST over the North 
Pacific based on the ensemble average of 16 
leading EOFs for individual 30-yr segments 
from the 480-year CFS coupled run, and (b) 
seasonal distribution of the percentage variance 
of PC time series for OISST (red), ERSST 
(orange), 16 individual 30-yr segments (light 
blue), and 16-member ensemble (dark blue). 
The spatial pattern in (a) is displayed in the 
correlation map in which the monthly mean 
SST anomalies at each grid point are correlated 
with the PC time series. 
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0.5 oC (Monterey and Levitus 1997).  The atmospheric field from the CFS is inferred from 1000-hPa wind.   

The PDO is identified as the first EOF of North Pacific SST between 20oN and 65oN based on the 
covariance matrix of the SST anomalies.  Similar to Zhang et al. (1997), global mean SST anomaly is 
removed prior to the EOF analysis, to suppress the influence of the trend of global mean SST.  The spatial 
structure of the PDO in the CFS is the ensemble mean of the 16 different realizations of the first EOF based 
on the individual 30-yr long segments.  

3. Results 

a. Seasonality of the PDO 

Figure 1a shows the spatial pattern of SST associated with the PDO.  The pattern correlation coefficient 
between the PDO in the observations and that in the CFS ensemble mean (Fig. 1a) is 0.88 and 0.92 for the 
OISST and ERSST (not shown), respectively.  This mode accounts for 23% of North Pacific SST variance in 
the OISST, 24% in the ERSST, and 21% in the CFS.   

The seasonality of the PDO is quantified by the distribution of the fraction (%) of total SST variance 
explained by the principal component (PC) time series over 12 calendar months, as shown in Fig. 1b.  It is a 
measure of the seasonal variation of the amplitude of the PDO pattern.  The amplitude of the PDO in the 
OISST and ERSST increases from winter to spring, reaches peak values in May and June, and then declines 
during summer, with a secondary maximum in fall.  The PDO for the CFS ensemble mean displays a similar 
seasonality with a peak in June, but relatively higher variability in summer and lower variability in winter and 
fall.  Overall, the seasonal distribution of the percentage variance for the observed PDO is well within the 
spread of 16 CFS ensemble members.  Figure 1 suggests that both the spatial pattern and seasonality of the 
PDO in the CFS resemble those in observations.  The following analysis focuses on the ensemble mean of 16 
30-yr CFS coupled runs. 

Fig. 2  PDO-related monthly ocean temperature anomaly (oC) at 37oN.  The anomalies are associated 
with one standard deviation in the PC time series for months from April to June. 

Figure 2 shows the depth–longitude cross-section of the PDO-related monthly mean ocean temperature 
anomalies at 37oN from April to June.  They are obtained by regressing monthly mean ocean temperature 
anomalies onto the PC time series of each 30-yr segment for each calendar month and then averaging 
regression patterns over the 16 such regression patterns.  Latitude 37oN is the location at which the PDO SST 
anomaly has the largest amplitude (Fig. 1a).  Colder ocean temperature anomalies greater than 0.4oC penetrate 
to the depth of 250 m in April.  In May, there is an abrupt decrease in the depth of the temperature anomalies 
colder than 0.4oC.  These anomalies become progressively shallower during summer.  The seasonal variation 
of the PDO is coupled with the seasonal changes of ocean temperature underneath. 

b. The role of seasonal variations of the MLD and atmospheric forcing 

In this section we show that the mean seasonal cycle of the MLD is important in determining the timing 
of the maximum variability of the PDO.  Figure 3 shows the 16-member ensemble of 30-yr climatological 
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MLD from April to June derived from the CFS.  The seasonal variation of the mixed layer is characterized by 
deep MLD in winter and early spring (not shown) and shallow MLD in May and summer.  The MLD 
experiences a sharp decrease from more than 100 m in April to less than 50 m in May over most of the North 
Pacific.  This sudden change coincides with the seasonal change of the depth of the ocean temperature 
anomalies associated with the PDO (Fig. 2). 

Fig. 3  Monthly climatology of the mixed layer depth (MLD; m) in the North Pacific derived from the 
CFS coupled run ensemble averaged over 16 30-yr segments for months from April to June. 

To explore the contribution of surface wind forcing in generating PDO seasonality, an EOF analysis is 
performed for 1000-hPa zonal wind over the North Pacific to identify the dominant mode of the atmospheric 
circulation variability.  The leading EOF of the surface wind (not shown) exhibits a basin wide cyclonic 
circulation over the North Pacific associated with the variability of the Aleutian low.  The budget analysis in 
Chhak et al. (2009) suggests that anomalous horizontal advection of mean SST by anomalous Ekman 
transport contributes primarily to the PDO-related SST pattern.  In addition, the distribution of the surface 
wind also infers partially the wind-driven SST anomalies related to the PDO.  Overall, both the warm and 
cold SST anomalies in the North Pacific are dynamically consistent with the surface wind pattern, indicating 
the PDO-related SST anomalies are likely driven by the dominant mode of the atmospheric circulation.  It is 
noted also that the surface wind anomalies are strongest in February and March (not shown), whereas the SST 
anomalies are strongest in May and June. 

The cause and effect relationship between the surface wind and SST anomalies is further inferred from 
lag correlations between the two PC time series of the first EOFs of the 1000-hPa zonal wind and North 
Pacific SST, as shown in Fig. 4.  Significant correlations are found when the zonal wind leads the SST up to 
three months, but correlations are weak when the zonal wind lags the SST.  The strongest correlation occurs 
for the zonal wind leading the SST by one month.  This implies that the time scale for the SST response to 
atmospheric wind forcing is about one month. 

To illustrate the importance of the 
interaction between the atmospheric 
forcing and the MLD on the seasonality 
of the PDO, shown in Figs. 5a and 5b are 
the seasonal variation of area-averaged 
monthly 1000-hPa zonal wind variance 
associated with the first EOF of the 1000-
hPa zonal wind and the evolution of the 
MLD over the North Pacific domain.  The 
surface zonal wind displays strong 
seasonality with the largest variability in 
February and March.  The atmospheric 
forcing is thus strong in February and 
March and weak in summer.  The MLD 
shows a similar seasonality with deepest 
depth in February and March and 
shallowest in summer. 

Fig. 4  Lag correlations between the PC time series of the first 
EOF of monthly 1000-hPa zonal wind and SST over the North 
Pacific in the CFS coupled run for each 30-yr period (blue) 
and ensemble average (red) of the 16 correlation coefficients at 
different lags.  Negative (positive) lag means the 1000-hPa 
zonal wind leading (lagging) the SST. 
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Fig. 5  Seasonal variations of area average over the North Pacific (20o–65oN, 125oE–100oW) for individual 
30-yr periods for (a) variance of the 1000-hPa zonal wind anomaly associated with the first EOF, (b) 
climatological MLD, and (c) square root of the zonal wind variance in month N–1 divided by the MLD in 
month N.  Blue lines are for 16 individual members and red lines for ensemble means. 

Variations in the surface wind forcing clearly cannot explain the peak of the PDO variability in May and 
June.  Since it is the mixed layer in the upper ocean that directly responds to the atmospheric forcing, the 
MLD is also expected to play an important role in determining the effectiveness of SST response to the 
atmospheric forcing.  To illustrate this, Fig. 5c shows the seasonal variation of the square root of the zonal 
wind variance divided by the MLD.  The square root of the zonal wind variance denotes the amplitude of the 
zonal wind anomaly and thus the amplitude of atmospheric forcing.  As divided by the MLD, the value is 
approximately proportional to the forcing per unit mass for the mixed layer over which the influence of 
atmospheric forcing gets distributed and affects the SST anomaly.  Given that it takes about one month for the 
SST to respond to the atmospheric forcing, the values plotted in Fig. 5c for month N are obtained by using the 
MLD in month N and the zonal wind variance in previous month N–1.  The rate of the zonal wind variance 
square root to the MLD in Fig. 5c peaks around June as the PDO variability in Fig. 1b.  This implies that the 
1-month time scale for the SST to respond to the atmospheric forcing, shallow MLD in summer, and 
relatively strong atmospheric forcing in spring, are critical to the timing of the maximum variability of the 
PDO in late spring and early summer. 

4. Summary 

The PDO, both in observations and in the CFS, shows similar seasonality, with increasing SST variance 
during spring and a maximum in late spring and early summer.  The PDO-related ocean temperature anomaly 
displays a significant transition from a deep to a shallow structure during late spring.  There is a 1-month 
delay in the PDO-related SST response to the atmospheric wind forcing.  The 1-month delay together with the 
seasonal variation of the mean MLD leads to the maximum variability of the PDO in late spring and early 
summer. 
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Climate extremes, for this study 
defined as a monthly mean value above or 
below a specific local threshold, have 
important implications for energy use, 
agriculture, and flood or drought 
preparation.  In this study, we investigate 
our current ability to predict climate 
extremes at lead times of one to eight 
months over the Americas, with the goal 
of understanding the strengths and 
weaknesses of current models.  This report 
focuses on the results of our examination 
of 2-meter temperature.   

We have examined the predictability 
of near-surface climate extremes in the 
region of the Americas, in the form of 
monthly anomalies in 2-meter surface 
temperature, using retrospective forecasts 
from two versions of the NOAA Climate 
Forecast System (CFS), a “state of the art” 
coupled ocean-land-atmosphere model.  9-
month forecasts for the 27-year span 
between 1982 and 2008 were available for 
both versions, with January – December 
monthly initial conditions (Saha et al. 
2006, 2010).  Reforecasts for both 
versions were obtained from the 
Environmental Modeling Center (EMC, 
NOAA/NWS/NCEP).  Additionally, 17 
years (1982-1998) of CCSM3.5 12-month forecasts were available, for January and July initial conditions, 
obtained from the University of Miami (Kirtman and Min 2009).  The observed temperature used in this study 
is GHCN-CAMS (Fan and van den Dool 2008). 

As an initial assessment of the models, the climatologies and PDFs of the model forecasts were compared 
to those of corresponding observations.  To approximate removing the model biases, we removed the model 
climatology from the forecast and replaced it with the observed climatology, which substantially corrects the 
PDF (Fig. 1). 

For the purposes of this study, we have defined a “climate extreme” as a departure from the monthly 
mean above/below a specified multiple of the local standard deviation of the variable.  Specifically, we 
considered both +/- 1 std. dev. and +/- 1.645 std. dev., which is approximately the “90th percentile” threshold.  
The anomaly correlation (AC), which measures the association between the anomalies of gridpoint forecast 
and observed values, is the primary measure of forecast skill employed.   . 

Fig. 1  Example raw (left) and corrected (right) PDFs for the 
single gridpoint 0°N, 60°W.   PDF is corrected by removing 
the model climatology from the ensemble mean model 
values and replacing it with the observed climatology.  
Green lines depict the PDF from the CFSv1 ensemble mean, 
blue the CFSv2, and black are observed values from the 
GHCN-CAMS 2-meter temperature. 
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 Some positive skill 
scores for forecast climate 
extremes at leads of 1 – 4 
months were found for 2-
meter surface temperature 
(Fig. 2).  Prediction skill is 
higher over South America 
than North America.  Skill, 
by any measure, increases 
when the sample is 
restricted to extreme events.  

 Anomaly correlations 
are generally higher when 
verification of a predicted 
extreme was assessed (i.e. 
the model predicted an 
extreme, did one occur?) 
than when an extreme event 
occurred in the observed 
record (i.e., an extreme 
occurred, was it predicted?) 
(Fig. 3).  Prediction skill of 
CFSv1 and CCSM3.5 are 
roughly comparable; 
anomaly correlations of 
CFSv2 are somewhat higher.  
Anomaly correlations of 
climate extremes using the 
multi-model ensemble mean 
does not show a significant 
increase in skill over CFSv2 
individual model results. 

This report represents a piece of larger study.  We have also examined the prediction of precipitation 
extremes over the Americas, and sea surface temperature in the waters near to the Americas.  We will use 
these results to assess where and why prediction skill is better, with the goal of improving forecasts in the 
future. 

Fig. 2  Anomaly correlations for CFSv1 (upper row) and CFSv2 (lower row).  
The three columns depict the anomaly correlation over all cases (left), over 
the sample restricted to when the model predicts an extreme (center) and 
when the sample is restricted to observed extremes (right).  Only January 
initial conditions, lead 3 (i.e. the April forecast) are shown. Extremes 
defined here as +/- 1 std. dev. 

Fig. 3  Area-averaged anomaly correlations for the Americas.  Left: all cases, center: sample restricted to model 
extremes, and right: sample restricted to observed extremes.  All lead times for January initial conditions 
are shown.  Extremes are defined as +/- 1.645 std. dev. 
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1. Introduction 

 The recurrent Madden-Julian Oscillation (MJO, Madden and Julian 1972) with a period of 30-60-day 
offers an opportunity to extend weather forecast beyond two weeks, which will bridge the gap between the 
conventional weather forecasting and seasonal climate prediction. The MJO manifests as a planetary-scale 
coupled system between organized multi-scale convection and large-scale circulation. It is generated in the 
equatorial western Indian Ocean and propagates eastward along the equator in boreal winter. During boreal 
summer, the dominant propagation is northeastward in addition to the along-equator eastward component 
(Yasunari 1979). Poleward propagation of the MJO brings active and suppressed spells to the Asian-
Australian, American, and African monsoon systems.  

On its way eastward and poleward, the active phase of the MJO spawns frequent occurrences of tropical 
cyclones in the Indian Ocean, western Pacific, eastern north Pacific, Gulf of Mexico and Atlantic Basin 
(Higgins et al. 2000). Through tropical-extratropical teleconnection, the MJO modulates the mid-latitude 
weather activity over North and South America (Jones and Schemm 2000) including the high-latitude 
circulation. The MJO in the western Pacific also modulates the evolutions of El Nino. Therefore, improved 
prediction of the MJO can extend the mid-latitude weather forecasts while also potentially improving ENSO 
and seasonal forecasts.    

However, our capability of forecasting MJO is largely limited by model difficulty in realistically 
simulating the MJO and the biases of global reanalysis/analysis datasets in representing the MJO. When these 
global reanalysis/analysis datasets with ill-defined MJO are directly used to initialize the forecasts, the MJO 
forecasting skills are only about one week (e.g., Lin et al. 2008; Fu et al. 2009). In this study, a signal-
recovery method has been proposed to improve the representation of the MJO in several reanalysis datasets 
(e.g., NCEP_R1, _R2 and ERA_Interim). The impacts of signal-recovered reanalyses on MJO forecasting 
skills are assessed. 

2. Model and experiment design 

The model used in this study is a hybrid atmosphere-ocean coupled model developed at International 
Pacific Research Center, University of Hawaii (so-called UH_HCM, Fu and Wang 2004; Fu et al. 2008). The 
atmospheric component is a general circulation model (ECHAM-4), developed at Max Planck Institute for 
Meteorology, Germany. The mass flux scheme of Tiedtke is used to represent the deep, shallow, and midlevel 
convection. The ocean component is an intermediate tropical upper-ocean model developed at University of 
Hawaii (Wang et al. 1995), which comprises of a mixed-layer, in which the temperature and velocity are 
vertically uniform, and a thermocline layer in which temperature decreases linearly from the mixed-layer base 
to the thermocline base. Both layers have variable depth and exchange mass and heat through entrainment and 
detrainment.       

The global atmospheric model has been coupled to the ocean model over the tropical Indian and Pacific 
Oceans without using heat flux correction. Outside the tropical Indian and Pacific Oceans, sea surface 
temperature is specified as climatologically monthly-mean SST. In all forecast experiments, a restart file from 
a long-term coupled run has been used to initialize the nudging integration, which in turn generates initial 
conditions for all forecast experiments. 
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In this study, most forecast experiments have targeted five summer seasons (2004-2008). Each year, 
sixteen forecasts have been initiated every 10 days from May 1 to September 31. Ten ensembles have been 
executed for each forecast. The way to generate ensemble initial condition is the same as that used in our 
previous predictability study (Fu et al. 2007). Each forecast is integrated for 60 days. Model forecasted 
ensemble-mean OLR, zonal winds at 850-hPa and 200-hPa have been used to calculate Wheeler-Hendon 
index (Wheeler and Hendon 2004). Finally, the MJO prediction skills have been assessed as the way used by 
Lin et al. (2008) and Gottschalck et al. (2010).  

3. Biases of global reanalysis datasets in describing the MJO 

Because of the sparseness of the upper-air sounding sites in the active MJO region over the Indo-Pacific 
warm-pool and the deficiencies of the operational models in MJO simulations, reanalysis datasets 
unavoidably have various biases in representing MJO. Shinoda et al. (1999) found that the MJO-related 
convective activities (rainfall and OLR) in the NCEP_R1 (Kalnay et al. 1996) are two-to-three factors smaller 
than that in the corresponding observations (also see Figure 1 in Fu et al. 2009). Using updated forecast 
model and data assimilation system and fixing known problems of the NCEP_R1, Kanamitsu et al. (2002) 
developed an updated NCEP_R2 reanalysis. The MJO-related humidity perturbations, however, in the 
NCEP_R2 and in ECMWF analysis were still underestimated. The increased volumes of satellite observations 
and improved models/data assimilation techniques steadily improve the quality of reanalysis datasets in 
representing weather and climate variability including the MJO. On the other hand, the lack of global wind 
profiles’ observations (particularly over the vast oceans) and an efficient constraint between the mass and 
flow fields in the tropics as well as the difficulties for current data assimilation systems in handling 
clouds/precipitation-affected radiance make reanalysis datasets vulnerable to errors, particularly in the 
representation of tropical weather and climate variability.  

Two reanalysis datasets: The NCEP_R2 and ERA_Interim will be used to initialize our forecast 
experiments in this study. Although similar observational data may have been used as input to generate these 
reanalysis datasets, the different model 
physics and data assimilation 
techniques will result in different 
reanalysis products. In this section, the 
biases of these two reanalysis datasets 
in describing the MJO were briefly 
described. As for MJO prediction, the 
quality of near-equatorial MJO in the 
reanalyses is essential because the 
MJO has a significant eastward-
propagating component along the 
equator year around. Even in boreal 
summer, the dominant northward 
propagation of the MJO starts from the 
equator. Due to the lack of an efficient 
constraint between the mass and flow 
fields (like the quasi-geostrophic 
balance in middle-latitude) and very 
limited upper-air soundings, the 
equatorial region has been a very 
difficult area for data assimilation. It is 
imperative to take a close look of the 
MJO near the equator in these two 
reanalyses.  

Figure 1 shows the wavenumber-
frequency spectra of rainfall averaged 

Fig. 1  Wavenumber-frequency spectra of rainfall from TRMM 
3B42, NCEP R2, and ERA-Interim (contour interval: 1 (mm 
day-1)2 ) averaged between 10oS and 10oN of 1999-2008 
summers from TRMM observations (upper panel), NCEP_R2 
(middle panel), and ERA_Interim (lower panel). 
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between 10oS to 10oN from TRMM observations, NCEP_R2, and ERA_Interim. The observations indicate 
dominant eastward-propagating variance of the MJO. The NCEP_R2 has relatively lower eastward-
propagating variance, but much higher westward-propagating variance than the observations. The 
ERA_Interim has dominant eastward-propagating variance over the westward component, as in the 
observations. However, the magnitude of the variance in the ERA_Interim is obviously smaller than the 
observations.  

 
Fig. 2  Longitude-time evolutions of daily total rainfall (shaded) and associated intraseasonal (30-90-day) 

variability (contour interval: 1 mm day-1) averaged between 10oS and 10oN in 2004 summer from (a) 
TRMM observations, (b) NCEP_R2, (c) ERA_Interim, (d) Nudged NCEP_R2, (e) signal-recovered 
NCEP_R2, and (f) signal-recovered ERA_Interim. 

For illustration purpose, Figure 2 gives the Hovmoller diagrams of total rainfall and the associated 
intraseasonal variability along the equator in 2004 summer from TRMM observations, the NCEP_R2 and 
ERA_Interim along with the nudged1 R2, signal-recovered NCEP_R2 and signal-recovered ERA_Interim. In 
the observations (Fig. 2a), four-to-five MJO events develop in the Indian Ocean and propagate eastward into 
the western Pacific. The NCEP_R2 (Fig. 2b) captures some of the observed features but is not as well 
organized as the observed events. Too many and too strong high-frequency westward-propagating 
disturbances exist in the NCEP_R2, particularly in the western Pacific. An obvious fictitious westward-
propagating MJO event exists in July over the Indian Ocean. The correlation coefficient, which measures the 
similarity of the longitude-temporal evolutions between the reanalysis MJO rainfall anomaly and the 
observations, is about 0.5. The ERA_Interim (Fig. 2c) has very similar spatial-temporal evolutions as the 
observations but with the amplitude underestimated. The correlation coefficient with the observations reaches 
0.88. 

After nudging the NCEP_R2 into the UH_HCM (Fig. 2d), the too strong small-scale convection 
presented in the original R2 has been mitigated. The fictitious westward propagating ISO event in July over 

                                                 
1 “nudged” denotes the results after nudging reanalysis into the UH_HCM model. 
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the Indian Ocean disappeared. The correlation coefficient with the observations increases to 0.58. This 
improvement after nudging is likely due to the better representation of convective processes in the UH_HCM 
than that in the NCEP model because the associated dynamical fields in both cases are very similar. 

4. A signal-recovery method and Its impact on MJO prediction 

In realizing that reanalysis/analysis datasets (e.g., NCEP_R1, _R2, and ERA_Interim) bear a variety of 
biases in representing the observed MJO, we here propose an idea of signal-recovery. The objective of signal-
recovery is to recover MJO signal in reanalysis/analysis datasets before using them to initialize MJO forecasts. 
A prototype signal-recovery method has been used to augment the underestimated MJO signal in the 
NCEP_R1 (Fu et al. 2009). The procedure is as following: first, 30-90-day variability is extracted from one-
year raw time series with harmonic analysis; second, the extracted MJO signal is augmented by doubling its 
magnitude; then, the 30-90-day variability in the original time series is replaced with augmented MJO signal. 
Finally, the resultant time series is nudged into the UH_HCM to generate a new product: so-called signal-
recovered reanalysis. 

After doubling the intraseasonal 
signals in both the NCEP_R2 and 
ERA_Interim and nudging into the 
UH_HCM, the resultant products own 
much stronger intraseasonal variability 
than the original reanalyses (Fig. 2e, f), 
which are called signal-recovered 
NCEP_R2 and ERA_Interim. The 
signal-recovered ERA_Interim, however, 
has lower correlation with the 
observations than the original reanalysis. 
The underlying reasons call for further 
study.                     

When intraseasonal signal of the 
NCEP_R1 in 2004 summer was 
recovered to be comparable to the 
observations, the resultant MJO 
prediction skill increased accordingly 
(Fu et al. 2009). A natural question 
arises: What will happen for other years 
and with other reanalysis datasets? To 
answer this question, extended forecast 
experiments have been conducted for 
five continuous summers (2004-2008) 
initialized with signal-recovered NCEP_R2 and ERA_Interim reanalyses. As shown in Figure 2, the quality of 
the MJO in the signal-recovered NCEP_R2 is much better than that in the original reanalysis; while the 
signal-recovered ERA_Interim has stronger intraseasonal variability but lower correlations with the 
observations than the original reanalysis. Will these so-called signal-recovered initial conditions lead to better 
intraseasonal prediction skills? 

Figure 3 shows the Anomalous Correlation Coefficients (ACC) between the forecasts and the 
observations in terms of Wheeler-Hendon index (Lin et al. 2008; Gottschalk et al. 2010). The forecast lead 
day with ACC dropping to 0.5 has been defined as MJO prediction skill. When the NCEP_R2 is directly used 
as initial condition, the resultant prediction skill is only about a week. The prediction skill is doubled (14 days) 
after initializing the forecasts with signal-recovered NCEP_R2. When signal-recovered ERA_Interim is used 
to initialize the forecasts, the MJO prediction skill is also consistently better than that directly initialized with 
the ERA_Interim, although the improvement is not as dramatic as for the NCEP_R2 case. 

Fig. 3 Anomalous Correlation Coefficients (ACC) of Wheeler-
Hendon Index as function of forecast lead time. The forecasts 
were initiated with the nudged NCEP_R2 (black dash line), 
signal-recovered NCEP_R2 (black solid line), and the nudged 
ERA_Interim (red dash line), signal-recovered ERA_Interim 
(red solid line). 
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5. Concluding remarks 

In this study, the biases of three reanalysis datasets (e.g., NCEP_R1, _R2, and ERA_Interim) in 
describing MJO were revealed and the impacts of these biases as initial conditions on MJO prediction skills 
were assessed. A prototype signal-recovery method is proposed to improve the representation of the MJO in 
initial conditions. Although all three reanalyses underestimate the intensity of the equatorial eastward-
propagating MJO, the overall quality of the ERA_Interim is much better than the NCEP_R1 and R2. When 
the NCEP_R1 and_R2 are directly used to initialize the forecasts, MJO prediction skill is only about one 
week (Fig.3). The MJO prediction skill initialized with the ERA_Inerim, however, reaches two weeks. Using 
the signal-recovered reanalyses as initial conditions, MJO prediction skills are consistently better than that 
directly initialized with the original reanalyses (Fig. 3).   

It is well-known that the MJO modulates global weather and climate systems from tropical cyclones, mid-
latitude extreme weather, wet and dry spells of monsoon systems to ENSO evolutions. Knowing the phase of 
the MJO 2-4 weeks ahead offers a reliable source for probabilistic assessments on the occurrences of tropical 
extreme events (e.g., Gottschalk et al. 2010). This information has great socio-economic value particularly for 
those weather sensitive sectors, e.g., water management, agriculture, disaster prevention, and so on (Brunet et 
al. 2010).                 

This study is a step towards this direction. In order to ensure steady progress in the advancement of MJO 
prediction, synergetic efforts between weather and climate communities are needed at least in three fronts: (i) 
To acquire better initial conditions, through deploying new observations (e.g., DYNAMO) and developing 
new data assimilation techniques, for the atmosphere-ocean-land coupled forecast systems; (ii) To improve 
the representations of multi-scale convective systems and their interactions with large-scale circulations in  
atmospheric models, which are key processes of the observed MJO; (iii) To advance the coupling processes 
among atmosphere, ocean, and land that are crucial to the realistic simulations of the MJO. 

Recently, a great effort has been made at NOAA/NCEP to produce a new generation reanalysis (CFSR) 
(Saha et al. 2010). The CFSR developed at NCEP has very high horizontal and vertical resolution (T382L64) 
of the atmosphere and includes atmosphere-ocean coupling, which reproduces the observed lead-lag phase 
relationships between precipitation and sea surface temperature (Saha et al. 2010). Preliminary results show 
that the CFSR has better quality than the NCEP_R1 and _R2 in describing the MJO. Future study is needed to 
comprehensively evaluate the MJO in the CFSR and to assess the MJO prediction skill when the CFSR is 
used as initial condition. 
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1. Introduction 

 The Intra-Americas Study of Climate Processes (IASCLIP) is a climate research activity that is focused 
on the region of the Intra-American Seas - that region including the Gulf of Mexico and the Caribbean Sea 
and the adjacent land areas. The IASCLIP has been endorsed as a specific subprogram of the VAMOS, a 
WCRP / CLIVAR program focused on the climate of the Americas.   

The IASCLIP science topics involve questions on all scales of atmospheric motion. A science and 
implementation plan that has been developed for the IASCLIP can be found at: 
http://www.eol.ucar.edu/projects/iasclip/documentation/.  This plan notes that the IAS region is a unique 
location where so many countries (more than 20) are affected by the same set of climate phenomena and that 
international collaboration is essential to the success of any climate research program. 

2. Travel to support development of IASCLIP implementation strategies 

When planning international 
research activities there is often a 
difference between the scientific 
focus of US climate scientists and 
those in developing countries, 
where there may be a greater 
focus on local issues and where 
computer facilities may not allow 
for extensive modeling activities. 
Most foreign climate scientists 
are affiliated with universities, 
while the bulk of the 
infrastructure support for either 
short-duration process studies or 
long-term monitoring are 
associated with government 
institutions that may not have a 
strong climate research 
component.  In the planning for a 
field activity that may involve 
costly resources, it is important also to consider institutions that might not have active researchers in climate-
related research, but whose facilities may permit effective field measurements.  Thus, early interaction with 
these institutions is important, even if it is outside the normal sphere of basic research. 

 For the above-stated reasons we felt that the most efficient approach to reaching the greatest audience for 
spinning-up the IASCLIP was to travel to the countries likely to be involved in IASCLIP.  During the summer 
and fall of 2010 a subset (Dave Enfield, Art Douglas, Mike Douglas) of IASCLIP scientific steering 
committee members traveled to 6 countries that were of some priority to IASCLIP activities (see Fig. 1).  This 
travel was funded by NOAA’s Climate Program Office.   The first country visited was Colombia, followed by 

Fig. 1  Possible small-island sites for climate monitoring in Caribbean 
Sea as part of IASCLIP; sites are color coded by country.  NOAA 
buoys shown as black squares.  Radiosonde sites are red dots. 
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the Dominican Republic, Costa Rica, Honduras, Nicaragua and El Salvador. There we presented an overview 
of the IASCLIP research objectives and described some possible strategies for improving climate monitoring 
and prediction over the region.  We also solicited perspectives and opinions on what was most important to 
each institution.  A highly condensed summary of the visits to each county is described below; the travel is 
not complete and several more countries are likely to be visited by early 2011.  More detailed “raw” 
descriptions of these visits can be found on the IASCLIP website noted above.  

3. Discussions in each country 

Colombia 

The Colombian Government’s Environmental Department IDEAM, operates about 2800 surface 
climatological stations, with 27 providing synoptic reports.  All of the surface data has been digitized, but by 
law, the entire data set cannot be made available for free.  However, if the proper requests are made, much of 
the data may be made available. More extensive quality control of the data will begin soon. 

Problems exist with gas generation at the San Andres Island radiosonde site (and other locations), 
something that is common throughout the region.  This is one a major problem in maintaining regular upper-
air soundings. 

The Colombian Air Force has a small forecast office of 15 individuals, who provide their own forecasts.  
They also have personnel at different sites around the country, who may be able to help with observations.  
The Colombian Air Force, together with IDEAM, had recently established a new radiosonde site at Tres 
Esquinas, east of the Andes near the border with Ecuador.   

Personnel of the Colombian Navy are rotated monthly on the small Caribbean cays; these personnel may 
be trained to help make meteorological measurements.  The need for more formal arrangements was stated.  
There are 8 coastal oceanographic buoys being operated by the Navy.  A surface station has recently been 
installed on Malpelo Island in the Pacific with the aid of IDEAM. 

The National University of Colombia has an MS program in Atmospheric Science and were willing to 
participate in IASCLIP research activities.  They are eager to have researchers visit and give short (or long) 
courses to their staff and students.  They also welcome exchange visits. 

Faculties from the Medellin branch of the National University are primarily involved in 
hydrometeorology research but they are interested in possible collaboration with IASCLIP researchers.  They 
have a graduate program and many students that may contribute to possible research projects. 

In Cartagena, the CIOH (Center for Oceanographic and Hydrographic Research), a branch of the 
Colombian Navy, is directly responsible for the islands and coastal areas in the Atlantic.  The rotation of 
personnel could be a problem for maintaining trained personnel on a regular basis.  However some solutions 
were discussed.  The CIOH appeared interested in collaboration with IASCLIP researchers.  They do some 
research themselves as well as prepare their own forecasts.   A draft was prepared of a letter of intent to obtain 
permission for a US researcher or two to participate in one of their routine cruises to Malpelo and other 
islands.  This would be done to evaluate the local conditions and possibilities at each site for installation of 
meteorological equipment. 

Dominican Republic 

Discussions were held at the offices of ONAMET, the Dominican National Weather Service.    During the 
first day of meetings there were representatives from different groups such as the Red Cross, Climate change 
panel, Geological Institute and members of the Agrometeorology, Forecasting, and Climatological divisions 
within ONAMET.   One of their main interests is the forecasting of hurricanes and a good part of their effort 
is aimed at this.  Their forecast office is 24/7 (contrasting to the IDEAM in Colombia which is 16/5).  The 
climatology section is the largest branch of the ONAMET with approximately 20 people.  The data is being 
digitized and quality controlled.   They have a rain gauge network composed in part of volunteers; there are 
70 reliable sites.   They have 10 automatic stations, 5 of them at airports.  The meteorological radar in Santo 
Domingo is not working and funds are needed to repair it.  A radar in Punta Cana is operated in part with 
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funds from the tourism consortium.  The ONAMET staff is willing to cooperate with any research project and 
the personnel seem especially interested in activities that would involve more training or education. 

Costa Rica 

Costa Rica has about 200 surface stations but only 8 reports via satellite.  They have 60 automatic 
weather stations but most require manual downloading of the data.  The forecast office has 5 forecasters, all 
educated at the University of Costa Rica.  They run the WRF, but do not verify their forecasts.  The 
radiosonde station at the San Jose airport has not made observations for about one year – the IMN cannot 
afford the helium gas that the airport authorities now require for inflating balloons.  They are hoping to find 
funds to purchase helium, which is expensive.  There are no radars in Costa Rica, but there is a Central 
America - wide radar project that we did not have time to discuss with the Director of the IMN. 

The quality control section has 8 staff and they publish a monthly bulletin.  Visits are made every two 
months to surface stations.  In 2008 the IMN stopped paying surface observers and there are now problems 
with some of the sites. There is a shortage of funds for obtaining vehicles to travel to stations, gas etc.  The 
IMN sells their data, though the price not having been revised in years.  The IMN has just finished re-
installing an automated weather station on Cocos Island. 

From our meeting at the University of Costa Rica, we learned that from the University perspective the 
most important IASCLIP collaboration would be through joint research and publications coming out of such 
an activity.  They would also be interested in educational opportunities for students.  It was recognized by all 
that the inability of US research project funds to be used to support students or staff in Costa Rica (or any 
other foreign country) meant that it was more beneficial to seek support from national activities that could 
provide these tangible benefits.  This is not often recognized by US researchers (or NSF and NOAA) as a 
serious impediment to obtaining international collaborators in programs such as IASCLIP. 

Honduras 

We presented a several hour series of talks to a diverse group, followed by discussion.  Media coverage 
was conspicuous, with many interviews for the TV and newspapers being given.  The heavy rains this 
summer have seriously affected crop production in western Central America and there was genuine interest in 
the subject of climate variability.  

All Honduran Meteorological Service (SMN) forecasting activities are carried out at their International 
Airport offices in Tegucigalpa. The SMN has about 60-70 rainfall stations that have 30 or more years of 
records.  Including other institutions there are about 100 rain gauges in the country.  There are 14 real-time 
reporting sites.  The SMN has received a set of recommendations from WMO consultants to modernize their 
meteorological services.  They are looking for funding for this activity ($2M USD). 

Nicaragua 

In Nicaragua the parent organization for meteorology is INETER, which is comprised of many geo-
related branches.  There are 300 met stations in Nicaragua, including 17 conventional synoptic reporting 
stations.  There are about 20 Campbell automatic stations from post-Hurricane Mitch US AID, but these are 
not working now.  They are trying to install more automatic stations in remote parts of country - vandalism is 
a problem.   

Nicaragua is the country most affected by hurricanes in Central America but they are also interested in 
seasonal forecasting.  It was mentioned that the capacity to do long range forecasts is low.  They participate in 
the foro climatico of Central America, where they receive a map with probability of higher or lower rain.  
However, their farmers want more precise information.  INETER prepares a more detailed report for the 
farmers. They do not run any numerical forecast models.  All weather forecasts are made at the airport. 

The meteorology section of INETER includes some individuals with University degrees.  They have 8 
staff members with Meteorology backgrounds and 16 in all (plus 3 administrators) in the forecasting area.  
They complained about the difficulty in sending more people abroad to learn Meteorology. 
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An opinion was voiced that Climate change was gradual and that many non-governmental organizations 
were obtaining much funding using climate change as an excuse. There was a consensus that it is important to 
put together a more concrete proposal that would cover what is needed and how people can participate. 

There was a complaint from an Agricultural sector participant that the amount of rain was not well 
forecast this year, which led to large losses in the bean crop.  More accurate one to two month forecasts would 
be useful.  One question asked by a participant was: If Nicaragua joined IASCLIP... by what percentage 
would the forecasts improve?  

El Salvador 

El Salvador has 40 automatic stations and more than 100 raingauges -  39 conventional and 19 telemetric.   
Each morning by 7 AM 58 stations send rainfall data.  Every three months data from all stations is collected.  
The data is on the web.  The Director of the Met Service also said they have a mix of 170 met stations and ~ 
120 stations have records longer than 30 years. We were told that the weather service has 58 members, 12 are 
forecasters, working 24/7.  Two months ago they acquired a marine radar, (Furuno brand) to estimate rainfall, 
the images are on their web page. 

The monetary effects of the recent bad (wet) weather have been significant. It was also mentioned that the 
Navy has ships that could perhaps be used to go to buoys in the Pacific.  The National Electric Company has 
4 dams that provide more than 50% of the electricity for El Salvador and it wants better forecasts during the 
period May-October.  A better rainfall forecast would be useful as electricity cost goes up and down 
depending on the forecast. 

The Director stated that people from NOAA rarely visit El Salvador as most of the US interest is in the 
Atlantic.  A list of regional priorities is going to be compiled to get IASCLIP attention.  People are very 
interested in collaborative research and writing papers.  A comment was made that it is very hard to go abroad 
and study.  Though there is money to hire meteorologists, there are not many to be found within El Salvador.   
Training is a problem.  The government won’t pay the person’s salary while he/she is gone.   It is preferable 
to have a course in El Salvador.  More people would understand if the courses would be given in Spanish.  It 
was asked if NOAA could sponsor something like this. 

4. Summary 

Travel has been carried out to six countries to describe the IASCLIP scientific plan and to seek input and 
collaboration in development of an effective climate monitoring and research program in the region.  The 
response has generally been very positive, with strong interest expressed in participating in any educational 
activities related to the program as well as promoting use of existing observations and developing additional 
observing capabilities.  Most interest has been shown by the operational sectors in most countries, with the 
exception of Colombia where there was general interest from the research community.  Most other countries, 
as expected, had relatively small research communities. 

A number of countries remain to be visited in the first part of 2011, so that a more complete picture of the 
IASCLIP community can be developed as well as a realistic operational plan. 
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1. Introduction 

 The Caribbean is one of many regions of the world where it is vital to understand precipitation patterns, 
variability and extremes. The low-lying coastal regions of Caribbean islands are densely populated with 
development pressure increasing. The region is also vulnerable to many natural hazards that are related to and 
exacerbated by precipitation, such as hurricanes, earthquakes, mudslides and drought. There is also evidence 
that precipitation patterns can influence the spread of Dengue fever in the region (Jury, 2008). Planning, 
policy and management of these events are extremely dependent on knowledge of the precipitation of the 
region. These social and economic reasons provide considerable motivation for increasing and expanding 
current knowledge of precipitation in the Caribbean. 

Precipitation in the Caribbean varies spatially and has a bimodal annual cycle with an initial maximum in 
May, a minimum around July-August, and a second maximum in September-October (e.g. Jury et al., 2007). 
Precipitation in this region has variability on a variety of timescales. Interannually, precipitation is influenced 
by the El Niño-Southern Oscillation and the North Atlantic Oscillation (NAO) (Chen and Taylor, 2002; 
Giannini et al., 2001). Intraseasonally, precipitation (including extremes) is influenced by the Madden-Julian 
Oscillation (Martin and Schumacher, 2010). The region is also affected on shorter timescales (days to weeks) 
by the propagation of easterly waves, which can mature into tropical storms and hurricanes. 

 Most models from the 4th 
Assessment Report (AR4) of the 
Intergovernmental Panel on 
Climate Change (IPCC) predict 
a decrease in precipitation 
across the Caribbean region 
whilst also underestimating 
current precipitation amounts 
and sea surface temperatures 
(SSTs) of the Atlantic warm 
pool in the region (Christensen 
et al., 2007; Neelin et al. 2006). 
However, the ability of these 
global climate models to capture 
the variability of precipitation in 
the region has not been fully 
investigated.  

 It is the aim of this 
paper to explicitly investigate 
the representation of 
precipitation variability, on a 
variety of time scales, in the 
Caribbean region by the IPCC 
AR4 models in comparison to 
observed variability. 

Fig. 1  Annual cycle of monthly Caribbean area averaged (55-90 W, 10-25N) 
precipitation from observations (black), AMIP model mean (blue), 
AMIP models (grey, left), CMIP model mean (green solid), CMIP 
models (grey, right) and the mean of the 13 CMIP models that match the 
AMIP simulations (green dashed). 
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2. Data 

This study uses both monthly (1979-2008, 2.5°) and daily (1997-2008, 1°) data from the Global 
Precipitation Climatology Project (Huffman et al. 2001). Both daily (last 12 years) and monthly (last 30 
years) precipitation from the IPCC AR4 models are used. Only one ensemble for each model is used to avoid 
biasing the model mean towards models with a large number of ensembles. Both coupled 20th century 
simulations (CMIP) and AMIP-like uncoupled simulations (AMIP, only 1979-1999 available) are 
investigated. Parameters of interest are precipitation, SST, vertical velocity (ω in hPa/s), and 925 hPa winds. 
Wind from the models is compared to NCEP II reanalysis (Kanamitsu et al. 2002) and SSTs are compared to 
the HadISST dataset (Rayner et al. 2003).  

3. Results 

3.1 Annual Cycle 

The bimodal nature of the observed annual cycle of Caribbean area-averaged (55-90ºW, 10-25ºN) 
precipitation is shown in Fig. 1 along with the annual cycle from the models. Large differences between 
AMIP and CMIP simulations are obvious with the AMIP model mean overestimating and CMIP model mean 
underestimating precipitation throughout the majority of the year (except January-March where both AMIP 
and CMIP means overestimate).  

The representation of the Mid-Summer Drought (MSD) (Magaňa et al., 1999), which occurs in July and 
August and separates the two rainfall maxima, is poor in the majority of models. Many of the CMIP models 
have an annual cycle with a single peak in September or October, which is represented in the model mean. 

The AMIP simulations, however, show an improvement in simulating the MSD with a reduction of 
precipitation in the model mean in July, although this reduction is often not as large as in observations. This 
suggests that the models are misrepresenting a key process in the climatology of the region, even when forced 
with observed SSTs. Investigation into the processes (e.g. location and strength of the North Atlantic 
subtropical high and the Caribbean low-level jet) that are preventing the models ability to accurately capture 
the MSD are ongoing, with the representation of the Caribbean Low-Level jet (CLLJ) examined in Section 
3.4. 

3.2 Relationship with vertical motion 

To examine the relationship between precipitation and circulation/vertical motion variability on monthly 
timescales, a regression analysis was performed. Global anomalies of ω at 500 hPa were regressed onto the 

Fig. 2  Regression of MAM monthly 500 hPa omega onto Caribbean area-averaged precipitation for 
observations (left), miroc_hi CMIP model (center) and miroc_hi AMIP model (right). Thick black lines 
show 95 % significance of correlation. 
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simultaneous Caribbean area-averaged precipitation anomaly time series. Anomalies were calculated as 
differences from the annual cycle. This was done for all four seasons and the results of the March, April, May 
(MAM) regression are shown in Fig. 2. For purposes of brevity only one representative model is shown.  

As expected, the observational regression analysis (Fig. 2, left panel) shows a large and significant region 
of negative regression coefficients over the Caribbean region, indicating that as precipitation anomalies 
increase upward vertical motion anomalies increase. A region of negative regression coefficients are also seen 
in the East Pacific due to the relationship between ENSO and Caribbean precipitation (Chen and Taylor, 
2002). A third interesting feature is the region of positive regression coefficients over the Atlantic ITCZ and 
South America, suggesting that when Caribbean precipitation anomalies are positive, vertical motion over the 
Atlantic ITCZ and South America is anomalously subsiding.  

The CMIP models (e.g. Fig. 2, center panel), however, do a very poor job of representing the relationship 
between Caribbean precipitation and vertical motion, even locally. The example mode in Fig. 2 shows that the 
negative regression coefficients we would expect to see in the Caribbean are not captured, suggesting that the 
precipitation that develops in the models is incorrectly related to vertical motion at 500 hPa. The AMIP 
models (e.g. Fig. 2, right panel) capture the negative regression coefficients in the Caribbean domain, but they 
are often too strong and too extensive. These incorrect relationships between precipitation and ω may be a 
manifestation of the known problem that tropical convection is too strongly coupled to local SST (Dai 2006) 
and CMIP models severely underestimate SST in the Caribbean. All the models do poorly at capturing the 
remote relationships in both the Pacific and Atlantic. 

3.3 Daily Precipitation 

Day to day variability in precipitation is essential to understand and correctly model due to its importance 
for extreme rainfall amounts. Daily data from observations and models were used to calculate the percent 
contribution to the total rainfall for six different precipitation categories (non zero but less than 1 mm, 1-5 
mm, 5-10 mm, 20-50 mm and greater than 50 mm). The distribution was calculated for each grid point and 
then averaged over the entire Caribbean domain, with the results for the observations and all 16 CMIP models 
shown in Fig. 3. 

Similar to Dai's (2006) analysis between 50ºS-50ºN, the CMIP models severely overestimate the 
contribution to the total precipitation by low rainrates (< 5 mm) and underestimate the contribution by 
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extreme high rainrates (> 20 mm) in the Caribbean. In the majority of the models, the bias to low precipitation 
rates is worse in the Caribbean than the large domain shown in Dai (2006). Although not shown here, the 
AMIP models also show a similar bias, towards low precipitation rates, but not as strong as the CMIP models 
(i.e. For 1-5 mm, the CMIP median is ~35 % and the AMIP median is ~28 % compared to the observed value 
of 12 %). 

To investigate how the model properties affected this precipitation distribution, models were first 
categorized by the type of convective parameterization; spectral, bulk or Zhang and McFarlane (for details see 
Dai 2006). No group of parameterizations produced obviously better or worse distributions of daily 
precipitation (not shown). The models were then categorized by the type of closure assumption/moisture 
trigger scheme and shown in Fig. 3. What is most notable is that the two models that use CAPE closure and a 
moisture convergence trigger outperform all others (except at > 50 mm where all models do poorly). 

3.4 Caribbean low-level jet 

The CLLJ is a prominent feature of the southern Caribbean. It is an easterly jet maximizing at 925 hPa 
between 70 and 80ºW at approximately 14ºN and has a semi-annual cycle with maxima in February and July 
as seen in the reanalysis winds in Fig. 4 (left panel) (Amador 1998; Wang 2007, Muňoz et al. 2008). The 
CLLJ influences precipitation in the Caribbean by affecting moisture divergence (strong CLLJ leads to low 
Caribbean precipitation) and in the central United States (Cook and Vizy 2010). It is therefore an important 
feature that needs to be well represented in models. 

Figure 4 (left panel) 
shows reanalysis wind 
speeds reaching 11 m/s 
at 925 hPa in July, 
with a strong 
weakening seen during 
September and 
October. All models 
were capable of 
producing a jet in the 
Southern Caribbean. 
However, the CMIP 
models tended to 
produce a CLLJ that 
was excessively strong 
(e.g. Fig. 4 center) and 
had a weak annual 
cycle (similar strength throughout the year). The location of the CLLJ was also shifted slightly southwards 
(by 1-2º) in many of the models. 

The AMIP simulations lead to a weaker jet than the CMIP simulations (e.g. Fig. 4 right), but CLLJ speeds 
were still higher than reanalysis values. AMIP simulations also produced an improved annual cycle in the 
majority of models, especially the weakening in September and October, perhaps highlighting the importance 
of correct SSTs and SST gradients to the CLLJ. The relationship between the ability of the models to capture 
the CLLJ and their representation of the MSD is ongoing, as is the investigation into the mechanisms behind 
the simulation of the CLLJ in the climate models. 

4. Summary 

The initial results from this study suggest that the IPCC AR4 CMIP and AMIP models are not accurately 
capturing many aspects of the Caribbean precipitation variability.  

The precipitation annual cycle amplitude and mean is too large in AMIP simulations and too unimodal in 
CMIP simulations. The ability of the AMIP models to better capture the MSD may relate to their better ability 

Fig. 4  Annual cycle of 925 hPa zonal wind at 75W for reanalysis (left), ncar_ccsm 
CMIP model (center) and ncar_ccsm AMIP model (right). Shading interval is 2 
m/s beginning at -3 m/s. Annual cycle is repeated twice with month increasing 
upwards. 
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of capturing the annual cycle of the CLLJ. AMIP and CMIP models are not capturing the month-to-month 
relationship between Caribbean precipitation and vertical motion (both local and remote). The lack of a 
correlation between local precipitation and vertical motion is a significant problem for the CMIP simulations 
and requires further investigation. 

The daily precipitation distribution for the Caribbean is shown to be similar to that of a much larger 
region (Dai 2006), but the bias towards low precipitation rates is accentuated in the Caribbean region. The 
AMIP models perform better than the CMIP models, but the bias is still large. In essence, the models are 
raining too frequently (81-100 % of the days) compared to only 42 % in the observations. Models that use the 
same convective parameterizations do not have the same precipitation distributions; however, models that use 
CAPE closure with a moisture convergence trigger outperform other types of closure/trigger schemes. 
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1. Introduction 

 The Tropical Meteorology Project (TMP) at Colorado State University (CSU) has been issuing Atlantic 
basin seasonal tropical cyclone (TC) forecasts in early June with an update in early August since 1984 (Gray 
1984).  These forecasts have shown moderate skill in real-time (Klotzbach and Gray 2009).  The success of 
these forecasts for the entire Atlantic basin has 
motivated additional research to see if similar 
forecast skill can be achieved for portions of 
the Atlantic basin.  This topic is of relevance, 
because, just because the entire Atlantic basin 
is active does not guarantee that all portions of 
the basin will be equally active.  For example, 
2007 was only an average hurricane season for 
the entire Atlantic basin, however, Caribbean 
basin activity was very high, including two 
Category 5s tracking across the region (Dean 
and Felix).  In this study, the Caribbean basin, 
defined as 10-20°N, 60-88°W, was examined 
for predictability (Figure 1).   

2. Data 

Caribbean basin tropical cyclone statistics 
from 1949-2008 were calculated from the 
“best track” dataset generated by the National 
Hurricane Center (Jarvinen et al. 1984).   The 
forecast metric that is hindcast using the “best 
track” data was the Accumulated Cyclone 
Energy (ACE) index, which is defined to be 
accumulating the maximum sustained wind (in 
104 knots2) for all 6-hour period of a TC’s 
existence with at least tropical storm-force 
winds (>= 34 knots) (Bell et al. 2000).   ACE 
was calculated for each storm that tracked 
through the Caribbean basin.  Figure 2 
displays the seasonal ACE values for the Caribbean basin from 1949-2008. 

 The National Centers for Environmental Prediction/National Center for Atmospheric Research 
(NCEP/NCAR) reanalysis (Kistler et al. 2001) was utilized as the source of large-scale 
atmosphere/ocean data.  
3. Predictor Selection Methodology 

Predictors were selected from the NCEP/NCAR reanalysis.  Firstly, a composite analysis of several large-
scale fields (200-mb and 925-mb zonal wind, sea level pressure and sea surface temperature) was conducted 
to see the differences between active vs. inactive seasons in the Caribbean (Figure 3).  In general, active 

Fig. 1  The Caribbean basin as defined in this study. 

Fig. 2  Caribbean basin ACE from 1949-2008. 
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seasons are characterized by reduced vertical wind shear, lower-than-normal sea level pressure and warmer-
than-normal sea surface temperatures throughout the Caribbean basin and tropical Atlantic.  All of these 
features have been shown in many previous studies to drive more active Atlantic TC seasons (Klotzbach and 
Gray 2009 and references therein). 

Then, precursor signals were sought from the 
NCEP/NCAR reanalysis using the Linear 
Correlations website available from the Earth System 
Research Laboratory at 
http://www.esrl.noaa.gov/psd/data/correlation/.  Two 
forecast models were constructed, one using April-
May data for an early June forecast, while the other 
model used July data for an early August forecast.  
Predictors selected had to correlate significantly at 
the 99% level with Caribbean ACE for the full-time 
period from 1949-2008 (correlation of at least 0.37) 
while these predictors had to show stability in 
correlation by correlating significantly at the 90% 
level (correlation of at least 0.30) with Caribbean 
ACE for both the earlier period from 1949-1978 and 

Fig. 3  August-October difference between the ten most active Caribbean basin seasons versus the ten least 
active Caribbean basin seasons for a) sea surface temperature (SST), b) sea level pressure (SLP), c) 925-
mb zonal wind (U), and d) 200-mb zonal wind (U). 

Fig. 4  Linear correlation between July 925-mb zonal 
wind and post-31 July Caribbean basin ACE. 
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the latter period from 1979-2008.  
In addition, each predictor had to 
show a reasonable qualitative 
relationship with the physical 
features in Figure 3 (e.g., the 
predictors correlated with 
Caribbean basin and tropical 
Atlantic August-October values 
of SST, SLP, 925-mb zonal wind 
and 200-mb zonal wind).  By 
doing this, the goal is to avoid 
selecting predictors that correlate 
by chance.  In the real-time 
forecasts issued by CSU, 
extensive discussions of the 
proposed physical relationship 
between each predictor and 
Caribbean ACE are discussed in 
detail (Klotzbach and Gray 2010a, 
Klotzbach and Gray 2010b).  
Figure 4 displays a linear 
correlation map between July 925-
mb zonal wind and post-31 July 
Caribbean ACE.  Lastly, each 
predictor had to add at least three 
percent to the variance explained 
of the forecast scheme using a 
stepwise regression method. 

4. Results 

Figures 5 and 6 display the 
predictors selected for the early 
June and early August forecast 
scheme, respectively.  Each 
forecast scheme uses no more 
than four predictors, in an effort to 
reduce over-fitting the forecast.  
Delsole and Shukla (2009) and 
Klotzbach and Gray (2009) discuss the danger of over-fitting forecast schemes.  By including additional 
predictors to improve the variance explained in hindcast mode, there is the possibility that the actual 
prediction scheme’s real-time forecast skill may degrade, if the relationship between each predictor and TC 
activity is not well-understood. 

Both of these prediction models show moderate levels of hindcast skill.  Figures 7 and 8 display the year-
by-year hindcast for the June model and the August model, respectively.  Note that the forecast skill improves 
from the June to the August model, which is to be expected, since the peak of the hurricane season occurs 
shortly after the August forecast is issued.  Also, the variance explained of these forecast schemes is 
approximately 45-50%, indicating that there is a considerable amount of variability that is not going to be 
explained by any statistical scheme.  There is inherent uncertainty in the atmosphere/ocean system that will 
always add an unpredictable component to any seasonal forecast. 

Fig. 5  Location of predictors utilized in the early June forecast of 
Caribbean basin ACE.

Fig. 6  Location of predictors utilized in the early August forecast of 
post-31 July Caribbean basin ACE. 
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5.  Conclusions and Future Work 

There appears to be the potential to 
issue skillful forecasts for Caribbean 
basin ACE in early June and early 
August.  These forecasts will likely be 
of relevance to emergency managers, 
insurance interests as well as residents 
of the Caribbean and Central America.  
Real-time forecasts for Caribbean basin 
ACE were issued in early June and 
early August 2010, and these forecasts 
indicated very high levels of activity in 
this portion of the Atlantic basin.  
Activity in the Caribbean has verified 
at slightly above-average levels 
through the middle of October.  Other 
portions of the Atlantic basin (e.g., the 
Gulf of Mexico, the Main Development 
Region) will be investigated for 
hindcast skill in the near future. 
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1. Introduction 

 The Intra-Americas Seas, including the 
Caribbean, is projected to experience prolonged 
droughts in the 21st century according to the most 
recent climate modeling studies (Dai 2010).  The 
IPCC fourth annual report states that Caribbean 
nations are very likely to warm in the 21st century 
and that summer rainfall is likely to decrease over 
the Greater Antilles, with 40% of seasons being 
extremely dry (Christensen et al. 2007).  These 
projections suggest greater vulnerability to 
Caribbean small island developing states (SIDS), 
as summer coincides with the growing season for 
most agricultural activities.  Further, there is a 
climatological dry spell in the middle of summer 
(Gamble and Curtis 2008), which may be more 
sensitive to a changing climate.  Rauscher et al. 
(2008), using CMIP3 model runs for the 21st 
century suggest that the mid-summer dry spell 
(MSD) will be stronger and have an earlier onset. 

Sixty-five percent of the population of 
Jamaica is dependent on agriculture as a source of 
livelihood, yet production is in decline due to 
trade-related economic pressures (Campbell et al. 
2010).  Agriculture is primarily rain-fed due to 
limited irrigation and lack of sustainable 
groundwater resources (Gamble 2004).  Because 
of the presence of the MSD, Jamaican farmers 
divide their growing season into “early” (April to 
June), frontal system dependent with high 
variability, and “primary” (August to November), 
tropical convection and storm dependent and more 
consistent.  Farmers will often try to bridge the 
July gap with “quick crops” that mature in less 
than eight weeks and are popular in tourist 
markets.  If the MSD is weak, then the farmers can “go out big” with cash crops in the primary season, but if 
the MSD is strong, the farmers may squander precious resources and reduce income for the rest of the year 
(Gamble et al. 2010).  

 Farmers in St. Elizabeth Parish, Jamaica are very much aware of changes in their environment and 65% 
detect a trend towards longer, more frequent droughts (Campbell et al. 2010).  However, they state that the 

Fig. 1.  Monthly weather for Montego Bay, Jamaica for 
data spanning the 1960s and 70s (past), 2000s 
(present) and simulated data for the 2080s (future) 
a) Precipitation (mm) and b) Temperature (°C). 

a

b
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timing of drought is more important than its 
severity (Gamble et al. 2010).  Gamble et al. 
(2010) found that Global Precipitation 
Climatology Project (GPCP) data confirms the 
perceptions, and reveals that the early growing 
season is becoming drier compared to the primary 
season, especially since 1991.  This divergence of 
moisture may reinforce the farmer’s observation 
of drought becoming more frequent.  While this 
study is an important step towards the 
development of drought mitigation and adaptation 
plans in Jamaica, more work is needed to relate 
climate change to crop yields.  The present study 
uses monthly temperature and precipitation data 
for one station in Jamaica to estimate past and 
future crop water needs and assess crop suitability. 

2. Methods 

The intent of this study is to examine the 
water cycle in Jamaica over two 10-year periods, 
representing past and present conditions, and 
simulate the water cycle in the 2080-89 time 
frame by manipulating observations to match 
IPCC projections.  One drawback to this type of 
analysis is the lack of sufficient data.  The only 
Jamaica station with a long enough record of 
precipitation and temperature observations is 
Montego Bay.  Here we assume this station is 
representative of the variability and change of the 
country’s climate.  Due to gaps in the temperature 
record, the past was defined as the years 1964-68, 
1970, 1972, 1974, and 1976-77.  The present was 
defined as 2000 to 2009.  To generate the future 
conditions, we first assumed that only the means 
would change and not the variances.  
Temperature data was created with a normal 
distribution, with monthly means adjusted upward by 2 degrees Celsius from the average of the past and 
present periods, consistent with the IPCC (Christensen et al. 2007).  For precipitation, months were selected 
from the past and present time periods, to ensure that the monthly variability remained unchanged in the 
future.  Then precipitation for each month of the annual cycle was randomly distributed over the 10 years and 
adjusted downward (again from the mean of the past and present periods) according to the IPCC (Christensen 
et al. 2007).  December, January, February, September, October, and November were reduced by 6%, March, 
April, and May by 13% and June, July, and August by 20%. 

Once the temperature and precipitation data was selected, water balances for the three 10-year periods 
were created with the USGS Thornthwaite Water Balance model.  The runoff factor was set at 50% and direct 
runoff at 5%.  Soil moisture storage capacity was determined to be 150 mm according to common United 
Nations Food and Agriculture Organization soil units in the country.  The previous six months (climatological 
six months for the 2080s) were appended to the beginning of the data sets to spin up the model.  From 
monthly mean temperature and precipitation accumulation, the Thornthwaite model generates potential 
evapotranspiration, actual evapotranspiration, and soil moisture storage. 

Fig. 2  Annual climatology for Montego Bay, Jamaica 
for data spanning the 1960s and 70s (past, red 
curves), 2000s (present, green curves) and simulated 
data for the 2080s (future, blue curves) a) 
Precipitation (mm) and b) Temperature (°C). 

a

b
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Finally, the relative evapotranspiration deficit was used to generate deficit yield (DY) according to Batjes 
(1987) 

DY = (1 - Ya/Ym) = ky * (1- AET/ETc) 

where Ya = actual yield, Ym = maximum yield, ky is the relational factor, AET = actual evapotranspiration, 
and ETc = potential evapotranspiration of the crop, which is simply the potential evapotranspiration times the 
crop coefficient (kc).  Agro-climatic suitability classes (Table 1) were developed for each month based upon 
calculated DY following Batjes (1987).  

 3. Results 

Figure 1 shows the time series of 
precipitation and temperature for the 
three time periods.  The upward trend 
in temperature is easier to discern than 
the downward trend in precipitation.  
The simulated data seems to have a 
reasonable variability.  The monthly 
climatologies of the three periods are 
given in Figure 2.  The 2080s are drier 
in every month compared to the1960s 
and 70s, but actually wetter than the 
2000s in February, March, October, 
and December.  Interestingly, the 2000s 
had a more muted MSD as compared to 
the 1960s and 70s.  The 2080s agrees 
with Rauscher (2008), with a more 
pronounced and longer lasting MSD 
than the past and present time periods.  
The temperature graph shows the 
expected constant trend over the annual 
cycle.   

After running the temperature and 
precipitation data through the 
Thornthwaite model for the past, 
present, and future scenarios, crop 
water need was assessed as the 
difference of the potential 
evapotranspiration minus the actual 
evapotranspiration (Fig. 3).  While 
there will be a demand for more water 
in all months of the year, the months 
likely to experience the greatest water 
stress in the future will be June, July, 
and August.  Differences between the 
2080s and 1960s-70s are in excess of 
45 mm.  Also troublesome, is that the 
moisture deficit appears to be 
accelerating.  In June 70% of the crop water need comes between the 2000s and 2080s, and this number 
increases to 89% in July during the height of the MSD. 

For the agro-climatic suitability analysis, the tomato crop was chosen.  The tomato is considered a cash 
crop, but yield is strongly tied to rainfall amounts and the crop is highly susceptible to drought (Campbell et 
al. 2010).  The correlation between annual tomato yield (1000 kg ha-1) for Jamaica as a whole and the closest 

Suitability Class 
DY < 0.2  

(out of 10 years) 
DY < 0.4  

(out of 10 years) 

Highly Suitable (HiS) 6+ 8+ 

Moderately Suitable (MoS) 4-5 6-7 

Marginally Suitable (MaS) 2-3 4-5 

Not Suitable (NS) 0-1 0-3 

Fig. 3  Annual climatology of actual evapotranspiration minus 
potential evapotranspiration for Montego Bay, Jamaica for the 
1960s and 70s (red curve), 2000s (green curve), and 2080s 
(blue curve). 

Table 1  Agro-climatic suitability classes assigned based on deficit 
yield (DY) values near zero (maximum yield) over x number of 
years out of ten.  For example, Highly Suitable would, in a ten 
year period, entail six or more years where DY is calculated to be 
less than 0.2 and eight or more years where DY is less than 0.4. 
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GPCP grid node is 0.5 (significant at the 95th percentile) between 1979 and 2007.  The tomato has a ky value 
of 1.05, and it takes three months for the tomato to reach harvest in Jamaica (Campbell et al. 2010), when it 
has a kc value of approximately 0.8.  Table 2 shows the Batjes (1987) suitability classes for each month of the 
year for the three time periods.  The month refers to the sowing month, and thus the reaping month would be 
n+2.  With the exception of the primary growing season, which has sufficient moisture supply even in the face 
of less rainfall and higher temperatures, there is a decline in agro-suitability.  April and June, traditionally part 
of the early growing season, become only marginally suitable for planting in the 2080s.  It becomes not 
suitable to sow in May (with reaping in July) due to the projected strong and extended MSD (Fig. 2a).  In fact, 
in the first half of the year, only March reaches the status of Moderately Suitable in the 2080s, whereas in the 
1960s and 70s January, March, April, and June were all considered Highly Suitable. 

While not shown here, short maturation crops, like turnip, would demonstrate a similar response as Table 
2, except sowing months would be shifted one or two months later.  Thus, July would become not suitable for 
planting, and the potential for “quick crops” to generate income across the MSD would become too risky to 
attempt. 

4.  Discussion 

Estimates of past, present, and future crop water needs and suitability are presented for Jamaica.  
Jamaican farmers and government officials recognize climate change and the threat it poses.  As a rural 
planner in the Jamaican Ministry of Agriculture put it: 

“climate change right now is having an impact.  Our problem here in Jamaica is that we have 
not gotten to the point where we can now predict the growing season…” (July, 2010) 

This lack of predictability stems from an increase in temperature and decrease in precipitation, especially 
during the summer season.  If the trend continues, as projected by the IPCC, then by the end of the 21st 
century crop water needs will be unprecedented, with moisture deficits in March, April, June, July, and 
August exceeding the present MSD conditions in July (Fig. 3).  This would undoubtedly wipe out the early 
growing season, which would lead to a food crisis.  These trends are likely occurring in other Caribbean SIDS, 
and more data is needed to extend our preliminary findings.   

Understanding the interactions between meteorology, hydrology, and land cover over the Caribbean is a 
challenge that requires an infrastructure of observations that is not presently available.  The Intra-Americas 
Study of Climate Processes (IASCLIP) will likely improve this situation with an intensive field campaign that 
will help build better drought prediction models and products for the region.  Further, it is hoped that 
IASCLIP will leave a legacy of capacity building, so that Caribbean SIDS will be in a better position to adapt 
agriculture practices in response to climate change.  
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Time 
period  JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

1960/70 HiS MoS HiS HiS MaS HiS HiS HiS HiS HiS HiS HiS 

2000 MaS NS MoS MoS MaS MaS HiS HiS HiS HiS HiS MoS 

2080 NS NS MoS MaS NS MaS MoS HiS HiS HiS HiS MoS 

Table 2  Agro-climatic suitability classes for planting tomato during the 1960s-70s (past), 2000s (present), and 
2080s (future). 
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1. Introduction 

 The Intra-America Seas (IAS) region includes 
the Caribbean Sea, the Gulf of Mexico, the Pacific 
Ocean west of Central America and northern 
South America, and the adjacent lands.  It hosts 
the second largest body of warm water, the 
Western Hemisphere Warm Pool (WHWP). The 
WHWP lies north of the equator and is 
characterized by having water temperature equal 
to or greater than 28.5oC. It can consist of the 
eastern North Pacific west of Central America, the 
Gulf of Mexico, the Caribbean Sea, and the 
western tropical North Atlantic throughout its 
development (Figure 1). Within the WHWP is the 
Atlantic Warm Pool (AWP). The AWP is 
comprised of the Gulf of Mexico, the Caribbean 
Sea, and the eastern tropical North Atlantic. Wang 
and Enfield (2001) found that the AWP exhibits 
intraseasonal variability in that it reaches its 
maximum size in August-September-October 
(ASO) and then disappears completely in boreal 
winter [December-January-February (DJF)]. It 
also exhibits interannual variability in regards to 
its size and intensity with years exhibiting large 
AWPs being roughly three times greater than in 
small AWP years (Wang et al. 2006).  

The AWP has become a recent topic of 
interest due to its impact on surrounding areas. 
Through its interactions with the North Atlantic 
Subtropical High (NASH), the AWP effects 
moisture transport to North, Central and South 
America.  It has also been found to have an impact 
on hurricane activity. Thus, it plays a critical role 
in the boreal summer climate in the Caribbean and surrounding areas (Wang and Enfield 2001).   

The IAS region is one of the most poorly observed locations in the world (Figure 2). It is important to 
predict the weather and climate in this region as it has an important impact on coastal areas, tropical cyclones, 
geological and ecological systems, and the climate of North and South America. Therefore, in this study we 
wish to explain the subsurface evolution of the AWP and discuss the impact of ocean dynamics and 
thermodynamics that can change it through reanalyses. 

Fig. 1 Monthly variation of WHWP (Wang and Enfield 
2001)
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2. Data and methodology 

For this study, the two reanalyses 
that were used were NCEP GODAS 
(Global Ocean Data Assimilation 
System) data with NCEP-DOE 
Reanalysis 2 and NCEP CFSR 
(Climate Forecast System 
Reanalysis). NCEP-DOE R2 data is 
on a 2.5o by 2.5o global grid mesh 
with seventeen pressure levels. The 
GODAS has a model domain from 
75oS to 65oN. It has horizontal 
resolution of 1o by 1o, which is 
increased to 1/3o in the north-south 
direction within 10o of the equator, 
and forty vertical levels. NCEP CFSR 
is a high resolution, global, coupled 
atmosphere-ocean-land-surface-sea 
ice system. The global atmospheric 
resolution is approximately 38km 
with sixty-four levels (from surface 
to 0.26hPa). The latitudinal spacing 
of the global oceans is 0.25o at the 
equator and extends to 0.5o beyond 
the tropics. There are also 40 levels to 
a depth of 4737m. The CFSR output 
resolution is at 0.5o by 0.5o. 

We focused on ASO averages 
from 1980-2007. We chose ASO 
when the AWP reaches its peak. We 
computed the size of the AWP using 
GODAS data and NCEP CFSR data. 
The area of the AWP was defined as 
the area where temperature is equal to 
and greater than 28.5oC. As seen in 
Figure 3, this isotherm was used 
since its enclosed area exhibits the 
largest interannual variability. 
Correlations were found between the 
size of the AWP and sea surface 
temperatures (SSTs) at 0, 3 months 
lead/lag of AWP. Correlations were 
also found between the size of the AWP and tropospheric temperature (TT), which is defined as the 850-
250mb temperature average. This was to see if the AWP has an effect on heating the troposphere as was 
found in prior research with the Niño 3 index. (Sobel 2001).  

3. Results 

Figure 4 shows correlations between the size of the AWP and SSTs. The strongest correlations are 
between the AWP in ASO and the SSTs in ASO. This suggests that the SSTs in ASO play a large role in the 
size of the AWP in the Caribbean and the Gulf of Mexico in ASO. SSTs in May-June-July (MJJ) do have an 
effect on the size of the AWP in the Caribbean portion, however, only CFSR picks up a correlation in the 

Fig.2  In-situ ocean temperature observation distribution in 2009

Fig. 3 Standard deviation of isotherms from 26.0oC to 29.5oC.  
ERSSTv3 data was used from 1854-2009.  
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Gulf of Mexico. Other main differences 
between GODAS and CFSR are in the 
Western Pacific and in latitudes larger 
than 75oN. The latter is due to the domain 
of the GODAS not including the entire 
globe. 

In Figure 5, correlations between the 
Sempember-October-November (SON) 
Niño3 index and TT are shown. This 
figure is in agreement with the work of 
Sobel (2001). It was found that the Niño3 
region has its highest correlation when it 
lags at least 3 months due to the fact that 
the Niño3 region is responsible for 
warming SSTs in other regions through 
the atmosphere. This lag is consistent 
with the ocean mixed layer having a 
larger heat capacity. This ocean mixed 
layer also needs to be warmed so that the 
convective heating anomalies that are 
associated with the Niño3 anomalies can 
warm the atmosphere. One of the 
differences between the GODAS and 
CFSR is in the Pacific Ocean. The 
GODAS isn’t able to capture the effect 
that waves have on the SSTs like CFSR is. 
This is mainly due to the higher 
resolution of CFSR. 

In Figure 6, correlations between the 
size of the ASO AWP and TT are shown.  
It is obvious from the figure that size of 
the AWP has the strongest correlation 
with TT in the same months, ASO. The 
AWP does not help warm the TT in the 
future as shown by the low correlations 
with TT in November-December-January 
(NDJ) and February-March-April (FMA).  
One of the differences between CFSR and 
the GODAS is shown along the equator. 

4. Concluding remarks 

The size of the AWP has a stronger 
correlation with SSTs in the Gulf of 
Mexico and the Caribbean Sea at an 
instantaneous time. However, there also 
exists a correlation between the two for 
the size of the AWP in ASO and SSTs 
three months prior. It was found that the 
AWP does not act in a similar fashion as 
the Niño3 index. The TT responds to the 
size of the AWP instantaneously whereas 

Fig. 4 Correlations between the size of the ASO AWP and SSTs 
in MMJ (top), ASO (middle) and NDJ (bottom), 
respectively, at 95% confidence. The left column is for 
GODAS and the right column is for CFSR.  

Fig. 5 Correlations between the SON Niño3 index and TT in 
SON (top), DJF (middle) and MAM (bottom), respectively.  
The left column is for GODAS and the right for CFSR. 
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the Niño3 index has a stronger 
impact on TT at at least a three 
month lead.  

The GODAS and CFSR 
capture characteristics of the 
AWP fairly well. Differences 
arise in higher latitudes and along 
the equator due to higher 
resolution of the CFSR and the 
fact that it uses a coupled 
atmosphere-ocean model. 
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Fig. 6 Correlations between the size of ASO AWP and TT in ASO (top), 
NDJ (middle) and FMA (bottom), respectively.  The left column is 
for GODAS and the right column is for CFSR. 
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In the past decades, federal agencies have financed numerous climate research programs aiming to 
improve the accurately of forecasting techniques and to enhance the dissemination of usable information 
(NOAA, 2005). While vast amount of resources have been invested to reach these goals, the issue of how to 
measure the economic value of climate forecasts is still been discussed in the literature.  

The value of climate forecasts can be defined and evaluated in different ways. Most published studies on 
this subject have focused on evaluating the potential effect of climate information on the financial 
performance (revenues, profit, etc.) of a farm (Cabrera et al. 2009, Letson et al. 2005, among others). 
However, the use of economic performance measures, such as productivity, input substitution, inefficiency, 
etc., have received much less attention in the literature.  

Consequently, the main goal of this study is to analyze the economic impact of climate information on the 
technical efficiency of the US agricultural sector. To reach our goal we employ a Stochastic Production 
Frontier (SPF) framework (Kumbhakar and Lovell, 2003). SPF presents the major advantage of allowing us 
to estimate simultaneously the production frontier and inefficiency models. Specifically, in this model the 
impact of climate variability on production is measure by incorporating alternative climatic indexes into the 
production frontier (i.e., climate zone, annual precipitation and drought index); conversely, the value of 
climate information is evaluated following Shao and Lin (2001) in which a climate information index (i.e., 
ENSO signal) is incorporated in the technical inefficiency model.   

The geographical region select for this study is the Southeast U.S. (i.e., Alabama, Florida, Georgia, North 
Carolina and South Carolina). This area is ideal for studying the interaction of climate variability and 
agricultural production due to the strong influence ENSO in the regional climate. To implement our SPF 
model we use a balanced panel data, including the economic, production and climate information over 
approximately a 50-year period from 1960 to 2007. The economic and production data was collected from the 
USDA Economic Research Service and the USDA National Statistical Service. The climate information was 
collected from the South East Regional Climate Service.  

Preliminary results indicate that variations in climatic conditions affect, directly and indirectly, 
agricultural production and productivity through interactions, mean output elasticities, economies to scale and 
technical efficiencies. The included climate variables are not only statistically significant in all estimated 
models but that their omission could also generate significant inconsistencies on technical efficiency (TE) 
scores. These results have significant policy implications. Specifically, if the effects of uncontrollable agro-
climatic factors on TE are significant, but not accounted for, then agricultural strategies seeking corrective 
measures to improve productivity would have little impact since the real source of technical inefficiency is the 
uncontrollable agro-climatic conditions. Lastly, the effect of climate information on the level of technical 
efficiency of this sector is also positive and significant; suggesting the use of climate information is a good 
mean for improving agricultural performance. 
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1. Introduction 

Climate variability and change are new challenges that decision makers from across spatial scales and 
from different sectors are being forced to address and prepare for.  These new challenges contain a 
complexity of issues that include accessing information, assessing uncertainty, and considering vulnerabilities.  
As our society begins to think about climate variability and climate change impacts, it is critical that such 
stakeholders as decision and policy makers have a firm understanding of these issues in order to assess risk 
and develop adaptation strategies at local levels (USGCRP 2009).  Simply providing stakeholders with 
global-scale climate information, models, and products does not equate to successful use and understanding of 
the information.  Traditional climate assessments have primarily used a top-down approach, but rather a 
bottom-up approach is required (NAST 2001).  This will allow for end-users to be engaged from the 
beginning of the assessment process so that climate experts can better understand specific problems and 
concerns they face, and ensure that the assessments are user-driven rather than product-driven.   

In response to the next National Climate Assessment (NCA), which is currently underway, the University 
of North Carolina at Asheville’s National Environmental Modeling and Analysis Center (NEMAC), with 
support from NOAA’s National Climatic Data Center, and in collaboration with NOAA’s Southeast Regional 
Climate Center and the North Carolina State Climate Office, is developing a unique approach and framework 
for engaging stakeholders to create comprehensive regional climate assessments for the state of North 
Carolina and beyond.  The approach includes combining climate data with stakeholder values to guide the 
application of climate information from “global to regional to local levels” and to ensure that local 
stakeholder knowledge and information can be assessed and integrated at a national level.  This approach will 
lead to better communication with stakeholders across scales and will not only assess the current state of the 
climate along with associated impacts and vulnerabilities, but take into account other key cross-sector 
concerns as well as identify data and information gaps.  

NEMAC’s approach of conducting regional climate assessments through stakeholder engagement is being 
applied across multiple regions in North Carolina and the Southeastern U.S. This approach has been used for 
developing climate change adaptation strategies, planning for future transportation infrastructure, and working 
with local communities to create sustainable initiatives.  Issues of how to handle scale and data formats have 
also been addressed, as climate information is being applied at local levels.  Local stakeholders are engaged 
directly to facilitate proper communication and to guarantee that this group understands how to integrate 
climate information with other drivers in their communities.  While climate is an important factor for decision 
makers, their decisions are not just climate driven, thus it is important to assess how climate integrates with 
other factors that they manage. 

2. Stakeholder engagement 

A recent report from the National Climate Assessment Strategic Planning Workshop stated that as this 
next NCA moves forward, it is critical that stakeholders from both inside and outside of the government 
become better involved in the Assessment process, are empowered to create their own sustainable networks, 
and are provided ongoing support and access to needed climate information (USGCRP 2010a).  The report 
also cited that the needs of stakeholders from across sectors will ultimately drive the questions and goals of 
the next NCA.  This type of engagement ensures the assessment is relevant to the resources the stakeholders 
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manage and results in a certain level of shared ownership and co-production.  In addition, there are already a 
variety of assessment-type activities taking place at local, state, and regional levels that need to be identified, 
some of which could potentially be integrated into the NCA.   However, the capacity for the federal 
government to do this through its NCA process does not exist, as this level of engagement is a very time 
consuming and qualitative process.  Therefore, it is critical that the NCA include non-federal partners, such as 
the private sector and universities from across the nation.  These non-federal partners could also provide an 
additional level of engagement cohesiveness and perhaps supply other funding, data, and staffing resources 
(USGCRP 2010b).  Additionally, adaptation efforts will require coordinated efforts across multiple sectors 
and scales and be built upon existing efforts and knowledge of a wide range of public and private stakeholders 
(White House Council on Environmental Quality 2010). 

One method for engaging stakeholders from multiple sectors within their communities is by the use of 
small facilitated workshops.  Over the past year, NEMAC has been actively involved with the North Carolina 
Interagency Leadership Team (NCILT) as they and additional agencies seek to develop a climate assessment 
report and adaptation strategy plan for the state of North Carolina to begin preparing for increased impacts 
from climate variability and climate change.  The NCILT is made up of representatives from all major state 
agencies, or sectors, including transportation, agriculture, public health, emergency management, commerce, 
energy, environmental and natural resources, cultural resources, and wildlife.   Projected climate change 
threats to North Carolina include sea level rise, more frequent and intense heat waves, increased air and water 
temperature, increased storm intensity, and altered rainfall patterns resulting in both droughts and floods. The 
projected threats from climate change are expected to have substantial impacts on the state’s coastal and 
cultural resources, transportation and other infrastructure, water supplies, agriculture, natural systems, public 
health, and citizens’ homes and livelihoods. Because these threats could have substantial impacts for the state, 
it is important that North Carolina develop a strategy to reduce its vulnerability and enhance its resilience. 
Failure to develop and implement such a strategy will leave the communities of the state at risk from current 
climate impacts and impacts that are projected to increase into the future. 

A similar effort to the NCILT work is being undertaken with the Southeast Natural Resources Leadership 
Group (SENRLG).  The effort will allow NEMAC to see if the proposed framework is robust across a larger, 
regional scale.  SENRLG is committed to the common 
purpose of fulfilling federal agency mandates in ways 
that promote conservation and restoration of important 
natural resources, wise management and sound 
stewardship of natural resources, and ecologically 
sustainable development.  SENRLG recognizes that 
climate variability and change currently affects and has 
the potential to further impact ecosystems and human 
communities.  Thus, the intention is to assess the 
vulnerability of these resources and do so in a manner 
that is consistent across the southeastern U.S., and 
ensure that the process can be scaled to support local 
implementation of adaptation practices.  The work with 
SENRLG will also make certain that the framework can 
work at not only a state scale, but across state lines.  This 
scalable ability is critical since many water and coastal 
resource issues are region-wide and not restricted by 
political boundaries.  

3.  A framework for climate assessments 

By working directly with such diverse stakeholder 
groups as the NCILT and SENRLG, NEMAC, as 
previously mentioned, is developing an approach and 
framework that will allow stakeholder values to be fully 

Fig. 1.  A conceptual model of NEMAC’s 
framework for creating a regional climate 
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integrated with other climate data and information.  The framework operates from the bottom-up, across 
sectors, and is scalable.  The use of appropriate vocabulary is also an important issue to consider and is taken 
into account in this framework.  With such a broad range in climate assessment related terms that currently 
exists from such groups as the International Panel of Climate Change (IPCC), the Pew Center on Global 
Climate Change, and the White House Council on Environmental Quality, it is critical that stakeholders are 
able to agree on a standard set of vocabulary and develop a clear understanding of what these terms mean.  
Finally, the development and use of a web application tool will allow for access to the regional climate 
assessments for a particular sector or scale and will be built upon a robust database structure. 

More specifically, NEMAC’s framework will combine climate related drivers and factors with climate 
related phenomenon and other non-climate related factors, and will identify key impacts that might affect the 
system (Fig. 1).  The term “system” refers to any system-based resource and/or service that might be impacted, 
and would include the natural, built, and human systems.  The framework has been designed to be easily 
populated and allows for the inclusion of multiple climate and non-climate related factors.  Essentially it 
consists of four key components, first including a conceptual model or series of models similar to that 
referenced in Figure (1).  The second component is an inventory that summarizes all of the data and 
information that would be needed to make the assessment, and that is shown in the conceptual model.  Third 
is a narrative that provides an overview of the sector and scale being assessed, the climate impacts/stressors, 
and what affects they would have on the system services and resources.  Finally, a map or series of maps 
further highlights and describes the climate impacts/stressors and provides a visual for communicating 
vulnerability. 

The framework in action 

NEMAC’s framework for creating a regional climate 
assessment was recently used to help a regional Council of 
Governments in western North Carolina update the long 
range transportation plan and specifically include a section 
on potential climate variability and change impacts to the 
transportation sector.  In this example, the sector of 
interest is transportation and the scale is regional, or multi-
county.  Identified climate impacts/stressors included 
flooding, landslides, and wildfire.  The primary system 
resource that could be affected was transportation mobility.  
Potential climate related factors included variable 
precipitation and temperatures and an increase in intense 
rainfall events.  Non-climate related factors included 
future transportation demands, land use change, steep 
slopes, and an increase in impervious surfaces.  Specific 
vulnerability to multiple climate impacts/stressors 
included an increase in flooding that intersect roadways, 
landslides that block major highways, and wildfires that 
close entire areas of road networks (Fig. 2).  The 
transportation sector’s system resources and services could 
be negatively impacted by the interruption of public 
transportation, movement of products, rail and vehicular 
traffic, and lost tourism revenue. 

4. Summary and future work 

Regional climate assessments should be a value-based assessment that incorporates a bottom-up approach 
while identifying system resources by scale and sector.  Vulnerabilities to climate variability and change 
should be identified.  Specifically, decision makers at a variety of scales should be able to use these climate 
assessments to recognize resources that are most vulnerable and discuss how to set priorities for building 
resiliency in these areas.  Strategies and decisions developed from regional climate assessments must also be 

Fig. 2  A map depicting areas that would be 
vulnerable to increases of landslides, 
flooding, and wildfires due to climate 
variability and change. 
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solution oriented.  Climate scientists and policy makers must understand that climate is only one part of 
assessment and that the non-climate factors and values must also be integrated.    NEMAC’s approach for 
addressing these and other climate assessment related issues involves the engagement of stakeholders through 
small workshops and other facilitated group decision making venues.  Through this type of stakeholder 
engagement, a framework is being developed that has the ability to guide regional climate assessments 
throughout North Carolina and beyond.   

NEMAC’s future work on its regional climate assessment approach will include a continued refinement 
of the framework with various partners.  In addition, new groups and partners will be indentified to gather 
additional content and useful data for the assessments.  Additional impacts and stressors that might affect 
multiple sectors also need to be highlighted.  Finally, descriptive narratives need to be generated that clearly 
explain each assessment.  Other work will include database development for the climate assessments that will 
allow archival and efficient retrieval of the climate assessments by sector and/or scale through an interactive 
web interface. 
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1. Introduction 

 The Japan Meteorological Agency (JMA) began issuing meteorological information named “Early 
Warning Information on Extreme Weather” on an operational basis in March 2008. This information is issued 
every Tuesday and Friday by reference to the result of the numerical prediction model. When seven-day 
averaged temperature is expected to be very high or low with a certain possibility (30% or more) in the week 
starting from five to eight days ahead of 
the date of announcement (Figure 1), 
JMA provides early warning information 
on extreme weather on high or low 
temperature for concerned regions. The 
terms very high and very low refer to 
high or low seven-day averaged 
temperatures that are in the top 10% of 
all samples (Figure 2). We expect this 
information will be used in various fields 
of industry, particularly in agriculture in 
order to mitigate serious damage to farm products. 

2. Accuracy of early warning information 

Table 1 shows the result of early warning information issued from March 2008 to August 2010. In a total 
of 3072 opportunities in this period, JMA issued early warning information 654 times on “very high” 
temperature and 203 times on “very low” temperature. The rates that predicted extreme events actually 
happened were 64% for “very high” temperature and 56% for “very low” temperature. Even if observed 
temperatures did not reach “very high” or “very low” category, observed temperatures were classified into 
“high” or “low” category in more than 90% cases. Thus, there were few cases that seven-day averaged 
temperatures became normal or they 
were classified into opposite 
category when early warning 
information was issued. On the other 
hand, when observed temperatures 
were “very high” and “very low”, 
the rates that early warning 
information was issued in advance 
were 48% and 40%, respectively. 
Though almost half of extreme 
events could be predicted, we should 
make more efforts to predict 
extreme events.  

3. Cases in which the information was used effectively 

Figure 3 shows time series of daily temperature of Tohoku region in April 2010. Daily temperatures 
fluctuated around normal until mid-April. From 14 April, daily temperatures greatly fell and seven-day mean 

Date of 
Issue 

    Target days 

Mar 21 22 23 24 25 26 27 28 29 30 31 Apr 1 2 3 4 

Opportunities for issuing 3072 
Very High Temperature  Very Low Temperature  

Number of forecast  654 Number of forecast  203 
Forecast Observation  Forecast  Observation  

① Yes  Yes  421 ① Yes  Yes  115 
② Yes  No  233 ② Yes  No  88 
③ No  Yes  460 ③ No  Yes  172 

Hit Rate (=①/(①＋②))  64% Hit Rate (=①/(①＋②))  56%
Catch Rate (=①/(①＋③))  48% Catch Rate (=①/(①＋③))  40%

Fig. 1  Target days when 21 March is the date of issue

Fig. 2  Appearance rate of temperature

Table 1  Result of issued early warning information
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temperatures starting from 11 to 24 were “very low”. 
JMA issued early warning information on “very 
low” temperature on 6 April for the period from 11 
to 20 April and on 9 April for the period from 14 to 
23 April. In response, the Tohoku Regional 
Agricultural Administration Office issued 
agricultural information for fruit growers to prepare 
against the frost damage from cold weather. As in 
this case, with the use of early warning information, 
agricultural administration offices and farmers could 
secure enough time to prepare against extreme 
weather. Furthermore, they can take measures 
against extreme weather more effectively with the combined use of weekly 
forecast up to 7 days ahead. 

4. Approaches for further use of information 

JMA started a research in collaboration with the National Agricultural 
Research Center for Tohoku Region (NARCT) to advance the use of 
temperature forecast for the second week that is used for early warning 
information. The object of the research is to mitigate damage to rice crops 
from cold weather during summer. There are three main reasons for starting 
the research. First, damage to rice crops has a big social impact. Second, 
there are effective measures to mitigate damage from cold weather. Third, it 
takes one week or more to prepare measures. In this research, we are 
planning to produce new information that is comprehensible and easy-to-use 
to farmers, to help their “decision making” by providing index that 
specializes in use of agriculture with high geographical resolution. We will 
continue to work for early practical use. 

5. Summary 

As shown in section 3, early warning information has been utilized well 
in the field of agriculture and obtained good evaluation. In the future, JMA 
will also make an effort for the development of new information specializing 
in agriculture. 
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Fig. 3  Time series of daily temperatures of Tohoku 
region in April 2010.  Circle indicates a date of 
issue. Left and right arrow means target days. 

Fig. 4  Sample of agricultural 
information in Tohoku 
region. Risk of cold 
weather is shown by color 
that signifies value of 
index. 
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NOAA’s National Weather Service 
Introduction  

The 8th NOAA Climate Prediction 
Applications Science (CPAS) Workshop, a 
sister workshop parallel to the NOAA 
Climate Diagnostics and Prediction 
Workshop but focusing on identifying new 
climate prediction application research, 
assessing the impact of climate forecast on 
environmental societal activities and 
promoting interactions between the climate 
sensitive integrated research, service, and 
user communities, was held in San Diego, 
CA, from 2 to 4 March 2010, co-hosted by 
the National Weather Service Climate 
Services Division, the California Department 
of Water Resources, the National Integrated 
Drought Information System, and the Water 
Education Foundation.  The special theme 
for this workshop was Managing Water 
Resources and Drought in a Changing 
Climate. A diverse group of 75 people from a 
variety of sectors including federal and local 
government, academia, and the private sector 
gathered to exchange ideas, build mutually 
beneficial collaborations, and share best 
practices within this specific climate 
sensitive sector.  Aside from recurring issues, 
e.g. communication and outreach, 
engagement, decision support, etc., 
discussions gave prominence to application 
science priorities and related issues to 
improve climate service products. 

1.  Improving forecast skill and reliability 
is crucial to increase users’ confidence in 
climate prediction products. 

For IPCC prediction of more arid climate 
toward a warmer environment in the future, 
hydrometeorology expert participants looked 
at historical records (1900-2006) and showed 
pronounced multi-year to multi-decadal U.S. 

Fig. 1  Observed drought activity during the 20th and early 
21st century.  (Presented by Sorooshian) 

Fig. 2 Trends in exceedances. Average percentage change 
in number of rainfall exceedances per station per 
century for semiarid Southwest (top) and Ohio Basin 
(bottom).  (Presented by Bonnin) 
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drought variability, but no convincing evidence of long-term trends toward more or few events from the 
observation (Figure 1).  Non-stationarity of design rainfalls, in the ranges used by civil engineers, was also 
examined.  It was shown that historical trends in the number of rainfall exceedances over key areas of the U.S. 
were small compared to the uncertainty of intensity, frequency, duration (IFD) values used by civil engineers 
(Figure 2).  

In discussions, there was a general consensus that more research needed to be done to address non-
stationarity because of climate change and assess the added value of downscaling over traditional stochastic 
hydrology methods. 

2. Though regional climate services are highly demanded by users in all geographical locations, the 
predictability is not evenly distributed in space and time.  There are gaps between what is known and 
the knowledge needed in regional applications. 

By assessing current ‘state of the art’ of climate forecasting teleconnection research, no clear link was 
found between California multi-year droughts and either ENSO or PDO phase.  The dominance of ENSO 
teleconnection research to improve ISI forecast should not dwarf other efforts ( i.e.  detecting the  linkage  
between  summer trends in SLP near Azores and runoff in Sacramento and San Joaquin basins, the impact of 
the Indian Ocean dipole etc.).  A good fraction of annual precipitation from ‘atmospheric river’ events, which 
could be linked to MJO and ENSO, are still poorly understood and requires more research. Research needs 
were also identified for detecting sensitivities of regional impacts to the projected changes of temperature and 
precipitation.  

Studies showed high sensitivity of the Colorado River flows to the projection of warming (Figure 3).  It is 
important to know the underlying mechanisms for the flow changes in order to provide meaningful 
information that incorporates uncertainties in future climate change projections for water managers and policy 
makers. 

3. Coupling of climate science advancement with water resource practices has been shown as a key 
mechanism to develop needed tools and products for applications.  

For climate information products to be considered useful by the civil engineering community, products 
should address the frequencies and durations used for designing civil infrastructure.  Because of different 
cultures, values, languages, as well as the loading dock method used for information transfer with little 

Fig. 3 Colorado River flows highly sensitive to warming.  (Presented by Cayan) 
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interaction with practitioners during climate research, the climate community’s statements on trends in 
rainfall frequency do not adequately address the concerns of civil engineers.  

4. Enhancing partnerships with social 
scientists to maximize the benefits of 
climate information for users with 
statistically unsophisticated climate 
knowledge and providing training 
opportunities was another prominent S&T 
aspect of the workshop.  

Lessons learned from past and current 
practices emphasized the importance of 
sharing goals and resources, leveraging 
expertise and fostering extension networks to 
identify and understand specific information 
needs, relate these to the design and function 
of operational tools, and communicate 
information back to stakeholders.  (See the 
inset of Simplistic Model of CLIMAS 
presented by Ferguson). 

5. From the user perspective, water resource managers need actionable climate information.  

Looking forward to the future planning methods (Figure 4), this community emphasized the importance of 
climate model agreement on change in key parameters, narrowing the uncertainty range of model output, 
increasing resolution at a spatial and temporal scale that matches water utility current systems, and improving 
projections within water utility planning horizons.  It was also suggested that the development of priorities 
needs to be more focused on the enhancement of global and regional climate model ensembles, development 
of regional climate model components, improved use of observations to constrain climate model projections, 
improved modeling of the tropical Pacific, improved decadal prediction, and development of probabilistic 
downscaling for extremes and daily data.    

Fig. 4  Impact of climate change and advancement of planning for municipal water supply decision support.  
(Presented by Stickel) 
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1. Introduction 

The coastal area of North Carolina comprises a large system of sounds and estuaries protected by a 
complex of barrier islands (the Outer Banks).  The islands are very low and narrow, and vulnerable to sea-
level rise (SLR). With projections of 0.5m to 2.0m of global sea-level rise over the next couple of centuries 
(e.g., Vermeer and Rahmstorf, 2009), we decided to investigate the potential effects of SLR on the islands as 
well as on the sounds and estuaries. We studied this problem using numerical simulation of the response of 
the ocean to both tides, and combined tides and wind in the form of a hurricane. In addition, we ran 
simulations for a range of SLR from 0m to 2.0m, and for the present topography of the Outer Banks and a 
partially eroded version of the islands. 

2. Numerical simulations 

We did the simulations with the fully 
coupled, parallel, 2D depth-integrated 
version of the ocean circulation model 
ADCIRC (Luettich et al. 1992) and the 
surface gravity wave model SWAN (Booij 
et al. 1999) described by Dietrich et al. 
(2011). The coupled model employs an 
unstructured grid to achieve high 
resolution in coastal areas. In this case, the 
grid consisted of approximately 267,000 
nodes with minimum and maximum inter-
nodal spacing of about 30m and 100km, 
respectively (Fig. 1).  The time step for 
ADCIRC was 1sec and the time step for 
SWAN was 600sec. 

We did simulations for SLR of 0.0m, 
0.5m, 1.0m, and 2.0m in two Outer Banks 
configurations. The first configuration was 
the topography of today’s Outer Banks, 
with coastlines changing due to inundation 
with rising sea level. The second 
configuration consisted of the Outer Banks altered according to the results of Culver et al. (2007). The 
alterations consisted of collapsing the relief of some of the islands and opening some of the tidal inlets 
between islands. We will call this configuration the collapsed Outer Banks. The coasts of the islands were 
changed by inundation with rising sea level as well. 

Fig. 1  The full domain and finite-element mesh used for all 
simulations. The small rectangle in coastal North Carolina 
delimits the subdomain displayed in subsequent plots.
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All simulations include the 
effects of tides. We included 
eight tidal constituents, and 
preliminary runs of 45 days 
were done with ADCIRC 
alone to spin up the tides, both 
to be used as tide-only results 
and to serve as hot-start input 
to initiate wind-forced runs. 

The wind-forced runs were 
done for an extreme case: the 
passage of hurricane Isabel 
through the domain and across 
the North Carolina coastline 
and coastal plain. The wind 
input consisted of sea-surface 
atmospheric pressure and 10m 
winds in the Oceanweather Inc. 
(OWI) format, interpolated 
onto the unstructured grid. The 
wind-forced runs were hot 
started with the tidal spin-up 
output, and these simulations 
also included tides and surface 
gravity waves, all computed 
with the coupled model. 

3. Results 

Tides-only simulations 

In the current Outer Banks 
configuration, the maximum 
tidal range in the sounds and 
estuaries is low, on the order 
of 0.1m. The maximum 
elevation increases with rising 
sea level because of widening 
of the inlets and overtopping 
the islands, which results in 
the sounds and estuaries being 
more intimately coupled with 
the coastal ocean (Figs. 2a and 
2c)., and the maximum 
elevation in the sounds 
increasing by about a factor of 
3.  The collapsed Outer Banks 
configuration amplifies this 
effect (Figs. 2b and 2d) with 
the maximum tidal elevation 
increasing by more than a 
factor of 5 with 2m of SLR. In 
addition to the elevations, the 

Fig. 2  Maximum tidal elevation (m) for (a) 0m SLR, current Outer Banks; 
(b) 0m SLR, collapsed Outer Banks; (c) 2.0m SLR, current Outer Banks; 
(d) 2.0m SLR, collapsed Outer Banks. Note that the minimum elevation 
in each figure corresponds to the mean SLR, so the colors isolate the 
effects of the tides. 

Fig. 3  Maximum surface elevation during the passage of hurricane Isabel 
for (a) 0m SLR, current Outer Banks; (b) 0m SLR, collapsed Outer 
Banks; (c) 2.0m SLR, current Outer Banks; (d) 2.0m SLR collapsed 
Outer Banks. 
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tidal velocities also increase 
throughout the sounds and 
estuaries (not shown) owing to 
the combined effects of SLR 
and alteration of the Outer 
Banks. 

Hurricane Isabel 

Hurricane Isabel made 
landfall on the coast of North 
Carolina east of Cape Lookout 
on Sept 18,  2003. The storm 
continued across Pamlico 
Sound before moving into 
Virginia. We forced the 
coupled ADCIRC+SWAN 
with OWI hindcast pressure 
and wind fields in addition to 
continuing the tidal forcing. 
We ran the Isabel simulations 
for 5.5 days, starting with the 
wind fields corresponding to 
00Z on September 14, 2003. 

Fig. 3 shows the maximum 
sea-surface elevation during 
the passage of hurricane Isabel, 
i.e., the storm surge. Because 
the storm center crossed the 
Outer Banks east of Cape 
Lookout in a northward 
direction, strong winds from 
the east tended to lower the 
water level in the eastern 
sound and raise it in the 
western sound and Neuse 
River estuary. This effect is 
particularly evident in the 
current Outer Banks, 0m SLR 
case (Fig. 3a), where the 
maximum storm surge 
elevations in the Neuse and the 
shore of the Albemarle-
Pamlico Peninsula (APP) are 
2.5 to 3.0m. In the current 
Outer Banks configuration and 
2.0m SLR, the dewatering of 
the eastern sound is reduced 
because of easier overtopping 
of the islands, and the area of 
high storm surge in the western sound is increased (Fig. 3c). In the collapsed Outer Banks configuration, the 
height of the storm surge is increased throughout the Pamlico Sound and on the APP in both the 0m SLR (Fig. 

Fig. 4  Inundation of otherwise dry land during the passage of Isabel for 
current Outer Banks configuration and the four SLR scenarios. 

Fig. 5  Inundation of otherwise dry land during the passage of Isabel for the 
collapsed Outer Banks configuration and the four SLR scenarios. 
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3b) and 2.0m SLR (Fig. 3d) cases. In these two cases, the maximum storm surge elevation (relative to the 
mean SLR) is greater than 3.0m along the southern shore of the APP. 

The storm-surge inundation of the barrier islands and the land adjacent to the sounds increases with SLR 
and also with the collapse of the Outer Banks. Figs. 4 and 5 show the degree of inundation (defined as the 
elevation of the sea surface over land that is dry at 0m SLR) for the current and collapsed Outer Banks, 
respectively, and for all four SLR scenarios. The area and depth of maximum inundation both increase as 
SLR increases, owing to both the mean SLR and the enhanced tides and storm surge. These effects are 
increased in the collapsed Outer Banks configuration because as the islands are submerged, they provide a 
less effective barrier against tides and storm surge, and the waters of the sounds and estuaries are more 
directly connected to the shelf waters. 
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