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PREFACE 

It is with great pleasure that the Climate Prediction Center and the Office of Science and 
Technology offer you this synthesis of the 36th Climate Diagnostics and Prediction Workshop.  The 
CDPW continues to be an important way for the climate prediction community to stay connected.  
As is clearly evident in this digest, the climate community continues to make great strides in our 
ability to simulate and predict climate.  The purpose of this digest is to help you stay informed while 
also ensuring that climate research advances are shared with the broader climate community and  
transitioned into operations.  This is especially important as NOAA works to enhance climate 
services both across the agency and with external partners.  We hope you find this digest to be  
useful and stimulating.  And please drop me a note if you have suggestions to improve the digest. 

Finally, I would like to thank Dr. Jiayu Zhou of the Office of Science and Technology / NWS, 
for developing the digest concept and for being its champion.  This partnership between OST and 
CPC is an essential element of NOAA climate services. 

Wayne Higgins 
Wayne Higgins 

Director, Climate Prediction Center 
National Centers for Environmental Prediction 
NOAA’s National Weather Service 
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OVERVIEW 

The 36th Climate Diagnostics and Prediction Workshop was held in Fort Worth, Texas, on 3-6 
October 2011. The workshop was hosted by the National Weather Service (NWS) Southern Region 
Headquarters and the National Climatic Data Center (NCDC), and cosponsored by the Climate 
Prediction Center (CPC) of the National Centers for Environmental Prediction and NWS Climate 
Services Division. The American Meteorological Society was a cooperating sponsor. 

A diverse group of about 132 scientists from more than 70 domestic and international institutes 
gathered to explore current operational climate prediction capabilities, identify opportunities for 
advances, and discuss new products needed to support regional decision makers. 

The workshop addressed the status and prospects for advancing climate monitoring, assessment, 
and prediction with emphasis in five major themes: 

1. Changes in weather and climate extremes on timescales from daily to decadal; 
2. Performance of NOAA coupled models on timescales from daily to decadal, including 

reanalysis, reforecasts and multi-model ensembles; 
3. Status and prospects for improved understanding and more realistic simulation and 

prediction of drought/pluvial, including objective drought tools and impacts on water 
resources; 

4. Prospects for improved understanding and prediction of warm season North American 
hydroclimate variability; 

5. Development and delivery of climate information that meets the evolving needs of users, 
including business, government, resource managers, scientists, sectoral stakeholders, and 
private citizens. 

This Workshop is continuing to grow and provides a stimulus for further improvements in 
climate prediction, monitoring, diagnostics, applications and services. 



1.  ANNUAL REVIEW OF WEAHRE & CLIMATE 

AND CLIMATE OPERATION 
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The Climate Prediction Center’s  
2010-11 Seasonal Forecasts and a Look Ahead to 2011-12  

Mike Halpert 
Climate Prediction Center, NOAA/NWS/NCEP, Camp Springs, MD 

The fall, winter and spring of late 2010 and 2011 witnessed a moderate to strong La Niña across the 
tropical Pacific Ocean, which shaped CPC’s seasonal outlooks for those seasons.  La Niña often results in 
drier-than-average conditions across much of the southern part of the continuous United States and wetter-
than-average across parts of the North, particularly in the Pacific Northwest and in the Ohio Valley.   
Temperatures are often above average across the South and below average across the North, mainly from the 
northern Great Lakes region westward.  These effects normally result in probabilistic seasonal forecasts which 
favor these impacts in these regions and the forecasts for the winter 2010-11 and spring 2011 were no 
exception (Figs 1 and 3). 

Precipitation forecasts for 
September – November 2010 
through April – June 2011 all 
scored at least 30% better than a 
climatological forecast, the 
longest streak (eight) of very 
successful forecasts since CPC 
began issuing forecasts in this 
style in 1995 (i.e. Fig. 1, right).  
The success of these forecasts 
was directly tied to the La Niña, 
as these forecasts heavily 
leveraged the expected impacts 
from the episode.   

In contrast, the temperature 
forecasts during the heart of the 
winter (November – January, 
December – February, and 
January – March) were not as 
successful (i.e. Fig. 1, left), with 
Heidke skill scores near or below 
zero for all 3 forecasts.  The obvious question to ask is what caused the disparity in skill between the 
temperature and precipitation forecasts and the answer highlights some of the unpredictable factors that often 
influence the climate during a particular season.  While the La Niña dominated the precipitation signal, a 
strong negative phase Arctic Oscillation (AO) teleconnection pattern developed in mid-November (Fig. 2) 
and persisted largely unabated through the middle of January, at which point another teleconnection pattern, 
the Pacific-North American (PNA) pattern became strongly positive for 2-3 weeks (not shown).  The 
influence of these two teleconnection patterns during the winter, which included the second lowest December 
AO value (Fig. 2a) in the historical record dating back to 1950 (exceeded only by December 2009), resulted 
in temperatures during the winter that were either normal or below normal across much of the eastern two-
thirds of the country.  This result was at odds with CPC’s seasonal forecasts, which favored above average 
temperatures across much of the southern and central parts of the nation. 

Fig. 1  December 2010 – February 2011 forecasts (top) and categorical 
verification (bottom). 
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By early February, the AO became positive and remained neutral or positive during the remainder of the 
winter (Fig. 2d) and throughout the spring.  This transition, along with the continuation of La Niña conditions, 
resulted in a string of successful temperature forecasts beginning with February – April 2010 continuing into 
early summer.  The verification for these forecasts was quite consistent with previous La Niña episodes, with 
colder-than-average temperatures 
observed across much of the northern 
Plains, the northern Rockies, the Pacific 
Northwest and warmer-than-average 
temperatures across much of the 
southern part of the nation during 
spring (Fig. 3). 

As we head into the winter of 2011-
12, La Niña conditions have again 
developed throughout the Tropical 
Pacific, as sea surface temperature 
departures more than 0.5°C below 
average spanned the central and eastern 
tropical Pacific.  This has helped to 
shape the outlooks for the winter, with 
CPC’s seasonal outlooks again 
generally favoring wetter and colder 
than average conditions across much of 
the northern part of the country and 
drier and warmer than average 
conditions across much of the South. 

Fig. 3  March – May 2011 forecasts (left) and categorical 
verification (right) of temperature (top) and precipitation 
(bottom). 

Fig. 2  Monthly Arctic Oscillation (AO) time 
series for a) December, b) January, and C) 
February and d) 90 day time series of the 
daily AO from 8 November 2010 to 7 
March 2011.   

b) a) 

c) 

d) 
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Tropical ISO and Extratropical Extreme Weather  
during the 2009-2011 ENSO Cycle  

Bin Wang 
Department of Meteorology and International Pacific Research Center,  

School of Ocean and Earth Science and Technology, University of Hawaii at Manoa Honolulu 

 J-.Y. Moon, Kazuyoshi Kikuchi, J.-Y. Lee, and S.-Y. Yim 
International Pacific Research Center,  

School of Ocean and Earth Science and Technology, University of Hawaii at Manoa Honolulu 

The tropical intraseasonal oscillation (ISO) shows distinct variability centers and propagation patterns 
between boreal winter and summer. To accurately describe and monitoring the state of the ISO at any 
particular time of a year, a bimodal ISO index is used. It consists of Madden-Julian Oscillation (MJO) mode 
with predominant equatorial eastward propagation and Boreal Summer ISO (BSISO) mode with prominent 
northward propagation and large variability in off-equatorial monsoon trough regions. The spatial-temporal 
patterns for the MJO and BSISO modes are identified with the extended empirical orthogonal function 
analysis of 31 years (1979-2009) OLR data for the December-January-February and June-July-August period, 
respectively. The details are referred to Kikuchi et al. 
(2010). The dominant mode of the ISO at any given time 
can be judged by the proportions of the OLR anomalies 
projected onto the two modes. The proposed bimodal 
ISO index provides objective and quantitative measures 
on the annual and interannual variations of the 
predominant ISO modes. From December through April 
the MJO mode dominates while from June through 
October the BSISO mode dominates. May and 
November are transitional months when the predominant 
mode changes from one to the other (Fig. 1). The 
fractional variance reconstructed based on the bimodal 
index is significantly higher than the counterpart 
reconstructed based on the Wheeler and Hendon’s index 
(Wheeler and Hendon 2004). The bimodal ISO index 
provides a reliable real time monitoring skill. The 
method and results provide critical information in 
assessing models’ performance to reproduce the ISO and 
developing further research on predictability of the ISO 
and are also useful for a variety of scientific and practical 
purposes.   

The tropical ISO during the past ENSO cycle 
(December 2009 to August 2011) is analyzed using the 
bimodal index.  The DJF 2009/2010 is a mature phase of 
El Niño while the DJF 2010/2011 is a mature phase of 
La Niña.  The JJA 2010 is a developing phase of La Niña 
while the JJA2011 is a decaying phase of La Niña.  Due 
to strong regulation of the ENSO, the MJO is amplified 
during DJF 09/10 at the El Niño mature phase, while 

Fig. 1  Scatter plot of ISO amplitude in terms of 
the BSISO mode (x-axis) and the MJO mode 
(y- axis) for the period 1979–2009. Solid lines 
parallel to the x and y axes represent one 
standard deviation of each ISO mode during 
the period each EEOF analysis was performed. 
Dashed line represents the situation when both 
the MJO mode and the BSISO mode have the 
same variance. Three seasons are marked by 
different colors (June–October in red, 
December–April in blue, otherwise in gray). 
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suppressed during DJF 10/11 when the La Niña matures 
(Fig. 2). 

The pulsation of the strong MJO during the winter 
of 2009/10 had strongly modulated the winter storms in 
the United States through an atmospheric 
teleconnection, resulting in a number of record-
breaking snowfall events registered in the eastern 
United States (Moon et al. 2011). The intraseasonal 
variation of OLR had reached maximum strength over 
the eastern subtropical Pacific near Mexico and the 
second largest over the equatorial central Pacific since 
1979/80. The convection over these two regions 
experienced a remarkable wet-dry-wet cycle during the 
60-day period from late December to mid-February; 
correspondingly, the daily snowfall over the eastern US 
exhibited a cohesive wet-dry-wet cycle (Fig. 3). As the 
MJO convection reached the central Pacific, a 
teleconnection pattern extends to North America, 
resulting in a westward-tilted deep anomalous trough 
anchored over the eastern US, producing a low-level 

Fig. 2 Bimodal description of the tropical ISO for the 
period December 2009 to August 2011. The 
upper and lower panels show the amplitudes of 
the MJO and BSISO modes, respectively. The 
shading represents climatological annual cycle. 
Note the large amplitude of MJO during DJF 
2009/2010. 

Fig. 3  MJO during DJF 2009/10 and snowfall in eastern US. (a) 30-60 day OLR anomalies along the 
equator (5ºS-5ºN) as a function of time. (b) Time series of the 30-60 day OLR anomalies averaged over 
the equatorial central Pacific (5ºS-5ºN, 170ºW-140ºW). (c) The same as in (a) except along the band 
between 5ºN and 15ºN. (d) snowfall amount averaged over the eastern US. 
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pressure dipole anomaly with an 
anticyclone (cyclone) centered at the US 
west (east) coast (Fig. 4). The 
convection over the Indian Ocean varied 
in phase with the central Pacific 
convection, reinforcing the extratropical 
atmospheric teleconnection pattern. As a 
result, the enhanced high-latitude cold 
air penetrated southward, affecting the 
central and eastern US. Meanwhile, 
warm moist air was transported from the 
tropical central Pacific through Mexico 
to the southern US along with the upper-
level subtropical westerly jet. These 
enhanced warm moist air from the 
tropics and the cold air transportation 
from the high-latitude are also supported 
by the existing El Niño and negative AO 
(NAO), respectively, which reinforced 
the MJO teleconnection over the eastern 
US during wet cycle. As such, the 
eastern US was located in a convergence 
zone between the enhanced cold air from 
the high-latitude and the warm moist air 
supplied from the subtropics, resulting in favorable conditions for extremely heavy snowfall.   

During the La Niña development summer, i.e., JJA 2010, the BSISO is generally weak except one event 
in October 2010, which is related to a supper typhoon activity in the western North Pacific. During the La 
Niña decaying phase (JJA 2011), the BSISO activity tends to be normal. There was a strong event in June 
2011. This event had caused flooding conditions over the Meiyu-Baiu front in East Asia. Seoul also 
experienced unusual floods. 

References 
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Fig. 4 Intraseasonal anomalies of OLR and 300hPa streamfunction 
on the days when convection over the tropical central Pacific in 
(a) dry and (b) wet phases. The OLR is shaded. The 300hPa 
streamfunction is drawn in contour. 
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Skill of Real-time Seasonal ENSO Model Predictions during 2002-2011 
—  Is Our Capability Increasing?  

Anthony G. Barnston 1, Michael K. Tippett 1, Michelle L. L’Heureux 2, 
Shuhua Li 1, and David G. Dewitt 1 

1International Research Institute for Climate and Society,  
The Earth Institute of Columbia University, Palisades, New York 

 2 Climate Prediction Center, NCEP/NWS/NOAA, Camp Springs, Maryland 

1. Introduction 

 In this study, real-time model predictions of ENSO conditions during the 2002-2011 period are evaluated 
and compared to skill levels documented in studies of the 1990s. ENSO conditions are represented by the 
Niño3.4 SST index in the east-central tropical Pacific. The skills of 20 prediction models (12 dynamical, 8 
statistical), that have been displayed on the ENSO prediction plume of the International Research Institute for 
Climate and Society (IRI) since 2002, are examined. Over the last two to three decades, our ability to predict 
ENSO variations at short and intermediate lead times has presumably gradually improved due to improved 
observing and analysis/assimilation systems, improved physical parameterizations, higher spatial resolution, 
and better understanding of the tropical oceanic and atmospheric processes underlying the ENSO 
phenomenon. Studies in the 1990s showed moderate ENSO prediction capability, with forecast versus 
observation correlations of about 0.6 for 6-month lead predictions for the Niño3.4 region (Barnston et al. 
1994). This study reviews the recent model performances, and reexamines the question of the relative 
performance of dynamical and statistical models. We also compare the skills of the 9 years of real-time 
predictions to those of longer-term (30-year) hindcasts from some of the same models. The ENSO prediction 
models studied here are listed in Table 1. 

 The ENSO predictions issued each month from February 2002 through January 2011 are examined for 
multiple lead times for future 3-month target (i.e., predicted) periods. Figure 1 shows the variability of the 
Niño3.4 anomaly from 1981 to 
2011, highlighting the recent 9-
year period of the current study. 
Although there were some 
moderate ENSO events, no 
very strong events occurred. 
The last target period is 
January-March 2011, while the 
earliest target period is 
February-April 2002 for the 
shortest lead time and October-
December 2002 for the longest 
lead time. The forecast data 
from a given model consist of a 
succession of running 3-month 
mean SST anomalies with 
respect to the climatological 
means for the respective 
predicted periods, averaged 
over the Niño3.4 region. 

Figure 1  Time series of running 3-month mean SST anomaly with respect 
to the 1981-2010 period climatology in the Niño3.4 region for 1981-
2011, highlighting the 2002-2011 study period. 



BARNSTON ET AL. 
 

 

9

Predicted periods begin with the 3-month period beginning immediately after the latest available observed 
data, and continue for increasing lead times until the longest lead time provided by the given model, to a 
maximum of 9 running 3-month periods. Here, lead time is defined by the number of months of separation 
between the latest available observed data and the beginning of the 3-month forecast target period. Although 
anomalies were requested to be with respect to the 1971-2000 climatology, some prediction anomalies were 
with respect to means of other periods, such as from 1982 to the early 2000s for some dynamical predictions. 
Adjustments for these discrepancies were not conducted, nor were model bias corrections attempted. Only the 
ensemble mean of the dynamical model forecasts is considered as a deterministic prediction.  

Table 1  Dynamical and statistical models whose forecasts for Niño3.4 SST anomaly are included in this 
study. Note that some models were introduced during the course of the study period, or replaced a 
predecessor model. 

Dynamical Models Model type 
NASA GMAO Fully coupled 
NCEP CFS Fully coupled 
Japan Meteorological Agency Fully coupled 
Scripps Hybrid Coupled Model (HCM) Comprehensive ocean, statistical atmosphere 
Lamont-Doherty Intermediate coupled 
Australia POAMA Fully coupled 
ECMWF Fully coupled 
UKMO Fully coupled 
Korea Met. Agency SNU Intermediate coupled 
Univ. Maryland ESSIC Intermediate coupled 
IRI ECHAM/MOM Fully coupled, anomaly coupled 
COLA Anomaly Anomaly coupled 
COLA CCSM3 (too short a record) Fully coupled 
Météo France (too short a record) Fully coupled 
Japan Frontier FRCGC (short record) Fully coupled 
  
Statistical Models Method and predictors 

NOAA/NCEP/CPC Markov Markov: Preferred persistence and transitions in 
SST and sea level height fields  

NOAA/ESRL Linear Inverse Model (LIM) Refined POP: Preferred persistence and transitions 
within SST field 

NOAA/NCEP/CPC Constructed Analogue (CA) Analogue-construction of current global SSTs 
NOAA/NCEP/CPC Canonical Correlation Analysis 
(CCA) 

Uses SLP, tropical Pacific SST and sub-surface 
temperature (not used beginning in 2010) 

NOAA/AOML CLIPER Multiple regression from tropical Pacific SSTs 
Univ. British Columbia Neural Network (NN) Uses sea level pressure and Pacific SST 
Florida State Univ. Multiple Regression Uses  tropical Pacific SST, heat content, winds 
UCLA TDC Multi-level Regression Uses 60N-30S Pacific SST field 
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The Reynolds-Smith version 2 optimal interpolation (OI) observed SST data averaged over the Niño3.4 
region (5°N-5°S, 120°-170°W) is used as the verification data, using the 1981-2010 period to define the 
anomalies.   

2. Results 

a. Real-time Predictive Skill 
of Individual Models 

Time series of the 
running 3-month mean 
observed SST anomalies in 
the Niño3.4 region and the 
corresponding predictions by 
23 prediction models at 0-, 2-, 
4- and 6 month lead times are 
shown in Fig. 2, showing that 
the models generally 
predicted the variations of 
ENSO with considerable skill 
at short lead times, and 
decreasing skill levels with 
increasing lead times. Figure 
3 shows the temporal 
correlation between model 
predictions and the 
corresponding observations 
as a function of target season 
and lead time, with a separate 
panel for each model. The 
correlation skill patterns of 
the models appear roughly 
comparable. All indicate a 
northern spring predictability 
barrier (Jin et al. 2008), with 
short lead prediction skills 
having a relative minimum 
for northern summer, 
extending to later seasons at 
longer lead times.  Relative to 
the statistical models, Fig. 3 
shows higher correlation 
skills by many of the 
dynamical models for seasons 
in the middle of the calendar 
year that generally have lowest skill. By contrast, for seasons having highest skills (e.g. northern winter target 
seasons at short to moderate lead times), skill differences among models and between model types appear 
small. 

 Figure 4 shows individual model correlation skills as a function of lead time for all seasons combined, 
while the top and bottom panels of Fig. 5 show skills for the pooled target seasons of NDJ1 , DJF and JFM, 
and for MJJ, JJA and JAS, respectively. Overall, model correlation skills at 6-month lead range anywhere 

                                                 
1 Seasons are named using the first letter of the three constituent months; e.g. DJF refers to Dec-Jan-Feb. 

Figure 2  Time series of running 3-month mean Niño3.4 SST observations 
(°C anomaly), and corresponding model predictions for the same 3-
month period from earlier start times at 0-, 2-, 4- and 6-month leads. 
Data for each model are separated by thin black horizontal lines. The first 
8 models at the top are statistical models.  For each model, the bottom 
row shows the observations, and the four rows above that row show 
predictions at the four increasing lead times. Vertical dotted lines 
demarcate calendar year changes, separating Nov-Dec-Jan from Dec-Jan-
Feb. Observations span from Feb-Mar-Apr 2002 to Jan-Feb-Mar 2011, 
while forecasts at longer lead times start and end with later seasons. 
Black shading indicates missing data. 
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from zero to about 0.7 for all seasons combined, while predictions for the northern winter season range from 
0.4 to 0.9, and for the northern summer season from below zero to 0.55. The model skill levels for all seasons 
combined (Fig. 4) differ from one another noticeably at all lead times. Averaged over all seasons, skills 
average somewhat lower than the 0.6 level found at 6-month lead in earlier studies. However, a small number 
of current models, some of which do not predict out to 6 months lead, have shorter-lead skill levels that would 
exceed a 0.6 correlation if their forecast range were extended, and if their skill followed a downward slope 
with increasing lead time averaging that shown by other models having longer maximum lead times. 
Examples of models with such good or potentially good skill include ECMWF, NASA-GMAO, JMA; NCEP-
CFS skill approximately equals 0.6. However, two caveats in the comparison of skills of today’s models 
against models of 10 to 20 years ago include (1) the ENSO variability during the 2002-2011 period will be 
demonstrated to have been more difficult to predict than that over the 1981-2011 in general; and (2) the 
current set of predictions were made in real-time, while those examined in previous studies were partly 
hindcasts. Both factors will be examined 
further below.    

One reasonably might ask whether the 
skill differences at any lead time are 
sufficient, for a 9-year period, to 
statistically distinguish among the 
performance levels of some of the models. 
Because ENSO episodes last up to a year, 
we assume (perhaps conservatively) that 
we have only about one independent 
sample per year. The existence of 
statistically significant differences between 
skills of any pair of individual models 
requires very large sample skill 
differences—larger than those found here. 
However, the statistical significance of 
skill differences between dynamical and 
statistical model types is more tractable, 
and is addressed below.   

The correlation between model 

Figure 3  Temporal correlation between model forecasts and observations as a function of target season 
(horizontal axis) and lead time (vertical axis). Each panel highlights one model. The first 12 models are 
dynamical, followed by 8 statistical models. Thick solid contour shows the 90% significance level, dashed 
contour the 95% level, and thin solid contour the 99% level 

Figure 4 Temporal correlation between model forecasts and 
observations for all seasons combined, as a function of 
lead time. Each line highlights one model. The 8 statistical 
models are shown with dashed lines and the cross symbol. 
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predictions and observations reflects 
purely the discrimination ability of the 
models, since biases of various types 
do not affect this metric. However, 
such prediction biases (e.g., calibration 
problems involving the mean or the 
amplitude of the predictions) are also 
part of overall forecast quality, despite 
being correctible in many cases. To 
assess performance in terms of both 
calibration and discrimination, root 
mean square error (RMSE) is examined. 
Here the RMSE is standardized for 
each season individually. 
Standardization scales RMSE so that 
climatology forecasts (zero anomaly) 
result in the same RMSE-based skill 
(of zero) for all seasons, and all 
seasons’ RMSE contribute equally to a 
seasonally combined RMSE. Figure 6 
shows RMSE as a function of lead time 
for all seasons together. The ECMWF 
model has the lowest RMSE over its 
range of lead times. For lead times 
greater than 2 months, persistence 
forecasts have higher RMSE than that 
of any of the models. There is clearly 
some comparability between 
correlation skill (Fig. 4) and RMSE 
(Fig. 6), with models having highest 
correlation tending to have low RMSE. 
However, exceptions are discernible, 
due to the effects of mean biases and 
amplitude biases (not shown). 

 Establishing statistical significance 
of skill differences between dynamical 
and statistical models for specific times 
of the year is difficult for a 9-year 
study period. However, the fairly large 
number of models can be used to help overcome the short period length. Models are ranked by correlation 
skill for each season and lead time separately, using the 9 year sample. Systematic differences in the ranks of 
the dynamical and statistical models are identified using the Wilcoxon rank sum test (Wilcoxon 1945). 
Additionally, the average correlation of the dynamical and statistical models is compared using a standard t-
test, applied to the Fisher Z equivalents of the correlations (Ramseyer 1979). The p-values resulting from 
these two statistical approaches are shown in Table 2. Although the difference-in-means test generally yields 
slightly more strongly significant results than the rank sum test, the season/lead patterns of the two 
approaches are similar. Significant differences, in which dynamical models tend to outperform statistical 
models, are found at short lead time for the target periods near May-Jul-Jul, the seasons just following (and 
most strongly affected by) the northern spring predictability barrier. This significance pattern migrates to later 
target periods with increasing lead time, following the target periods corresponding to the fixed forecast start 
times of April or May. For forecasts whose lead times do not traverse the northern spring barrier, statistical 
versus dynamical skill differences are not significant. 

Figure 5  (top) Temporal correlation between model forecasts and 
observations for Nov-Dec-Jan, Dec-Jan-Feb and Jan-Feb-Mar 
as a function of lead time. Each line highlights one model. The 
8 statistical models are shown with dashed lines and the cross 
symbol. (bottom) As in top, but for May-Jun-Jul, Jun-Jul-Aug 
and Jul-Aug-Sep. 
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Wilcoxon rank sum test (field significance p=0.034) 

Lead  DJF   JFM   FMA   MAM   AMJ   MJJ   JJA   JAS   ASO   SON   OND   NDJ     All 

0    0.32  0.19  0.76  0.28  0.01  0.01  0.09  0.95  0.22  0.41  0.95  0.76    0.70 

1    0.88  0.25  0.22  0.32  0.06  0.003 0.02  0.17 -0.68  0.34  0.68  1.00    0.64 

2    1.00  0.76  0.32  0.19  0.17  0.04  0.01  0.01  0.54 -0.73  0.38  0.94    0.22 

3    1.00 -0.93  0.32  0.14  0.36  0.19  0.14  0.01  0.01  0.25  1.00 -0.74    0.12 

4   -0.33 -0.37  0.79  0.29  0.48  0.48  0.18  0.25  0.01  0.004 0.36 -0.21    0.16 

5   -0.09 -0.29 -0.40  0.67  0.92  0.60  0.67  0.30  0.34  0.03  0.002 0.92    0.21 

6    0.60 -0.60 -0.75  1.00  0.40  0.46  0.75 -0.83  0.75  0.46  0.05  0.05    0.25 

7    0.02  1.00 -0.35  1.00 -0.64  0.20  0.82  0.91  0.70  0.73  0.25  0.03    0.35 

8    0.05  0.02  1.00 -0.52 -0.44  1.00  0.19 -0.61 -0.66 -0.88  1.00  0.05    0.61 

 

t-test for mean difference (field significance p=0.026) 

Lead  DJF   JFM   FMA   MAM   AMJ   MJJ   JJA   JAS   ASO   SON   OND   NDJ     All 

0    0.27  0.19  0.65  0.22  0.003 0.001 0.06  0.48  0.41  0.65  0.74  0.46    0.49 

1    0.50  0.37  0.12  0.16  0.04  0.000 0.01  0.10 -1.00  0.32  0.73 -0.85    0.29 

2   -0.90  0.54  0.33  0.06  0.23  0.04  0.001 0.01  0.16 -0.86  0.29  0.93    0.12 

3   -0.98  0.65  0.13  0.13  0.71  0.20  0.07  0.002 0.001 0.11 -0.90 -0.65    0.09 

4   -0.35 -0.39  0.82  0.40  0.26  0.78  0.29  0.12  0.002 0.000 0.22 -0.19    0.11 

5   -0.16 -0.47 -0.31  0.56 -0.93  0.55  0.87  0.17  0.18  0.004 0.001 0.66    0.18 

6    0.34 -0.80 -0.73 -0.62  0.34  0.30  0.70  0.97  0.66  0.28  0.01  0.02    0.18 

7    0.01  0.37 -0.39 -0.60 -0.67  0.26  0.42  0.65  0.42  0.51  0.17  0.01    0.15 

8    0.04  0.02  0.52 -0.37 -0.45 -0.83  0.13  0.77  0.48  0.66  0.70  0.29    0.34 

Table 2 Statistical significance results (2-sided p-values), by target season and lead time, for differences in 
temporal correlation skill of dynamical versus statistical models: (top) Wilcoxon rank sum test for 
correlation skills, and (bottom) t-test of difference in means of Fisher Z equivalents of the correlations 
skills. Entries statistically significant at the 0.05 level are shown in bold. Negative sign indicates cases 
when statistical models have higher ranks (or means) than dynamical models. P-values are shown to 3 
decimal places when p<0.005; 0.000 indicates p-value <0.0005. 

Although significant differences are noted for specific seasons and leads, there is a multiplicity of 
candidate season/lead combinations, and 5% of the 108 candidates (i.e., 5 or 6 of them) are expected to be 
significant by chance. In the case of the Wilcoxon test, 20 entries are significant, and for the difference-in-
means test 20 entries are significant. To assess the field significance of the collective result (Livezey and 
Chen 1983), Monte Carlo simulations are conducted in which the model type is randomly shuffled 5,000 
times, maintaining the actual number of dynamical and statistical models for the given lead time, and the set 
of local significances is regenerated. Using the sum of the z or t values of all 108 cells as the test statistic, the 
percentage of the 5,000 randomized cases that exceeds the actual case is determined. The z or t values are 
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taken as positive when the 
correlation of the dynamical models 
exceeds that of the statistical models, 
and negative for the opposite case. 
Resulting field significances are 
0.034 and 0.026 for the Wilcoxon 
rank test and t-test, respectively, 
indicating significantly low 
probabilities that the set of local 
significances occurred accidentally. 
This finding suggests that the 
circumstance under which local 
significance is found, namely 
forecasts impacted by the northern 
spring predictability barrier being 
more successful in dynamical than 
statistical models, is meaningful and 
deserves fuller explanation.   

A likely reason that dynamical 
models are better able to predict 
ENSO through the time of year 
when transitions (dissipation of old events and/or development of new events) typically occur is their more 
effective detection, through the initial conditions, of new evolution in the ocean-atmosphere system on a 
relatively short (intramonth) time-scale—evolution that may go unnoticed by statistical models that use 
monthly or seasonal means for their predictor variables. Statistical models might be able to compete better 
against dynamical models if they used finer temporal resolution, such as weekly means.  

Statistical models need long histories of predictor data to develop their predictor-predictand relationships. 
This need presents a problem in using the 3-dimensional observations in the tropical Pacific, such as the data 
from the Tao-Triton array, dating from the 1990s. (However, some subsurface tropical Pacific data do date 
back 10 or more years earlier in the eastern portion of the basin, and are available in the GODAS product.) 
This shorter data history precludes robust empirical definition of their predictive structures, and thus they are 
often omitted in statistical models. Although comprehensive dynamical models require a data history 
sufficient for verification and as a basis for defining anomalies, such a history is not basic to their functioning, 
and real-time predictions are able to take advantage of improved observing systems as they become available, 
potentially resulting in better initial conditions. While use of such crucial data suggests that dynamical models 
should be able to handily outperform statistical models, dynamical models have been burdened by problems 
such as initialization errors related to problems in data analysis/assimilation, and biases or drifts stemming 
from imperfect numerical representation of critical air-sea physics and parameterization of small-scale 
processes. As these weaknesses have improved, some comprehensive dynamical models have begun 
demonstrating their higher theoretical potential.  This improvement will likely continue (Chen and Cane 
2008). 

b. Real-time Predictive Skill versus Longer-Period Hindcast Skill  

Because 9 years is too short a period from which to determine predictive skill levels with precision, one 
reasonably might ask to what extent the performance levels sampled here could be expected to hold for future 
predictions. To achieve more robust skill estimates, a commonly used strategy is to increase the sample of 
predictions by generating retrospective hindcasts—“predictions” for past decades using the same model and 
procedures as in real time, to the extent possible. Cross-validation schemes are often used with statistical 
models, where varying sets of one or more years are withheld from the full data set, and the remaining years 
are used to define the prediction model which then is used to forecast the withheld year(s). In practice, there is 

Figure 6  RMSE in standardized units, as a function of lead time for all 
seasons combined. Each line highlights one model. The 8 statistical 
models and the persistence model are shown with dashed lines and 
the cross symbol. 
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no comparable procedure applied in dynamical model development, and model parameter choices are often 
made using the same data used to evaluate skill. 

Fourteen of the 20 models whose 9-year real-time forecast performance was discussed above (6 
dynamical, 8 statistical) have produced hindcasts for the approximately 30-year period of 1981 (or 1982) to 
2011. To assess the consistency of their skills during the longer period and the 9-year period of real-time 
predictions, the temporal correlation between hindcasts and observations is examined as a function of target 
seasons and lead time. Figure 7 shows a comparison of the correlation skills for the 9-year real-time 
predictions (as in Fig. 3) and the 30-year hindcasts for the subset of models having both data sets. Although 
the correlation plots are roughly similar, inspection shows generally higher hindcast skill levels for all of the 
models. Why do the hindcasts have higher skills? One explanation is that the 2002-2011 period may have 
been more difficult to predict than most of the longer period. Another explanation is that skills tend to be 
higher in hindcasts than in real-time predictions because the cross-validation designs may still allow inclusion 
of some artificial skill. 

Figure 7  Temporal correlation between model forecasts and observations as a function of target season and 
lead time for (top) real-time forecasts (as in Fig. 3) and (bottom) hindcasts for the 1981-2010 period for 
models having long-term hindcasts. Thick solid contour shows the 90% significance level, dashed 
contour the 95% level, and thin solid contour the 99% level for sample sizes of 9 (top) and 30 (bottom). 

To assess the relative difficulty of the recent 9-year period, the time series of uncentered correlation 
skills2 of sliding 9-year periods, each phased 1 year apart, are examined for the 22 running periods within 
1981-2010. The resulting time series of correlation are shown in Fig. 8 (top), for lead times of 3 months and 6 
months. It is clear that for all models, and for both lead times, the 2002-2010 period, as well as the early to 
middle 1990s, posed a greater predictive challenge than most of the last three decades. As noted earlier in Fig. 
1, one distinguishing feature of the 2002-2011 period is a lower amplitude of variability (no very strong 
events). The feature may be expected to reduce the upper limit of correlation skill by reducing the signal part 
of the signal-to-noise ratio. If the noise component remains approximately constant, and signal strength is 
somewhat restricted as during 2002-2010, then the correlation is reduced. The bottom inset of Fig. 8 (top) 
shows the 9-year running standard deviation of the observed Niño3.4 SST anomalies, with respect to the 
1981-2010 mean. The correlation between the running standard deviation and the model average skill is about 
0.8 for both 3- and 6-month lead predictions, confirming a strong relationship between signal strength and 
correlation skill.   

The average of the anomaly of the 2002-2011 correlation with respect to that over 1981-2010 is 
approximately -0.14 (0.61 vs. 0.75) for 3 month lead forecasts and -0.23 (0.42 vs. 0.65) for 6-month lead 
forecasts. The -0.23 “difficulty anomaly” for 6 month lead forecasts is of greater magnitude than the deficit in 
skill of the real-time predictions during 2002-2011 compared with the approximately 0.6 skill level found in 
earlier studies, suggesting that today’s models would slightly (0.65 versus 0.60) outperform those of the 
1990s if the decadal fluctuations of the nature of ENSO variability were taken into account. 

                                                 
2 For the uncentered correlation, the 9-year means are not removed, so that standardized anomalies with respect to the 
30-year means, rather than the 9-year means, are used in the cross-products and the standard deviation terms. 
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To examine the signal versus skill 
relationship with more precision, a 3-
year time window is used in Fig. 8 
(bottom), the bottom inset again 
indicating the running standard 
deviation. Within the 2002-2010 
period, the subperiod of 2003-2007 is 
a focal point of low skill and low 
variability. The correlation between 
the 3-year running standard deviation 
and model average skill is again 
about 0.8 for both 3- and 6-month 
lead predictions, confirming a strong 
linkage between signal strength and 
correlation. 

A second cause of the recent real-
time predictions having lower 
correlation skill than the 30-year 
hindcasts is that using a period for 
which the verifying observations exist 
may permit inclusion of some 
artificial skill not available in real-
time predictions. Attempts to design 
the predictions in a manner 
simulating the real-time condition 
(e.g. cross-validation) reduce artificial 
skill, but subtle aspects involving 
predictor selection often prevent its 
total elimination. Another 
impediment to the skill of real-time 
predictions includes such unavoidable 
inconveniences as delays in 
availability of predictor or 
initialization data, computer failure or 
other unforeseen emergencies, or 
human error. While this factor may 
seem minor, experience with the 
ENSO prediction plume has shown 
that such events occur more than once 
in a while. 

3.  Concluding remarks 

Verification of the real-time 
ENSO prediction skills of 20 models 
(12 dynamical, 8 statistical) during 2002-2011 indicates skills somewhat lower than those found for the less 
advanced models of the 1980s and 1990s. However, this apparent retrogression in skill is explained by the 
fact that the 2002-2011 study period was demonstrably more challenging for ENSO prediction than most of 
the 1981-2010 period, due to a somewhat lower variability. Thirty-year hindcasts for the 1981-2010 period 
yielded average correlation skills of 0.65 at 6 month lead time (slightly higher than the 0.6 found in studies 
from the 1990s), but the real-time predictions for 2002-2011 produced only 0.42. The fact that the recent 
predictions were made in real-time, in contrast to the partially hindcast design in the earlier studies, introduces 
another difference with consequences difficult to quantify but more likely to decrease than increase the recent 

Figure 8  (top) Time series of uncentered correlations between 
predictions of given individual models and observations for 
sliding 9-year periods, phased 1 year apart, for the 21 or 22 
running 9-year periods within 1981-2010. Correlations for 
forecasts at lead times of 3 months (thick lines) and 6 months 
(thin lines) are shown. Inset below main panel shows the standard 
deviation of observed SST anomalies for each sliding 9-year 
period, with respect to the 1981-2010 mean. (bottom) As in top, 
except for sliding 3-year periods for the 27 or 28 running 3-year 
periods within 1981-2010. 
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performance measures. Thus, based solely on the variability of 9-year correlation skills of the hindcasts within 
the 30-year period, ENSO prediction skill is slightly higher using today’s models than those of the 1990s 
(0.65 versus about 0.6 correlation). Decadal variability of ENSO predictability can dominate the gradual skill 
improvements related to real advances in ENSO prediction science and models. 

Unlike earlier results, the sample mean of skill of the dynamical models exceeds that of statistical models 
for start times between March and May when prediction has proven most challenging. The skill comparison 
by model type passes a field significance test for all seasons and leads collectively, at the p=0.03 level. 

A likely reason for the better performance of dynamical than statistical models is a more effective 
detection and usage in dynamical models, through their initial conditions, of new information in the ocean-
atmosphere system on a short (intramonth) time-scale—information that may not play a role in statistical 
models that use longer time means for their predictor variables. Statistical models may have potential for 
higher skill if their predictors were designed with finer temporal resolution. Statistical models need long 
histories of predictor data to develop their predictor-predictand relationships, but the valuable 3-dimensional 
observations across most of the tropical Pacific (e.g. from the Tao-Triton array) began only in the 1990s, 
precluding a robust empirical definition of their predictive relationships, and thus they are often omitted in 
statistical models, putting them at a relative disadvantage. 
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1. Introduction 

Borrowing from Shakespeare, the phrase “much ado about nothing” seems appropriate for drought.  In 
many ways, precipitation amounts to almost nothing in the more severe droughts.  In reality, of course, most 
droughts are associated with extended periods of less than usual precipitation, but not necessarily zero, and 
they often result from seemingly modest deficiencies of “only” 25 or 50 percent.  The southern plains (Texas-
Oklahoma-New Mexico) drought of 2011 is somewhat unusual in that many locations did actually receive 
next to nothing in terms of precipitation over an extended period.  The paradoxical quality and the resulting 
play on words stems from the greater and greater attention given as precipitation becomes less and less.   

Drought typically is associated with the 
redistribution of water.  The recently ended 
Water Year 2011 (October 2010 through 
September 2011) shows this dramatically (Figure 
1).  Very dry conditions in the southern plains 
and southeast U.S. are “balanced” by very wet 
conditions in other parts of the country:  the 
southwest (cool season), the Missouri River 
basin (warm season), and the northeast (tropical 
storm).  Major impacts resulted from both the 
wet and dry anomalies. 

As a general rule, the most serious droughts 
are associated with the loss of the main 
precipitation season(s), in climates that have 
pronounced seasonal cycles.  In addition, even in 
regions with a more even distribution of 
precipitation within the year, some seasons are 
more effective in supplying groundwater 
recharge and streamflow; almost always this is 
the cool season.  This is especially the case when snowpack is an important hydrologic factor.  A few dry 
months in a normally dry season do not have the consequences of dry months during (for example) the winter 
recharge season, or the summer monsoon, or the tropical storm season, depending on the part of the country.  
Figure 2 shows typical examples of seasonal cycles for Texas and for Arizona. With a double peak during the 
year, there is some opportunity to recover if the first peak is deficient.  The worst droughts involve the loss of 
both peaks.  In the Arizona case, one peak is in winter and the other is in summer.  The climate causes and 
teleconnections that lead to a loss of winter precipitation may be very different from those that lead to a loss 
of summer precipitation, and thus unless they share a common source, are often relatively uncorrelated with 
each other. 

 2.  Defining drought  

The definition of drought has been the subject of animated discussion for well over a century, and 
invariably arises during attempts to depict its status and establish relationships to impacts (Redmond 2002).  
This situation is likely not destined to end any time soon.  What appears to be a simple and straightforward 

Fig. 1  Precipitation departure (from 1971-2000 mean) 
during Water Year 2011 (October 2010 through 
September 2011) based on surface measurements. 
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exercise turns out in reality to be vexingly 
complicated.  A myriad of indicators are 
available to describe drought (e.g. Heim, 
2002) and more are steadily proposed and 
created.  For a definition to have much 
value, it should be applicable in the widest 
possible range of circumstances, and cover 
all the types of droughts experienced 
around the world.  It is relatively easy to 
formulate definitions that fit particular 
geographic and sectoral circumstances.  It 
is in the attempt to develop a universally 
applicable definition that we are forced to 
look at this problem in its generality. 

The fundamental concept of drought 
involves a water balance.  Through 
climatological and meteorological 
processes a supply of water is produced.  
Through climatological, meteorological, 
ecological, and social processes, a demand 
for that water has come about.  Note the 
addition of added factors on the demand 
side.  When supply (broadly defined) is 
unable to meet demand (also broadly 
defined), over extended periods, needs for 
water by human and natural systems are 
increasingly unable to be fully met.  At 
some point, the accumulated imbalance 
begins to result in impacts.  This “some 
point” varies, sometimes very greatly, 
depending on the specific circumstances of 
each of the many sectors affected by 
shortages in their own particular water 
budget.  The consequences of these 
shortages are described as “impacts” and 
can be expressed in socioeconomic 
terminology.  (The situation for “natural 
systems” is more ambiguous, and is tied to 
various kinds of value judgments.)  The 
reason we care about drought is that these shortages (negative water budget) produce impacts.  Because of 
this, drought is thus defined by its impacts.  For human systems, if there is no impact, there is no drought.  For 
natural systems, every excess or deficiency in the moisture budget results in some kind of adjustment, and in 
this case the definition is more murky.  Because of dependence on the specific path of causation from climate 
to impact, the same geophysical drivers need not always lead to the same level of impact, and thus of drought. 

The reliance on a water budget approach implies that both supply and demand matter.  Demand, as used 
here, includes such factors as evapotranspiration, as well as human, animal, and vegetative demand.  The 
factors that affect supply certainly include precipitation, but also other climatic elements such as temperature, 
wind, radiation, and humidity.  These factors are even more relevant to demand.  The history of drought, over 
decades or centuries, is affected by the separate histories of both supply and of demand.  The presence of 
numerous buffers, and of different temporal lags (e.g., relating to snowpack formation and melt timing, or of 
groundwater recharge), and of spatial separation (snow, or its lack, in Colorado affects water supplies in Los 

Fig. 2 Qualitative depiction of typical seasonal cycles of 
precipitation in Texas (top) and in Arizona (bottom).  Based 
on period of record.  Graphs cover January to December, and 
are to different scales.
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Angeles months or years later), 
complicates matters further.  
These issues have themselves 
been discussed elsewhere, and are 
beyond the immediate scope of 
these remarks. 

Metrics for drought that are 
capable of taking all of these real-
world effects into account (in 
order to be practical and useful) 
are the subject of longstanding 
discussion.  Their formulation is 
clearly not straightforward.  
3.  The Drought Monitor 

The U.S. Drought Monitor 
(Svoboda et al., 2002) is both a 
process and a product.  The 
process is an extended weekly 
electronic national conversation 
from a pool of up to nearly 300 
participants (typically 30-50 
voices in a given week).  The 
product is the map itself and 
associated descriptive material.  
The Drought Monitor developed 
in rather a grass-roots fashion, 
starting as an experimental 
product in 1999 arising from a 
drought around the nation’s 
capital.  An important 
characteristic is that it is owned 
by everybody and by nobody, 
with contributions from a variety 
of federal and state agencies and 
individuals.  The impact-based 
definition of drought is adopted to 
insure that indications from 
physical measurement are 
corroborated by indicators of 
affected sectors.  The Drought 
Monitor is thus a combined social 
and physical endeavor with real-
world grounding.  This is especially necessary where the Drought Monitor forms the basis for resource 
allocation decisions, an increasingly common situation.  In many cases the Drought Monitor constitutes a late 
arrival, especially in western U.S. settings where the complexities of drought are greater, and have been 
understood and addressed by a variety of interagency approaches over many decades.  An outstanding issue is 
how to represent drought in heavily managed systems. 

The email “conversation” referred to above has proven to be a rich, vibrant, interesting, varied, and 
generally quite intelligent discussion.  This has provoked a variety of real-world, practical, and intellectual 
challenges to addressing the many dimensions of drought. 

Fig. 3  US Drought Monitor near the end of 
each Water Year from 1999 to 2011.  
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Summarized in Figure 3 is an annual snapshot of the Drought 
Monitor near the end of each Water Year.  This shows that over 
this interval drought has been present somewhere in the United 
States for the entire time it has been produced (also true of months 
not shown). 

4.  The Standardized Precipitation Index 

Approximately 30-40 products and tools are first examined by 
the weekly Drought Author (the person charged each week with 
assembling the map; there are about 10 such individuals) to 
provide an initial map.  This is then critiqued and modified 
through community input.  Even though drought monitoring 
requires information beyond merely precipitation, this does 
remain the most important primary element.  One of the tools 
consulted is the Standardized Precipitation Index (SPI), which 
uses a long history (in this case about 115 years) to create a suite 
of five main products, shown in Figure 4.  Depending on the basic 
underlying climate and its typical seasonal cycle, all of these 
maps have relevance in the assessment of drought status.   The 
SPI itself represents a mapping of the percentile, obtained either 
from the empirical distribution (usually) or a fitted distribution 
(sometimes) of accumulated precipitation over a particular 
duration, typically 1 month to 6 years, onto a normal distribution, 
and expressed in terms of standard deviations.  The percentile 
map and the SPI map are thus the two most spatially comparable 
products in the SPI suite.  The SPI (see McKee et al., 1993, 1995) 
was created to explicitly reflect the fact that a region can be 
simultaneously in excess and in deficit, at different time scales 
(see Figure 5 for examples).  This feature of the SPI is under-
appreciated and not utilized to full potential.  In part this may a 
consequence of the lack of a good method for showing the 
temporal history that has led to the present situation, in the form 
of a spatial representation of such histories. 

5.  Concluding comments 

In addition to the complexities of representing spatial 
variations in the recent history of “meaningful” precipitation (not 
all precipitation is equal in value), other spatial issues are present 
that are pertinent to drought.  Jerome Namias (citation 
unavailable) once noted that droughts that are long in duration 
tend to be large in spatial extent.  Contrast two significant recent 
droughts:  The southeast drought of 2007 developed rapidly in 
about February and lasted about 10 months during the worst 
conditions, and especially affected a relatively small area that just 

Fig. 4  The five precipitation quantities most requested by water 
managers and hydrologists in understanding the status of 
drought (McKee et al., 1993, 1995).  These are routinely 
computed in generating SPI values. One-month quantities for 
August 2011 are shown, (a) accumulation, (b) accumulation 
departure, (c) accumulation percentage of average, (d) 
accumulation percentile, and (e) a standardized measure (the 
SPI). 

(a) 

(b) 

(c) 

(d) 

(e) 
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happened to be the source of the Atlanta GA water supply.  A second drought that also affected water supplies 
to millions of people in the Southwest developed in the late 1990s, peaked in 2002, but continued to have 
effects for at least several more years, and has still not entirely abated and may yet re-intensify.  This drought 
affected entire state-sized regions in the headwaters of the Colorado River, which has several years of 
buffering capacity in its two large reservoirs, Powell and Mead.  This drought extended over about a decade 
and has affected a large area.  Multi-year droughts require a multi-year cause, typically suspected to be ocean 
conditions elsewhere on the globe and the subject of many investigations. 

SPI History 0 to 72 months (expressed as percentiles)

Northern Idaho           Northeast North Dakota          Central New York

Coastal Oregon                Central Nebraska          North Central Georgia

South Coast California          Northwest Texas             Southern Florida

0   12   24  36   48  60  72 mo 0    12  24  36   48   60  72        0   12   24  36   48   60  72  
Fig. 5  Examples of the precipitation percentile (scale 0-100) at different time scales for different parts of the 

U.S. for the period ending at the end of August 2011.  Time scales range from past 1 month to past 72 
months. 

Some of the outstanding issues of drought are as follows:  
• We have made a lot of progress in better monitoring, a larger array of tools and products, and 

improved physical understanding of some drought causes.  Social science aspects of drought need 
more attention and need to be folded into drought activities in the U.S. 

• There is still a strong need for granularity and resolution in both the monitoring and prediction of 
drought.  This is especially true in mountain environments, where much runoff is generated in 
relatively small source regions, and climatic heterogeneity is extreme (sharp spatial gradients in 
temporal histories). 

• We need to give continued and increased attention to understanding, measuring, and depicting the 
state of the entire water budget, to cover both the supply and demand sides of drought. 
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• In some places, major fractions of the annual water supply are delivered in a few big events, such as 
large winter storms or tropical storms.  Their occurrence or non-occurrence may greatly affect 
seasonal precipitation totals and status.  The role of significant weather events (an example is 
atmospheric rivers) in affecting seasonal and multi-year drought status, and elucidation of the 
climate-weather connection, are greatly in need of further sustained attention. 

• We must continue to press for better understanding of multi-year and decadal scale variability.  A 
diversity of methods is needed, including paleoclimate inferences. 

• There are many different styles (“flavors,” Bumbaco and Mote, 2010) of drought.  Most of these tie to 
the role of differential seasonal contributions to longer-term droughts.  There are many nuances that 
lead to different impacts, and this needs to be better and more widely understood.   

• There is really no one-size-fits-all approach to drought. 
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1. Introduction 

Understanding the characteristics of 
the historical droughts will be beneficial to 
reveal the possible impacts of the future 
climate changes on such climatic extreme 
phenomenon (Edwards and McKee 1997). 
However, drought is difficult to be 
quantified due to its dependence on 
regional differences, needs, and 
disciplinary perspectives (McKee et al. 
1993). For the past decades, various 
drought indices have been developed to 
assimilate thousands of bits of data on 
rainfall, snowpack, streamflow, and other 
water supply indicators into a 
comprehensible big picture (Heim 2002; 
Wells et al. 2004; Jain et al. 2010). 
Therefore, the overarching goal of this 
study is to reconstruct the past drought 
situation and assess the future drought 
risks for a drought-prone Blue River Basin, Oklahoma, under a likely changing climate from three aspects, i.e., 
intensity, duration and extent. This basin is located in Southeastern Oklahoma with a drainage area of 676 
square miles (Fig. 1). It is a relatively small basin but has experienced several severe droughts in the past half 
century. The first objective of this study is to construct the past drought conditions and predict future drought 
scenarios for Blue River Basin using three types of drought indices, the Standardized Precipitation Index (SPI) 
(McKee et al. 1993), Palmer Drought Severity Index (PDSI) (Palmer 1965) and Standardized Runoff Index 
(SRI) (Vasiliades et al. 2010). These types are meteorological drought index, hydro-meteorological index and 
hydrological index, respectively. The second objective is to examine the relationships among the three indices. 
The third objective is to find the suitable drought index for Blue River Basin under a changing climate. 

2. Data, model and drought indices 

2.1 Climate Data 

Climate data of the study region were first extracted and later modeled for SPI, PDSI and SRI calculation. 
For this study, the observational data used were the gridded National Climatic Data Center (NCDC) 
Cooperative Observer station data, described by Maurer et al. (2002). The data cover the time period from 
1950 to 1999 in a monthly time step. The observation data have climate variables of surface temperature (°C) 

Fig. 1  The study area: Blue River Basin in Oklahoma. 
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and monthly precipitation (mm/day). The data domain covers the continental U.S. and portions of southern 
Canada and northern Mexico at a 1/8° (~12 km) resolution. Projection data are archived from the World 
Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase3 (CMIP3) multi-
model dataset. CMIP3 has temperature and precipitation projections under three CO2 emission scenarios (A2, 
A1B and B1) for the period of 2010 to 2099, and this data share the same resolution and coverage with the 
NCDC observation data. The two scenarios of the 21st century for future greenhouse gas emissions used in 
this study were A2 and A1B as defined in the IPCC Special Report on Emissions Scenarios (IPCC 2007). 
According to IPCC (2007), scenario A2 is a higher emission path and describes a higher population world 
where technological change and economic growth are more fragmented and slower. Scenario A1B is a middle 
emission path known as business-as-usual and describes a balanced world where people do not rely too 
heavily on any one particular energy source. 

2.2 Thornthwaite Monthly Water Balance Model 

The hydrological model used to simulate the hydrologic process and generate runoff output for SRI 
calculation is the Thornthwaite Monthly Water Balance Model driven by a graphical user interface. It is 
named after C.W. Thornthwaite who used water budget in climate classification (Thornthwaite 1948). An 
updated description is given by McCabe and Markstrom (2007). Input for this model is monthly temperature 
and precipitation. Outputs from the model include potential evapotranspiration (PET), soil moisture, actual 
evapotranspiration (AET), snow storage, surplus, and runoff total. 

3. Results and Discussions 

3.1 Runoff Calibration 

The Thornthwaite Monthly Water Balance 
Model was calibrated to generate future runoff 
under the A1B scenario. Manual calibration of 
the monthly water resources model was done to 
get the best agreement between observed and 
modeled runoff for the period of June 1936 
through August 2006. The parameters used 
modeled the calibration period well with the 
Nash-Sutcliffe coefficient of efficiency being 
0.78 and a root mean square error of 12.9. The 
modeled runoff was used to simulate past SRI 
and project future SRI. 

3.2 Past and Future Drought 

Blue River Basin is located within the state 
of Oklahoma, which survived the 1930s Dust 
Bowl and 1950s severe drought. Historical 
records show that Oklahoma experienced four 
major droughts in the 20th century: 1909-18, 
1930-40, 1952-58, and 1962-72. According to 
Oklahoma Climatological Survey (OCS), “the 
drought of the 1930s is associated with the Dust 
Bowl of the Great Plains, when socioeconomic 
conditions, agricultural practices and drought 
forced the largest emigration of Oklahomans in 
state history.” “Statistically or meteorologically, 
for much of the ABRFC/Oklahoma, the droughts of the 1950s were more severe (record low SPI and PDSI) 
than the 1930s. However, the human toll (Socioeconomic Impact) was less severe.” “The lessons of the 1930s 
helped the next generation cope with the worse droughts of the 1950s: preparedness and mitigation embodied 
in crop selection, conservation strategies, and sound business decisions.” (Arndt 2002) 

Fig 2. (a) Historical time series variation of SPI, PDSI and 
SRI (b) Scatter plot of SPI vs. SRI and the linear 
regression line.

(a) 

(b) 
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As can be seen from Figure 2a top panel, SPI shows massive droughts from the beginning of 1950s to the 
end of the 1960s. 1950s droughts are interrupted by several wet spells which slightly relieved the drought 
severity. As shown on the figure, there was a long duration extreme drought between 1960 and 1965. This 
drought lasted almost 5 years without being interrupted by occasional wet spells. The drought was released 
slightly by some above average rains in 1965 and formed into another extreme drought by the end of 1960s. 
Other than the other mega drought near 1980, Blue River Basin experienced some normal dry spells and some 
wet spells after 1980. 

PDSI provides somewhat different descriptions on Blue River Basin drought history (Fig. 2a, middle 
panel). The 1950s and 1960s drought were captured roughly, but the onset and severity were slightly different. 
The 1970s drought on SPI was totally missed on PDSI panel, and Blue River Basin is mostly under wet 
conditions after 1980 except for one severe drought around 1981. SRI, in this case, is very similar to SPI in 
terms of severity and timing of droughts. Figure 2b shows that SPI and SRI are highly correlated with 
correlation coefficient (CC) of 0.81. SRI is found out to have two month lag time from SPI (CC reaches 
highest value), which means hydrological drought doesn’t happen until two months later after the 
meteorological drought took place. Although the wet spells look more significant on the SRI panel, SRI 
successfully captures all the major droughts except the one in mid 1980s. In general, droughts shown on SRI 
mostly have shorter duration than the 
same ones shown on SPI, and wet periods 
are longer than those on SPI panel. 

For drought projection using SPI, 
ensemble mean monthly precipitation 
should not be used because the averaging 
process diminishes the monthly variation 
of precipitation which could generate 
misleading outputs. Therefore, one of the 
16 GCMs --- GISS-ER is selected, 
because simulation from GISS-ER is 
proved to match the observation for the 
period of 1950-1999 with the most 
similarities from a statistical point of 
view from a previous study (Liu et al. 
2011). Hence, future SPI is calculated 
based on GISS-ER projection data with 
the most confidence. Projections of 
drought conditions in Blue River Basin 
display quite some differences among the 
three indices (Fig. 3a). SPI indicates one 
minor drought in the early 2020s, and the 
frequency and intensity of drought appear 
to increase substantially after 2050. PDSI 
and SRI also display much more droughts 
after 2050, although PDSI and SRI show 
more similarity in time series. PDSI and 
SRI time series has correlation coefficient 
of 0.78 (Fig. 3b) and they do not exhibit 
any time lag from one another (CC 
reaches highest value at 0 month lag 
time). More drought events are displayed 
on PDSI panel than on the SRI panel, and 
severe droughts on PDSI are indicated to be more severe (PDSI<-5) than those on SRI. Blue River Basin is 
constantly under wet conditions before 2050 for both PDSI and SRI, with decreasing trend of wetness from 

Fig. 3  (a) Future time series variation of SPI, PDSI and SRI 
(b) Scatter plot of SPI vs. SRI and the linear regression 
line. 

(a) 

(b) 
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2011 to 2050. It is not surprising to see that both PDSI and SRI demonstrate more severe and frequent 
drought after 2050, although the magnitude of droughts is not exactly the same. Based on Thorthwaite 
Monthly Water Balance Model projection, Blue River Basin is going to have increasing trend of ET and 
decreasing trend in total runoff under A1B scenario. Actual ET is going to increase by up to 8% on average 
and runoff is going to reach below -10% of change by the end of the 21st century. Apparently, more water is 
going out as ET and less water will be available for surface runoff, so there is less recharge back to the ground. 

Future droughts are getting more severe and frequent from SPI, PDSI and SRI perspectives. Table 1 
shows the areas affected by severe or extreme droughts based on the basin division. Historically, the affected 
areas are almost equally distributed among the upper, central and lower Blue River Basin. Both SPI and PDSI 
display an average around 3% of the areas affected by severe/extreme droughts from 1950 to 1999, note that 
the lower region is slightly less affected than the upper and central regions. In terms of projection, SPI shows 
an average of 25.6%, 22.9% and 20.6% of areas affected in the upper, central and lower Blue River Basin 
throughout the 21st century. Results from PDSI are displayed in two half centuries: the first half century sees 
almost no droughts while the second half century sees an average of 23.5%, 23.5%, 22.2% of areas affected 
by severe or extreme droughts. Overall speaking, both SPI and PDSI exhibit larger areas being under severe 
or extreme droughts in the future period. 

1950-1999 2010-2099 Blue 
River 
Basin SPI PDSI SPI PDSI 

(2010-2049) 
PDSI 

(2050-2099) PDSI (total) 

Upper 3.5% 3.5% 25.6% 0.5% 23.5% 13.3% 

Central 3.5% 2.8% 22.9% 0.5% 23.5% 13.6% 
Lower 3.2% 2.7% 20.6% 0.83% 22.2% 12.8% 

Table 1.  Percent of areas under severe/extreme droughts for upper, central and lower Blue River Basin. 
4. Conclusions 

This study analyzed the historical drought of the Blue River Basin in the past 50 years and projected the 
possible drought status of the future 90 years under the A1B scenario, a very likely future climate in Southern 
US based on previous studies. Three types of drought indices (SPI, PDSI and SRI) all capture the major 
droughts documented in history. In terms of timing and severity, SPI and SRI perform better and exhibit 
higher inner correlation. The results projected by SPI, PDSI and SRI under the business as usual A1B 
scenario suggest that more drought events might occur in the second half of the 21st century. This could be 
caused by the fact that the precipitation predicted by GISS-ER shows a descending trend, while the 
temperature is slowly but constantly increasing after 2010. Moreover, the ET projected by the Thornthwaite 
Monthly Water Balance Model also has a significant increasing trend under such a warming climate. In the 
projection period, PDSI and SRI have a similar performance because they both take into account the factors 
of soil moistures and ET. Therefore, the drought of future Blue River Basin is very likely going towards a 
more frequent and more intensive situation. 

In this study, SRI appears to be a better indicator for the study basin because: (1) SRI considers the 
changing climate factor which is playing a rather significant role in the future drought management; (2) 
Compared to PDSI which also considers temperature change, SRI provides drought information from a 
hydrological point of view, which makes more sense and is more applicable to water resources managers and 
local farming business; and (3) SRI is proved to function well in this research both for the past drought record 
reconstruction and for the future drought risk assessment under a changing climate. 

In summary, this study found that the three indices (i.e. SPI, PDSI and SRI) captured the recorded 
droughts for the past 50 years and also suggested very likely more frequent and more severe droughts in the 
future 90 years over the Blue River Basin. This study also found that SRI has better agreements with the other 
two indices, with high CC of 0.81 (0.78) and 2-month (no appreciable) lag time from SPI (PDSI) over 1950-
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2099 time period across the basin. Although this study recommended the PDSI and SRI are the more suitable 
indices to assess the future drought risks under an increasingly warming climate by taking into account of the 
ET and soil moisture in Blue River Basin, for further comprehensively analyzing the droughts, more drought 
indices from ecological and socioeconomic perspectives should be also investigated and inter-compared to 
provide a more complete picture of drought risks and its potential impacts on the dynamically coupled nature-
human systems. 
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1. Introduction 

Drought in the Upper Colorado River Basin (UCRB) can affect millions of people and many acres of 
farmland.  The majority of water supplies in the western United States start as mountain snowfall.  The 
snowfall in the UCRB eventually provides water for seven states.  Therefore, it is essential to monitor the 
UCRB for climate and precipitation variability. 

The U.S. Drought Monitor (USDM) has been the primary tool for tracking drought changes in the UCRB 
(and the rest of the country) since 2000.  Before 2010, only a few experts would occasionally contribute to the 
weekly monitor for areas in the UCRB—however this was rarely coordinated with other experts in the region.  
Local users have said they use the USDM to assess large scale conditions, but don’t find it useful on a local 
scale.  Based on user needs though, it seems that the USDM could be the most comprehensive tool at their 
disposal, but improvements are needed. 

In February 2010, an increased monitoring effort began as part of the National Integrated Drought 
Information System’s (NIDIS) Upper Colorado River Basin Pilot project.  This increased monitoring included 
the implementation of weekly summaries and webinars—both of which monitor all water variables in the 
UCRB and culminate in a “consensus” of recommended changes to the weekly USDM depiction based on 
input from local experts.  The goals of this increased monitoring effort (and the NIDIS-UCRB pilot) are 1) to 
determine critical thresholds for when a drought begins and ends, 2) to evaluate drought indices, and 3) to 
develop a drought “early warning” system.  With the accomplishment of these goals, it is the hope that local 
users’ needs will be better met via the USDM weekly depictions. 

This study focuses on three key drought indices (the standardized precipitation index, the Palmer drought 
severity index, and the surface water supply index) and compares them over time to the U.S. Drought Monitor 
drought categories.  Ideally, the comparison will show a close relationship between the drought indices and 
the USDM, and hopefully the analysis will also show an improvement in that relationship after the 
introduction of the increased monitoring in February 2010. 

2. Data and drought indicators 

Because of the relatively short timespan of post-increased-monitoring, this study will focus on drought 
and precipitation data in Colorado (due to the lack of drought conditions in the UCRB and the prevalence of 
severe drought in southeast and southern Colorado since February 2010).  For this study, 110 National 
Weather Service Cooperative Network Stations (COOP stations) are used to calculate the standardized 
precipitation index (SPI, McKee et al. [1993]) as one drought indicator.  These stations contain daily 
precipitation data from 1981 – 2011.  Missing daily data could be replaced with zeros if the three closest 
neighboring stations reported no precipitation for the day.  The data in this study are only included when less 
than 5% of the data for a given month are missing.  Weekly Palmer Drought Severity Index (PDSI) statistics 
were downloaded from the Climate Prediction Center (2011) for the Rio Grande climate division in southern 
Colorado as another drought indicator.  Finally monthly surface water supply index (SWSI) values were 
obtained from the Natural Resources Conservation Service (2011) for the Rio Grande watershed as a third 
drought indicator. 
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Weekly USDM archive 
data were downloaded for 
Colorado statistics (2011).  The 
USDM archive data simply 
provides the percent of the 
state (or county) that was 
currently in each drought 
category for every week since 
1/1/2000 through 7/31/2011.  
Drought categories are drawn 
based partly on objective, 
quantitative analysis of many 
different drought indicators and 
water variables.  Each 
category’s threshold is 
determined by a specific 
percentile (e.g. a specific 
location could be in the D0 
category [abnormally dry] if 
one of the drought indicators is at the 30th percentile—meaning a 3 out of 10 year occurrence).  D4 droughts 
are the most rare and occur the least often in history (with indicators at the 0 – 2nd percentile, or a 1 in 50 year 
event).  Other important factors for the USDM drought category determinations are more subjective and are 
based on user input and local impacts.  This can make it more difficult to quantitatively assess how increased 
monitoring has improved the USDM depictions. 

The SPI (first introduced in 1993 by McKee et al.) transforms precipitation data from its typical gamma 
distribution to a Gaussian distribution.  This allows for easier analysis and comparison to the USDM as it puts 
precipitation anomalies into percentiles.  For this study, the 3-month SPI is calculated for short-term 
anomalies and the 12-month SPI is calculated for long-term anomalies at all 110 COOP stations in Colorado 
at a monthly timescale. 

The PDSI was developed by Wayne Palmer in the 1960s and uses temperature and precipitation data in a 
formula to determine dryness.  It is best used to depict long-term moisture deficiency or excess for all the 
major climate divisions in the U.S.   An index value near 0 indicates near normal conditions, and the more 
negative the index, the more severe the drought in that location is. 

The SWSI, developed in the 1980s, is an algorithm that combines water supply (from reservoirs) and 
streamflow forecasts into one index for a given watershed.  Negative values of the SWSI indicate that the 
watershed is short in water supplies. 

3. Comparing the U.S. drought monitor with drought indicators 

In Figure 1, it can be seen that there is good correlation between the USDM drought categories and the 
SPI timeseries.  Overall, the drought categories are better correlated with the long-term SPI than the short-
term SPI.  Also of note, there is almost always D0 somewhere in CO throughout time, and in general, there is 
a higher percentage of D0 in CO than the percentage of stations meeting the D0 threshold in terms of SPI.  
This is also true many times for D1 and D2.  This is not the case for the more severe D-categories—there is 
almost always a higher percentage of stations with SPIs meeting the D4 threshold than there is D4 in the state. 

After February 2010, increased monitoring began.  When comparing before and after, there is little 
change in the D0 – D2 panels.  However, the D3 – D4 panels tend to show spikes in the SPI timeseries 
without corresponding spikes in the D-category timeseries before the increased monitoring period.  After the 
increased monitoring, spikes in the SPIs are better correlated with increases in the D3 – D4 percentages. 

In the USDM timeseries in Figure 2 (top), there are two instances that D4 has been introduced in the Rio 
Grande basin—first during the drought of 2002 and also during the summer of 2011.  The weekly PDSI 

Fig. 1  Percent of Colorado in each drought category (colors) compared 
to the percent of COOP stations with an SPI percentile matching the 
associated drought category threshold.
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timeseries (Fig. 2, bottom) shows both of these 
times were indeed at D4 intensity.  The weekly 
PDSI also shows that three other periods would 
have qualified for D4 intensity—all of these 
times were before increased monitoring began.  
For example, in 2006 the PDSI indicated that D4 
could be introduced into the basin, but the 
USDM timeseries only shows a D2 intensity. 

There is not as strong of a relationship when 
comparing the end-of-month USDM percentages 
in the Rio Grande basin with the monthly SWSI 
index for the basin (not shown).  In general, 
when the USDM timeseries indicates D2 or 
greater drought through much of the basin, the 
SWSI tends to be negative.  However, there are 
periods when the SWSI is negative but this is not 
captured in the USDM timeseries or the other 
drought indicators.  Therefore, the SWSI does 
not appear to be as good of an indicator for the 
Rio Grande basin. 

4. Conclusions 

The SPI has been and continues to be a good 
indicator for drought conditions throughout Colorado.  At this time, it appears to be the best drought index to 
use for the USDM, as percentiles for the SPIs match up well with thresholds for the drought categories.  It is 
also a better matrix for the USDM as it is higher resolution than the PDSI—while the PDSI gives an index for 
an entire basin (which can be useful for larger scale assessment) the SPIs are station specific and can therefore 
give a more accurate picture of conditions within a basin. 

Both the SPI and the PDSI show that the D4 category (the 0 – 2nd percentile) occurs more often in the data 
than in the USDM depictions.  The SPI shows that the D0 category occurs less often in the data than in the 
USDM depictions.  Both of these results could be based on a variety of different factors.  First, both indices 
rely on precipitation and don’t take into account soil moisture, streamflow, vegetation or evapotranspiration.  
These other water variables also weigh heavily on the USDM depiction.  Also, impacts and local user input 
are two qualitative variables that can have an effect on the USDM. 

More time will be needed to better assess how the increased monitoring has modified the depiction of 
drought in the USDM.  A longer timeseries (and more data points) could reveal more useful information.  
Also, an objective way to compare impacts over time with the USDM would also be beneficial.  Use of crop 
data or river calls could probably shed more light on the relationship between impacts and the USDM, and 
whether or not that relationship has changed since the introduction of increased monitoring.  Even so, it is 
evident with just this study that increased monitoring has helped improve local depictions in the USDM. 
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basin (bottom) color-coded for its associated drought 
category threshold. 
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1.   Introduction 

Drought is difficult to monitor, and various indexes have been proposed to detect the drought as well as 
flood (e.g., Dracup et al. 1980, Wilhite and Glantz 1985, Keyantash and Dracup 2002, Redmond 2002, 
Svoboda et al. 2002). The index previously widely used in the United States is the Palmer Drought Severity 
Index (PDSI) (e.g., Palmer 1965, Karl and Knight 1985, Heddinghaus and Sabol 1991), which is based on the 
anomalies of the supply and demand components in the water balance equation. In addition to precipitation, 
the PDSI also needs to use temperature and other local hydrological quantities. It has been found that the 
PDSI has many significant limitations (e.g., Alley 1984, Karl and Knight 1985, Smith et al. 1993, Willeke et 
al. 1994, Kogan 1995, McKee et al. 1995, Guttman 1998) and is not satisfied in the operational monitoring 
(e.g., Hayes et al. 1999). Mo and Chelliah (2006) made some modifications to improve the PDSI. 

The index currently widely used is the Standardized Precipitation Index (SPI) (McKee et al. 1993; McKee 
et al. 1995), which measures meteorological flood and drought and uses only precipitation. It compares the 
precipitation of a year with historical records and uses probabilities to indicate if the precipitation of the year 
is greater or less than the median precipitation of the historical records. Using the SPI, Hayes et al. (1999) 
examined the 1996 drought in the southern plains and southwestern United States. The SPI can determine 
whether a specific year of an area is a flood or drought year when compared with historical records, but 
cannot identify if this is a flood or drought area in space. 

The major limitation of the SPI is that it can only be used to determine the flood and drought at scales of a 
month and longer. The SPI computed by the National Climate Data Center has scales ranging from one month 
to 24 months. Within the period of a scale, it treats the precipitation days equally and uses the simple average 
of the precipitation to indicate the general flood and drought situation of the period. The SPI does not take 
into account the precipitation before the period, hence cannot be used to measure flood and drought at shorter 
timescales (e.g., less than a week). When this index is used to determine the flood and drought extent of the 
recent three days, for example, if there is no precipitation in the three days, then these three days may be 
regarded as a drought period when compared with historical records. However, if there was a very strong 
precipitation just before this period, then the recent three days may still be in a flood state.  

Why should flood and drought be measured over the period of a scale, and the days of the period be 
treated equally? Although the general flood and drought situations of long periods (e.g., several months or 
years) are useful for long-term planning, decision-makers of agriculture and other water-related departments 
also hope to know the present day flood and drought situation of a place or area, as well as the flood and 
drought tendency in the coming days (based on the prediction of precipitation). An index is thus required to 
measure the daily flood and drought extent. With the daily index, the start, duration, breaks, and strength of 
flood and drought can be determined. The interannual variabilities and long-term changes of these timings 
and the strength can further be evaluated. In reality, the flood and drought extent is a hydro-meteorological 
state of a land-atmosphere system and thus should possess a value at every moment. Once the daily values of 
the flood and drought extent are determined, the means of a month and longer periods can be calculated. 

The purpose of this note is to provide physical considerations for developing such an index to measure the 
daily flood and drought extent from precipitation with the aim to determine the timings and strength of flood 
and drought. The rationale is that the flood and drought extent of a day depends on both the precipitation of 
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the day and the precipitation of the previous days, but the influences from the precipitation of the previous 
days are decayed, which is due to the “demands” of the water balance, including the surface runoff, 
evapotranspiration, groundwater flow, and percolation. 

2.   Physical considerations of the approach 

a.   Theoretical framework 

The variation process of flood and drought extent can be understood as in the way that the flood extent of 
a day is achieved through superposing the present day precipitation on the basis of the flood extent of the 
previous day. If there is large precipitation in the present day, flood extent may increase. If the large 
precipitation is persistent and lasts for several days, the flood extent will keep increasing, though gradually, 
and reach large values. Then in the dry days after the persistent precipitation, the flood extent will go down 
gradually to smaller values. This is due to the inherent decay mechanism of the soil-land surface system, 
which is caused by the demands of the water balance. Among the demands, runoff can be important during or 
just after the precipitation days, but in the later dry days evapotranspiration can be important. 

Based on the above understanding, a simple physical model can be used to describe the variation of the 
flood extent. It uses only precipitation, but the general effect of the demands of water balance is considered. 
The model can be expressed as  

)t(P)t(bf
dt

)t(df
+−= ,                                                                             (1) 

where t  is the time with the present moment being 0, and f (t) the flood extent at time t  in a location with its 
change being forced by precipitation P(t). The total effect of the decay of flood extent from the demands of 
runoff, evapotranspiration, groundwater flow, and percolation is represented with – b f (t), in which b > 0 
measures the strength of the decay.  

Integrating equation (1) with t  from -∞  to 0 yields 

[ ] ∫ ∞−∞− =
00 dt)t(Pe)t(fe btbt ,                                                                        (2) 

or 

∫ ∞−
=

0
0 dt)t(Pe)(f bt ,                                                                                 (3) 

which indicates that the flood extent at the present moment depends on the precipitation of the moment and 
all the earlier time, but the influence of the earlier time precipitation is reduced.  

To use daily precipitation data, denote tnt Δ−= , where n is the number of the day prior to the present 
day, and tΔ  = 1 day. Then (3) can be written as 

∑
∞

=

Δ=
0

0
n

n
n Patf ,                                                                                         (4) 

where 1<= Δ− tbea  represents the strength of the contribution of the previous day precipitation P1 to the 
present day flood extent 0f .  

For practical use, (4) can be truncated as 

∑
=

Δ=
N

n
n

n Patf
0

0 ,                                                                                          (5) 

where N  is the number of the earlier days used in the calculation, and can be determined from the parameter 
a  and the c , a value much smaller than 1 (e.g., 1%), indicating the precision of the truncation (the 
contribution fraction of the last day precipitation). With caN = , N can be determined as alnclnN = . 

The index being proposed for measuring the daily flood and drought extent can be in two forms. One is 
the cumulation of reduced precipitation (CRP), being defined from (5) as  
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∑
=

≡
N

n
n

n PaCRP
0

,                                                                                         (6) 

which means that the flood extent of a day is contributed by the precipitation of the day on the basis of the 
reduced precipitation of the earlier days. The contribution strength of the earlier day precipitation relies on 
the parameter a . The CRP measures the absolute flood and drought extent, and can be used to study the 
spatial variability of the flood and drought extent. 

The other form of the index is the weighted average of precipitation (WAP), which is defined as  

∑∑
==

≡
N

n

n
N

n
n

n aPaWAP
00

.                                                                             (7) 

The SPI and the present day precipitation can be regarded as the two extreme cases of the general form of the 
WAP (in which a  is between 0 and 1, and N  can vary). When the contribution parameter a  tends to be 
zero, the present day flood extent WAP will become the present day precipitation 0P . When a  tends to be 1, 
WAP will be equivalent to the simple average of the precipitation of the present day and some earlier days as 
used in the SPI. The different length of the period N +1 (e.g., one or several months), over which the 
average is made, represents the different timescales of the SPI.  

The WAP in (7) can further be written as  

∑
=

=
N

n
nn PwWAP

0

,                                                                                          (8) 

where the weight )a(a)a(w Nn
n

111 +−−=  can be simplified as  
n

n a)a(w −= 1 ,                                                                                            (9) 

since 11 <<=+ acaN . The WAP measures the relative flood and drought extent of a specific location or area, 
and can be used to study the temporal variability of the flood and drought extent. For seasonal variations of a 
place, the start, duration, and strength of flood and drought can be determined. The interannual variabilities 
and long-term changes of the timings and strength can then be calculated. 

b.   Examples of using the WAP index 

Since the major issue of flood and drought extent is the evaluation of its temporal variability at a place 
(e.g., the start, duration, and strength of flood and drought and their interannual variations), examples of using 
the WAP index are provided 
here. Figure 1 presents an ideal 
time series of daily 
precipitation P, and shows how 
the calculated daily flood index 
WAP responds under different 
values of contribution 
parameter a. There are two 
episodes of large precipitation 
(10mm/day) in the 65-day 
period, and the remaining days 
in the period and the earlier 
days before day 1 all have 
small precipitation (1mm/day). 
In the first a few days after day 
6, although precipitation has 
become large, the index WAP 
increases gradually from its 
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Fig. 1  An ideal time series of daily precipitation P  and the calculated 
index WAP with the contribution parameter a  being 0.9, 0.8, and 0.7. 
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small value of 1mm/day because of the small precipitation in the earlier days. The increase of WAP is 
relatively slow with a being 0.9. For smaller a, the increase of WAP is more rapid, so its curve is closer to 
that of P. As mentioned above, when a tends to be zero, the curve of WAP will tend to be the same as that of 
precipitation. With the persistent large precipitation, WAP increases steadily and becomes much larger at day 
20. Similarly, WAP decreases gradually in the first a few days after day 21, when precipitation has become 
small. After a persistent small precipitation till day 35, WAP becomes very small. The decrease of WAP is 
also more rapid for smaller a. So, with the smoothing effect of the index, flood (large WAP) can occur after 
persistent strong precipitation, and drought (small WAP) may appear after persistent small or no precipitation.  

Figure 2 shows an example 
of analyzing the seasonal and 
interannual variations of the flood 
and drought extent by use of the 
index WAP. The area studied is 
the upper Mississippi River basin 
that covers part of Minnesota, 
Wisconsin, Iowa, Illinois, and 
Missouri (Lu et al. 2009). The 
data, distributed by the National 
Climatic Data Center 
(www.ncdc.com), include the 
daily precipitation of over 500 
observation stations in the basin 
from 1979 through 2004. A 
simple average of the daily 
precipitation is made over the 
stations of the basin. With taking 
N as 365, daily values of the 
index WAP from 1980 to 2004 
are obtained. The seasonal cycles 
of the index in 1988 and 1993, 
when there were severe drought and flood respectively in the basin (Glantz 1988; Changnon 1996), and the 
averaged seasonal cycle of the 25 years are illustrated in Figure 2 with the parameter a being 0.9 and 0.8, 
respectively. It shows clearly the contrast of the flood and drought extent between the warm seasons of the 
two years. The different values of the parameter do not influence much the detections of the flood and drought. 
The values of the index in most of the days in the warm season of 1993 (1988) are greater (less) than the 
climatic values. The advantage of this index is that, compared with the SPI, the starting date and the duration 
of the flood and drought as well as the breaks in the duration can be determined with certain criteria. The 
comparison of the seasonal cycles of the two years with the climatic seasonal cycle indicates that, roughly, the 
flood of 1993 and the drought of 1988 both start from the first half of April. The flood of 1993 lasts until the 
end of September, and the drought of 1988 maintains for longer time. The breaks of the flood and drought can 
also be captured. 

c.   Contribution and weight parameters 

The spatial variability of flood and drought extent can be examined with the index CRP, which measures 
the absolute flood and drought extent, and its value is dependent on the choice of the contribution parameter a. 
For meteorological flood and drought, which are caused by precipitation and consider the general 
characteristics of soil and land surface (i.e., the general decay effect of the runoff, evapotranspiration, and 
percolation), an identical parameter can be used for different locations. Different values of a (e.g., 0.9, 0.8, or 
0.7) can be used respectively to evaluate the flood and drought extent, and this is somewhat like the different 
scales used in the SPI. If the specific characteristics of soil and land surface of each place need to be 
considered, then different values of a can be used for different places. The a can be chosen empirically since, 
after all, the flood and drought extent is what needs to be quantified, and there is no existing data of daily 
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Fig. 2  Seasonal cycles of the daily index WAP in 1988, 1993, and the 
year averaged over 1980-2004 calculated from the observed daily 
precipitation averaged over the upper Mississippi River basin with the 
contribution parameter a being 0.9 and 0.8. 
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flood and drought extent to fit the parameter. It can be chosen by determining, based on the knowledge of the 
memory decay strength of the local soil-land surface system, how long it needs to take to make the influence 
of precipitation reduced to half. For example, in the places where the time of reduced-to-half is a week, the a 
can be taken as 0.9. With this value for the parameter, the influence of precipitation will be reduced to a 
quarter after 2 weeks and 1% after a month and half. This is in general consistent with the statement that the 
anomaly of soil moisture caused by a heavy rain or a dry period may take weeks to months to dissipate 
(Mahanama and Koster 2003).  

For a specific location or area, the temporal variability of the flood and drought can be studied by using 
the index WAP. Compared with CRP, the relative flood and drought index WAP is less affected by the 
parameter a. When a  increases, na  increases for the earlier days but (1 - a) decreases, hence the weight wn 
does not change much. Moreover, based on the change rate of wn with a  derived from (9) 

nn an
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⎟
⎠
⎞

⎜
⎝
⎛ −
−

= 11
,                                                                              (10) 

the change rates are negative in the recent days when n < a/(1 – a) (e.g., n < 9 for a = 0.9) but are positive in 
the earlier days when n > a/(1 – a) (e.g., n> 9 for a = 0.9). Thus, overall, the WAP does not change much 
with a. This property has been demonstrated in Figure 2. The difference of the curves of WAP with different 
a (0.8 and 0.9) is that the day-to-day variation of WAP with l arger a is smoother than that with smaller a. 
Nevertheless, the seasonal cycles of WAP are very close and can give the same results in detecting the flood 
and drought, including their start, duration, breaks, and strength. 

The a of being 0.9 is therefore suggested for the general use of the index WAP. Taking the truncation 
precision c as 1%,  N is calculated to be 44. The index thus becomes  
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d. Determining the start, duration, and strength 

Zeng and Lu (2004) designed a method to determine objectively the monsoon onset and retreat dates from 
seasonal cycles of precipitable water with certain criteria. A similar approach can be used to determine the 
start and end dates (and thus the duration and strength) of the flood and drought from seasonal cycles of WAP. 
For a given location or area, the daily precipitation data of the 26 years, for example (as in Figure 2), are first 
converted into daily WAP values that include 25 years. The maximum and minimum of the WAP of each 
year, and thus their averages over the 25 years, are then calculated. The difference ranging from the averaged 
minimum to the averaged maximum can be divided into several grades, representing a classification from the 
severest drought to the severest flood. The start and end dates of the flood and drought for a specific severity 
grade can be determined with proper criteria, e.g., when the daily WAP exceeds (is lower than) the grade for 3 
consecutive days for the start (end). The strength of the flood or drought averaged over the determined flood 
or drought duration can be calculated. With the start, duration, and strength of flood and drought determined 
for each year, their interannual variabilities and long-term changes can be studied. By using this methodology, 
which has been partly applied in Figure 2, evaluations for different regions of the globe will be presented 
separately. 

3.   Summary and discussions 

The SPI is commonly used for detecting flood and drought. When it is calculated, a timescale longer than 
a month needs to be selected first. The days in the period of the scale are treated equally with precipitation 
simply averaged over the period, while the precipitation in the days before the period is not considered. 
Because of these, the SPI can determine only the general flood and drought situation of a long period (e.g., 
several months or years) but cannot be used for short scales (e.g., a week or less). However, the operational 
monitoring and decision-making do require an index to measure the daily flood and drought extent. With a 
daily index, the start, duration, and strength of the flood and drought of a year can be determined, and their 
interannual variabilities and long-term changes as well as the associated mechanisms can be studied. As an 
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objective state of the land-atmosphere system, the flood and drought extent should have an instantaneous 
value and not just have an overall condition of a long period.  

Physical considerations of developing such an index for measuring daily flood and drought extent is 
provided in this note with a simple physical model. It uses only precipitation as the SPI does, but it also 
considers the demands of the water balance as the PDSI does. The principle of the physical model is that the 
flood extent is forced by precipitation, but dissipated by the demands of the water balance. Among the 
demands, runoff, groundwater flow, and percolation can be important during or just after a precipitation, 
while evapotranspiration can be important in the later dry time. What differs from the PDSI is that in this 
study, the overall dissipation or decay effect of these demands is represented with a parameterization of the 
flood extent. To be simple, but still fairly reasonable, the parameterization is currently taken as a linear form. 
The defined index, based on the solution of the physical model, has two forms, and both are easy to calculate.  

The cumulation of reduced precipitation (CRP) can be used to analyze the spatial variability of flood and 
drought extent. The value of CRP can be affected by parameter a, the contribution strength of the earlier day 
precipitation. For meteorological flood and drought, which stress precipitation and the general effect of the 
demands, the parameter can be identical for different locations. If local hydrological and geographic 
conditions need to be considered for each specific location, the parameter can be given empirically based on 
the local characteristics, since the daily flood and drought extent is what needs to be quantified.   

The advantage of the weighted average of precipitation (WAP) is that, as shown both analytically and 
from the observation, its value is less affected by the parameter a. The WAP measures the relative flood and 
drought extent as the SPI does, and can be used to evaluate the temporal (e.g., seasonal and interannual) 
variations of the flood and drought extent of a specific location or area, which is more important than the 
spatial comparison of the extent. The SPI makes simple average of precipitation, so a timescale is required. 
The WAP makes weighted average of precipitation with the weight decreasing with the number of the days 
past, hence no timescale is needed. Figure 2 shows that the results of the start, duration, and strength of flood 
and drought and their year-to-year variations calculated with two different values of a are very close. The a of 
being 0.9 is finally suggested for the calculation of the WAP. 

Modifications could be made in future studies to the current forms of the index to better reflect the flood 
and drought situations in places with different hydro-climate and geographical conditions. A relatively 
complicated parameterization D(f) may be developed, with knowledge of the local characteristics of a specific 
place, to better represent the dissipation effect of the demands. The physical model then becomes 

P)f(Ddtdf += , and this equation can be solved numerically. Modifications may also be made to the 
expression of the WAP with designing a new weight W(n), and the index is then expressed as 

∑
=
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The precipitation in cold season of some areas may be in form of snow, partially or totally, and later the 
snowmelt can contribute with rainfall to enhance the flood extent. It is better to replace the precipitation in the 
index with the combination of rainfall and snowmelt. This change may have some influence to the values of 
the index in snow and snowmelt seasons, but has little influence during the warm season. The physical model 
of this study can also be applied to the scale less than a day to study the diurnal variation of the flood extent, 
which may be large when there are thunderstorms. 

The purpose of this note is to provide the physical basis of the daily flood and drought index and the 
general methodology of using the index to determine the start, duration, and strength of flood and drought 
from an example as well as their interannual variabilities and long-term changes. More calculations and 
detailed analyses will be presented in the follow-on studies for different regions of the globe. 
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1.   Introduction 

Is climate going crazy under global warming? Are climate extremes more frequent in the warmed climate? 
Climate change and extremes have become one focus of climate research (e.g., Karl and Knight 1997; Meehl 
et al. 2000; Easterling et al. 2000a; Dairaku et al. 2004; Allan and Soden 2008), and several international 
conferences have recently been organized to stress these hot topics. The workshop held in 2007 in Hawaii 
reviewed the understanding and prediction of extreme events and of changes in their frequency and intensity 
(Garrett and Müller 2008). The workshop on “metrics and methodologies of estimation of extreme climate 
events” held in 2010 in France sponsored by the World Climate Research Programme (WCRP) and the 
United Nations Educational, Scientific and Cultural Organization (UNESCO) pointed out that good statistical 
methods are essential for exploring, defining, and estimating weather and climate extremes (Zolina et al. 
2010). Climate extremes include heavy precipitation, floods, heat waves, droughts, storm surges, and 
hurricanes, among many others. The Climate Extremes Index (CEI) proposed by Karl et al. (1996) has been 
used to indicate the overall extreme situations of the climate. 

Suitable methods are required to find out the extremes from climate data (e.g., Karl et al. 1996; Mudelsee 
2006). The detection of extremes for a specific climatic quantity, e.g., precipitation, has been investigated in 
many studies. One of the focuses is to analyze the extremes in daily precipitation (e.g., Karl and Knight 1998; 
Klein Tank and Können 2003; Zhai et al. 2005; Wang et al. 2008). There are two problems with the previous 
daily precipitation analyses. One is that the extremes detected depend on the choice of the starting time of the 
day. The other is that the extremes are only for the 1-day (24-hour) duration, not including those over other 
durations (e.g., the shorter durations of 12 or 6 hours and longer durations of 2 or 4 days). A precipitation 
event that cannot be an extreme over the 1-day duration may become extremes over other durations. These 
extremes with different durations can all bring, in one way or the other, serious economic and societal 
damages. 

The extremes in multiday precipitation have been detected generally based on the lifespan of rainfall 
(Karl and Knight 1998; Dairaku et al. 2004; Junker et al. 2008). Junker et al. (2008) pointed out that the 
starting and ending times of multiday events can be difficult to determine when precipitation comes as a result 
of several consecutive storms with small breaks between them. It is possible that the intensity averaged over 
the entire multiday rainfall period is not sufficiently strong to be an extreme, but the intensity over part of the 
period is relatively strong enough to become an extreme. 

Figure 1 shows conceptually some 12-day precipitation processes. In Figure 1a, although the precipitation 
in each of day 6 and day 7 may not be an extreme, the precipitation of these two days may possibly be an 
extreme. For the precipitation from day 5 to day 9 in Figure 1b, though the precipitation in each day (or every 
consecutive 2 days) of the period may not be an extreme, this 5-day precipitation event may be an extreme. 
The precipitation process in Figure 1c may be best detected as an extreme over a 9-day duration (it is also 
acceptable if treated as over an 8-day or 10-day duration), but relatively it should not be regarded as a 1-day 
or 3-day extreme. 

The issue investigated in this study is, for a precipitation process, to identify the starting time and the 
duration so that the intensity of the event with the starting time and duration (the intensity averaged over the 
period with the starting time and duration) can best become an extreme, compared with those corresponding 
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to other durations and starting times. In other words, 
extreme events should be “best described”, in terms 
of starting time and duration, which can be 
determined based on intensity. 

Extremes, along with drought and monsoons, 
are important objects of climate monitoring. Lu and 
Chan (1999) and Zeng and Lu (2004) proposed 
methods to determine the strength of monsoon and 
the onset and retreat dates of monsoon. Lu (2009) 
developed a methodology to monitor and predict 
drought. It is based on theoretical considerations and 
mathematical derivations, and the single parameter 
contained in the relation can be determined with data. 
The present study on detecting extremes is similar in 
style. The key is to establish a relation that 
prescribes how “extreme” intensity varies with 
duration. 

2.  Best describing extremes and capturing them 
across a range of durations 

a. Theoretical relation of “extreme” intensity with 
duration 

Let’s first consider the case of setting discount 
rates in stores for promotion. The general 
consideration for setting the rates of a product is that 
for the buyers to buy more, the unit price of the 
product should decrease with the number of the pieces to be bought in order to save money. However, for the 
sellers to gain more profit, the total money received from the sales should increase with the number of the 
pieces to be sold. 

The same principle can be applied to establish the relation between “extreme” intensity and duration. The 
first constraint is that the “extreme” intensity Ie should decrease with the duration T, which can be expressed 
as 

0<
dT
dIe .                                                                                                     (1) 

The second constraint is that, though with a weaker intensity, the total amount over a longer duration 
should be larger. Or, the product of the intensity and duration should increase with duration, and this can be 
expressed as 

0>
dT

)TI(d e .                                                                                               (2) 

Combining relations (1) and (2) yields 
10 << a ,                                                                                                   (3) 

where 

)T(lnd
dI

I
a e

e

1
−=                                                                                           (4) 

indicates the relative decrease rate of “extreme” intensity with respect to the logarithm of duration. 

Fig. 1  Conceptual cases that may contain extremes 
over multi-day durations. An appropriate unit can 
be given to precipitation. 
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Based on the definition and meaning of the parameter a , it is reasonable to assume it as a constant, 
although the values of the parameter estimated from data over different duration ranges (based on certain 
definition of the extremes in the data) may change, as will be discussed in section c. 

Denote T = n ΔT, where ΔT is the increment in duration (e.g., 1 day or 1 hour) based on the time 
resolution of the data, and n is the number of the increment, reflecting the length of the duration. A range of 
durations with n from 1 to N (e.g., from 1 to 7) may be considered to capture extremes more completely. 

Rewrite equation (4) as d (ln Ie) = -a d(ln T). Integrating this equation, with T  from TΔ  to TnΔ  and eI  
correspondingly from Ie (1) to Ie (n), yields 

Ie (n) = Ie (1) n- a,                                                                                       (5) 
where Ie (1) is the maximal “extreme” intensity that is over the shortest duration limited by the time resolution 
of the data.  

Note that the duration here is not the lifespan of rainfall, but the time period to be found to make the 
precipitation intensity averaged over the period become an extreme. The duration can be part of the lifespan 
of rainfall, and may even contain a rainfall break.  

It should also be noted that for the purpose of best describing extremes in this study, the intensity always 
decreases with duration, and the parameter a  is always positive. Differently, in the intensity-duration-
frequency (IDF) studies, the duration for examining the extremes (the events with long return periods) is the 
actual lifespan of the events. The Sherman’s equation on IDF has the same form as equation (5), but the 
parameter a  in the equation may take negative values. The reason is that the precipitation events that may 
become extremes should normally last for a certain period of time (e.g., 30 minutes), and the events that last 
for shorter periods are generally weaker in intensity (e.g., Hershfield 1972). 

b.   Best describing extremes with starting time and duration 

Denote the intensity calculated from the data over duration TnΔ  centering at time TmΔ  as I (n, m). The 
relative intensity of the event is defined as 

( ) ( ) )m,n(In
n

m,nIm,nR a
a =≡

− .                                                                   (6) 

The purpose of defining the relative intensity is to enlarge the data-calculated intensities of longer 
durations with the theoretically-derived “extreme” intensity-duration relation so that the intensities of the 
events over all other durations can be compared with the one over the shortest duration. Through the running 
of m and the comparison among different values of n, the possible extreme, which has the strongest relative 
intensity R (n0 ,m0) in a process, can be identified. With the values of n0 and m0, the starting time and the 
duration of the extreme can be determined.  

Figure 2 presents the relative intensities with input data from Figure 1. The parameter a  takes the 
moderate values of 0.4, 0.5, and 0.6 to better obey the relations (1) and (2). The data before day 1 and after 
day 12 are all taken as zero in the calculation. Nine durations (1, 2, 3, 4, 5, 6, 7, 9, and 11 days) are included 
in the plot for comparing the relative intensities. For the convenience to make the plot, the relative intensity 
given to day m  uses the data from day m – (n – 1)/2 to day m + (n – 1)/2 if the duration n  is an odd number, 
but from day m – (n – 2)/2 to day m – n/2 if n is an even number. 

Figure 2a shows that the precipitation event can be best described as an extreme (with strongest relative 
intensity) over the 2-day duration. It is also acceptable if regarded as over the 3-day duration. Both of these 
can be concluded from the plots with the three values of the parameter a . Whether the extreme can be 
regarded as over durations of 1-day or 4-days depends on the choice of the parameter. In Figure 2b, results 
from all the three values of the parameter show that the extreme is over the 5-day duration, and it is still 
acceptable if regarded as over the 6-day duration. However, whether it can be regarded as over durations of 4 
days or 7 days depends on the value of the parameter. In Figure 2c, the different parameter values all indicate 
an extreme over duration of 9 days. It is acceptable if regarded as over durations of 11 or 7 days, or even 6 or 
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5 days, but definitely not 1 or 2 days. Along with the durations, the starting times for the best possible 
extremes can also be determined based on the maximal relative intensities in the plots and their corresponding 
values of n and m.  

What are shown in Figure 1 are single precipitation processes with limited data. The results suggest that 
the present method can well detect these typical extremes with different durations through simply giving 
moderate values to the parameter a , and the detections are not very sensitive to the parameter. 

c.   Determining the parameter with regression from data 

For climatic detection with multi-year data, the value of the parameter a  can be determined from the data. 
Based on equation (5), a regression between the logarithms of duration n  and “extreme” intensity Ie (n) can 
be established as 

ln Ie (n) = - a ln n + c,                                              (7) 
where a is the parameter to be determined, and the constant c  can also be determined from the data. 

For a specific duration n , which varies from 1 to N, the “extreme” intensity Ie (n) over the duration can 
be defined as the intensity that is the strongest 5% of the intensities that are over all the n consecutive days 

Fig. 2  Relative intensities over 9 durations (1, 2, 3, 4, 5, 6, 7, 9, and 11 days) with input data from Figure 1 
and parameter a  being 0.4, 0.5, and 0.6, respectively. Note that the curves with even numbers of 
duration have been made a half-day rightward shift for convenience of making the plots. 

a  = 0.4                                          a = 0.5                                       a = 0.6 
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within the multi-year data. With all these values of n and the such-defined Ie (n), the values of a and c can be 
regressed from equation (7). Then, with the parameters a and c determined, the final value of each “extreme” 
intensity Ie (n) can be calculated from the duration n with equation (7).  

Note that due to the possible irregular structure in the data’s spectrum of intensity over duration, the 
values of the parameter a  determined from equation (5) with the data-defined Ie (1) and Ie (n) may be quite 
different. The advantage of using the above regression is that the determination of the parameter takes into 
account comprehensively the overall structure of the intensity spectrum. Also note that the constant c  might 
have large deviation from the data-defined Ie (1), depending on the structure of the intensity spectrum. 

d.   Capturing extremes across a range of durations 

For assessing and understanding the changes in weather and climate extremes, it would be more complete 
to detect the extremes across a range of durations rather than just over a single (1-day) duration. With the 
running of the date, if the data-calculated intensity is greater than the “extreme” intensity obtained from 
regression (7), then an extreme is detected. If precipitation is particularly strong and persistent during a 
process so that the data-calculated intensities over several different durations are all greater than their 
corresponding “extreme” intensities, then the process can be detected as extremes over all these durations.  

The annual (or seasonal) total of the extremes over each duration can be determined for each year 
(season), and the change over the multi-years can be analyzed. To be convenient, an alternative way can be 
used. That is, compare the data-calculated intensity and the regressed “extreme” intensity for each day, and 
take the number of the days with I(n, m) > Ie (n) in the year (season) to examine the change of the extremes 
over the duration.  

It would be interesting to investigate the relationships between the changes (trends) in the numbers of the 
extremes over different durations. If daily precipitation extreme has an increasing change, will the extremes 
over durations of 2 and 4 days have increasing changes either? In some areas, e.g., in Japan, there was no 
increase in the seasonal total precipitation, but there was an increase in the frequency of the 1-day 
precipitation extremes (Easterling et al. 2000b). The total number of the extremes across a range of durations 
can also be analyzed to explore more completely the change of precipitation extremes.  

In addition to the numbers of the extremes over different durations, the sum of the relative intensities, 
from equation (6), of all the extremes during the year (season) may also be utilized to assess the changes in 
the extremes. 

3.   Summary and discussions 

The extremes detected by using daily precipitation data in the previous studies mainly include the 
following three types: the daily precipitation extremes; the extremes in monthly, seasonal, and annual 
precipitation totals; and the extremes in the continuous multiday rainfall processes. These studies had not 
made full use of the daily data. Many researchers examined the extremes in daily precipitation, and what they 
actually concerned about is not just the extremes that have the exact 24-hour duration; the major reason of 
finding the daily extremes is that they were using the daily precipitation data. Events with other durations 
(e.g., 2 or 4 days) may also be important in bringing losses as long as they can be sufficiently strong (relative 
to their durations), and thus can become extremes.  

Therefore, for the purpose of studying the changes of weather and climate extremes, it is far from 
complete to merely consider a single duration of a day, and it is more suitable to find out all the extremes that 
are over at least a range of durations (e.g., from 1 to several days). The events that cannot become daily 
extremes might become extremes over other durations. The goal of this study is, for a precipitation process, to 
determine the duration and starting time of an event (within the process) that can best become an extreme.  

The key of the approach in this study is to prescribe reasonably the intensities of the extremes that are 
over the different durations. Theoretically, the strongest intensity should be found from the instantaneous 
values of intensity. In the practical analysis with data, the strongest intensity can be obtained from the shortest 
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duration considered. The value of the intensity averaged over a longer duration should go down. So, the 
“extreme” intensity always decreases with duration.  

The other constraint of the “extreme” intensity-duration relation is that, in spite of the decrease of the 
intensity with duration, the total accumulation of precipitation should increase with duration. These are 
reasonable considerations, and might be applied to many other problems, such as determining how the 
intensity of flood or drought that make human or crops unendurable varies with the lasting time of the flood 
or drought. These constraints ensure that “extreme” intensity does not decrease linearly with duration. 

A theoretical “extreme” intensity-duration relation is thus derived. The relation contains only a single 
parameter, and it can be treated as a constant. The conceptual examples given in this study are just rainfall 
episodes, but the extremes over the different durations can be well detected with simply giving moderate 
values to the parameter, and the detections are not very sensitive to the parameter. 

For detecting extremes with multi-year data, the value of the parameter can be determined from the data 
by using the regression between the logarithms of the duration and the corresponding initial “extreme” 
intensity defined with the data. The final values of the “extreme” intensities can be computed with the 
parameter determined from the regression equation. It is noticed that the regression relation obtained from the 
data may not be statistically significant, but this does not matter, since the purpose here is just to prescribe the 
“extreme” intensities with considering the overall structure of the intensity spectrum. 

Through capturing the extremes over different durations with the method of this study, relationships 
between daily extremes and the extremes over other durations will be analyzed. The changes of the total 
extremes across a range of durations will also be investigated. The Climate Extremes Index (CEI) even 
combines the extremes of different quantities.  

Although daily precipitation is used in this study as an example, the method can be applied to detect 
extremes over durations at hourly scales if hourly data are available. The method can also be used to detect 
extremes of other climate quantities such as heat waves. All these applications and relationship analyses will 
be carried out in the next-step work by using real observations and data from climate models.  

The definition of weather and climate extremes is still an issue in debate, as indicated from the workshops 
of the recent years, which aimed to summarize, compare, and assess the various definitions and to develop a 
common framework.  Based on the understanding from this research, a definition can be proposed as follows. 
To a specific weather and climate quantity of interest, an extreme is the event whose intensity corresponding 
to its starting time and duration is relatively the strongest compared with those with other durations and 
starting times. 
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1. Introduction 

Many areas in the world experienced 
high temperatures for boreal summer (June 
– August) 2010, especially from western 
Russia to the Middle East, in northern 
China, from southern Indonesia to 
southern Polynesia, and in the eastern 
USA (Figure 1.1). Japan also experienced 
nationwide record-breaking high 
temperature. The seasonal mean 
temperature in Japan for summer 2010 
(i.e., the three-month period from June to 
August) ousted that of summer 1994 from 
the top spot as the highest since JMA’s 
records began in 1898, with a deviation of 
+1.64°C from the 1971 – 2000 average 
(Figure 1.2). Shortly after this period on 3 
September, the Japan Meteorological 
Agency (JMA) organized an extraordinary 
meeting of the Advisory Panel on Extreme 
Climate Events (see Chapter 2 for details). 
This report summarizes the atmospheric 
characteristics and possible influences 
identified by the Advisory Panel as main 
background factors to Japan’s hottest 
summer on record. 

2. The Advisory Panel on Extreme 
Climate Events  

The Advisory Panel on Extremely 
Climate Events was established in June 
2007 by JMA to investigate extreme 
climate events based on the latest 
knowledge and findings and provide JMA 
with advice on the causes of extreme 
climate events. Its members are prominent 
experts on climate science from 
universities and research institutes. On a 
regular basis, JMA provides the panel with 
observational data and monitoring 
information on climate system. The panel 
provides JMA with scientific advice on 

Fig. 1.1 Three-monthly mean temperature anomalies for summer 
(June – August) 2010. Categories are defined by three-month 
mean temperature anomaly against the normal (i.e., the 1971 
– 2000 average) divided by its standard deviation and 
averaged in 5° × 5° grid boxes. The thresholds of each 
category are -1.28, -0.44, 0, +0.44 and +1.28. 

Fig. 1.2  Long-term change in seasonal temperature anomalies for 
summer (June – August) in Japan. Anomalies are calculated 
as the average of temperature deviations from the 1971 – 
2000 normal at the 17 observation stations. The observatory 
stations that represent the average temperature of Japan are 
selected from those deemed to be least influenced by the 
urban heat island phenomenon. The bars indicate temperature 
anomalies for each summer. The blue line indicates the five-
year running mean, and the red line shows the long-term 
linear trend. 
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climate system monitoring and 
suggestions on analysis methods. When an 
extreme climate event occurs or is likely to 
occur, an extraordinary meeting of the 
panel is organized to analyze the causes of 
the event and JMA provides timely 
statement on the event based on advice 
from the panel (Figure 2.1). 

3. Data source 

The datasets used in this analysis are 
as follows: 

1)  Surface observational data: JMA’s 
in-site observation.  

2)  Sea surface temperature (SST) data: 
the JMA’s SST analysis for 
climate monitoring (COBE-SST) 
(Ishii et al. 2005). 

3)  Atmospheric circulation data: the 
Japanese reanalysis (JRA-
25/JCDAS) (Onogi et al. 2007). 

4)  Outgoing longwave radiation 
(OLR) data: original data provided 
by the National Oceanic and 
Atmospheric Administration 
(NOAA). 

The base period for normal is 1971 – 
2000 for 1) and 2) datasets, and it is 1979 
– 2004 for 3) and 4) datasets.   

4. Ocean conditions and convective 
activity in the tropic 

In summer 2010, a La Niña event 
followed the El Niño period that started in 
summer 2009 and ended in spring (March 
– May) 2010 (Figure 4.1). In association 
with this, sea surface temperatures (SSTs) 
were above normal over the western 
Pacific, the Indian Ocean and the tropical 

Fig. 2.1  Schematic chart of the framework at the Advisory Panel 
on Extreme Climate Events.

Fig. 4.1  Time series of five-month running mean sea surface 
temperature deviations (unit: °C) from the climatological 
mean based on a sliding 30-year period for NINO.3 (5°S – 
5°N, 150°W – 90°W). 

Fig. 4.2  Three-month mean sea surface temperature anomaly (unit: °C) for March – May (left) and June – 
August (right) 2010. 
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Atlantic, and were below normal over the central and eastern Pacific (Figure 4.2). Convective activity 
(inferred from OLR) associated with the Asian summer monsoon was suppressed across a broad area from 
northern India to the Indochina Peninsula and to the east of the Philippines in the first half of summer 2010, 
and was enhanced over the Arabian Sea and from the Indochina Peninsula to the north of the Philippines in 
the second half (Figure 4.3). Over the eastern Indian Ocean and on the Maritime Continent, convective 
activity was enhanced throughout the summer.   

Fig. 4.3  Outgoing longwave radiation (OLR) anomaly (unit: W/m2) in the first half (left) and the second half 
(right) of the summer 2010.  Cold and warm shading indicates enhanced and suppressed convective 
activity, respectively, in relation to the normal. 

5. Characteristic atmospheric circulation 

5.1 Tropospheric air temperature 

The zonally averaged tropospheric air temperature in the mid-latitudes of the Northern Hemisphere was 
the highest for summer (June – August) since 1979 (Figure 5.1). The zonally averaged tropospheric thickness 
in the tropics reached an above-normal level in July 2009 and matured in the first half of 2010 (Figure 5.2). In 
June 2010, the thickness in the tropics remained above normal but decreased, while that in the mid-latitudes 
of the Northern Hemisphere rapidly increased and remained significantly above normal throughout the 
summer. The evolution of a thickness anomaly similar to that seen in 2010 was identified in 1988 and 1998 
(not shown). As research so far (e.g., Angell 2000) has indicated, tropospheric air temperatures increase on a 
global scale after an El Niño event. Examination of past La Niña events shows a tendency for higher-than-
normal tropospheric air temperatures in the mid-latitudes of the Northern Hemisphere. This is consistent with 
the results of previous research (e.g., Seager et al. 
2003). It is therefore possible that zonally 
averaged tropospheric air temperatures in the 
mid-latitudes of the Northern Hemisphere were 
extremely high in summer 2010 from the 
influence of the El Niño event and partly due to 
the effects of the La Niña event. A warming 
trend can be identified in the zonally averaged 
tropospheric air temperature in the mid-latitudes 
of the Northern Hemisphere (Figure 5.1). This 
trend may be associated with global warming 
due to the buildup of anthropogenic greenhouse 
gases. 

5.2 Remarkably strong anticyclone over Japan 

The subtropical jet stream in the vicinity of 
Japan showed a southward-shifted tendency 
from its normal position in the first half of 

Fig. 5.1  Time series of three-month (June – August) 
zonally averaged temperature anomalies (unit: K) in 
the mid-latitudes (30°N – 60°N) of the Northern 
Hemisphere calculated from thickness (850 – 300 hPa).
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summer 2010, while the jet stream was shifted 
northward of its normal position with a frequent 
northward meander (a ridge of high pressure) in 
the second half (Figure 5.3). In line with the 
characteristics of the subtropical jet stream, the 
extension of the Tibetan High to Japan was 
weaker than normal in the first half of summer 
2010, while it was stronger than normal (Figure 
5.4) and equivalent-barotropic highs developed 
and persisted over Japan in the second half 
(Figure 5.5). As detailed in Chapter 4, 
convective activity was broadly enhanced in and 
around the Indian Ocean in the second half of 
summer 2010 (Figure 4.3). Considering that 
research so far (e.g., Krishnan and Sugi 2001; 
Enomoto 2004) indicates a link between the 
Asian summer monsoon and Japan’s climate, 
statistical analysis was implemented to examine 
the relationship between convective activity 
linked to the Asian summer monsoon and the 
subtropical jet stream in the vicinity of Japan. 
The results indicated that when convective 
activity is enhanced (or suppressed) over the 
region from the northern Indian Ocean to the 
northeast of the Philippines (10°N – 20°N, 60°E 
– 140°E), the subtropical jet stream near Japan 
tends to shift northward (or southward) of its 
normal position (Figure 5.6). It therefore seems 
that the northward shift of the subtropical jet in 
the vicinity of Japan was associated with active 
convections across the broad region over and 
around the Indian Ocean. In addition, 
considering previous studies (e.g., Nitta 1987) 
indicating the influence of convective activity 
around the Philippines on Japan, active 
convections from the northern South China Sea 
to the area northeast of the Philippines may have 
been partly responsible for the strength of 
anticyclones around Japan, especially from the 
second half of August to early September. 

5.3 Okhotsk High 

The Okhotsk High (a cool semi-stationary anticyclone) often develops around the Sea of Okhotsk from 
spring to autumn and occasionally brings cool air to the Pacific side of northern and eastern Japan, resulting 
in cool summers. In the period from June to the first half of July 2010, the Okhotsk High was less developed 
than in past years (Figure 5.7). In addition, warm anticyclones frequently covered Japan (particularly its 
northern parts), and significant anticyclones to the east of the country brought warm air from the south, 
leading to significantly higher-than-normal temperatures in the first half of summer 2010 (Figure 5.8). A 
blocking high in the upper troposphere over the Sea of Okhotsk plays an integral role in the formation of the 
Okhotsk High (Nakamura and Fukamachi 2004). In the first half of July, a blocking high developed near the 
Sea of Okhotsk, but its position was not suitable for the formation of the Okhotsk High. In the second half of 

Fig. 5.2  Time-latitude cross section of monthly zonally 
averaged thickness (300 – 850 hPa) anomaly (unit: m) 
for January 2009 – March 2011. 

Fig. 5.3  Latitude-time cross section of normal (black 
lines) and anomalies (colored shading) of the 200-hPa 
zonal wind speed averaged in the vicinity of Japan 
(125˚E – 145˚E).
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July, the phenomenon temporarily appeared but influenced Japan little due to the northward shift of the 
subtropical jet near the country and the strong Pacific High to its east. 

Fig. 5.6  Linear regression coefficients of 200-
hPa zonal wind speed onto area-averaged 
convective activity (OLR) over the region 
from the northern Indian Ocean to the area 
northeast of the Philippines (10°N – 20°N, 
60°E –140°E) for July and August. When 
convective activity was enhanced 
(suppressed) over the region, the subtropical 
jet stream to the north of Japan was stronger 
(weaker) than normal at the cold (warm) 
colored contours. The shading shows a 95% 
confidence level based on F-testing. The 
base period for the statistical analysis is 
1979 – 2009. 

Fig. 5.4  Monthly-mean 200-hPa stream function and anomaly for June (left) and August (right) 2010. The 
contours show the stream function at intervals of 1 × 107 m2/s, and the shading indicates stream 
function anomalies. In the Northern (Southern) Hemisphere, warm (cold) shading denotes anticyclonic 
(cyclonic) circulation anomalies. 

Fig. 5.5  Monthly-mean atmospheric circulation around Japan for August 2010. Left panel: The contours 
indicate 200-hPa height at intervals of 120 m. Right panel: The contours indicate sea level pressure at 
intervals of 4 hPa. The shading shows their anomalies.
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6. Conclusion 

The Advisory Panel on Extreme Climate 
Events summarized the characteristics of the 
atmospheric circulations leading to the extremely 
hot summer in Japan and identified the major 
factors contributing to them as follows: 

(1) The zonally averaged tropospheric air 
temperature in the mid-latitudes of the 
Northern Hemisphere reached its highest 
summer level since 1979. This can be 
attributed to the delayed effect of the El 
Niño event and partly to the effects of the 
La Niña event. 

(2) Japan was significantly influenced by the 
pronounced Pacific High caused by 
enhanced convection in the broad area 
over the Indian Ocean and the 
surrounding seas. It is possible that the 
broadly active convection was associated 
with above-normal SSTs over the Indian 
Ocean and with the La Niña event. 

(3) Japan was influenced less than usual by 
the Okhotsk High (a cool semi-stationary 
anticyclone) because the occurrence frequency of the Okhotsk High itself was lower than normal. In 
addition, a predominant anticyclone to the east of Japan intercepted the influence of the Okhotsk High. 

These atmospheric characteristics and the factors that may have contributed to them are illustrated in 
Figure 6.1 The primary factors outlined above are supported by statistical analysis and research performed to 
date, but the results of this work do not wholly explain the extreme conditions seen. In order to further 
understand the event and clarify the dynamic mechanism behind it, it is necessary to investigate other possible 

Fig. 5.7  Time series of average sea level pressure 
anomaly (unit: hPa) over the Sea of Okhotsk (45°N – 
60°N, 140°E – 155°E) from June to August 2010. 
The thick line indicates daily mean values of the area-
averaged sea level pressure anomaly over the region. 
The gray shading denotes the range of one standard 
deviation. 

Fig. 5.8  The cool semi-stationary anti-cyclone (Okhotsk high). The contours show sea level pressure, and 
the shading indicates temperature at 850 hPa. The left panel and right panel are for 15 -24 July 2010 
and for 19 - 28 July 2093, respectively. 

(oC) 
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factors and perform numerical model 
experiments.  
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Fig. 6.1  Primary factors contributing to Japan’s extremely hot 
summer (June – August) of 2010. Here, (1), (2) and (3) 
correspond to the numbers in Chapter 6 of the main text. 
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1. Introduction 

Accompanied by global warming, both precipitation and precipitation extremes in the world has changed 
greatly in historical records. Significantly increased precipitation has been observed in eastern parts of North 
and South America, northern Europe and northern and central Asia. Meanwhile, the frequency of heavy 
precipitation events has increased over most land areas, even in those where there has been a reduction in total 
precipitation amount, consistent with warming and observed increases of atmospheric water vapor (IPCC, 
2007). 

China and USA are located across the Pacific Ocean, and are characterized by different climate features 
due to their differences in land-sea thermal contrast and ocean-atmosphere interaction between the western 
and eastern Pacific. Many previous studies have demonstrated the link of climate signals across the North 
Pacific, especially between Asia and North America (Lau et al. 2002; Wang et al. 2001; Zhang et al. 2005; 
Ding et al. 2005; Li et al. 2005; Zhao et al. 2011). This study will focus on the long-term changing features of 
extreme precipitation and their links to SST/Ts and atmospheric patterns from annual and seasonal timescale, 
mainly in the country-wide regard for both China and USA. 

2.Data and methodology 

2.1 Data 

The following data sets are used in this study: (1) Station-based daily precipitation over China from 1961 
to 2009, (2) USA daily precipitation from US Daily Precipitation Gridded Analysis from 1948 to 2009, (3) 
NOAA extended reconstructed SSTs V3b datasets from 1854 to the present (Smith et al., 2008), (4) Surface 
air temperature from the station observation-based global land monthly mean surface air temperature dataset 
from 1948 to the present (Fan et al., 2008), (5) Monthly wind and vertical velocity data from NCEP/NCAR 
Reanalysis1 (Kalnay et al., 1996). 

2.2 Methodology 

Three precipitation indices are used to portrait the characteristics of the total and extreme precipitation. 
They are defined as follows:   

P95 - Extreme precipitation based on 95% percentile. Let Rwj be the daily precipitation amount on a wet 
day w (R ≥ 1.0mm) in period j (j can be year or season, the same below) and let Rwn95 be the 95th percentile 
of precipitation on wet days in the 1971-2000 period. If W represents the number of wet days in the period, 
then:  

95,
1

95 wnwj

W

w
wjj RRwhereRP >=∑

=

 

PTOT - Annual or seasonal total precipitation in wet days. Let Rij be the daily precipitation amount on day i 
in period j. If I represents the number of days in j, then  

∑
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R95p - Ratio of extreme precipitation to total precipitation. It measures the relative importance of extreme 
precipitation.  

100*/9595 TOTp PPR =  

In this study, we will focus on R95p and PTOT, mainly due to the high correlation between PTOT and P95. 

The angular distance weighting (ADW) algorithm is used to interpolate station indices to regular grids 
over China (New et al. 2000). The long-term trends of the indices are estimated by the non-parametric Mann-
Kendall test and Sen’s method (Kendall 1955; Sen 1968).   

3. Results 

3.1 Annual features 

The annual variations and 
long-term trends of total 
precipitation and the ratio are 
given in Fig. 1. Obvious 
differences can be seen between 
China and USA from the country-
wide perspective. Over China, 
total precipitation nearly has no 
trend, and the ratio shows a slight 
positive trend of about 0.22% per 
decade, but not statistically 
significant. In contrast, over USA, 
total precipitation increases 
significantly, with a trend about 
13.2mm per decade. Meanwhile, 
the ratio shows a moderate 
decrease by -0.15% per decade. 

Fig. 2 gives the correlation 
patterns between precipitation 
and SST/Ts and 850hPa wind.  
We compare these patterns 
between original data and 
detrended data to distinguish the 
long-term features from the 
features on interannual timescales. 
For China, only few significant 
features can be seen for total 
precipitation. However, the ratio 
has strong relations to the SSTs in 
the Indian Ocean to western 
Pacific, the South and East China Sea, ocean east of Australia and the tropical Atlantic Ocean. Corresponding 
to SST pattern, a strong easterly from central Pacific passes through Philippine Sea and South China Sea, then 
turns to the northeast, forming a significant anti-cyclonic pattern in the western Pacific. When we removed 
the trend of the ratio, these SST relationships become much weaker especially in Indian Ocean, indicating an 
apparent link of SST and the ratio for their long-term changes. That is, the positive trend of China ratio is 
related to the long-term warming in these oceans. 

As for USA, total precipitation has more significant features related to SST/Ts and circulation than the 
ratio (Fig. 3). It can be seen that total precipitation has significant relationships with the SSTs in the Indian 
Ocean and the eastern Pacific. The total precipitation also has a negative correlation with the North Pacific 

Fig. 1  Annual variations of total precipitation (black line) and the ratio
(red line) for China (left) and USA (right). Dashed lines represent the 
linear trend. 

Fig. 2 Correlation patterns of total precipitation (upper) and the ratio 
(bottom) over China to SST/Ts and V850 wind. Left plots: original 
data; right plots: detrended data. 
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SST. Especially, the correlation 
pattern in Pacific may be related 
to the long-term change of 
Pacific decadal Oscillation 
(PDO), which has experienced 
an obvious shift from cool phase 
to warm phase about in 1976. In 
warm phase, strong warm SST 
anomalies occurred in central 
and eastern Pacific and distinct 
cooling is located in North 
Pacific around 40°N, 
corresponding to a relatively-
abundant rainy era of USA 
although strong inter-annual 
variation exists. Meanwhile, the 
trade wind in central and eastern 
Pacific weakens strongly, 
leading to higher SST in tropical 
eastern Pacific and near seas to 
the west of North America, and 
subsequently abundant water 
vapor transferring from Pacific 
to east of USA, passing through 
Central America and Gulf of 
Mexico, favoring USA 
precipitation. It also can be seen 
that USA total precipitation has a 
high correlation to SST in Indian 
Ocean. After the trend is 
removed, these SST 
relationships become apparently 
weaker in Pacific, and entirely 
disappear in Indian Ocean, again 
suggesting that the relationships 
are for the long-term changes of 
SST and precipitation. Namely, 
the increasing trend of PDO 
index in recent decades may play 
important role in the positive 
trend in total precipitation over 
USA. Meanwhile, Indian Ocean 
warming may also play an 
important role in its long-term 
trend. 

3.2 Seasonal features 

Precipitations show distinct 
features in different seasons especially over China. In this section, the seasonal features of precipitation 
indices are addressed as well as their links to oceanic and atmospheric conditions. The methods used here are 
the same as the annual mean. 

Fig. 3  Same as Fig. 2, but for USA. 

Fig. 4  Same as Fig. 1, but for different seasons. 
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Fig. 4 provides the variations 
of seasonal-mean ratio and total 
precipitation, averaged for China 
and USA. Over China, total 
precipitation changes 
insignificantly in winter, spring 
and summer, only slight positive 
trends being detected. While in 
fall, it shows significant negative 
trend. However, the ratio shows 
consistent positive trend in all 
seasons, especially significant in 
winter and spring. In contrast, 
over USA, total precipitation 
shows positive trend in seasons 
other than winter, especially 
significant in summer and fall. 
However, the ratio has little long-
term change except the moderate 
negative trend in winter and 
summer. 

Over China, only few SST 
and atmospheric circulation 
features are linked to total 
precipitation (Figure nor shown), 
so we focus on the ratio. The ratio 
over China has consistent long-
term positive trend in all seasons, 
particularly significant in winter 
and spring. Here we extract the 
SST and circulation features associated with the long-term changes of the ratio by comparing the original and 
detrended correlations (Fig. 5). In winter, the ratio is significantly related to SSTs in Indian Ocean to 
Maritime Continent, South China Sea and seas to the east of China, concurrent with an intensification of 
northeast wind and an anomalous cyclonic pattern in north Pacific. In summer, the relationships enhance 
greatly as compared to spring. Furthermore, the ratio also has a significant relation to SSTs in the eastern 
tropical Pacific and tropical Atlantic Ocean. In fall, the high correlation is mainly located in South China Sea 
and Philippine Sea, which are key areas to East Asia Summer Monsoon (EASM). After the ratio is detrended, 
its relationships to SST become much weaker in most areas, indicating the apparent link of the long-term 
changes between the ratio and SST in these areas. In particular, tropical Oceans warming especially in Indian 
Ocean, eastern Pacific and Atlantic Ocean, and their corresponding atmospheric circulations, may play an 
important role in the long-term change in the ratio over China, particularly for spring. 

Over USA, total precipitation increases obviously except in winter, especially significant in summer and 
fall, However the ratio has little trend. Therefore, we mainly focus on the SST and circulation features related 
to total precipitation (Fig. 6). It can be seen that total precipitation over USA is greatly affected by the SST 
and atmospheric circulation anomalies across North Pacific to North Atlantic Ocean and these features are 
mainly on interannual timescale. For all seasons a cyclonic pattern can be seen located in USA continent, 
although the center varies with the season, which is beneficial to precipitation over USA. By comparing the 
original and detrended features, we find SSTs in tropical eastern Pacific has significant positive correlation 
with total precipitation over USA, accompanied by strong weakening of trade wind in central and eastern 
Pacific, which is apparently due to their long-term changes. In addition, SST warming trend in Indian Ocean 
and tropical Atlantic Ocean also has significant teleconnection with USA summer precipitation. As for the 

Fig. 5 Correlation patterns of the ratio over China to SST/Ts and V850 
winds. Left plots: original data; right plots: detrended data. 
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ratio, few features can be seen 
linked to SST and circulation both 
on interannual and long-term 
timescales (figure not shown). 
Similar with annual mean, it can 
be inferred that the seasonal long-
term change of PDO exerts an 
important effect on the 
precipitation trends, especially in 
summer and fall. Meanwhile, the 
long-term warming trend in Indian 
Ocean SST may also play an 
important role in change in USA 
precipitation in fall. 

4. Summary 

Using station-based daily 
precipitation over China and high-
resolution daily precipitation 
analysis over USA, we analyzed 
the temporal and spatial patterns 
of total precipitation and extreme 
precipitation with the focus on 
long-term changes.  

Features of both total 
precipitation amount and the 
extreme precipitation ratio are 
apparently different between 
China and the USA, and 
differences occur not only in the annual means but also in seasonally-averaged values. Annually, the total 
precipitation over China changes insignificantly and the ratio shows only a slight positive trend. However, the 
annual total precipitation over USA increases significantly although the ratio decreases moderately. In China, 
the ratio exhibits positive trends in all seasons, especially in winter and spring, and the total precipitation 
shows small positive trends except a significant negative trend in fall. In the USA, the total precipitation 
increases remarkably in all seasons, except a slight decrease in winter, and the ratio decreases in winter and 
summer but increases in spring and fall. 

The change in extreme precipitation ratio over China has a strong link to the SSTs in the Indian Ocean to 
western Pacific, the South and East China Sea, ocean east of Australia and the tropical Atlantic Ocean. The 
change in total precipitation over USA is associated with the change in SSTs over both the Indian Ocean and 
the eastern Pacific Ocean. These relationships become much weaker when the trend of total precipitation or 
ratio is removed, indicating an apparent impact of SST on the long-term change in precipitation. The trends of 
precipitation are also linked to the long-term changes in atmospheric circulation including the trade wind, the 
North Pacific anticyclone, the Asian cyclone, and others. 
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1. Introduction 

The Pakistan floods of 2010 constituted an extreme hydrologic event with substantial sociological 
consequences. At their height they submerged roughly 20% of Pakistan’s land area, killing and injuring 
nearly 5,000 people directly, and displacing as many as 20 million. Though influenced by additional factors 
(e.g., snowmelt and water management practices), the floods were closely tied to an unusually heavy rainfall 
event.  The countrywide precipitation total during July–September 2010 was the highest since 1994 and the 
sixth highest in the last 50 years (PMD 2010). The weather event that led to flash floods in 2010 began with a 
series of local, intense rainstorms in July, followed immediately by monsoon rain throughout the first half of 
August.  Synoptic analysis by Houze et al. (2011) pointed out that both the intensity and structure of the July 
rainstorms were abnormal for northern Pakistan.  Due in part to myriad other extreme events in the summer of 
2010, such as the Russian heat wave, questions have arisen as to whether the unusual 2010 Pakistan rainfall 
was simply a manifestation of climate variability or was connected in some measure with global climate 
change (Marshall 2010). The role of climate change in causing heavy monsoon rains needs to be addressed.   

Here we summarize a recent paper by Wang et al. (2011) that examined the 2010 monsoon conditions, 
climatology, and trends.  We further investigate the extent to which the trends are associated with internal 
variability vs. external forcing of the climate system.  Additional results from a dynamical downscaling 
approach (i.e., nesting regional climate models into global reanalyses) are also presented. 

2. Data sources 

We used the Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation 
(APHRODITE; Xie et al. 2007), a gridded daily precipitation dataset derived from rain gauges with a 0.5° 
resolution for the period 1971–2007.  The APHRODITE dataset allowed for an investigation of long-term 
daily precipitation over Pakistan, where stations with adequate records are sparse.  Other data included the 3-
hr Climate Prediction Center (CPC) Morphing technique precipitation (CMORPH; Joyce et al. 2004) for the 
analysis of the 2010 event, and the Tropical Rainfall Measuring Mission (TRMM)-based Lightning Imaging 
Sensor (LIS) 7-year climatology. For meteorological variables we used the ERA40 reanalyses (1971–2002) 
and the ERA-Interim reanalyses (1989–present; Uppala et al. 2005, 2008).  These two reanalyses assimilated 
2-meter air temperatures (T2m).  For data uniformity, we reduced the resolution of the ERA-Interim to be 
consistent with the ERA40 using bilinear interpolation.  Finally, we performed downscaling simulations with 
the Weather Research and Forecasting (WRF) model, Advanced WRF (ARW) version 3.1, using the the 
National Centers for Environmental Prediction Reanalysis (NCEP2; Kanamitsu et al. 2002) as boundary 
conditions. 

3. Results   

a. Case analysis 

The movement of the monsoon rainband and its association with the 2010 convective storms are 
displayed in Fig. 1a as the latitude-time diagram of CMORPH precipitation, and in Fig. 1b as the ERA-
Interim’s 850 mb relative vorticity and column-integrated precipitable water – all averaged between 70°E-
75°E, which encompasses northern Pakistan.  Three northward-moving monsoon troughs are readily visible in 
these meteorological fields.  These features are typical of the 30–60 day mode of the Indian monsoon.  
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However, only the second reached 
northern Pakistan (beyond 30°N), 
elevating moisture and producing near-
continuous rainfall there during the first 
half of August.  Arrival of the second 
monsoon trough also increased the 
convective available potential energy 
(CAPE; Fig. 1c contours) in northern 
Pakistan.  In contrast, the three mesoscale 
convective systems (MCSs) responsible 
for the flash floods occurred during a 
drier and warmer period in July (arrow 
indicated), prior to the second monsoon 
trough’s arrival; these features are 
discernible in the precipitable water and 
T2m (Figs. 1b and 1c).  Moisture surges 
accompany each MCS (Fig. 1b), 
apparently associated with passing 
synoptic disturbances as noted in Houze 
et al. (2011); these moisture surges are 
also evident in CAPE.  Moreover, each of 
the MCSs occurred during the period 
when a series of midlatitude troughs 
intruded south, as is revealed in the 250 
mb vorticity (not shown). Such a coupling 
between upper-level troughs and monsoon 
depressions exemplifies the tropical-
midlatitude interaction that is known to 
take place over this region (e.g., Chen et 
al. 2005).  Such a feature, together with 
warm temperatures over sloping terrain 
and strong moisture gradients, suggests a 
thermodynamically unstable atmosphere 
prior to the monsoon trough’s arrival in 
August.   

b. Climatology 

The analysis in Fig. 1 suggests that 
the common description of the Pakistan 
monsoon as a single entity (i.e., July as 
the monsoon onset and August as the 
mature monsoon) may not be adequate.  
Instead, these summer rains comprise two distinct phases of development: (i) a pre-monsoon trough phase 
with drier, warmer air and episodic strong convection; and (ii) a monsoon trough phase influenced by 
northward migrating monsoon troughs and associated humid, cooler air.  Examination of climatological T2m, 
dew point temperature (Td), and total precipitation in northern Pakistan from 1971 to 2010 (Fig. 2) shows that 
the warmest T2m occurs in June, with a rapid increase in Td in response to the intrusion of moist air from the 
south.  Then in July, T2m begins to decrease; Td reaches the seasonal maximum; and precipitation intensity 
peaks and is characterized by episodic features.  In August, T2m cools gradually while Td peaks and then 
decreases in association with declining rainfall.  These climatological features are in good agreement with the 
2010 analysis in Fig. 1c, in which the July pre-monsoon trough phase comprises stronger instability and more 
intense convective systems.  This can also be inferred from the increased lightning frequency accompanying 

Fig. 1 Latitude-time diagrams for (a) CMORPH 3-hr 
precipitation, (b) precipitable water (shadings) and 850mb 
relative vorticity (contour interval 10-5 s-1 omitting zero and 
-10-5), and (c) T2m (shadings) and CAPE (contour interval 
300 J Kg-1 beginning 300) averaged between 70°E and 75°E 
from May 1 to September 30, 2010. The three monsoon 
troughs are indicated by dashed lines. The three MCSs in 
July are indicated by yellow arrows. Mean elevation across 
the analysis area is shown to the right of each panel. 
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the high values of both T2m and Td in 
Fig. 2—strong lightning activity being 
common prior to the monsoon onset 
(e.g., Kodama et al. 2005).  By contrast, 
the August monsoon trough phase is 
characterized by less episodic rainfall 
of decreasing intensity and declining 
lightning activity.  

Such differences in the monsoon 
phases are also evident in the 10-day 
mean patterns of the 250 mb 
streamlines and precipitation in 2010 
(Fig. 3).  During July 10–20 (i.e., the 
rainstorm episode), northern Pakistan 
is situated north of the monsoonal 
anticyclone, under a deepened synoptic 
trough to the immediate west.  This 
feature echoes the upper-level “short 
waves” influence on rainfall (Khan 
1993).  Low-level circulations (850 
mb) show that southwesterly flows 
prevail deeply inland over northern 
Pakistan, reflecting the moisture source 
of the MCSs.  During August 1–11 (i.e., the beginning of the monsoon trough episode), the monsoonal 
anticyclone matures and migrates north, completely covering northern Pakistan, while at 850 mb an enhanced 
monsoon trough migrates toward northern Pakistan, as outlined by the red dotted line in Fig. 3d.  

c. Trends 

The identification of two distinct phases in the northern Pakistan monsoon, attributable to separate 
environmental conditions, suggests separate analysis for each phase.  Mean precipitation of both the July pre-
monsoon trough phase (Fig. 4a) and the August monsoon trough phase (Fig. 4b), shows virtually no trend over the 
past 40 years (orange bars and line).  This is consistent with the fact that the summer rainfall in 2010, albeit 
extreme, ranks only the sixth highest in observational history (PMD 2010).  However, the convective nature of the 
pre-monsoon trough phase suggests the possibility that the unstable environment may be enhanced owing to post-
1970 global warming—warming also evident in northern Pakistan (Figs. 4a and 4b).  We analyzed the frequency of 
intense precipitation by computing the occurrences of grid-scale daily precipitation exceeding 5 mm (i.e., one 
standard deviation of the monthly mean) and then averaging the occurrences in northern Pakistan.  The frequency 
reveals a substantial upward trend in July (Fig. 4a; blue bars and line) but shows only a weak trend in August (Fig. 
4b).  A significance test of the trends is given in the caption, while trends excluding 2010 are overlaid as a cyan 
dashed line (apparently 2010 did not alter the trend).  Moreover, the contrast between trends in the mean 
precipitation vs. the frequency of intense precipitation signifies an overall increase in rainfall intensity, which is 
linked to enhanced instability.  This feature is particularly pronounced in the pre-monsoon trough phase of July. 

d. Role of climate change 

• Diagnostics: Since mean precipitation amounts in northern Pakistan reveal no trends, we focus the 
following analysis on the observed increase in convective activity.  Atmospheric instability, especially 
during the pre-monsoon trough phase, is examined by the lapse rate of equivalent potential temperature 
(θe).  The lapse rate, denoted as dθe /dp, is shown in Fig. 5a with the climatological mean removed 
(shadings).  A marked increase in dθe /dp is observed in the lower troposphere associated with a 
corresponding decrease in the upper troposphere.  This suggests an overall increase in conditional 
instability, as well as potential instability for convective storms.  In other words, additional moisture as 
seen  in  the  increased  Td  in  Fig. 4a,  combined  with  surface  warming over sloping  terrain, may have  

Fig. 2  Climatological means (1971-2009) of T2m (red), Td (blue), 
precipitation (green bars), and lightning frequency (orange 
lightning symbols; plotted every 5 days) over northern Pakistan. 
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Fig. 3  Streamlines at 250 mb and the CMORPH precipitation (shadings) averaged in (a) 7/10-20 and (b) 8/1-
11, 2010. The corresponding 850-mb streamlines are given in (c) and (d). Northern Pakistan is outlined by 
the yellow box. Red dashed lines in (a) and (d) indicate the synoptic-scale trough and the monsoon trough, 
respectively. The letter “H” in (b) indicates the monsoon anticyclone.

Fig. 4 Monthly mean T2m (red line), Td (green line), precipitation (orange bar), and frequency of intense 
precipitation (blue bar) over northern Pakistan in (a) July and (b) August, overlaid with linear trends. 
Dashed T2m and Td lines indicate data derived from ERAInterim (1989-2010). Trends that are significant at 
the 99% confidence interval (CI) are indicated by a star to the left, based on Student’s t-test. Trends without 
a star are considered insignificant (i.e. < 99% CI). Trends without the inclusion of 2010 are shown as cyan 
dashed lines. 
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enhanced conditional instability and, 
in turn, increased the chance for 
stronger convective precipitation 
events.  Such a situation is also 
observed in the August monsoon 
trough phase (Fig. 5b), though the 
contrast of dθe /dp anomalies 
between the lower and upper 
troposphere is not as apparent as in 
July, except in the last decade.  This 
recent enhancement of dθe /dp 
nonetheless coincides with the post-
2000 increase in the frequency of 
intense precipitation (Fig. 5b, after 
2000). To investigate changes in 
ambient circulation that may control 
variations in dθe /dp, relative 
vorticity anomalies over northern 
Pakistan are overlaid on Fig. 5 as 
contours.  There is no clear 
indication of increased or decreased 
low-level vorticity (i.e., the 
monsoon trough); in fact, the 
negative vorticity anomalies 
prevailing in the last decade suggest 
a weakened monsoon trough, which 
would seem inconsistent with the increased frequency of intense precipitation.  

• Modeling: A WRF downscaling approach was adopted to quantify the impact of climate trends on the 
extreme nature of the 2010 precipitation event. We performed a control run using NCEP2 as boundary 
conditions during June–August at the 32 km resolution and compared it with another NCEP2 run that was 
“detrended” over the 1979–2010 period (on all input variables). The control simulation of July–August 
precipitation (Fig. 6a) reasonably depicts the observed features (Fig. 6b). The “detrended” simulation (Fig. 

Fig. 6  WRF downscaling of July-August precipitation in 2010 from 
(a) control run, (c) “detrended run” (see text), and (d) their 
percentage change. Observed precipitation from CMORPH is 
shown in (b). Terrain is outlined by gray contours. 

Fig. 5 Time-height cross-sections of the θe lapse rate (shadings) and relative vorticity (contour interval 10-5 s-1 
omitting zero) averaged over northern Pakistan for (a) July and (b) August, with the long-term means 
removed, and divergence of water vapor flux (i.e. negative means convergence) during (c) July and (d) 
August. Linear trends in (c) and (d) are insignificant (blue broken lines). 
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6c) shows an apparent reduction in precipitation over northern Pakistan and part of northern India. The 
reduction in rainfall over the rainstorm region is about 30%; all types of climate trends, including the post-
1970 global warming signal, contribute to this reduction. 

e. Dynamical implications  

It is known that strong monsoons over India and Pakistan occur in association with enhanced upper-level 
anticyclones and an easterly jet (Webster 2006).  To compare with the 2010 anomalies, we used the domain-
averaged monthly precipitation over northern Pakistan (domain as in Fig. 6) to regress with the 200 mb 
geopotential height through 1974–2010.  The regression pattern (Fig. 7a) depicts an anticyclone over and to 
the west of northern Pakistan, consistent with the literature.  However, the July 2010 circulation anomalies 
reveal a marked cyclonic cell over northern Pakistan (Fig. 7b) rather than an anticyclone, as has been the case 
for strong monsoons.  Noteworthy is the robust anticyclone over Eurasia that is linked to the Russian heat 
wave, embedded in the so-called circumglobal teleconnection (Branstator 2002).  Such a discrepancy in the 
subtropical circulations is intriguing.  As illustrated in Ding and Wang (2005), the upper-level anticyclone 
coupled with strong monsoons has a tropical “baroclinic” structure (i.e., vertically reversed), whereas the rest 
of the Eurasian wave train features a barotropic structure (i.e., vertically uniform).  The 2010 cyclonic 
anomaly near northern Pakistan resembles the latter, which subsequently enhances southerly water vapor flux.  
This feature corresponds to the abnormal moisture supply and lifting mechanism found in the July rainstorms 
(Houze et al. 2011).  The coupling of the monsoonal southerlies and the upper-level cyclonic flows also 
suggests a strong tropical-midlatitude interaction.  Such interaction can further enhance conditional instability 

Fig. 7  (a) 200 mb geopotential height regressed upon ΔP averaged in northern Pakistan (yellow box) for July of 
1974-2010, (b) departure of the July 2010 geopotential height from the climatology with the zonal mean 
removed, and (c) linear trends of the July geopotential height during 1974-2009. Dotted areas in (a) and (c) 
outline significant regions with the 99% confidence interval. Background shadings indicate the topography. 
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owing to the combination of high temperature and increased moisture (cf. Fig. 1).  Regardless, any empirical 
model similar to Fig. 7a would suggest the cyclonic anomaly in 2010 be associated with a weak monsoon 
over Pakistan, rather than a strong one.  This is alarming because such a departure from the empirical model 
would have led to false predictions of the monsoon. 

Is the 2010 circulation pattern sporadic, or could it be systematic?  Figure 7c shows the linear trends of 
geopotential height over the 1974–2009 period; the year 2010 was removed in order to conduct an independent 
assessment of the trends.  The result reveals a zonally oriented wave train that is in-phase with the 2010 circulation 
pattern across the North Atlantic, Eurasia, and East Asia. Such long-term circulation changes may be associated 
with the Eurasian warming of recent decades, a phenomenon thought to enhance a land-ocean thermal gradient 
conducive to a strong monsoon in India (Kumar et al. 1999).  However, the cause of the transcontinental wave train 
and its changing relation with the Indian monsoon is complex and requires further analysis. 

4. Discussion and conclusion 

We summarized the paper of Wang et al. (2011), which examined the 2010 summer precipitation in Pakistan 
and its link with climate change, and introduced a new dynamical downscaling analysis.  We suggest that summer 
precipitation in northern Pakistan comprises two distinct phases: a pre-monsoon trough phase (July) with more-
episodic and intense rainfall, occurring without the monsoon trough; and a monsoon trough phase (August) with 
large but less-episodic rainfall, driven by northward advancement of the monsoon trough coupled with the 30–60 
day mode.  It is demonstrated that separating the two monsoonal phases aids in the detection and attribution of 
climate change signals.  Long-term trends linked to the 2010 summer rainfall saw an intensification of the pre-
monsoon trough phase only.  Diagnostic analyses support such intensification as part of a long-term (and ongoing) 
process—an observation consistent with expectations from a warming and moistening lower troposphere.  
Conversely, evidence does not support long-term intensification of the August monsoon trough phase in northern 
Pakistan, nor any trend in the northward extension of the monsoon rainband (other than that accounted for via 
internal climate variability such as the La Niña).   

Large-scale circulation analysis suggests that the typical linkage between increased monsoon rains in northern 
Pakistan and enhanced anticyclones in the upper troposphere has changed, such that cyclonic anomalies combined 
with enhanced conditional instability (i.e., due to a warming surface and increasing moisture supply) could also 
trigger intense precipitation—a process substantiated through the unambiguous increase in convective activity.  
Various global reanalyses agree that the circulation pattern in July 2010, while abnormal, is not sporadic.  Instead, 
it is part of a long-term trend of the larger-scale circulation that defies the typical monsoon dynamics expected in 
northern Pakistan (i.e., strong monsoons associated with upper-level anticyclones).  At this point it is reasonable to 
conclude that the increased convective activity in northern Pakistan is not only a result of unusual circulation 
anomalies (i.e., internal variability), but rather is a combined process of circulation changes acting on local 
destabilization due to warming and moistening of the lower troposphere (i.e., internal + external variabilities).  This 
process may, at least partially, explain the observation by Houze et al. (2011) that “the rainstorms responsible for 
the floods were of a type that does not normally occur in this region.” 
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1. Introduction 

The record-breaking tornado activity of spring 2011 highlighted both the large impact of tornadoes on 
human life and property (an estimated 336 tornadoes during the April 2011 “Super Outbreak” killed 346 
people and caused total damages estimated as high as $10 billion) and the difficulty of attributing increased 
tornado activity to large-scale climate phenomena such as La Niña or climate change. 

Many studies have successfully associated tornado activity with immediate observed environmental 
parameters (Brooks et al., 1994; Brooks et al., 2003). Observations and short-term predictions of these 
environmental parameters provide guidance for forecasters who currently issue severe thunderstorm outlooks 
up to one week in advance and tornado warnings when tornadoes appear imminent (Shafer et al., 2010). 
Relatively few studies have related seasonal or monthly tornado activity with time-averaged climate 
phenomena, though the roles of ENSO and the Intra-Americas Sea low-level jet have investigated on such 
time-scales (Cook and Schaefer, 2008; Muñoz and Enfield 2011). 

The identification of associations between tornado 
activity and environmental parameters on seasonal or 
monthly time-scales is highly desirable since such 
associations would help to explain observed variability and 
could provide a path toward extended-range prediction of 
tornado activity. Here we investigate the connection 
between monthly tornado activity and atmospheric 
parameters using an empirical “tornado index” constructed 
to represent the expected monthly tornado activity 
conditional on the local environment.  A similar index-
based approach has been used in the study of tropical 
cyclone (TC) formation, identifying favorable 
environmental factors and capturing features of 
climatological and interannual TC genesis variability  
(Camargo et al., 2007; Tippett et al., 2011). We find that 
the tornado index constructed here is able to reproduce 
aspects of climatological and interannual variability. 

2. Data and methodology 

2.1 Tornado data 
U.S. tornado data covering the period 1979-2010 are 

taken from the Storm Prediction Center Tornado, Hail and 
Wind Database (Schaefer and Edwards, 1999). There are 
substantial inhomogeneities in the reported data.  An 

Fig. 1 Colors indicate the (a) observed and (b) 
Poisson regression (PR)-fit number of 
tornadoes for the period 1979-2010. 

120W 100W  80W  60W

30N

40N

50N
(a) observed number of tornadoes 1979−2010

 

 

0 25 50 75 100 125 150

120W 100W  80W  60W

30N

40N

50N
(b) PR number of tornadoes 1979−2010

 

 

0 25 50 75 100 125 150



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

 

70 

adjusted1 annual number of U.S. tornadoes can be computed using a trend line for the period 1954-2007 and 
taking 2007 as a baseline.  We compute a monthly tornado climatology by counting for each calendar month 
the number of reported tornadoes in each grid box of a 1 x 1 degree latitude-longitude grid.  There is no 
adjustment for trends in the computation of the gridded monthly tornado climatology, likely leading to an 
underestimate of the climatological number of tornadoes. 

2.2 NARR data 
Monthly averaged environmental parameters are taken from the North American Regional Reanalysis 

(NARR; Mesinger and Coauthors, 2006). NARR data are provided on a 32-km Lambert conformal grid which 
we interpolate to a 1 x 1 degree latitude-longitude grid.  We primarily select environmental parameters that 
have been recognized as being relevant to tornado formation (Brooks et al., 1994; Brooks et al., 2003): 
surface convective available potential energy, surface convective inhibition, best (4-layer) lifted index, the 
difference in temperature at the 700 hPa and 500 hPa levels divided by the corresponding difference in 
geopotential height (lapse rate), the average specific humidity between 1000 hPa and 900 hPa (mixing ratio), 
3000-0m storm relative helicity, the magnitude of the vector difference of the 500 hPa and 1000 hPa winds 
(vertical shear), precipitation, convective precipitation and elevation. Lapse rate and vertical shear are 
computed using monthly averages of the constituent variables. 

2.3 CFSv2 reforecasts 
Forecast data comes from reforecasts of the Climate Forecast System version 2 (CFSv2), the successor of 

the CFS version 1 (Saha et al., 2006) with improved physics, increased resolution and overall improved skill 
(Yuan et al., 2011). CFSv2 reforecasts are initialized using the Climate Forecast System Reanalysis, a 
coupled data assimilation system (Saha et al., 2010).  Over the 29-year reforecast period 1982-2010, single 
member ensemble forecasts are started every 5 days (without accounting for leap year days) at 0, 6, 12 and 
18Z and integrated for 9 full months. Zero-lead forecasts are initialized in the month prior to the month being 
predicted or in the first pentad of the month being predicted. Here we use the most recent 16 ensemble 
members. 

2.4 Poisson regression 

We relate the climatological monthly number of U.S. tornadoes with climatological monthly averages of 
NARR atmospheric parameters using a Poisson regression (PR), the standard statistical method for modeling 
of count data. A similar method was used to develop a TC genesis index (Tippett et al., 2011). Fitting 
climatological data avoids many of the issues related to inhomogeneity in the observational record. Moreover, 
fitting the PR with climatological data means that the yearly varying data provide an independent test of the 
PR fit. 

To select the parameters to include in the PR, we 
perform a forward selection procedure in which one 
variable is added at a time to the PR, and the variable 
whose addition most reduces the deviance is 
identified.  The deviance is computed using 10-fold 
cross-validation in which the data is randomly 
separated in 10 subsets, 9 of which are used to 
estimate the regression coefficients, and one is used 
to compute the deviance. Using 10 partitions, we 
obtain 100 estimates of the deviance. There is a 
substantial decrease in the deviance as the number of 
environmental parameters is increased from 1 to 2, 
but further increases in the number of environmental 
parameters do not result in significant (95% level) 
decreases in deviance. 

                                                 
1 http://www.spc.noaa.gov/wcm/adj.html 
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Fig. 2  Observed (gray) and Poisson regression (PR)-
fit (black) number of tornadoes per month during 
the period 1979-2010.
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3. Results 

The spatial distribution of the total number of reported tornadoes 1979-2010 and the corresponding PR-fit 
values are similar (Fig. 1). The dominant feature is the so-called ``Tornado Alley'' running north-south in the 
Central U.S. Observations and PR-fit values show few tornadoes west of the Rocky Mountains and over the 
Appalachian Mountains.  Relatively high tornado activity is observed in northeastern Colorado and Florida 
but is not seen in the PR-fit values.  This difference may be due to non-supercell tornadoes being common in 
both of these areas (Brooks and Doswell, 2001) while the PR focuses on quantities related to supercell 
dynamics.  Tornado activity along the coasts of the Atlantic seaboard states are seen in both observations and 
PR-fit values. The observed and PR-fit seasonal cycles of tornado occurrence have similar phasing and 
amplitude (Fig. 2) with maximum values occurring in May, followed closely by those of June. There is no 
explicit accounting for seasonality in the PR; seasonality comes from the environmental parameters. PR-fit 
values are too small during May and June and too large in late summer and autumn. 

Table 1  Correlation between reported number of tornadoes and North American Regional Reanalysis 
(NARR) Poisson regression estimates by month 1979-2010. 

Although the PR fits well the climatological tornado data on which it was developed, there is no 
assurance that the same relations are relevant to year-to-year tornado activity variability. However, when the 
PR developed with climatological data is applied to yearly varying monthly values (1979-2010), the PR-
estimated values correlate well with the observed monthly number of tornadoes (Table 1); the seasonal cycle 
is removed and does not contribute to the monthly correlations. The correlation between the observed annual 
number of tornadoes and that given by the PR is 0.51, and this value increases to 0.64 when observations are 
adjusted to account for changes in 
observing system (Fig. 3a). Notable 
also is the PR value of 501 for 
April 2011, the most active U.S. 
tornado month on record (Fig. 3b).  

The demonstrated relation 
between monthly averaged 
environmental parameters and 
monthly tornado numbers provides 
an approach for extended-range 
forecasts. One first predicts the 
environmental parameters in the 
PR and then uses the PR to predict 
the impact of those parameters on 
tornado activity. We assess the 
feasibility of such a forecast 
procedure using the CFSv2 
reforecasts of monthly averaged 
environmental parameters. 
Correlations between observed 
numbers of tornadoes and PR-
estimated values are computed by 
month. For the most part the 
correlations are modest. However, 
the June correlation is particularly 
strong (0.79), though the CFSv2 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

0.75  0.64  0.54  0.50 0.60 0.67 0.75 0.40 0.15 0.25 0.48 0.74 

Fig. 3  Observed (gray), trend adjusted observations (dashed gray) and 
Poisson regression (black) (a) annual and (b) April numbers of 
tornadoes during the period 1979-2010. The dashed black line in 
panel (a) is the 1954-2007 trend-line used in the adjustment. Panel 
(b) includes the April 2011 Poisson regression value. 
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predicted values have low amplitudes compared to observations (not shown). 

4. Conclusions 

We have shown that monthly U.S. tornado activity can be related to observed monthly-averaged 
environmental parameters and that Poisson regression can be used to construct an index that captures aspects 
of the climatological and year-to-year variability of tornado activity. To the extent that the index can be 
forecast skillfully, it provides a basis for monthly tornado activity forecasts.  The same procedure based on an 
operational seasonal forecast model shows significant skill in forecasting June tornado activity. 
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1. Basics 

Given is a data set X(s,t) at discrete positions in time (equidistant 1 ≤ t ≤ nt) and space(1 ≤ s ≤ ns). 
The concept of EOFs is such that the data set X(s,t) can be written as 

X (s, t) = ∑m αm(t) em(s)                                                                   (1) 

where both  
 ∑t αm(t) αn(t) = 0                                                                 (1a)  
and  
 ∑s w(s) em(s) en(s) = 0                                                                 (1b)   

for any pair n ≠ m. One EOF, mode m, consists of a time series αm(t) and a space pattern em(s).  w(s) 
is a weight that varies in space (depending on the type of grid or the station distribution used). The 
summation over m has to be over a sufficient number of modes (<= the smaller of nt and ns ) to 
achieve the equal sign in Eq(1).  Orthogonality of the set αm(t)  alone (1b), or the set em(s) alone (1a), 
is sufficient to satisfy (1) – the bi-orthogonality (both (1a) and (1b) valid) is one of the features that 
makes EOFs unique compared to other orthogonal functions. 
2. Orthogonality relations 

Multiply the lhs and rhs of (1) by αk(t) and sum over all times t (k is a specific mode number). Using (1a) 
the result is: 
 em(s) = ∑t αm(t) X (s, t) / ∑ t α2

m(t)                                        (2a) 

Likewise, multiply the lhs and rhs side of (1) by ek(s) and sum over all space s with weight w(s). Using (1b) 
the result is: 

 αm(t) = ∑s  w(s) em(s) X (s, t) / (∑s w(s) e2
m(s))                                       (2b) 

The above are the orthogonality relationships we will employ in the iteration. They state, (2a), that the 
space pattern of a particular mode can be calculated by projecting the data X onto the time series of that mode, 
and (2b) that by projecting the data X onto a space pattern the associated time series can be retrieved. These 
calculations are quite simple. 

3. The iteration method   

The above is abstract since we don’t know yet the EOFs. We only know the data X(s,t). Now randomly 
pick (or make) a guess time series α0(t), and stick into (2a). This yields a pattern, the starting guess for the 
space pattern, denoted as e0(s). Stick e0(t) into (2b). This yields α1(t). This two-step process is counted as one 
iteration. With only a few more iterations one generally converges quickly to the first EOF α1(t), e1(s). We 
now form a reduced data set as   

Xreduced(s,t) = X(s,t) - α1(t) e1(s)   (3)  

and repeat the procedure. One now finds mode#2, reduces further etc. It does not matter whether one starts the 
iteration with a guess time series or a guess spatial map. 
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The above describes tersely how a number of (leading) EOFs can be calculated rather quickly. Some 
examples are given in Appendix II. Please note that EOFs can thus be calculated without explicitly evaluating 
the covariance matrix. 

4. Discussion 

The iterative method of calculating EOFs is not widely known in meteorology and climatology. The 
above was described once before in an appendix in an earlier paper (Van den Dool et al. 2000) and possibly 
elsewhere even earlier. A paper by Baldwin et al. (2009) drew attention to iterative projection methods as 
being particularly useful for calculating EOFs from VERY LARGE data sets. Why? Commonly known and 
widely used methods determine EOFs as eigenvectors of the covariance matrix, but to determine the 
covariance matrix is a huge computational task when the dimensions of the data matrix X are very large. This 
situation arises for any modern Reanalysis, even for a single variable.  

Some in the audience of CDPW#36 thought of the above projection method (a ping-pong between (2a) 
and (2b)) as simple and instructive, and therefore useful regardless of the size of the problem. Advantages in 
terms of CPU are none (to write home about) for a small problem, but at least the code is short. The iteration 
is a factor 30 faster (than the route via the covariance matrix) for a problem where ns and nt are order 4000. 
When ns and nt go higher (10,000 or 100,000) the covariance matrix method quickly becomes ‘impossible’ 
(depending on computer and smarts of programmer), while iteration is still possible (although not 
inexpensive). 

Why does the iteration method work? Apparently, the reason is the same as the reason why the “power 
method” works. Suppose we do know the (real, square and symmetric) covariance matrix Q = either XTX or 
XXT. A guess e0(s) can always be written as a linear combination of projections onto the unknown EOFs:  

e0(s) = ∑m αm em(s)                                                                             (4) 

Keep in mind Q em = λm em by definition. Execution of Q e0  (which is done for the power method) thus yields 
∑m λm αm em(s), i.e. the projection onto em(s) gets multiplied by the eigenvalue of that mode during each 
iteration. Consequently the projection onto the gravest modes is amplified relative to the lesser modes, and the 
iteration converges to mode#1. In the classic power method this process may require renormalizations, but 
with (2a)-(2b) this is done automatically. Curiously, iteration works for the same reason as the power method 
even though Q is not calculated. 

Theoretically the iteration method may fail, if, for instance, we have two EOF modes with EXACTLY 
identical eigenvalue. This never happens. Likewise, if we came up with a guess that has no projection onto 
any mode the method will fail. No worry about that either on finite precision machines. What is a problem is 
that after calculating ten or a hundred EOF modes, the remaining spectrum is very flat, and convergence of 
the iteration becomes slower and slower. One would have to iterate longer and longer for less and less added 
variance. This circumstance kills the method as an improvement over the covariance matrix based approach 
when too many modes are required. Truncation is in order somewhere. 

In Toumazou and Cretaux (2001) some sort of attempt is made to systematically list EOF calculation 
methods. According to these authors there are three groups of approaches. The first is to (i) calculate singular 
vectors from the rectangular asymmetric X. The second and third group of methods use directly or indirectly 
(properties of) the square symmetric and real covariance matrix to apply either (ii) the eigenmode method 
called QR method, or (iii) a Lanczos strategy. It is not 100% clear where the iterative projection described in 
the above fits in this list, and whether Toumazou and Cretaux’s list is even complete. Iterative projection 
appears closest to the Lanczos method. Incidentally, the connection between eigen vectors of the covariance 
matrix and singular vectors of the data matrix is given in Appendix I. 

Acknowledgement.  Discussions with Gaby Hegerl and Chris Bretherton (in about 2001) clarified why the 
iteration method works. The paper by Mark Baldwin in 2009 gave impetus to apply the iteration method to a 
huge data set like Reanalysis data. I do acknowledge heroic attempts by Bob Kistler, using all the computer 
tricks known to mankind, to calculate Q. Suranjana Saha made the CFSR data available. Input by Michael 
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Tippett on a systematic list of EOF methods is much 
appreciated. The appendix was copied (and adjusted) from 
Wikipedia. 
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Appendix I: 

Formally, the singular value decomposition of an nt×ns 
real matrix X is a factorization of the form X = U Σ 
VT ,where U is an ns×ns real matrix, Σ is an ns×nt diagonal 
matrix with nonnegative real numbers on the diagonal, and 
VT (the transpose of V) is an nt×nt matrix. The diagonal 
entries Σi,i of Σ are known as the singular values of X. The 
m columns of U and the n columns of V are called the left 
singular vectors and right singular vectors of X, 
respectively. 

Singular value decomposition and eigen-
decomposition are closely related. Namely: The left 
singular vectors of X are eigenvectors of XXT . The right 
singular vectors of X are eigenvectors of XTX. The non-
zero singular values of Σ are the square roots of the non-
zero eigenvalues of XTX or XXT  

Appendix II: Some examples  

First is a low resolution example when the covariance 
matrix can comfortably be calculated.  We use JFM 
seasonal Z500 mean over the period 1948-2011 at 2.5 
degree grid north of 20ºN.  There are 64 time levels and 
144*29=4176 gridpoints, a ‘small’ problem nowadays. 
Fig.1 shows that the first four EOFs are the same for the 
covariance matrix method (top) and iteration method 
(bottom). This result establishes that the iteration methods 
(a completely different code) works.  The reader will also 
recognize renditions of the NAO and PNA as the first two 
modes. 

Fig.1 The first four EOFs for three month mean JFM Z500 for the area 20ºN-pole, and 1948-2011. The four 
panels on the top (bottom) are calculated as eigenvectors of the covariance matrix (based on iteration). Blue 
is negative, red positive. The space patterns are normalized, so the decreasing variance can be seen in the 
smaller amplitude of the time series. 
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Figure 2 shows the successive states obtained by the first four iterations. We start from an absurd first 
guess (upper left), a wheel, that after just one iteration already takes on the familiar features of the first EOF 
looking like the NAO. Both in terms of space pattern and time series we quickly arrive at the first EOF, which 
was given in upper left in Fig.1. Regardless of the first guess we always converge to the first EOF, although it 
may take more iterations if the first guess happens to be close to the 2nd EOF (the PNA); example given in 
CDPW ppt, but not shown. 

Figure 3 is testimony that we achieved 
something rather unlikely, namely we calculated 
the first 200 EOFs of a data set of year-round daily 
(1979-2010; nt = 11688) global full resolution 2 
meter temperature data (at ns = 663552 Gaussian 
gridpoints) produced by CFSR (Saha et al. 2010). 
To be frank: we did the iteration at lower spatial 
resolution for speed, and made only the final 
iteration on full resolution. We are not sure that 
these are the true EOFs beyond about mode#25, 
because convergence appears to be an issue. This 
qualified success is nevertheless noteworthy and 
may potentially be considered a big plus for data 
compression and data transmission issues. 

 

 

 

Fig. 2  Successive states obtained by iteration starting 
with an arbitrary (even non-meteorological) field in 
the upper left (a ‘wheel’). The time series in the 
upper left shows small projections onto the first 
guess space patterns – but this is enough to make 
just a single iteration very efficient.  The path to 
EOF#1 appears very quick. 

Fig. 3  The variance explained (EV) of daily year-
round global 2 meter temperature (given on a 
T384 grid, 1979-2010) by EOF modes calculated 
one by one by the iteration method. The blue 
line is EV by mode, the red line cumulative. The 
high EV of the first mode (>70%) is reflective of 
the role of the enormous annual cycle in T2m on 
earth.  
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1. Introduction 

Dynamical seasonal forecasts using coupled models, i.e., 1-tier approach, are now routinely made at many 
operational centers in the world. For example, among twelve Global Producing Centers (GPCs) that have 
contributed for providing their own real-time seasonal forecast to WMO Lead Center for Long-Range 
Forecast Multi Model Ensemble (LC-LRFMME), seven centers are using coupled models while only five 
centers are still based on two-tier approach. The rapid transition from two-tier to one-tier approach in seasonal 
forecast are mainly caused by recent progresses in development of coupled climate models and enlargement 
of understanding air-sea interactions obtained from international collaborative efforts such as TOCA program 
(Wang et al., 2009). In this context, Korea Meteorological Administration (KMA), as the WMO LC-
LRFMME jointly with NOAA and one of the GPCs, is also trying to replace its operational seasonal forecast 
model with a coupled model by the collaboration with U. K. Met Office.   

Recently, the GloSea4 (Global Seasonal Forecasting System version 4) of the Met Office based the 
HadGEM3-AO was implemented and hindcast ensemble simulations for 14 years from 1996 to 2009 have 
been accomplished.  The purpose of this article is to introduce the KMA-Met Office Joint Seasonal 
Forecasting system and to evaluate overall performance of its retrospective seasonal forecast particularly in 
terms of predictability and skill scores. Section 2 briefly describes the joint forecast system, the model, and 
design of hindcast simulations. Results of predictability and skill scores on sea surface temperature, 
precipitation and surface air temperature are shown in Section 3. Finally, Section 4 summarizes the results 
and further works for the operation of joint system. 

2. GloSea4 and its Hindcast Simulations  

2.1 GloSea4 and Joint Forecasting System 

GloSea4 is the fourth version of the Met Office seasonal ensemble prediction system based on the latest 
version of HadGEM3 (Hewitt et al., 2010). It consists of the UM (Met Office Unified Model) for atmosphere, 
NEMO (Nucleus for European Modeling of the Ocean) for ocean, CICE (Los Alamos sea ice model) for sea 
ice, and MOSES (Met Office Surface Exchange Scheme) for land surface components with OASIS flux 
coupler. The spatial resolution in the current configuration (GA 2.0) is N96L85 for atmosphere, which is 
approximately 135 km in the horizontal with 85 vertical levels, and tri-polar ORCA1L75 for ocean, in which 
the horizontal grid distance are 1 degree with 1/3 of a degree between 20oS and 20oN with 75 vertical levels 
from the sea surface to the bottom. Details of the GloSea4 description are given in Arribas et al. (2011).   

One of the distinctive features of the GloSea4 compared to other typical seasonal forecasting system 
including the current LRF system at KMA, i.e., Global Data Assimilation and Prediction System (GDAPS), is 
that both the hindcast and forecast suites are run simultaneously, which allows preventing quite a burden of 
resources for producing model climatology a prior to make seasonal forecast if any modification of the system 
and/or bud fix is necessary. Hindcast and forecast suites are initialized with the weekly-based time cycle so 
that they can update initial conditions nearly real-time, which is quite valuable to maintain consistency from 
short-to-long-range forecasts.  Eventually, the major benefit of KMA-Met Office joint forecasting system is to 
reducing uncertainties of seasonal forecast by share ensemble members as many as possible from two centers 
for both the hindcast and forecast suites. The only differences will be the initial condition for atmosphere that 
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comes from each center’s own 4DVAR system. At this moment, since the KMA does not have its own ocean 
and sea-ice data assimilation system, initial conditions for ocean and sea-ice will be obtained from the Met 
Office. 

2.2 Hindcast Simulations 

  The ECMWF-interim reanalysis (ERA-interim) is used to initialize the atmosphere and land surface 
because there is no atmospheric reanalysis available for the HadGEM3-AO. In the case of land surface 
variables, an anomaly initialization approach, in which ERA-interim anomalies are calculated and then added 
to the HadGEM3 model climatology, is followed to avoid the inconsistency from the very different land 
surface model used in HadGEM3 and ERA-interim reanalysis. The ocean field is initialized in the same way 
as in the forecast suite, i.e., the GloSea4 Ocean Data Assimilation scheme which consists of a parallel version 
of the Met Office optimal interpolation scheme used for short-range ocean forecasting, except for the fact that 
atmospheric fluxes to force the ODA scheme are obtained from the ERA-interim rather than from the 
operational NWP system.  The hindcast period is 14 years from 1996 to 2009. Initial dates are 1st, 9th, 17th, 
and 25th of each month. In order to generate ensemble members by considering model uncertainties, 3 
members per each initial date are generated using the stochastic kinetic energy backscatter scheme version 2 
(SKEB2) (Shutts, 2005).  Therefore, in total, number of 7-month-long integration of the GloSea4 system is 
2,016. 

3. Results 

The observation dataset used for evaluation of the GloSea4 in this study are Hadley Center’s sea surface 
temperature, CMAP precipitation, and ERA-interim reanalysis for the surface air temperature. 

3.1 Sea Surface Temperature 

Figure 1 shows the bias of seasonal mean SST from 1-month and 3-month lead forecasts. As forecast 
lead-time increases, in general, the SST bias also increases. In the results of 1-month lead forecasts, the 

Fig. 1  Biases of seasonal mean SST for boreal summer (upper) and winter (lower) seasons. Left and right 
panels are obtained from the results one and three months’ forecasting lead-time simulations. 
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strongest cold bias appears along the 
equatorial Pacific both for the boreal 
summer and winter seasons. The spatial 
pattern of SST bias seems to be somewhat 
systematic, particularly in the southern 
Hemisphere, which shows overall cold bias 
in JJA but warm bias in DJF season.  
Despite the general increase in the 
amplitude of SST bias according to the 
forecast leading time, its spatial structure is 
fairly similar and persistent to each other.  
On the contrary to the skill scores (e.g., 
bias or anomaly correlation) that indicate 
the performance of the model against the 
observation, signal-to-noise ratio is a 
measure of predictability that implies that 
how much the each ensemble member 
spreads compared to ensemble mean 
variance. The results of signal-to-noise 
ratio show also persistent spatial patterns 
with decreasing values according to the 
forecast leading months (not shown). As 
expected, predictability in boreal winter 
season is higher than in summer season 
regardless to the forecast leading time. 

Anomaly correlations of the NINO3.4 
SST anomalies for the four different initial 
months are shown in Figure 2. Each month 
has 12 ensemble members with time-
lagged initial dates and SKEB2 physics. 
Overall, skill scores for NINO3.4 index are 
higher in cold season than in warm season. 
The skill score drops rapidly from April to 
July from the simulations initialized on 
February and November, which is 
associated limitation of predictability of 
SST during the spring time, called “spring 
barrier”. The spring barrier issue is one of 
the common problematic features in 
coupled GCM, and suspected to be 
associated with failure of surface wind 
stress over the equatorial Pacific. It is 
interesting to note skill score for the JJA 
forecast is relatively lower than other 
seasons in the beginning of the forecast, 
however; the score remains with persistent 
and relatively higher values for the longer 
forecast lead-time. The red lines in Figure 
2 denote the score calculated from the 
ensemble mean, and black solid, dashed 
and dotted lines are average, maximum and 
minimum values from each individual 

Fig. 2  Correlation skill for the SST anomaly averaged over the 
NINO3.4 area from the simulations initialized in February, 
May, August, and November. 

Fig. 3  The first (left panel) and second (right panel) leading EOF 
modes for the SSTA averaged over 10S-10N. Black, blue, 
green, and red lines indicate observation, GS4 results with one, 
two, and three month lead time, respectively. 
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ensemble members. It is clearly recognized that scores from the ensemble mean are quite close to the 
maximum scores of individual member, or in some cases, it is superior to maximum of individual ensemble 
members. 

In order to investigate SST 
variability, EOF analysis was conducted 
for the SST anomaly against the 
latitudinal mean between 10oS~10oN 
(Fig. 3). During the boreal summer (JJA), 
the observed leading mode represents a 
peak SSTA in the Nino 3 region rather 
than 3.4 region (lower left in Fig. 3). 
Meanwhile, that of boreal winter (DJF) 
is apparent in somewhat wide areas 
including both the Nino3.4 and Nino 3 
areas. Those patterns of leading mode of 
SSTA along the equator are captured 
pretty well by the GloSea4. In JJA, the 
variability of SST over central Pacific 
tends to be overestimated by the 
GloSea4, which are getting stronger to 
the longer forecast lead-time. From the 
second leading mode during DJF season, 
the area of strong variability extends 
westward in results from the GS4 
compared to the observation. 

3.2 Precipitation and Surface Air 
Temperature 

Since the hindcast period of the GloSea4 is somewhat short (only 14 years), the corresponding correlation 
value with 0.05 and 0.01 significance levels are somewhat higher which are about 0.45 and 0.61, respectively. 
As like in other coupled seasonal forecasting system, significant anomaly correlation scores for the surface air 
temperature and precipitation are concentrated mainly over tropical regional about between 20oS-20oN (Fig. 
4). It is clear that anomaly correlation scores are decreasing rapidly in accordance with the forecast leading 
month. East Asia region, in which the skill scores are quite low as in other extra-tropical areas, meaningful 
scores with 0.05 significance levels are limited only spring and autumn seasons surface air temperature in 
cases of less than three months’ forecast leading time (not shown). Nevertheless, in terms of practical sense of 
seasonal forecast, it is promising to note that biases of surface air temperature and precipitation over East Asia 
are quite systematic and persistent as a function of forecast leading months. 

4. Summary and Further Works 

In this study, overall skill of the GloSea4 system, which will be operated as an operational seasonal 
forecasting system at KMA and joint system between KMA and Met Office, have been examined. The skill 
scores obtained from hindcast ensemble simulations seem to be comparable against with other coupled 
climate models. However, it should be carefully investigated within intercomparison framework to find out 
strength and weakness of the GloSea4. Robust evaluation of hindcast ensemble runs including the Asian 
monsoon, sub-seasonal variability such as MJO and their impacts over Asia should be further investigated. In 
addition, horizontal resolution both for the atmosphere and ocean will be increased a prior to the operation up 
to N216 (~ 60 km) and quarter degrees (in extra-tropical region), respectively. 
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Fig. 4  Anomaly correlation of surface air temperature (upper) and 
precipitation (lower) for JJA (left panel) and DJF (right panel). 
Blue, green, and red lines indicate one, two and three months’ 
forecast leads. 
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1. Introduction 

 The Tropical Meteorology Project (TMP) at Colorado State University (CSU) has been issuing Atlantic 
basin seasonal tropical cyclone (TC) forecasts in early June with an update in early August since 1984 (Gray 
1984).  While these forecasts have shown moderate skill in real-time (Klotzbach and Gray 2009) (Figure 1), 
this paper investigates the potential to improve this skill through the development of a new, simplified early 
August seasonal prediction scheme that uses newer reanalysis data along with forecasts of El Niño – Southern 
Oscillation (ENSO) from a dynamical model.  This paper briefly discusses the results of this new, primarily 
statistically-based, forecast scheme.  Full documentation is available in Klotzbach (2011).   

2. Data 

All tropical cyclone (TC) data 
for this project were taken from 
the National Hurricane Center’s 
“best track” dataset (Jarvinen et al. 
1984).   The target forecast metric 
is Net Tropical Cyclone (NTC) 
activity, which is defined to be the 
sums of the following six 
parameters: named storms, named 
storm days, hurricanes, hurricane 
days, major hurricanes and major 
hurricanes days, normalized by 
their 1950-2000 average values. 
Consequently, 100 NTC units is 
an average season by definition. 

 Large-scale data for the 
period from 1982-2009 were 
calculated from the newly-
developed Climate Forecast System Reanalysis (CFSR) product (Saha et al. 2010).  Improved coupling, 
vertical resolution and data assimilation are generally considered to make the CFSR a more accurate product 
than its predecessor, the NCEP/NCAR Reanalysis I (Kistler et al. 2001).  However, the CFSR is currently not 
available in real-time, so consequently, NCEP/NCAR Reanalysis I products are used to estimate predictor 
values in real-time forecasts.  Testing of atmospheric predictor values prior to 1982 was done using the 20th 
Century Reanalysis (Compo et al. 2011).    

Sea surface temperatures (SSTs) from the NOAA Optimum Interpolation SST (OI SST) version 2 are 
utilized from 1982-present (Reynolds et al. 2002).  Prior to 1982, SST measurements are calculated from the 
NOAA Extended Reconstructed SST v3b dataset (Smith et al. 2008).   

ENSO hindcasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal 
forecast system 3 model (Stockdale et al. 2011) were provided by Frederic Vitart.   

Figure 1  Real-time predicted vs. observed post-31 July Atlantic Basin 
hurricanes issued by the TMP from 1984-2010. 
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3. Forecast model development 

Predictors were selected from the CFSR and 
NOAA OI SST datasets.  Precursor signals were 
investigated during the June-July time period, to 
find areas that had the strongest correlation with 
NTC activity over the period from 1982-2009 (the 
overlapping period for both datasets).   Only low-
level fields were investigated (e.g., sea level 
pressure, surface zonal wind), as these predictors 
were deemed to be more reliable during the earlier 
part of the 20th century, and the intention was to 
be able to test the skill of these predictors on 
earlier-period data.  In addition, the ECMWF 
model’s forecasts were examined to determine if 
they showed significant skill in predicting ENSO 
from 1 July issue date.  The ECMWF model’s September forecast for the Nino 3 region (5°S-5°N, 150-90°W) 
was quite impressive, correlating with observations at 0.90 over the period from 1982-2010.  Predictors were 
only added if they explained an additional three percent of the variance from 1982-2009, and strong physical 
linkages between each predictor and TC activity were required to have been demonstrated.  Each predictor 
was also required to significantly correlate with NTC over the period from 1982-2009, using a one-tailed 
Student’s t-test.  When this predictor qualification procedure was employed, a total of three predictors were 
selected.  These three predictors are displayed in Figure 2.  

Predictor Type Predictor Location 
Linear Correlation  

with NTC (1982-2010) 

June-July SST 20-50°N, 35-15°W 0.67 

July 10 meter U 10-17.5°N, 80-40°W 0.83 

ECMWF September SST Forecast 
(Model Initialized 1 July) 5°S-5°N, 150-90°W -0.49 

Table 1  Predictors selected for the post-1 August NTC forecast.  Also presented are the linear 
correlations between each individual predictor and post-1 August NTC.  

Table 1 displays each predictor’s 
individual correlation with NTC over the 
period from 1982-2009.  All correlations are 
statistically significant at the 99% level using 
a one-tailed Student’s t-test and assuming that 
each year represents an individual degree of 
freedom. 

A full discussion of each predictor’s 
individual relationship with NTC is discussed 
in Klotzbach (2011).  All predictors are 
closely related to either the Atlantic Warm 
Pool (AWP) or ENSO, which have both been 
documented in many previous papers (e.g., 
Gray 1984, Wang and Lee 2007) to have a 
significant impact on Atlantic TC activity 
levels, through alterations in large-scale 

Figure 2  Predictors selected for the new early August 
statistical forecast model for post-31 July NTC in 
the Atlantic basin. 

Figure 3  Observed versus post-31 July model jackknifed 
NTC hindcast over the period from 1982-2010.  The 
three-predictor model explains 72 percent of the 
variance in post-31 July NTC.
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dynamic (e.g., wind shear, low-level vorticity) and thermodynamic (e.g., SST, mid-level humidity) properties. 

These three predictors were then combined using linear 
regression.  When they were combined and a drop-one cross 
validation technique was applied, the linear regression model 
explained 72 percent of the variability in post-31 July NTC 
(Figure 3). 

4.  Earlier period (1900-1981) model verification 

The forecast model outlined in the previous section was 
then examined for similar levels of skill during the earlier 
part of the 20th century (from 1900-1981).  Since the 
ECMWF forecast model hindcasts are not available prior to 
around 1980, observed values of the Nino 3 index were used 
for verification, effectively assuming a perfect ENSO 
forecast.  The ECMWF model correlated with observations 
at 0.90 over the 1982-2010 period, so assuming a perfect 
forecast during the earlier part of the 20th century is not too 
much of a stretch. 

Table 2 displays the correlations between each predictor 
and post-31 July NTC for the 1900-1981 period, as well as 
the 1900-1947 and 1948-1981 sub-periods, respectively.  
Correlations are lower than for the 1982-2010 period; 
however, they remain significant at the 90% level using a 
one-tailed Student’s t-test.  In addition, one would expect 
some degradation in correlation, since both observed large-
scale fields (e.g., SLP, SST, low-level wind) as well as TC 
activity have greater uncertainties associated with them as 
one goes back further in time. 

5.  New Forecast Model’s Improvement upon Klotzbach (2007) Model 

This newly-developed forecast model shows modest improvement upon the earlier model developed by 
Klotzbach (2007).  While both models improve significantly upon climatology over the period from 1982-
2010, the new model has a smaller mean absolute error than the Klotzbach (2007) model 66% of the time, 
while also explaining an additional 20% of the variability from climatology (Figure 4).  
6.  Conclusions and future 
work 

A newly-developed early 
August statistical forecast 
model for post-31 July NTC 
prediction in the Atlantic basin 
shows significant levels of skill 
compared against a 
climatological forecast.  The 
new model utilizes a total of 
three predictors, which are all 
closely related to either ENSO 
or the AWP.  The combination 
of these predictors explains 72% 
of the variance in cross-
validated post-31 July NTC 

1900-1981 
Predictor Number (Name) NTC 

1 (Subtropical Atlantic SST) 0.31 
2 (Tropical Atlantic U)  0.41 
3 (Observed September Nino 3) -0.32 

1900-1947 
Predictor Number (Name) NTC 

1 (Subtropical Atlantic SST) 0.34 
2 (Tropical Atlantic U)  0.50 
3 (Observed September Nino 3) -0.46 

1948-1981 
Predictor Number (Name) NTC 

1 (Subtropical Atlantic SST) 0.25 
2 (Tropical Atlantic U)  0.48 
3 (Observed September Nino 3) -0.25 

Table 2  Correlation between predictors and 
post-1 August NTC over the period from 
1900-1981, 1900-1947, and 1948-1981, 
respectively.  

Figure 4   Observed post-31 July NTC (black line), Klotzbach (2007) 
statistical model forecasts of post-31 July NTC (red line) and Klotzbach 
(2011) statistical model forecasts of post-31 July NTC (blue line).  The 
Klotzbach (2011) shows improved forecast skill when compared with 
Klotzbach (2007). 
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activity. 

In the future, additional predictors will be considered including mid-level moisture predictors (such as 
500-mb relative humidity).  Also, since the ERA-Interim Reanalysis has recently been extended backward to 
1979 (Dee et al. 2011), this reanalysis product will also be evaluated for forecast development potential. 
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The CWRF has been developed as the Climate extension of the Weather Research and Forecasting model 
(WRF, Skamarock et al. 2008) by incorporating numerous improvements in representation of physical 
processes and integration of external (top, surface, lateral) forcings that are crucial to climate scales, including 
interactions between land–atmosphere–ocean, convection–microphysics and cloud–aerosol–radiation, and 
system consistency throughout all process modules (Liang et al. 2011). This extension inherits all WRF 
functionalities for numerical weather prediction while enhancing the capability for climate modeling. As such, 
it can be applied for seamless weather forecast and climate prediction. The CWRF has been built with an 
unprecedentedly comprehensive ensemble of alternative parameterization schemes for each of the key 
physical processes, including surface (land, ocean), planetary boundary layer, cumulus (deep, shallow), 
microphysics, cloud, aerosol, and radiation, and their interactions. This facilitates the use of an optimized 
physics ensemble approach to improve weather or climate prediction along with a reliable uncertainty 
estimate. The CWRF also emphasizes the societal service capability to provide credible information for 
climate impacts analyses. For that, it has been coupled with detailed models of terrestrial hydrology, coastal 
ocean, crop growth, air quality, and recently expanding interactive water quality and ecosystem. Their outputs 
will form a scientific basis for decision makers to select optimal pathways to achieve economic, societal and 
environmental goals. 

The CWRF improvements have been accomplished through iterative, extensive model refinements, 
sensitivity experiments, and rigorous evaluations over the past 9 years under close collaborations between the 
Illinois State Water Survey in the University of Illinois at Urbana-Champaign (2003-2010), the Earth System 
Science Interdisciplinary Center (ESSIC) in the University of Maryland at College Park (2011 onward), the 
NOAA Air Resource Laboratory (ARL), and the NOAA Center for Atmospheric Sciences (NCAS). As a 
result, the CWRF has demonstrated greater capability and better performance in simulating the U.S. regional 
climate than the existing CMM5 (Liang et al. 2004b) and the original WRF. The present study provides an 
introduction of the CWRF for its application over the U.S., elaborating a few unique features that are relevant 
to providing credible model results for climate service. 

CWRF physical process representations   

Figure 1 illustrates the current CWRF physics options and executing structure (see all the abbreviations 
and acronyms listed after the References). There are seven major drivers that each controls multiple 
alternative schemes for the physical processes of cloud, aerosol, radiation, surface, PBL, cumulus, and 
microphysics, in the sequential order of computation. The first three drivers (cloud, aerosol, radiation) form 
the Cloud-Aerosol-Radiation (CAR) ensemble modeling system that incorporates over 1018 different ways to 
simulate interactions among cloud, aerosol and radiation, developed from seven packages available in the 
leading global and regional models around the world. This replaces the original WRF single radiation driver 
that consists of the CAM and AER packages, and the MISC schemes now obsolete. The surface driver 
manages all schemes handling surface and subsurface processes over land and oceans, as well as surface-
atmosphere flux exchanges. In particular, the CWRF adds the advanced CSSP and CROP for terrestrial 
hydrology and crop growth over land, and SOM and UOM for mixed-layer and upper ocean effects. The two 
urban schemes are separated from the NOAH and now work with all land surface schemes. All 7 surface layer 
schemes, originally tied to specific options, are now interchangeable for all surface and PBL schemes. The 
PBL driver hosts 7 WRF plus 2 new (CAM, UW) PBL schemes, all of which are integrated with the ORO 
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module accounting for orographic turbulence stress and gravity-wave drag. The cumulus driver provides the 
hub for 7 WRF plus 6 new (GR, ZML, CSU, GFDL, MIT, ECP) deep cumulus schemes, all of which are 
conjunctive with a shallow convection scheme (UW). A consistent switch is added to control whether shallow 
convection is activated internally in 8 deep cumulus schemes or done externally by the UW scheme. The 
microphysics driver harnesses 11 microphysics schemes of the WRF.  

 

Fig. 1  The schematic of the current CWRF physics options and executing sequence from the top down. 
The CAR ensemble system and all modules or schemes outlined in yellow are additions specifically 
developed for the CWRF, while others are inherited from the WRF. 

Importantly, we strove to make all alternative schemes in the CWRF fully coupled across all drivers with 
plug-and-play interfaces. Even without counting the grand CAR ensemble, the CWRF currently contains over 
106 configurations modeling the surface, PBL, cumulus, and microphysics processes and their interactions. To 
achieve this, substantial efforts have been made to scrutinize all individual schemes for consistency and 
incorporate suitable algorithms for missing variables to enable the overall system coupling. Particular care has 
been taken to ensure continuous model integration that can be restarted at any interval while resulting in bit-
by-bit agreement. This is not trivial, especially if time intervals differ among executing individual physics 
drivers. A seamless averaging procedure is implemented to replace cumulative variables, while pertaining to 
model prediction, by their averages between two consecutive steps of the driver at work. This is especially 
effective for precipitation fields (convective/resolved rainfall/snowfall) that are used for different purposes in 
the cumulus, microphysics, surface, cloud, and aerosol drivers. Other cumulative variables for diagnostic 
outputs, such as surface water and energy budget fields, can be set to zero at any restart check point to reduce 
truncation errors. As such, the CWRF can be run safely for a long-term climate simulation with frequent 
restarts as needed and with varying time steps for all 7 physics drivers. On the other hand, the WRF1 with 

                                                 
1 Note that the WRF can be configured to many versions using different combinations of physics schemes. The 
reported WRF configurations are limited. The statement was drawn upon our own experience with the WRF runs 
and through review of several journal manuscripts of others. 
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several tested configurations has been reported to result in numerical instability or serious drift that are 
prohibitive for continuous climate simulations.  

CWRF advanced terrestrial hydrology prediction 

The CWRF incorporates a Conjunctive Surface-Subsurface Process model (CSSP) to predict soil 
temperature/moisture distributions, terrestrial hydrology variations, and land-atmosphere flux exchanges. The 
CSSP is rooted in the Common Land Model (CoLM; Dai et al. 2003, 2004) with a few updates from the 
Community Land Model version 3.5 (CLM3.5; Oleson et al. 2008). It is built upon realistic distributions of 
surface (soil and vegetation) characteristics (Liang et al. 2005a,b), and with significant improvements in 
representing surface energy and hydrology processes. These include an improved dynamic-statistical 
parameterization of land surface albedo (Liang et al. 2005c); a 3-D subsurface hydrologic model with a 
scalable representation of subgrid topographic control on soil moisture (Choi et al. 2007); an explicit 
treatment of surface-subsurface flow interaction (Choi 2006; Choi and Liang 2010; Choi et al. 2011); an 
unconfined aquifer below the bedrock (Yuan and Liang 2011a). The CSSP integrates vertical water exchange 
(precipitation, evaporation, transpiration, infiltration) and horizontal water movement (across grids) to predict 
surface and subsurface runoff resulting from rainfall excess, saturation depletion and lateral flows due to 
resolved and subgrid topographic controls.   

Fig. 2  The CSSP improves terrestrial hydrology prediction over the CLM. This includes incorporation of 
3D effects of subgrid topographic controls (left), depiction of realistic streamflow variations over 
major watersheds (right top), and capture of seasonal-interannual variations of soil moisture observed 
in Illinois (right bottom). 

A comprehensive evaluation against observations at regional-local scales over the contiguous U.S. has 
demonstrated that the CSSP overall performance is superior to both the CoLM and CLM3.5 (Yuan and Liang 
2011a). A recent comparison of offline integrations driven by observational reanalysis data also revealed that 
the CSSP has clear advantages in modeling the U.S. terrestrial hydrology (soil moisture, runoff) over the 
NOAH used in the NCEP CFS. As a result, the CWRF using the CSSP generates not only more realistic 
phase (higher correlations) but also better amplitude (deviation ratios closer to 1) of the soil moisture 
seasonal-interannual variations throughout the root zone than the WRF using the NOAH (Liang et al. 2011). 
Figure 2 depicts an example CSSP improvement over its origin CLM, which produces streamflow pulse 
fluctuations as a result of quick response to rainfall events, causing no recession time, overall runoff 
underestimation, and weak seasonal-interannual soil moisture variability. This advance in representing the 
terrestrial hydrology by the CSSP over NOAH has other major climate benefits. 
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CWRF physics ensemble skill enhancement 

The CWRF incorporates a massive suite of alternative numerical schemes for microphysics, convection, 
cloud, aerosol, radiation, surface, turbulence and transport processes, all of which are fully coupled with 
nonlinear interactions to ultimately determine its climate prediction. No single scheme can capture all aspects 
of the observed climate, but produce predictive skill dependent of climate regimes (Liang et al. 2004a,b; 
Mapes et al. 2004). Consensus prediction based on the ensemble of multiple models or multiple physics 
configurations of a model may offer significant skill enhancement (Krishnamurti et al. 1999; Peng et al. 2002; 
Palmer et al. 2004; Liang et al. 2007; Wang et al. 2009). 

Here we tested an extremely limited subset of 
the CWRF full ensemble, focusing on the control 
configuration and all major alternative schemes 
across each physics driver, altered one at a time. In 
total, there are 26 CWRF simulations. Each 
simulation is driven by the NCEP Reanalysis-2 
LBCs and integrated from 1 November 1992 to 31 
December 1993. During the summer of that year, 
record flooding occurred in the Mississippi River 
basin. Figure 3 illustrates spatial frequency 
distributions of pointwise correlation coefficients 
and root-mean-square errors (RMSE) of daily 
mean rainfall variations between observations and 
all CWRF simulations. Shown are also the 
ensemble results as the averages of all runs with 
equal or optimal weights. The optimal weight 
results from local RMSE minimization, and the 
skill score depicts the upper limit of daily rainfall 
predictability that can be achieved from the best 
optimization of the ensemble. Clearly, the 
ensemble average of the alternative physics 
configurations using an equal weight substantially 
increases the predictive skill over all individuals, 
with more frequent occurrences of higher 
correlation coefficients and smaller RMSE. The 
improvement by the ensemble is realized because 
distinct regions are identified where each 
configuration complementarily captures certain but 
not all observed signals. The skill enhancement is 
most pronounced in summer, followed by autumn 
and spring, whereas rather weak in winter (Liang 
et al. 2011). Note that the ensemble average using 
the localized optimal weights has predictive skill significantly higher than that using the equal weight as well 
as the individuals throughout the entire year. Thus, there exists substantial room to further enhance that skill 
through intelligent optimization. 

CWRF downscaling improvement to CFS climate prediction 

We have recently demonstrated that the mesoscale CWRF downscaling produces significant skill 
enhancement to the driving NCEP CFS seasonal forecast for winter precipitation during 1982-2008 (Yuan 
and Liang 2011b).  Figure 4a compares spatial frequency distributions of RMSE of seasonal mean 
precipitation interannual variations predicted by the CFS and downscaled by the CWRF. The statistics are 
based on all land grids over the entire inner domain (U.S., southern Canada, and northern Mexico) from 5 
realizations. All CWRF results consistently reduce CFS forecast errors. The reduction is obvious at all 

Fig. 3  Spatial frequency distributions of correlations 
(top) and rms errors (bottom) between CWRF and 
observed daily mean rainfall variations in summer 
1993. Each line depicts a specific configuration in 
group of the five key physical processes (color). The 
ensemble result (ENS) is the average of all runs with 
equal (Ave) or optimal (OPT) weights, shown as 
black solid or dashed line. 
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forecast lead times, with the RMSE peaks decreased by about 0.5 mm/day. Figure 4b illustrates the CWRF 
minus CFS differences in equitable threat score (ETS) of seasonal mean precipitation forecasts. The CFS 
forecast skill decreases rapidly for heavy rainfall events, while the CWRF maintains a good level across the 
range. On average, the CWRF reduces CFS forecast RMSE by 22%, increases ETS by 0.08-0.15, and 
produces greater skill for heavy rainfall events. 

Fig. 4  a) Spatial frequency distributions of RMSE (mm/day) predicted by the CFS and downscaled by the 
CWRF and b) CWRF minus CFS differences in ETS for seasonal mean precipitation interannual 
variations. The statistics are based on all land grids over the entire inner domain for DJFMA from the 
5 realizations during 1982-2008. 

Note that the ETS differences are larger in ENSO-neutral years than in strong anomalous years. For 
instance, smaller enhancements are identified in years with La Niña (1984, 1988) and El Niño (1986, 1991, 
2002). During these abnormal years, significant ENSO signals presented in the planetary circulation, and 
thereby the CFS has higher seasonal climate predictability, especially for wintertime when global anomalies 
are more intense. As a result, the advantage of the CWRF downscaling over the CFS forecast is relatively 
weaker than ENSO-neutral years. A further analysis (not shown) indicates that the CWRF simulates more 
accurate number of rainy days than the CFS over the northern and western U.S. due to the refined 
representation of orographic effect, shallow convection, and terrestrial hydrology, and also more realistically 
captures the broad region of extreme rainfall over the Gulf States and maximum dry spell length along the 
Great Plains, as well as their contrasts between El Niño and La Niña events. In conclusion, the CWRF 
downscaling exhibits significant advantages for regional precipitation prediction, especially during years with 
weak planetary anomalies. 

CWRF application for climate service at regional-local scales 

The CWRF has been coupled with detailed models of terrestrial hydrology, coastal ocean, crop growth, 
air quality, and recently expanding interactive water quality and ecosystem. As such, the CWRF has been 
designed for climate applications at regional-local scales, and can be used to translate GCM global climate 
simulations into regional-specific actionable information for local impacts. This can be done by nesting 
CWRF with selected (e.g., NOAA, NASA) operational forecasts of seasonal-interannual climate anomalies, 
and CMIP (e.g., NCAR, GFDL) projections of future decadal climate changes under a feasible range of 
emissions scenarios. The CWRF can be run at multiple nested grids finer than 30-km to resolve the synoptic, 
mesoscale and local processes that govern the climate and environmental anomalies and changes most 
relevant to end-users for decision making. In so doing, the CWRF will be able to integrate the global signals 
with regional characteristics into comprehensive information required for local impacts assessment. We can 
further constrain the CWRF by the advanced data assimilation to improve initialization and narrow 
uncertainty such that the final prediction will be the most reliable source for end-users. We anticipate that the 
CWRF ensemble of multiple alternative physics configurations, with optimal weights on individual members 
as constrained by their respective performance metrics against observations, will further increase the 
downscaling predictive skill over the driving GCM forecasts or projections with more reliable estimate of 
result uncertainty. The CWRF optimized physics ensemble downscaling approach will provide an 
unprecedented skill enhancement for predicting climate at regional-local scales. 
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ABBREVIATIONS AND ACRONYMS 

ACM Asymmetric Convective Model 
AER Atmospheric and Environmental Research 
ARL NOAA Air Resource Laboratory 
BEP Building Environment Parameterization (multilevel urban model) 
BMJ Betts-Miller-Janjic cumulus parameterization 
BouLac Bougeault-Lacarrère PBL scheme 
CAM NCAR Community Atmosphere Model 
CAR CWRF Cloud-Aerosol-Radiation Ensemble Modeling System 
CAWCR Centre for Australia Weather and Climate Research 
CCCMA Canadian Centre for Climate Modeling and Analysis 
CFS NCEP Climate Forecast System 
CLM3.5 Community Land Model version 3.5 
CMM5 Climate Extension of the PSU/NCAR Mesoscale Model generation 5 
CoLM Common Land Model 
CMIP Coupled Model Intercomparison Project 
CROP Dynamic crop growth modeling system 
CSSP Conjunctive Surface-Subsurface Process model 
CSU Colorado State University 
CWRF Climate extension of the Weather Research and Forecasting model 
ECP Ensemble Cumulus Parameterization modified from G3 
ENSO El Niño-Southern Oscillation 
ESSIC Earth System Science Interdisciplinary Center, University of Maryland 
ETS Equitable Threat Score 
FLG Fu-Liou-Gu radiation transfer scheme 
G3 Grell-3 ensemble cumulus parameterization 
GCM General Circulation Model 
GD Grell-Dvénéyi ensemble cumulus parameterization 
GFDL Geophysical Fluid Dynamics Laboratory 
GR Grell cumulus parameterization 
GSFC NASA Goddard Space Flight Center 
HIR High Resolution PBL scheme 
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LBCs Lateral Boundary Conditions 
Lin Lin et al. microphysics scheme 
MISC Miscellaneous (obsolete) radiation schemes 
MIT Massachusetts Institute of Technology 
Morrison Morrison et al. two-moment microphysics scheme 
MYJ Mellor-Yamada-Janjic PBL scheme 
MYNN Mellor-Yamada PBL scheme modified by Nakanishi-Niino 
NASA National Aeronautics and Space Administration 
NCAR National Center for Atmospheric Research 
NCAS NOAA Center for Atmospheric Sciences 
NCEP National Centers for Environmental Prediction 
NKF New Kain-Fritsch cumulus parameterization 
NOAA National Oceanic and Atmospheric Administration 
NOAH NCAR-NCEP unified land surface model 
ORO Module for orographic turbulence stress and gravity-wave drag 
PBL Planetary Boundary Layer 
PX Pleim-Xiu land surface model 
QNSE Quasi-Normal Scale Elimination PBL scheme 
RadExt CWRF module for external radiative conditions (solar constant, atmospheric gas volume 

mixing ratios, aerosol distributions) 
RCM Regional Climate Model 
RMSE Root Mean Square Errors 
SAS Simplified Arakawa-Schubert cumulus parameterization 
SBCs Surface Boundary Conditions 
SfcExt CWRF module for external surface and subsurface conditions 
SOM Simple Ocean Model 
SST Sea Surface Temperature 
Tao Tao et al. microphysics scheme 
TEMF Total Energy–Mass Flux boundary layer scheme (Angevine et al. 2010) 
Thompson Thompson et al. microphysics scheme 
UCM Urban Canopy Model 
UOM Multilevel Upper Ocean Model 
UW University of Washington 
WDM6 WRF Double-Moment 6-class microphysics scheme 
WSM5 WRF Single-Moment 5-class microphysics scheme 
WSM6 WRF Single-Moment 6-class microphysics scheme 
WRF Weather Research and Forecasting model 
YSU Yonsei University 
ZML  Zhang-McFarlane-Liang cumulus parameterization 
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1. Introduction: motivations and overview of the work 

This work resulted from the efforts of the US CLIVAR Working Group on Decadal Prediction (DPWG) 
(http://www.usclivar.org/wgdp.php). The authors listed explicitly on this paper are scientists at IRI that 
participated in the working group. This limited lifetime working group addressed two objectives during our 
2009-2011 tenure. The first focused on methodologies that attempt to separate natural from forced climate 
changes (Solomon et al. 2011). The second objective was aimed at the validation and verification of 
dynamical decadal hindcasts through a set of targeted metrics. The work presented here represents an 
illustration of the resulting hindcast verification work (see Goddard et al. 2012 for more complete details).   

Verification of forecasts is needed not only to indicate their expected skill for those who may wish to 
apply them. Verification also allows improvements in prediction systems to be tracked over time, and allows 
for comparison across different prediction systems and/or different prediction approaches. The value of a 
verification framework is provision of guidelines for a common format of the results across hindcasts from 
different prediction centers, such as common observational data for verification, common period over which 
the hindcasts are verified and common period against which anomalies are calculated, common metrics, and 
even common graphical presentation. Through the efforts of our working group, these results are being 
collected on a central website: http://dpwg-clivar.iri.columbia.edu). 

2. Data and methodology/experimental design 

2a. Data 

The dynamical decadal hindcasts presented here include: the perturbed physics experiments from Hadley 
Centre using an updated version of the DePreSys forecast system (Smith et al. 2010) and the hindcasts from 
the Canadian Climate Centre using CanCM4 (Arora et al. 2011, Merryfield et al. 2011). The verification 
dates are those dictated by the CMIP5 experimental design (Taylor et al. 2011), which contain 10 sets of 
hindcasts – initialized near the end of 1960, 1965, 1970, 1975, 1980, 1985, 1990, 1995, 2000, and 2005. The 
two hindcast datasets both include more years than this nominal set, and it should be noted that skill metrics 
generally indicate better performance when the more complete set of hindcasts is used. However, since the 
common denominator for the CMIP5 hindcasts are these start dates, this is what is shown. Visit the DPWG 
verification site for more complete information.   

The verification is performed for air temperature and precipitation, with the following observational data 
sets: (1) Air temperature: Hadley Centre/Climate Research Unit Temperature version 3 variance‐adjusted 
(HadCRUT3v; available on a 5°x5° grid). Preference is given to the HadCRUT3v data because missing data 
is indicated as such. This can make verification over time more difficult, but it also provides a more realistic 
view of where forecasts can be verified with gridded data. (2) Precipitation: Global Precipitation Climatology 
Centre version 4 (GPCCv4). This dataset covers the period 1901-2007, at a resolution of 2.5°x2.5° grid, 
although the data is provided also at higher resolutions. 

The model data are first interpolated to the resolution of the observations prior to the calculation of 
verification metrics. Thus, the “grid-scale” analysis shown in the results is done at a resolution of 5x5 degrees 
resolution for temperature and 2.5x2.5 degrees resolution for precipitation. We also do the verification 
analysis on a smoothed version of the model and observational data. A balance between skill improvement 
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signal-to-noise retention suggests that 5º latitude x 5º longitude represents a reasonable scale for smoothing 
precipitation, and 10º latitude x 10º longitude for temperature (Räisänen and Ylhäisi 2011). At these scales, 
grid-scale noise is reduced while retaining the strength of the climate signal and increasing the skill of the 
verification. Both grid-scale and spatially-smoothed verification contain useful information, and in 
combination provide guidance on the robustness of signals on different spatial scales. 

2b. Methodology: Verification metrics 

Verification metrics are chosen to answer specific questions regarding the quality of the forecast 
information. Our questions address the accuracy in the forecast information (Q1) and the representativeness of 
the forecast ensembles to indicate forecast uncertainty (Q2). Specifically, the questions are: 

Q1: Do the initial conditions in the hindcasts lead to more accurate predictions of the climate? If so, on 
what time scales? 

Q2: Is the model's ensemble spread an appropriate representation of forecast uncertainty on average? 

In both cases skill scores are used, which allow for comparison against a chosen baseline. The first question 
(Q1) is assessed using the mean squared skill score (MSSS, Murphy 1988). When the baseline is the 
climatological average (common baseline in seasonal-to-interannual predictions), the MSSS can be 
decomposed into the square of the correlation and the square of the conditional bias. To answer Q1, the 
baseline skill is defined by the uninitialized climate change projections from the same model as the initialized 
hindcasts. The MSSS thus quantifies the improvement in the mean squared error (MSE) for the initialized 
versus uninitialized hindcasts. 

To address Q2, we use a measure of probabilistic quality: the continuous ranked probability skill score 
(CRPSS). The CRPSS is based on the continuous ranked probability score, analogous to the relationship 
between MSSS and MSE. The CRPS is a measure of squared error in probability space. A continuous score is 
preferable to a categorical score in the context of a non-stationary climate, where trends may lead to a chronic 
forecast of, say above-normal temperatures, and offer little discrimination among forecasts, particularly the 
relative risk of attaining or exceeding some threshold. Following Q2, we assess whether a model’s average 
ensemble spread is suitable for quantifying forecast uncertainty compared to the standard error of the mean 
forecast, once corrected for conditional bias. 

2c. Methodology: Statistical significance 

Statistical significance must be estimated, and is of particular importance when sampling uncertainty is 
likely to be large, such in this case with only 10 hindcasts over a 45-year period for phenomena with a 
timescale of 20+ years. There is no single way to assess significance. The DPWG verification framework uses 
a non-parametric bootstrap approach that takes serial autocorrelation into account. (see Goddard et al. 2012 
for more details) 

3. Results 

Deterministic (Q1): 

The MSSS comparing the initialized and uninitialized temperature hindcasts is shown at the top of Figure 
1 based on the spatially smoothed data for the forecast target of the average over years 2-9, or equivalently a 
1-year lead-time for a decadal-average prediction. Additionally, the MSSS for each of those hindcasts relative 
to a climatology baseline is shown in the lower panels. For both prediction systems, the MSSS for 
temperature from the initialized predictions and the uninitialized projections show positive values over much 
of the map, suggesting that the trend plays an important role in the MSSS when using a climatological 
reference forecast. Most of the places where the MSSS is worse (negative or blue areas in the figure) than the 
reference forecast of climatology (Figure 1, middle and bottom row) is where the temperature trend has been 
weak or negative. However, many of the regions of negative MSSS referenced against climatology is where 
the conditional bias (Figures 2&3, right), is large; these are areas where the strength of the model response is 
too large compared to the observations for a given correlation. 
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Fig. 1  Mean squared skill score (MSSS) for decadal temperature hindcasts from the DePreSys prediction 

system of the Hadley Centre (left) and the CanCM4 prediction system of the Canadian Climate Centre 
(right). Top row: MSSS comparing the initialized hindcasts (“forecasts”) and the uninitialized hindcasts 
(“reference”) as predictions of the observed climate; middle row: MSSS comparing the initialized 
hindcasts (“forecasts”) and the climatological mean (“reference”); bottom: MSSS between the unitialized 
hindcasts (“forecasts”) and the climatological mean (“reference”). Observed and model data has been 
smoothed as described in text. The forecast target is year 2-9 following the initialization every 5 years 
from 1961-2006 (i.e. 10 hindcasts). Contour line indicates statistical significance that the MSSS is 
positive at the 95% confidence level. 

The MSSS of the initialized hindcasts referenced to the uninitialized ones shows that areas of improved 
skill due to initialization differ between the two models (Figures 1, top panels, the positive or red areas). For 
example, over the Atlantic the initialized DePreSys hindcasts for temperature improve over the uninitialized 
hindcasts in the North Atlantic, whereas in the CanCM4 temperature hindcasts the improvement is seen in the 
tropical Atlantic. That different prediction systems differ in where they are skillful is a common situation in 
seasonal-to-interannual prediction. It should also be noted that in the case of the Atlantic neither of these 
improvements are deemed statistically significant, which is shown by the heavy contour line enclosing the 
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positive skill areas. For the CMIP5 experimental design, very few cases are available and thus it cannot be 
ruled out that some differences of skill between the two systems result from sampling variability. 

The MSSS for the precipitation hindcasts (not shown) are not significantly better than the reference 
forecast of climatology, anywhere. There are regions where the MSSS of the initialized hindcasts are 
significantly better than the uninitialized ones, but these areas are small, and though point-wise significant 
may still be related to the small sample size. Even in regions where improvement between the initialized and 
uninitialized hindcasts is seen, this improvement must be viewed together with the actual skill (i.e. relative to 
climatology) from the initialized hindcasts. 

 
Fig. 2  Skill metrics related to MSSS decomposition for DePreSys temperature hindcasts. Left: Anomaly 

correlation coefficients with top row depicting the difference between the correlation of the initialized 
hindcasts (middle row) and that of the uninitialized hindcasts (bottom). Right: Conditional bias, with top 
row depicting the decrease in magnitude of conditional bias between the initialized hindcasts (middle) 
relative to that of the uninitialize hindcasts (bottom). Observed and model data has been smoothed as 
described in text. The forecast target is year 2-9 following the initialization every 5 years from 1961-2006 
(i.e. 10 hindcasts). Contour line on the correlation maps indicates statistical significance that the value is 
positive at the 95% confidence level. 
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For temperature the areas where MSSS shows greater accuracy in the initialized hindcasts compared to 
the uninitialized (red areas, top of Fig. 1) comes from a reduction in conditional bias (blue areas, Figs. 2&3 
right) rather than an increase in correlation (red areas, Figs. 2&3 left). This suggests that at least for this 
forecast target and in these prediction systems, increased accuracy is not due to the capture of signals in 
climate variability. For precipitation, improvements may come from both increased correlation and decreased 
bias, though again the improvements are not typically associated with forecasts that are skillful in their own 
right.  

Probabilistic (Q2): 

The CRPSS of the temperature hindcasts show very similar patterns (not shown) whether one estimates 
the uncertainty in a given forecast from the average ensemble spread or the standard error of the mean. 
Negative CRPSS values dominate the comparative metric that tests the uncertainty from the ensemble 
members against the uncertainty from the standard error. This indicates that the use of the ensemble spread 
leads to less reliable forecasts. The CRPSS for the precipitation forecasts yields very similar results. 

  

Figure 3. Same as Figure 4, but for CanCM4 hindcasts. 
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4. Concluding remarks /discussions 

US CLIVAR Working Group on Decadal Predictability has developed a framework for verification of 
decadal hindcasts that allows for common observational data, metrics, temporal structure, spatial scale, and 
presentation. The framework addresses specific questions of the hindcast quality and offers suggestions for 
how they might be used. Considerable complementary research has aided this effort in areas of bias and 
forecast uncertainty, spatial scale of the information, and stationarity impacts on reference period. 

The results from the hindcast verification performed on the two prediction systems yield some features 
that are also common to seasonal-to-interannual predictions. First, temperature is better predicted than 
precipitation. In this case the dominant signal is due to the upward trends, which are captured reasonably well 
by both systems over most of the world. In general, precipitation is a more localized variable in both space 
and time, and thus subject to larger noise-like variability that is not predictable. Second, forecasts from 
different prediction systems often differ in where they perform well. Some common areas of good and poor 
performance are seen in both prediction systems. However, many differences exist as well, especially for 
precipitation, and also for the impact of initialization. 

Although these results may be sobering, they should not be viewed as a conclusion that there is no 
decadal predictability. Decadal prediction is very much an experimental activity, including how best to 
initialize the predictions. One positive result is the reduction in conditional bias that is seen for some areas in 
the initialized predictions, which is improved information about anthropogenic climate change. Those 
interested in these predictions should also visit the DPWG verification website to examine whether other time 
horizons might have more useable information. Even the more detailed paper that outlines the framework 
(Goddard et al. 2012) cannot show all the results, but there are instances of statistically significant skill 
obtained at the 1-year lead or 2-5 year period that do not appear in the decadal-scale results shown here. It is 
also possible that gains in prediction quality may be made by multi-model ensembling, as has been realized 
for seasonal prediction. Preliminary results based on just the two models used in this study show mixed 
results (not shown). Statistical post-processing, or calibration, of model predictions may also improve forecast 
quality. However, to do that robustly will require larger ensemble sizes and more forecast cases (i.e. more 
start dates) than was mandated for CMIP5. Finally development of improved models, and improved 
understanding of the processes that must be modeled well, is ongoing throughout the scientific community, 
and should be expected to improve the quality of decadal-scale climate information. 
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1.  Motivation 

Many groups have documented a consistent need for 
climate forecasts from one season to two years lead time to 
support a variety of applications, and particularly for 
streamflow forecasting for water, energy and agricultural 
management.  Forecasts across these relatively long time scales 
are particularly valuable in the Colorado Basin (Figure 1) 
where the reservoir capacity is approximately four times the 
mean annual discharge of the river.  Yet the Colorado River 
basin (CRB) presents a challenge due to the limited forecast 
skill that can be harnessed from traditional sources (e.g., ENSO 
indices) even at shorter lead times for runoff-generating 
headwaters in the upper basin, the source of most of Colorado 
River flow.  Nonetheless, management and planning objectives 
related to the larger reservoirs that the U.S. Bureau of 
Reclamation (hereafter Reclamation) manages apply 
streamflow projections for lead times up to two full years.  
Motivated to improve these forecasts, Reclamation has funded 
university research that has shown some promise for 
developing climate and streamflow predictions in the CRB 
based on a more expansive range of climate system indices and 
state variables.  Other federal and state-funded research focused 
on the western US shares these goals and complements the 
Reclamation effort.   

The NOAA/NWS Colorado Basin River Forecast Center (CBRFC) is the primary official provider of 
streamflow forecasting information products to Reclmation and other water management entities in the CRB, 
in some cases as a result of legal agreements between the seven western states that use Colorado River water.  
Reclamation and other agencies are unlikely to produce streamflow forecasts operationally, but rather depend 
on NOAA river forecast centers to provide forecasts that serve as input to their water operations and 
management activities.  Consequently, the primary avenue for leveraging such research activities to support 
CRB water management is to evaluate the findings with respect to water management relevant watersheds, in 
comparison to current practice (the baseline), and where warranted, operationalize the new techniques into 
CBRFC streamflow forecasting efforts. 

2. CBRFC streamflow forecasting 

Operational forecasts that support reservoir management include one-week and peak flow predictions to 
manage high flows and recreation, but major water allocation decisions in the large storages of the CRB 
(Lakes Mead and Powell) depend primarily on “water supply forecasts”, i.e., predictions of runoff volumes 
into the major reservoirs of the upper CRB (listed in Table 1) at lead times of 1 to 24 months into the future.  
Water supply forecasts (WSF) currently rely on two primary techniques, statistical water supply (SWS) 

Fig. 1  Colorado River Basin 
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prediction and Ensemble Streamflow Prediction (ESP).  The former relates predictors such as observed snow 
water equivalent (SWE), water year precipitaton and runoff to date to future runoff, and is practiced in both 
the NOAA NWS RFCs and the NRCS National Water and Climate Center (NWCC).  SWS methodology has 
remained essentially unchanged over the past half-century, despite two notable upgrades:  (a) the deployment 
of the automated snow telemetry (SNOTEL) network for remote, real-time monitoring of SWE and 
precipitation, starting in the late 1970s (complementing manual snow course measurements); and (b) the 
upgrade of the statistical method from multiple linear regression to principal components regression (PCR, 
Garen 1992).   ESP is an ensemble forecast approach that uses a continuous conceptual hydrologic model.  
ESP was introduced in the late 1970s (Twedt et al., 1977), but was not widely used in NWS until the 1990s.  
Like SWS, ESP forecast skill derives primarily from the snowpack observed on the ground at the time the 
forecast is made.  For the CRB, CBRFC subjectively merges its SWS and ESP WSFs into a preferred NWS 
forecast, and then subjectively coordinates with NWCC’s SWS forecasts to arrive an an official WSF.  During 
this process, forecasters from both agencies also discuss the current and forecast conditions and adjust the 
forecast in consideration of other factors deemed relevant. The resulting official forecast describes a 
probability distribution using the 90th, 50th, and 10th percentiles (non-exceedence probabilities).   

Neither agency currently uses a climate forecast in the forecast process for the upper CRB, although both 
agencies are technically capable of doing so (i.e., the software or approaches can admit a climate forecast as 
input).  Short term weather forecasts (1-5 day QPF and 1-10 day temperature forecasts) are occasionally 
incorporated into the CBRFC ESP, at the subjective discretion of the forecaster, but not into the SWS from 
either agency.  The primary reason that CBRFC and NWCC do not use climate forecasts (e.g., CPC Official 
climate outlooks or ENSO indices) for prediction is that such forecasts have been found to have low to non-
existent skill in the upper CRB.  That the intermountain region of the western US exhibits low climate 
predictability has been well documented by agency investigation and academic research over the last decade. 

3.  CBRFC Climate and Streamflow Prediction Testbed  

A workshop funded by the Colorado Water Conservation Board (CWCB) and co-sponsored by NIDIS 
was held at CBRFC in March, 2011 to discuss (1) research on seasonal to year 2 climate and flow 
predictability within the CRB and (2) formation of a testbed for comparing research results with the 
operational forecasts generated by CBRFC and used by Reclamation.  The climate and reseach methods of 
interest from external researchers were primarily statistical, leveraging large-scale climate system information 
(e.g., SST and geopotential height patterns),  climate system indices,  and other predictors  to  estimate  future 

Watershed Name NWS ID USGS ID Drainage Area 
(km2) 

Gunnison R abv Blue Mesa BMDC2 09124800 9,092 
San Juan River nr Navajo Res Archuleta NVRN5 09355500 8,476 
Green R at Flaming Gorge Res Flaming Gorge Dam  GRNU1 09234400 11,076 (50,310) 
Gunnison R at Morrow Point Res  MPSC2 -- -- 
Taylor R at Taylor Park Res  TPIC2  09107000  332 
Green R Nr Fontanelle Res Fontanelle  GBRW4 09211200 11,128 
Gunnison R at Crystal Res  CLSC2 09127800 -- 
Los Pinos Nr Vallecito Res Bayfield  VCRC2 -- -- 

Major Upper Colorado River Basin Areas 
San Juan R nr Bluff  BFFU1 09379500 59,800 
Green R nr Green R GRVU1 09315000 116,610 
Gunnison R nr Grand Junction, CO GJNC2 9152500 19,958 
Colorado R at Lake Powell Glen Cyn Dam  GLDA3 -- 637,000 

Table 1  The watershed data in the table above encompass the drainage areas of the 8 major river basins that 
directly support Reclamation probabilistic forecasting.  The last four drainage areas are additional areas of 
interest:  the outlets of three major tributaries above Lake Powell, and the entire Lake Powell drainage. 
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climate and streamflow in the Colorado River 
area.  Typical methodologies this genre are 
described in Bracken et al. (2010), Grantz et al. 
(2005; 2007), Moradkhani and Meyer (2010), 
Najafi et al. (2011), Switanek et al. (2009) and 
Wang et al. (2009).   The primary goal of the 
testbed is to focus collaborative efforts to 
improve prediction for the management of 
Colorado Basin water resources on the key 
climate and flow datasets involved in this 
enterprise.  The central testbed website is 
located at 
http://www.cbrfc.noaa.gov/testbeds/si_y2/. 

A basin-oriented focus 

A guiding principle of the climate and flow forecasting testbed is that the evaluation of climate forecasts 
must be oriented toward river basins, and in particular, basins which are important to water management in 
the upper CRB.  Climate forecasts are typically and sometimes exhaustively analyzed by forecast producers, 
but at space and time scales, and in a separate rather than covariational framework, that often does not offer 
clear connection to their potential for streamflow prediction.  The complex connection of climate to 
hydrologic forecast outcomes is illustrated in Wood & Lettenmaier (2008), which shows the varying 
influences of initial hydrologic state and future climate on future streamflow.  In a nutshell, every hydrologic 
anomaly has a story line.  As a water year progresses, for instance, past weather and climate are incorporated 
into the hydrologic initial conditions.  In the CRB, for water supply forecasts, these initial conditions provide 
increasing signal to the runoff prediction, while the importance of future climate diminishes.  Hydrologic 
extremes often involve pattern persistence (e.g., a sequence of wet months), but can arise from more 
complicated, multi-variate climate phenomena, as illustrated in Figure 2. 

Basin-oriented climate forecast evaluation means assessing climate variable predictions not only with 
respect to catchment areas of interest, but also with consideration of times of interest – i.e., periods that are 
important for hydrologic response.  For instance, predictions of precipitation anomalies during winter (i.e., 
snow accumulation season) and of temperature anomalies during spring (i.e., snow melt season) are more 
critical for water prediction purposes than at other times. Forecast accuracy can be more important if 
hydrologic conditions are anomalous (i.e., during extreme years) for some users, than in normal years.  The 
testbed will stress such considerations, in addition to evaluating the translation of climate prediction into 
streamflow predictions that improve over existing operational baselines.  Although the temporal focus of the 
testbed evaluations must still be determined, the watersheds of interest are the drainages of the key upper 
CRB flow locations forming inputs for Reclamation reservoirs that influence water allocation decisions 
between the upper and lower CRB each year.  These are listed in Table 1 and illustrated in Figure 3. 

Testbed components and constraints 

The testbed will contain the following elements, which are being populated as time permits by the lead 
author of this article.   

• hindcast results sufficient to establish the current operational baseline for prediction skill 
• timeseries that define the climatologies of the variables of interest – primarily precipitation, 

temperature and streamflow   
• experimental forecast results in tabular and graphical form 
• documentation of current forecast methods (e.g., equations used for SWS) 
• forecast evaluation metrics that are relevant to CBRFC operations (e.g., the error metrics associated 

with April-July streamflow volume). 

The current operational baseline for climate forecasting at CBRFC is essentially the use of historical 
climatologies of precipitation and temperature for the watershed areas for which CBRFC predicts flow. The 

Fig. 2  Illustration of the signal components in a water 
supply streamflow forecast, which vary in importance 
throughout the year and may involve combinations of 
climate variables.
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baseline for streamflow prediction at different 
lead times and for different predictands is the 
ESP approach, forced with the baseline 
(historical) precipitation and temperature inputs.  
For some predictands, the SWS water supply 
forecasts also form an operational baseline. 

Two experimental climate and flow 
prediction approaches are now being developed 
CBRFC for seasonal/interannual lead times. One 
is the use of the CPC objective consolidation 
forecasts that are produced operationally in 
support of the official monthly CPC climate 
outlook. The other is the use of NCEP Climate 
Forecast System (CFS, soon to be CFSv2) 
precipitation and temperature, downscaled and 
calibrated to the watershed scale via statistical 
methods documented in Seo et al. (2006) and 
Wu et al. (2011). 

A number of avenues for translating climate forecasts into streamflow forecasts exist. For instance, 
improved climate forecasts can be translated to streamflow forecast via a trace-weighting of ESP ensembles, 
in which the weightings for each trace (corresponding to a historical meteorological sequence) are derived 
from a climate forecast (e.g., Werner et al., 2004). Another approach might involve the modification of 
historical precipitation and temperature forecast time series to match climate forecast characteristics before 
input to ESP. More elaborate approaches involving, e.g., synthetic weather generation and hydrological 
modeling, are under development by NOAA-funded collaborators (such as Dr. Balaji Rajagopalan at the 
University of Colorado). Climate predictors can also be related directly to predicted streamflow 
characteristics. 

While CBRFC continues to populate the testbed from within, researchers are encouraged to train 
statistical climate forecast technique using historical data (observations or hindcasts) from one or more of the 
key watersheds provided, and for one or more forecast initialization dates (e.g., October 1).  The specific 
challenges raised in the testbed are to demonstrate that new climate prediction approaches: 

• provide superior climate forecast skill (precipitation and/or temperature) relative to baseline forecast 
approaches available to CBRFC 

• lead to improved long lead streamflow forecast skill, i.e., when implemented via trace-weighting or 
alternative approach. 

CBRFC will be focusing on applying the climate forecasts that warrant attention (via positive 
performance and abide by the constraints listed below) to streamflow predictions, though researchers are 
welcome to tackle that part of the challenge as well.  Because an RFC is an operational center providing real-
time climate and water information services, the testbed includes several constraints: 

• The source datasets must be available with low enough latency to support a real-time prediction. 
• The methods must be reasonably automatable, and configuration or setup steps must be "teachable" 

rather than arcane. 
• The methods must ultimately (though not for prototyping) use non-proprietary software: e.g., R is 

preferred to Matlab. 

4.  Discussion 

The S/I to Year 2 Climate and Flow Forecasting Testbed is a CBRFC-led effort to engage and educate 
external research collaboration toward improving water management via advanced climate and streamflow 
forecasting in the western U.S.  Although CBRFC is not a funding entity, this goal has been prominent in the 

Fig. 3  Testbed watershed areas 
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objectives of a number of federal and state grant opportunities, thus CBRFC seeks to attract collaborators to 
the testbed both by leveraging existing funded projects and by pursuing new ones through joint (co-
investigative) proposals.  While CBRFC has some capacity to engage in new research and development 
toward the objectives of the testbed, and can lean on some assistance from NWS and NOAA laboratories, 
integrated efforts that team CBRFC personnel with external groups is an ideal way to build capacity in 
CBRFC, educate external groups about operational forecasting, and ensure that applies research effort toward 
ostensible operational uses is properly focused and evaluated. 

Although the major results of the SI/Y2 testbed are still evolving, the concept of a water-oriented climate 
and streamflow prediction testbed have broad advantages beyond the Colorado River basin.  Water is a 
primary sector in which benefits from improved climate forecasting can be derived, and the evaluation of 
climate prediction through the prism of relevance to water prediction can add a valuable context for climate 
forecast producers, and a compelling demonstration for climate forecast users in the water sector.  One can 
envision a nationwide testbed of this type as a framework to integrate researchers and forecasters from 
climate science to hydrology to water resources.  The literature is full of research results that claim to have 
potential to advance water management, yet have never been implemented operationally – this gap may arise 
from a failure of integration that the testbed effort is designed to address. 

Acknowledgements. The authors acknowledge funding support for the aforementioned workshop from the 
Colorado Water Conservation Board and the National Integrated Drought Information System (NIDIS). 
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1. Introduction 

The Climate Forecast System Version 2 (CFSv2) is a coupled atmospheric-oceanic global climate model 
run by the National Centers for Environmental Prediction (NCEP).  The CFSv2 is run operationally each 6 
hours and makes forecasts out to around 6 months lead time.  Uncertainty is estimated by a forecast ensemble 
composed of recently available initial times and aligned according to the target period in question.  Thus, an 
ensemble forecast set is formed from a series of runs lagged backwards in time from the run based on the 
most recent data, and is hence referred to as a lagged ensemble (Hoffman and Kalnay 1983).   This contrasts 
with the approach commonly used for shorter range forecasting of producing an ensemble forecast from 
multiple runs initialized from perturbed initial states based on the most recent data. 

For lead times typical of climate forecasts, usually measured in months, the forecast benefits of a larger 
ensemble more than compensates for losses due to the inclusion of negligibly less skillful members from runs 
a few hours or days old.   However, there is eventually a point where the trade-off between ensemble size and 
loss of skill due to the inclusion of older members becomes important.    At some point the inclusion of less 
accurate ensemble members from older runs will begin to detract from the information available from 
members based on more recent data.  An objective procedure to build a lagged ensemble set is proposed in 
this paper.   This method is based on the skill characteristics of the candidate ensemble members.  The result 
is an objective weighting method for ensemble members from variously lagged initial times. 

2. Data 

Sea Surface Temperature (SST) forecasts for the Nino 3.4 region from the CFSv2 will be used to test the 
method.  Hindcast data initialized every 5th day from 1982 – 2010 is available from the CFSv2.  The hindcast 
data was adjusted for a discontinuity in forecast performance beginning in late 1998.   A simple bias 
correction, stratified by initial time and lead, was applied to the earlier forecasts (1982-1998) to make their 
mean bias similar to the recent forecasts (1999-2010).   Forecasts are expressed as anomalies relative to the 
1981-2010 Nino 3.4 climatology. 

The 4 ensemble members obtained from initial times 6 hours apart on any given day were assumed to be 
equal in skill and always were grouped together, treating them as if they were perturbations from a daily 
initial state.   A lagged ensemble set was built from the series of 4-member daily runs available from CFSv2 
hindcast data going backward in time from the run closest to the end of each calendar month, defined as lag 0.    
Members from 5-days prior to lag 0 were labeled as lag 5, 10 days prior as lag 10 and so on.  The forecasts 
were for the monthly mean Nino 3.4 SST for the month following the lag 0 forecast (defined as lead 1), the 
subsequent month (lead 2), and successive months out to lead 6.  Up to 20 4-member ensemble sets were 
offered for potential inclusion in a lagged ensemble (out to lag 95), adjusting the lead time of earlier runs as 
necessary to align the forecast relative to lag 0. 

3. Methods 

a. Ensemble Regression 

A regression procedure specifically designed for ensemble forecasting was used to process the CFSv2 
forecasts.   Ensemble regression (Unger, et al. 2009) estimates the expected values of the coefficients of a 
regression equation relating the closest member of a set of ensemble solutions to the observation, together 
with its expected error.  In addition to the usual requirements for the appropriate application of linear 
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regression and its error estimate (a reasonably linear fit, Gaussian distributed residual errors, case to case 
independence of errors, etc.), ensemble regression requires a reasonable a priori estimate of the probability 
that each ensemble member will be closest to the observation, usually taken to be equal for all members.  
Once this estimate is supplied, a regression equation can be derived that gives theoretically expected values of 
the coefficients, together with an expected value of the standard deviation of the errors, assumed to be 
Gaussian, about the regression estimate.  This equation, together with the error estimate, is applied to each 
ensemble member. 

Ensemble regression was used to calibrate the forecasts for an ensemble consisting of the 4 runs available 
for a calendar day.  Each of these ensemble members were assumed equally likely to be closest to the 
observation (best member).  In its application, ensemble regression produces an estimate of the forecast 
probability density function (PDF) of the combined ensemble.  It is similar to a PDF obtained from a 
Gaussian kernel density estimate (Roulston and Smith 2003), except that the kernels are centered around the 
regression estimates of each ensemble member, rather than their original values.  The standard deviation of 
the kernel distributions are specified by the regression procedure. 

Regression equations were derived for the predicted monthly mean Nino 3.4 SST from each of 73 initial 
times (every 5 days referred to here as pentads) throughout the year.  The equations for each pentad were 
based on the 29 cases for that initial time in the 1982-2010 period.  A separate equation was derived for each 
monthly lead time.  Results reported here are based on dependent data (no cross-validation). 

Figure 1 illustrates the forecast PDF from two separate groups of ensemble forecasts.   This is a forecast 
for the monthly mean Nino 3.4 SST for July, 2010.  One forecast (indicated by blue) was initialized on June 
30, 2010, only 1 day prior to the start of the valid period.  The solid line is the combined PDF from the 4 
kernel distributions representing individual members, shown by dashed lines.  The forecasts at this lead were 
highly skillful, indicated by closely grouped, narrow kernels.   A forecast made 3-months earlier (April 1, lag 
90) for the same target period is shown in red.  Note that the expected errors around the best member 
(illustrated by kernels) are only slightly less skillful than the shorter lead time as evident from the kernel 
width. This indicates that most of 
the difference in forecast 
uncertainty is accounted for by the 
increased amount of spread 
compared to the earlier run.  The 
green vertical line shows the 
observed mean SST for July 2010. 

b. A  procedure for weighting a 
lagged ensemble 

Figure 1 also illustrates a 
principle for optimizing a lagged 
ensemble.  The PDF from the 
ensemble regression in the 
vicinity of the observation 
provides a measure of how closely 
the forecast and observation 
match.  The PDF from each 
candidate ensemble forecasts (one 
for each lag) is used to provide a 
measure of which was “best” in a 
given case.  The ensemble set 
with the highest PDF value at the 
observation is, by inference, the 
one that is most likely to be 
correct.  The regression calibrates 

Fig. 1  Forecast PDFs based on ensemble regression from CFSv2 
forecasts of Nino 3.4 SST from two initial times.  Blue lines 
represent forecasts of monthly mean Nino 3.4 SST initialized on 
June 30, 2010 valid for July, 2010.  Red lines are for the Lag 90 
forecast (initialized April 1).  Kernels represent individual members 
and are shown by dashed lines, with the combined PDF in solid.  The 
green vertical line represents the observed SST. 
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the entire ensemble in relation to its performance on hindcast data.    So, in this case, the single best member 
of the 8-member ensemble formed from the lag 0 and lag 90 runs happened to be from the lag 90 set.  
However, the regression processing accounts for both the spread and the skill to better match the forecasts and 
observations.   The regression calibrated PDF indicated that, considering its spread, and the skill of CFSv2 
forecasts from similar leads on the hindcast data, the more recent run, in fact, was the better match to the 
observation. 

The potential ensemble system consisting of the 20 most recently available 4-member lagged ensemble 
forecast sets were evaluated on the dependent (hindcast) data by passing through the data twice, once to 
derive the ensemble regression equations, and once to evaluate forecasts and produce a separate PDF for each 
lag.   The ensemble set that produced the “best member” was assumed to be the one with the highest PDF in 
each case.   The probability that each of the 20 candidate ensemble sets produced the best member (P(best))  
was estimated from the fraction of times out of the 29 cases (one per year) that a given lag was best.   The 
results were smoothed under the assumption that P(best) decreases with increasing lag time.  If this was not so, 
the older members were assumed equally likely to produce a best member than any more recent ensemble set 
with a lower P(best).  The P(best) for each lag was then re-evaluated with the combined ensemble, effectively 
averaging the P(best) values over any inconsistent lead times.  This way P(best) of an older run was assured to 
be equal to or lower than a more recent run. 

4.  Results 

The top panel of Fig. 2 shows 
P(best) for lagged ensemble 
forecasts for SSTs initialized near 
the end of each of 12 calendar 
months, for a lead-3 forecast.  The 
vertically stratified bins (columns) 
correspond to the initial month, 
and the boxes along the vertical 
(rows) correspond to the lag 
relative to the most recent run.  
The bottom row represents the 
four member ensemble closest to 
the end of the month in the 
corresponding column.   Each 
higher row represents an ensemble 
set initialized 5 days earlier than 
the row below.  The inset numbers 
show P(best) for that ensemble set, 
objectively determined from the 
hindcast data as described above.  
P(best) is an appropriate 
weighting for that ensemble set in 
ensemble regression theory.  The 
final forecast of a weighted 
ensemble would be formed from a 
kernel density approach similar to 
that shown in Fig. 1 except with 
the area of each of the 4 kernel 
proportional to ¼ of the total 
weight assigned to that lag. 

For example, a forecast for July, initialized at the end of  June (column 7, bottom row),  was the “best”of 
any of the 20 lagged ensemble sets offered 29 percent of the time.  This run was initialized on June 30 of each 

Fig. 2  Weighting for each lag (P(best)) stratified by initial month and lead 
time (top panel), with Hovmoller plot of regression skill by lead and 
initial time in pentads (bottom panel).  Inset values in the bottom panel 
represent the correlation between the ensemble mean and the 
observation for a forecast for monthly mean Nino 3.4 SST from the 
CFSv2.  See text for further explanation.  
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year of hindcast data.  The run initialized 10 days before that, on June 20, was best 8 percent of the time.  The 
oldest run to contribute significantly to lagged ensemble was from lag 30 (initialized on May 31) and 
accounted for only 3% of the best members (was best once out of the 29 year sample).  Members initialized at 
lags between 35 and 55 days only sporadically contributed to the combined ensemble, accounting for trace 
weighting (1%), and no run 60-days or older contributed to the ensemble at all.  Colors indicate the relative 
contribution, with red signifying a weighting significantly higher than an equally weighted 20-set ensemble.  
Green indicates moderate weighting, and blue indicating significantly less weight than would be expected for 
equal weighs among candidate ensemble sets. 

The bottom panel of Fig. 2 reveals the possible explanation for the ensemble weighting.  It shows the 
Hovmoller plot of the skill of a regression equation based on the ensemble mean (an important component of 
the ensemble regression).  The 73 initial pentads are along the horizontal axis, with integer lead time in 
months relative to the calendar month of initialization shown on the vertical.  The correlation coefficient of 
the regression relationship is contoured within the diagram.   Even with smoothing, some evidence of a saw-
tooth pattern is visible in the plot, indicating that the skill is higher for runs initialized late in the month than 
those initialized earlier on.  The horizontal line illustrates the lead time (3-month) used for the ensemble 
weighting diagram on the top panel.  The arrows indicate the direction in which the lagged ensemble is built 
for runs initialized in March and December.  The skill of most recent run is shown near the tail of the arrow, 
with older runs represented toward the arrow's head. 

When the skill of the ensemble set falls off rapidly with increasing lead, as indicated by skill decreasing 
along the arrow towards its head, the objective ensemble weighting procedure heavily front loads the lagged 
ensemble set.   The weight drops rapidly and becomes trivial even after a few lags.  This is common around 
the time of the spring predictability barrier indicated by areas of strong gradients on the diagram.  On the 
other hand, skill in predicting Nino 3.4 SST does not depend much on lead time for runs initialized late in the 
year.  The skill at the head of the arrow (oldest runs) is not much different from the newest runs.  The lagged 
ensemble at this time of year is fairly evenly weighted, in spite of lags of 30 days or more.  Thus, late in the 
year a larger ensemble group is adding information to the system, compared to a smaller ensemble consisting 
only of more recent runs.  This is not the case in the boreal spring, where the bulk of the weight is on the most 
recent members, and older members are trivially weighted at best.  At this time of year, the newer runs are 
more skillful than older ones, and the ensemble members from older runs provide little if any information not 
represented by the more recent runs. 

5. Conclusion 

The procedure described in this paper provides an objective way to analyze the information in a time-
lagged ensemble.  It can be used to help determine when ensemble members from older runs can 
meaningfully contribute to an ensemble consisting of members from more recent runs.  The method provides 
an objective weighting procedure for the lagged ensemble forecasts, and provides results consistent with 
expectations based on forecast skill.  This method is not restricted to lagged ensembles, since it can be used as 
a basis for combining multi-model ensembles as well.  Future work will focus on evaluating the skill of this 
procedure in a fully cross-validated framework. 
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1. Introduction 

Due to the improvements in data assimilation techniques, computing resources, and numerical models 
such as representing large-scale climate teleconnections, forecasting seasonal climate by using coupled 
atmosphere-ocean-land general circulation models (CGCMs) has been an emerging area since mid-1990s. 
Now the major operational weather and climate forecast centers around the world are producing real-time 
seasonal climate predictions with CGCMs up to nine months. The progress in dynamical seasonal forecasts 
provides potential opportunity to predict hydrologic variables (e.g., streamflow, soil moisture) at long lead 
times, which is important for agriculture and water resources management, drought and flood detection and 
mitigation. In this context, seasonal hydrologic forecast plays an important role in transitioning the scientific 
advances from the climate research community to the end users of society (Yuan et al. 2011b).   

Recently, NCEP has updated its operational seasonal forecast system with a new CGCM, the second 
version of CFS (CFSv2), where a number of new physical packages for cloud-aerosol-radiation, land surface, 
ocean and sea ice processes, as well as a new atmosphere-ocean-land data assimilation system have been 
incorporated (Saha et al. 2010, 2011). Therefore, it is necessary to conduct comprehensive seasonal 
hydrologic reforecasts, and to investigate whether or how much of the improvement from climate forecast 
models can propagate into the land surface hydrologic forecast. Here, we summarize a deterministic 
assessment and probabilistic evaluation of CFSv2 by comparing with CFSv1 and European seasonal forecast 
models, and the CFSv2-based seasonal hydrologic forecast results. Full documentations are available in Yuan 
et al. (2011a, 2011b). 

2. Data and method 

To have a first look at CFSv2 in a hydrologic forecast perspective, we used the data as follows: 1) the 28-
year (1982-2009) ensemble retrospective forecast data set from CFSv2 with 24 members at T126 resolution 
(Saha et al. 2011), and the nine-month reforecast for CFSv1 with 15 members at T62 resolution covering the 
same period 1982-2009 (Saha et al. 2006); 2) the EUROSIP (European Operational Seasonal to Interannual 
Prediction) model (ECMWF, Météo France (MF), and UK Met Office (UKMO)) reforecasts at 2.5°×2.5° 
resolution from 1960-2005 (Weisheimer et al. 2009); and 3) surface air temperature at 0.5° from the Climate 
Research Unit (CRU) TS3.1 dataset for the period 1901-2009 (Mitchell and Jones 2005), and precipitation at 
0.5° from the Climate Prediction Center (CPC) Unified Gauge-Based Analysis for 1979-2009 (Chen et al. 
2008).   

We downscaled the precipitation and temperature hindcasts from CFSv1 and CFSv2 to 1/8 degree over 
CONUS by using the Bayesian method described in Luo et al. (2007) and Luo and Wood (2008).  The 
downscaled precipitation and temperature fields are used as inputs to the VIC model (in water balance mode) 
to provide 6-month, 20-member ensemble hydrologic reforecasts starting on the 1st of February, May, August 
and November of each year during 1982-2008, with initial conditions from a 62-year (1949-2010) offline 
simulation driven by merged data from 31-year (1949-1979) University of Washington dataset (Maurer et al. 
2002) and 31-year (1980-2010) dataset from the North-American Land Data Assimilation System Project 
Phase 2 (NLDAS-2; Xia et al. 2011).   

3. Results 

Figure 1 illustrates the geographic distributions of the month-1 predictive skill in terms of correlation for 
surface air temperature forecasts over land grids for CFSv1, CFSv2, ECMWF, MF, UKMO and a multi-
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model forecast (Yuan et al. 2011a). As compared with CFSv1, CFSv2 shows overall improvement, especially 
in the cold season. Wang et al. (2010) identified the cold bias of CFSv1 over northern hemisphere mid-high 
latitudes in the real-time seasonal forecast during the warm season, while the CFSv2 reduced the bias for the 
August forecast by 53%, averaged over the globe, and the reduction was more pronounced over the high 
latitudes in Eurasia (not shown). As compared with the ENSEMBLES EUROSIP models, CFSv2 has similar 
performance to ECMWF, where the former has higher skill over North America in November, while the latter 
has higher skill over northern Africa in February. The equally-weighted multi-model combines the advantages 
of individual models, and presents generally improved predictability. However, neither the multi-model nor 
the individual models in this study have significant predictability over western Russia in May and August, 
which is an issue that needs further investigation. On average, the global mean (excluding Antarctica) 
correlations of surface air temperature for the four months are as follows: CFSv1, 0.38; CFSv2, 0.52; 
ECMWF, 0.51; MF, 0.39; UKMO, 0.44; and the multi-model, 0.54. Note that the global mean correlation for 
multi-model in November is slightly smaller than the CFSv2, which may result partly from the low skill of 
MF and UKMO (Figure 1).  

 

Fig. 1  Month-1 predictive skill of monthly surface air temperature forecasts over land grids in February, 
May, August and November during 1982-2005. The multi-model is the average among CFSv2, 
ECMWF, MF and UKMO. Non-white colors represent significant correlation at 0.05 levels. The 
numbers are the global mean correlations (Yuan et al. 2011a). 
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Figure 2 presents the percentage of 
the positive RPSS for monthly surface air 
temperature and precipitation anomaly 
over the global land area (excluding 
Antarctic). For the surface air temperature 
anomaly, the CFSv2 has a higher 
percentage of forecasts with skill beyond 
climatology than the other models. Even 
out to two months, more than 54% of the 
forecasts from the CFSv2 produce useful 
predictions. For the precipitation anomaly, 
the performance of the CFSv2 is 
comparable to the ECMWF, and both are 
much better than the other models. 
Similarly to the deterministic evaluation, 
the skill of probabilistic forecasts for 
precipitation for each individual model 
and the multi-model drops greatly beyond 
one month. 

Figure 3 shows the correlation 
between NLDAS-2 observation and 
downscaled month-1 precipitation 
forecasts at 1/8 degree over conterminous 
U.S. in February, May, August and 
November during 1982-2008 (Yuan et al. 
2011b). The patterns are similar to the 
original CFSv1 and CFSv2 forecast 
results at 2.5 degree (Yuan et al. 2011a), 
where CFSv2 is generally better than 
CFSv1 especially in cold seasons. For 
instance, there are obvious improvements 
over Pacific Northwest, New Mexico-
Oklahoma-Texas region and eastern coast 
for the forecasts in February and 
November (Figure 3a,d). In May, CFSv2 
has higher skill than CFSv1 over 
southwestern U.S., Ohio basin and 
Montana, but has lower skill over the 
southeast (Figure 3b). In the summer time, 
both CFSv1 and CFSv2 have limited skill, 
so the CFSv2 has negligible improvement 
(Figure 3c). On average, CFSv2 increases 
percentage of grid cells with significant 
predictive skill (>0.38) from CFSv1 by 
61%, 45%, 14% and 60% for the four 
months, respectively. 

Before using the downscaled forecast 
forcing to provide seasonal hydrologic 
forecast, a 62-year (1949-2010) offline 
simulation was performed to generate 
initial condition and reference data for 

Fig. 2  Percentage of positive Ranked Probability Skill Score 
(RPSS) for monthly surface air temperature and precipitation 
anomaly over the global land area during 1982-2005 (Yuan 
et al. 2011a). 

Fig. 3 Correlation between NLDAS-2 observation and Bayesian 
downscaled CFSv1 and CFSv2 month-1 precipitation forecasts 
at 1/8 degree over conterminous U.S. in February, May, August 
and November during 1982-2008. The numbers are percentages 
of grid cells with significant predictive skill (Yuan et al.
2011b). 
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validation (e.g., soil moisture, 
runoff), and test the capability of 
VIC model in capturing the 
streamflow interannual variations 
given observed forcing. To match 
the reforecast period, we calculated 
the Nash-Sutcliffe efficiency 
coefficients for monthly streamflow 
of offline VIC simulations at 416 
U.S. Geological Survey (USGS) 
gauges during 1982-2008. Figure 4 
presents locations of the gauges and 
their corresponding efficiency 
coefficients (Yuan et al. 2011b). 
Most of the gauges used in this 
study are in eastern U.S., and the 
highest coefficients are mainly over 
Ohio basin, Northeast and lower 
Mississippi. Among the 416 gauges, 
there are 315 (75%) and 130 (31%) 
gauges with coefficients larger than 
0.3 and 0.7, respectively. Figure 5 
shows interannual variations of 
streamflow from simulation and 
observation at four selected gauges 
with drainage areas ranging from 
1027 to 20300 square miles (Yuan 
et al. 2011b). Consistent with high 
Nash-Sutcliffe coefficients, the VIC 
model captured seasonal fluctuation 
of streamflow quite well at the four 
gauges during 1982-2008, even 
though we started the model from 
1949. Given the limited long-term 
in situ soil moisture observations 
over CONUS and the hypothesis 
that well-calibrated hydrologic 
model could provide reasonable soil 
moisture, we used the offline 
simulated soil moisture as a 
reference data to validate the 
hydrologic forecast. 

Figure 6 shows the Relative 
Operating Characteristic (ROC) 
diagram for low and high flow 
forecasts (Yuan et al. 2011b). The 
results were calculated for 130 gauges with NS coefficients large than 0.7 (Figure 4). All forecasts were more 
skillful than random forecast in the first three months. Low flow forecasts were a little better than high flow 
forecasts in the first month, regardless if the method is ESP or the dynamical climate model; however, their 
differences diminished beyond month-1. CFSv1 had no advantage in distinguishing low flows over ESP in the 
first month due to the strong impact on the forecast from initial condition. As the effect of initial conditions 
decreased and climate model still maintaining some skill, CFSv1 outperformed ESP in the second month; 

Fig. 4  Efficiency coefficients of monthly streamflow from offline VIC 
simulations at 416 USGS gauges during 1982-2008 (Yuan et al.
2011b). 

Fig. 5  Interannual variations of VIC offline simulated monthly 
streamflow compared with USGS observation at four selected 
gauges (Yuan et al. 2011b). 
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while their performance became 
similar again because of the skill 
decrease in the climate model (Figure 
6). With improved skill, CFSv2 was 
consistently better than ESP in the 
first three months, and increased the 
area under ROC curve by 4-7%. For 
high flows, the climate forecast 
model-based approach only limited 
skill beyond ESP in the first month 
(Figure 6). The moderate advantage 
manifested the importance of initial 
hydrologic conditions in identifying 
low and high flows, and the need of 
improvement for climate forecasting 
beyond month-1. 

To investigate the performance 
for drought severity and duration 
forecasts, Severity-Area-Duration 
(SAD) plots were shown in Figure 7 
for 3-month duration (Yuan et al. 
2011b). Severity (S) is defined as S = 
(1-ΣP/t)*100%, where ΣP is the 
summary of monthly percentile of 
soil moisture over t months. Given 
that we were validating drought 
forecast, the SAD plot was a little 
different from its traditional way 
(Andreadis et al. 2005). We defined 
the drought grid cells based on the 
offline simulation results, no matter 
whether they were under drought or 
not in the forecasts.   Therefore,  the  
severity  was  used  to  quantify  the  
difference  between  the models’ 
forecasted droughts and the offline 
simulation conditioning on drought 
area. The offline simulated severity 
values were around 0.9 (Figure 7), 
which was similar to previous studies 
for 3-month drought duration 
(Andreadis et al., 2005). Except for 
1988, central U.S. drought forecasts had very low skill (Figure 7b) due to the underestimated drought area. 
CFSv1 and CFSv2 provided more accurate severity values than ESP (Figure 7a,c-d), indicating the added 
values from climate forecast besides initial conditions. Unlike monthly drought area analysis where the 
forecast could produce larger drought areas than the offline simulation, the SAD plot demonstrated that the 
forecasted severity values were generally lower than offline simulation due to the under-prediction of drought 
areas and/or intensities. For the 1988 drought, all three forecast approaches under-predicted severity 
compared to the offline simulation by about 40%. Averaged over the other three droughts, ESP 
underestimated the severity by 31%, CFSv1 by 24%, and CFSv2 by 15%. 

 

Fig. 6  Relative Operating Characteristic (ROC) diagram for low and 
high flow forecasts averaged at 130 gauges in the first three 
months (Yuan et al. 2011b).

Fig. 7  Severity-Area-Duration (SAD) plots for 3-month duration. 
The 3-month drought grid cells are identified from offline 
simulation (Yuan et al. 2011b). 
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4. Conclusion 

We provided a first look at the capability of the NCEP’s latest operational seasonal forecast model CFSv2 
by comparing its hindcast forecast skill with the CFSv1, ENSEMBLES EUROSIP models. CFSv2 shows 
significant skill enhancement for land surface air temperature and precipitation from CFSv1 for month-1 
forecasts, and has comparable result to ECMWF, where the former and the latter have slightly higher skill in 
temperature and precipitation respectively (Yuan et al. 2011a). 

CFSv1 and CFSv2-based seasonal hydrologic forecasts were generally more skillful than ESP in the first 
three months, and CFSv2 increased the skillful forecast percentage from CFSv1 by 10% on average. The 
climate model-based approach could outperform ESP out to three months in identifying low flow, but not for 
high flow beyond one month. CFSv2 had better discrimination than CFSv1 for the month-1 streamflow 
forecast. The offline simulated soil moisture was used to validate short-term drought forecasts. The SAD plots 
for 3-month duration illustrated the underestimation of drought severity, but the CFSv2 had the least error 
(Yuan et al. 2011b). 

Acknowledgements. The research was supported by the NOAA Climate Program Office through Grants 
NA17RJ2612 and NA10OAR4310246. 
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1.Introduction 

Anthropogenic-driven change in hurricane frequency is obscured, among other things, by low-frequency 
natural sea surface temperature (SST) variability. Our goal is to set up a modeling system to estimate changes 
in North Atlantic hurricane frequency in response to changing climate, separating the anthropogenic from the 
natural-variability components of the projected SST warming. Prerequisites for this undertaking are: an 
atmospheric general circulation model with demonstrated skill in reproducing the observed North Atlantic 
hurricane frequency and trend, and SST projections from a global model with a degree of realism in its 
representation of the physical mechanisms for low-frequency variability. 

The FSU/COAPS AGCM satisfies the first of these prerequisites. LaRow et al. (2008, 2010) have 
documented the skill of the FSU/COAPS AGCM in simulating the observed historical hurricane frequency 
when driven with either observed or model-produced (namely, CFS) SSTs. The FSU model accurately 
simulates the interannual variability in response to time varying SSTs, and is also able to reproduce the trend 
in Atlantic hurricane counts since 1982. 

One theory suggests that the North Atlantic hurricane activity is strongly modulated by the phase of the 
Atlantic Multidecadal Oscillation (AMO) (Goldenberg et al. 2001). However, climate model estimates of 
future hurricane activity have large uncertainties; one source for the uncertainty is changes in low frequency 
(multidecadal) SST variability. In addition, the low frequency SST variability is difficult for many climate 
models to correctly simulate. 

In order to address the low-frequency modulation of hurricane variability in a future climate, we need 
SST projections from the “best” IPCC AR5 CMIP5 model simulations to use as boundary forcing in the 
FSU/COAPS atmospheric model. To identify the “best” models, we evaluate CMIP5 historical baseline 
(1850-2005) simulations. Our assessment 
focuses on the models’ 20th century SST 
trend and ENSO-, and AMO-related 
variability. 

2. Data and methodology 

Table 1 shows the models that are 
currently available (as of October 2011) 
from the IPCC CMIP5 historical 
experiment (obtained from 
http://pcmdi3.llnl.gov/esgcet/home.htm). 
Also shown in the table are the models’ 
native horizontal resolutions and the 
number of ensemble members. Before 
conducting the analysis on the models’ 
sea surface temperatures, the horizontal 
resolution of each model was re-mapped 
to a 360x180 uniform resolution. We 
analyze the low-frequency component of 

Table 1  List of the CMIP5 models used in this assessment and 
their native resolution and ensemble size. 
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SSTs in the CMIP5 historical simulations 
by comparing the 20th Century trend, the 
Atlantic Multidecadal Oscillation (AMO) 
and the ENSO characteristics (spatial 
distribution, frequency and magnitude) of 
the member models' SSTs to the 
corresponding observed characteristics 
during the period. 

3. Results 

3.1 Trend 
All available models reproduce the 

observed increase in SSTs in both the North 
Atlantic (Fig. 1) and tropical Pacific (not 
shown).  Models show marked increase in 
warming (~4x) in the simulated (RCP4.5) 
21st Century compared to the 20th Century 
Historical simulations in the North Atlantic 
and tropical Pacific Oceans (not shown). 
The largest difference between the models' 
trends during the 21st Century is in the tropical Pacific. 

3.2 ENSO 
All models have a strong tropical Pacific signal in the 1.5-8 year band (Fig. 2). In the observations, the 

first complex EOF (CEOF1) accounts for 54.5% of the total variance for this frequency band. Amongst the 
CMIP5 model runs, this percentage ranges from 30.7% (INMCM4-r1) to 62.9 (NorESM1-M-r1). The 
variance explained by CEOF1 differs among the individual realizations of a given model by up to 5.6 
percentage points. The mean observational ENSO period is 3.7 years. The AR5 models’ ENSO period is 
generally underestimated, varying from a rapid return period of 2.7 years (CanESM2-r3) to 3.9 years 

Fig. 1  North Atlantic SST trends in observations (grey bar) and 
CMIP5 models (colored bars; color coding as in Table 1 

Fig. 2  Left: Real and imaginary components of the leading Complex EOF for the observed (top), best 
model (center) and worst model (bottom) historical period SSTs. Right: Explained variance and 
average return period of ENSO. 
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(HadGEM2). Individual realizations differ 
in their estimate of the average return 
frequency of ENSO by up to 0.5 years.  
3.3 AMO 

Most (but not all) of the analyzed 
models have a pronounced AMO signal in 
two dominant frequency bands ~70 years 
and ~25 years. In the observed data 
(HadISSTv1.1, Rayner et al. 2003), both 
frequencies are found in PC1 of the de-
trended North Atlantic SSTs, while in the 
model data they tend to be distributed 
between PC1-3 (Fig. 3). 

Some models (e.g., GISS (R and H) 
models and NorESM1) have a very weak 
multi-decadal signal in the North Atlantic. 
Others (e.g. IPSL and HadGEM2) 
overestimate the power spectrum. The rest 
of the models are more or less comparable 
to observations. 

4. Summary and conclusions 

All models have strong tropical Pacific SST variability in the 1.5-8 year range. The average model ENSO 
return period ranges from 2.7 to 3.9 years, compared to the observed 3.7 years. The models with most realistic 
ENSO representation are the CanESM2 and HadGEM2. 

Most models have pronounced multi-decadal Atlantic variability with dominant modes ~70 and ~25 years. 
In the observations, both modes are contained in the Atlantic EOF/PC1; in the models, they are spread 
between EOF/PC1, 2 and 3. The best AMO representation amongst the models analyzed thus far is that of the 
CanESM2. 

In addition, some models have spurious signal in the high latitudes of the southern hemisphere. Most 
models have pronounced multidecadal Pacific variability that we have not yet analyzed in detail. 

As historical simulations from additional CMIP5 models become available, we will update the above 
evaluation. Our preliminary conclusion is that of the models available thus far, CanESM2 has the winning 
combination of trend, ENSO and AMO variability and its SSTs would be the most suitable for addressing 
Atlantic basin hurricane projections for the mid- to late-21st century. 
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Fig. 3  Power spectra of the first three principal components of 
North Atlantic SSTs for observations and historical 
simulations.  The abscissa denotes number of cycles per 140 
years. Blue arrows indicate the observed spectral peaks at 
~70 and ~25 years.
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To support NOAA’s mission in improving its climate prediction on the seasonal scale, NCEP has 
launched a new version of the NCEP Climate Forecast System (CFSv2) in 2011.  The NASA Land 
Information System (LIS, Peters-Lidard et al., 2007) is implemented within CFSv2 to execute the Global 
Land Data Assimilation System (GLDAS) to provide land surface analysis. 

Numerical weather and climate 
prediction and assimilation systems 
generally use prescribed or simulated 
soil moisture values to formulate surface 
layer parameterizations within a land 
surface model (LSM) to calculate 
evapotranspiration and latent and 
sensible heat fluxes, and to solve for the 
land surface energy and water balance 
equations.  In the first version of the 
NCEP CFS (CFSv1), the Oregon State 
University (OSU) LSM (Pan and Mahrt, 
1987) was used to calculate the land 
surface states and fluxes.  To outcome 
the deficiencies in the precipitation 
forcing from the atmospheric model and 
to prevent the calculated soil moisture 
drifting too far from a preferred 
climatology, an adjustment on the 
simulated soil moisture was required to 
compensate the differences between the simulated and observed precipitation.  The Noah LSM (Ek et al., 
2003) was developed with substantial improvements from the OSU LSM as a collaborative effort between 
NCEP and numerous partners from the land hydrology community over the last decade.  Noah was 
implemented in the NCEP North American Mesoscale Model (NAM) in 2003 and the NCEP Global Forecast 
System (GFS) in 2005 for operational regional and global medium-range weather forecasts.  In CFSv2, Noah 
is implemented in both the fully-coupled land-atmosphere-ocean prediction model to make seasonal climate 
forecast and the semi-coupled GLDAS to perform the land surface analysis. 

The NASA LIS is employed to execute the CFSv2 land surface analysis.  Compared to CFSv1, this 
CFSv2 LIS uses observed global precipitation analyses as direct forcing to drive the Noah LSM to execute the 
land surface analysis.  The adjustment on soil moisture is based on land surface physics responding to the 
adjustment on precipitation forcing, rather than the artificial adjustments previously applied in CFSv1.  Two 
sets of observation-based global precipitation analyses are utilized as alternative forcing to drive the CFSv2 
LIS.  One is the pentad data of CMAP (Xie and Arkin, 1997) that also used in CFSv1; the other is the CPC 
unified global daily gauge analysis (Xie et al., 2010).  After reviewing the global gauges distribution (Figure 
1), a merging approach with latitude-dependent weighting masks is designed that favors the gauge-only 

Fig. 1  Example of global gauge distribution used in the CPC 
unified global daily gauge analysis. 
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analysis in mid-latitudes, and the satellite-dominated CMAP analysis in tropical latitudes where gauge count 
is low.  In high-latitudes where gauge count is also low and satellite estimate lacks of accuracy, the CFSv2 
model predicted precipitation is given the most weights.  In addition, the gauge analysis is given the most 
weight in the regions of high gauge density (e.g., contiguous United States, Europe, and Australia). 

In summary, NCEP CFSv2 is for the first time an LDAS strategy is used in a coupled land-atmosphere-
ocean global climate prediction system to perform the land surface analysis.  Observed precipitation fields are 
used to constrain the land surface simulation of soil moisture, soil temperature, and snowpack.  This product 
can improve the current understanding of the global land surface energy and water cycles and their roles in 
the Earth system to further assist the operation and research in hydrology, weather, and climate. 
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Problem of Cloud Overlap in Radiation Process in JMA Global NWP Model  
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1. Introduction 

The JMA global NWP model (JMA-GSM) tends to be 
optically thicker (thinner) in the tropics (extratropics) for 
the shortwave radiation compared with observations (Fig. 
1). One of the causes is an insufficient treatment of a 
cloud overlap in the shortwave radiation calculation. To 
improve the treatment, the problem and solution is studied. 

2. Problem of current cloud overlap in shortwave 
radiation calculation   

In a shortwave radiation scheme of JMA-GSM, total 
cloud fraction is calculated by assuming a maximum-
random overlap treating a column area as clear sky and 
cloudy areas separately. In the cloudy area of the column, 
a random overlap is always adopted to treat cloud multiple 
scattering effects. In the longwave radiation calculation, 
maximum-random overlap is adopted (NPD/JMA 2007). 

In a case that a fraction of optically thin high level 
clouds (anvil) is large and a fraction of tower-shaped 
cumulus is small, which is often observed in the tropics, 
cloud optical thickness is overestimated in the shortwave 
radiation calculation (Fig. 2). 

3. The solution   

An Independent Column Approximation (ICA, e.g., 
Cahalan et al. 1994) can take the cloud multiple scattering 
effects into account in shortwave radiation calculation 
(Fig. 3). This makes it possible to improve the 
aforementioned problem and to adopt maximum-random 
overlap both in the shortwave and longwave radiation 

Fig. 1  Upward shortwave radiation flux at 
TOA (JMA-GSM - CERES) (Wm-2).  Left: 
JJA, right: DJF. 2001-2006 year average is 
shown.

Fig. 2  Pattern diagrams of the case that cloud optical thickness is overestimated by current cloud overlap in 
shortwave radiation scheme. Left: Without anvil, Right: With anvil. 
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calculation. Although full ICA requires 
more computational cost than the current 
scheme, an efficient method was proposed 
by Collins (2001) without degrading 
accuracy of the radiation computation 
(Practical ICA: PICA). Essence of PICA is 
to ignore radiation calculation in sub-
column whose contribution (width) is 
small (narrow).  

4. Results 

 Fig. 4 and Fig. 5 show impacts of 
PICA with maximum-random overlap on 
JMA-GSM and simulated cloud 
distribution. Initial time of experiment is 
12UTC on 10 Aug 2009 and 24 hour 
forecast was executed. Horizontal gird spacing and number of vertical layer of JMA-GSM are about 200 km 
and 60 respectively. 

PICA with maximum-random overlap decreases cloud optical thickness around tropics and mid-latitude 
(Fig. 4).  In addition PICA decreases shortwave heating in middle troposphere and increases that in lower 

Fig. 3 Pattern diagrams of ICA (Independent Column 
Approximation) that only two clouds overlaps vertically.  
Left: in case of random overlap, Right: in case of maximum 
overlap. 

Fig.4  Impact of difference of cloud overlap assumption to upward shortwave radiation flux at TOA (Wm-2).  
Upper left: TEST, upper right: CNTL, lower left: TEST – CNTL, lower right: total cloud fraction.  Initial 
time is 12UTC on 10 Aug 2009. 24 hour forecast average is shown. 
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troposphere (Fig. 5). It is thought that decrease of excess shortwave radiation flux reflection in middle 
troposphere induces increase of downward shortwave radiation flux to lower troposphere and shortwave 
radiation absorption by cloud and water vapor below 900hPa. 

5. Summary 

JMA-GSM tends to be 
optically thicker (thinner) in the 
tropics (extratropics) for 
shortwave radiation flux 
compared with observation. One 
of the causes is an insufficient 
treatment of cloud overlap in the 
shortwave radiation calculation. 
Practical ICA, improved method 
to treat better cloud overlap in 
the shortwave radiation 
calculation with small 
computational cost is tested. The 
method with maximum-random 
overlap decreases cloud optical 
thickness extensively and 
increases (decrease) shortwave 
heating in middle (lower) 
troposphere. Practical ICA has to 
be tested in many cases and 
appropriate parameters have to 
be fixed considering 
computational cost and accuracy. 
And then description of cloud 
simulated by JMA GSM has to 
be improved. 
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Fig. 5  Impact of difference of cloud overlap assumption to shortwave 
radiation heating rate (K/day).  Upper left: TEST, upper right: CNTL, 
lower left: TEST – CNTL, lower right: cloud fraction.  Initial time is 
12UTC on 10 Aug 2009.  Zonal mean and 24 hour forecast average are 
shown. 
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ABSTRACT 

A collaborative prediction system, the National Muli-Model Ensemble (NMME), is under 
development through the NOAA Climate Test Bed (CTB) for experimental monthly and seasonal 
prediction at Climate Prediction Center (CPC). The CTB NMME project is funded by Climate 
Program Office MAPP Program (Modeling, Analysis, Prediction and Projection).  In the current 
phase, seven models from different US institutes (NCEP-CFSv1, NCEP-CFSv2, GFDL-CM2.2, 
NCAR/U.Miami/COLA-CCSM3, NASA-GEOS5, IRI (ECHAM-a and ECHAM-f)) are 
participating. Three variables (monthly mean precipitation, sea surface temperature, and air 
temperature at 2 meters on a 1x1 degree grid), all with at least 29 years of hindcasts (1982-2010), 
are evaluated after removing their systematic errors, and then verified against the observations. 
Realtime experimental forecasts of the multi-model ensemble were first conducted in August 2011. 
The bias corrected multi-model ensemble prediction system is designed to contribute to the 
ongoing monthly and seasonal prediction in CPC. 

 
1. Introduction 

Monthly-to-seasonal time scale climate predictions are made at NCEP/CPC routinely by a number of 
tools, both statistical, e.g. canonical correlation analysis (CCA) and optimal climate normal (OCN) (O’Lenic 
et al. 2008), and dynamical models (Climate Forecast System version 1 &2).  Although the ratio of signal to 
noise is low in the dynamical model due to long time integration and growth of the systematic error (Straus 
and Shukla 2002), the dynamical models have comparable forecast scores to the statistical models (DeWitt 
2005; Saha et al. 2006). Successful monthly-to-seasonal prediction mostly depends on a revolution in our 
understanding of the coupled ocean-atmosphere system after the dramatic strong ENSO events in 1982/83 and 
1997/98 (Barnston et al. 1999; Landsea and Knaff 2000; Shukla et al. 2009). This means monthly-to-seasonal 
predictability relies on the slowly evolving components of the climate system, like the ocean or land surface, 
that act as boundary conditions for the atmosphere with its shorter intrinsic time scales (Shukla et al. 2009; 
Goddard et al. 2001; Paolino at al. 2011). Two types of uncertainties are involved in the monthly-to-seasonal 
predictability: one is related to the uncertainty of the initial conditions (Keenlyside et al. 2005; Luo and Wood 
2006), and the other is accounted for model errors in the physics processes related to the sub-grid 
parameterization (Palmer at al. 2004, Kirtman and Min 2009, De Witt 2005).  

In recent years, the multimodel ensemble forecast has become a powerful tool for the monthly-to-seasonal 
time scale prediction to deal with both uncertainties (Krishnamurti et al. 2000, Kirtman et al. 2003; Peng et al. 
2002; Hagedorn et al. 2005; Doblas-Reyes et al. 2005; Palmer et al. 2004; Lavers et al. 2009). For the 
monthly-to-seasonal forecast, multimodel prediction has successfully increased the spread by reducing the 
overconfident forecast of the individual model (Palmer et al. 2004; Weisheimer et al. 2009).  Furthermore, 
recently research has shown that a multimodel ensemble, even in a simple equal weight combination, has 
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higher prediction skill scores than that of any individual model in the prediction of tropical SST anomaly 
(Kirtman and Min 2009). Several projects, like DEMETER and EUROSIP, have demonstrated the 
improvement of multimodel seasonal forecast reliability (Hagedorn et al. 2005, Mitchell et al. 2004, Palmer 
et al. 2004). 

This work of reports the latest results from the experimental National Multi-Model Ensemble (NMME) 
prediction system (Phase1). The models and data involved in Phase 1are briefly described in section 2, and 
followed by a preliminary evaluation of the multimodel ensemble system for monthly and seasonal prediction. 
In the last section, we present a summary and discussion. 

Model Period Members Leads Arrangement of Members 

CFSv1 1981-2009 15 0-8 months 1st 0Z +/-2days, 21st0Z+/-2d, 
11th0Z+/-2d 

CFSv2 1982-2009 24(28) 0-9 4 members (0,6,12,18Z) every 
5th day 

GFDL-CM2.2 1982-2010 10 0-11 All 1st of the month 0Z 

IRI-Echam4-f 1982-2010 12 0-7 All 1st of the month 

IRI-Echam4-a 1982-2010 12 0-7 All 1st of the month 

CCSM3.0 1982-2010 6 0-11 All 1st of the month 

NASA-GEOS5 1982-2010 6 (8) 0-8 
1 member  every 5th day 

Additional 2 members on the 
beginning of month 

Table 1  NMME models information 
2. Models and data 

Based on two Climate Test Bed (CTB) workshops 
(February 18 and April 8, 2011), a collaborative and 
coordinated implementation has been established 
under the frame work of the CTB project, called 
National Multi-Model Ensemble (NMME). The 
experimental realtime experimental forecast system 
made a first seasonal and monthly multimodel 
forecast in August 2011 in Climate Prediction Center 
as Phase 1 of the NMME project. Seven models, from 
NCEP (CFSv1&2), GFDL (CM2.2), IRI (ECHAM-a 
and ECHAM-f), NCAR/U.Miami/COLA-CCSM3 
(Collins et al. 2006), and NASA-GEOS5 are 
participating.  Three variables (monthly mean 
precipitation, sea surface temperature, and air 
temperature at 2 meters on a 1X1 degree grid) with 29 
years of hindcasts (1982-2010), have been evaluated.  
The model climatology and prediction skill mask have 
been calculated after the systemic errors are corrected 
for each model in every leading month forecasts. 
More details of the NMME models are given in 
Table1.  

Fig. 1 Multimodel ensemble forecast skills of 
Nino3.4 (black line) and individual modes 
(color lines) for 7 lead months with August 
initial conditions.
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The observation data used for 
verification are the NOAA 
Optimum Interpolation (OI) Sea 
Surface Temperature (SST) V2 
(SST OISST-QD) (1982-2010) 
(Reynolds et al. 2002) for 
verification of model SST, CMAP 
(1982-2010) (Xie and Arkin 1997) 
for precipitation, and 
GHCN_CAMS (1982-2010) for 
temperature at 2m (Fan and van 
den Dool 2006). 

3. Results 

The first experimental realtime 
monthly-to-seasonal forecast of 
NMME-PHASE1 was made in 
August 2011. In the month before, 
hindcasts from 1982-2010 with 
August ICs for all models, except 
NASA’s, were collected by FTP 
for all 3 variables: SST, 
precipitation and temperature at 2m. 
The evaluation of prediction skills 
for each model and equal-weight 
average of multimodel ensemble 
mean were done after calculating 
the model climatology for the 
systematic bias correction. Here, 
we are reporting some results 
related to the NMME prediction 
skill assessment for the subsequent 
realtime forecast in August. 

a. Nino3.4 and SST 

Since SSTs in the tropical 
Pacific are a major source of 
climate predictability on monthly-
to-seasonal time scales, model 
performance in the tropical Pacific 
is of particular interest. To 
demonstrate the typical level of 
skill in this area, Fig. 1 shows the 
anomaly correlation coefficient 
(ACC) of the ensemble mean for 
the single model ensemble (colored 
lines) and multimodel ensemble (black line) for the SST anomaly averaged over the Nino3.4 area for each 
lead in months. The results suggest that all single-model ensembles generally perform as well as El Nino-
Southern Oscillation (ENSO) prediction systems. All single models have achieved above 0.7 for 7 months 
forecast, but the NMME multimodel ensemble system has an ACC above 0.83 for all the 7 months.  In 
addition, note the higher correlation of the multimodel ensemble compared to all single models, except for the 
last two leads. This indicates the multimodel ensemble indeed has more skill than single model, as pointed out 

Fig. 2a Maps of anomaly correlation coefficient (ACC) of SST for 
individual models for prediction DJF with August ICs.  

Fig. 2b SST anomaly correlation coefficient (ACC) of multimodel 
ensemble with observation (1982-2010) for prediction DJF with 
August ICs.   
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by the previous studies (Palmer et al. 2004, Kertman 
and Min 2009). This improvement of the Nino3.4 
prediction skill is greatly encouraging and has shown 
the value of the NMME efforts. 

To further investigate the multimodel  SST 
hindcast skill, maps of grid point ACC for the target 
season DJF with August initial conditions are shown 
for the six individual models (Fig. 2a) and the 
multimodel ensemble (Fig. 2b).  Unsurprisingly, the 
ACCs of the SST anomaly for both the single models 
and the multimodel ensemble mean have higher 
scores over the central eastern Pacific, exceeding 0.8, 
and then gradually decrease along the equator 
westward and off the equator in the western tropical 
Pacific. It is interesting to see that while some models 
have low skills over the northern west Pacific, the 
NMME ensemble has skills comparable  to the best 
performing model over the regions. Many areas like 
this can be found over the tropical Indian Ocean and 
northern Atlantic. In the extra-tropics, the correlations 
are generally low, but there are same notable high 
correlations (e.g. greater than 0.6) in the north 
Atlantic and South Pacific.  

Carefully comparing each map in Fig. 2a and Fig. 
2b, one may find that the ACC of the multimodel 
ensemble seems to take over skill scores wherever 
they are better among the single models. This 
hypothesis is confirmed by averaging the prediction 
skill over the global tropical band (from 30ºS-30ºN) 
shown in Fig. 3. The ACC of the multimodel is the 
second highest for the first 3 leads and the best one 
after that for longer lead month forecast. The root 
square mean error (RSME) is almost the lowest for all 
the leading months except the first month among all 
models. Consistent with DEMETER (Hagedorn et al. 
2005), the NMME multimodel ensemble 
improvement in SST prediction achieved by the error 
compensation each other in individual models 
(Kirtman and Min 2009). 

b. Precipitation 

Corresponding to the high scores over the central eastern Pacific in SST anomaly prediction, the ACC of 
precipitation for each model and multimodel ensemble have the same narrow band of high forecast skills (Fig. 
4) for DJF with August initial conditions. Scores quickly decrease westward and off the equator for the 
individual models and the multimodel ensemble. Only isolated scattered high score areas can be found in the 
extra-tropics. The ACC over the land is also low for the both individual models and multimodel ensemble. 
ACC scores averaged over the global tropical band are lower than 0.3 for all the leading months (Fig. 5a). 
However, the multimodel ensemble has the highest scores, and RSME is much smaller than for any of the 
single models (Fig. 5b). The superior performance of the multimodel ensemble for the prediction of 
precipitation indicates the benefit of the NMME approach even with a simple equal-weighting ensemble. This 

Fig. 3a NMME forecast skills (black line) and 
individual models (color lines) for SST averaged 
30S-30N with August ICs. 

Fig. 3b  NMME RMS error (black line) and 
individual models (color lines) for SST 
averaged 30S-30N with August ICs. 
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achievement especially helps to 
improve the CPC’s realtime 
monthly-to-seasonal forecast, since 
currently precipitation prediction 
scores are low on land and have 
large uncertainty. 

c. Temperature at 2m 

Now we explore the forecast 
skills of the atmospheric 
temperature at 2m for the northern 
hemisphere winter (DJF) in 4 
months leading prediction. The 
strongest signals of the ACC are 
mainly over the tropical regions 
related to ENSO impacts on the 
monthly-to-seasonal time scales. 
Good scores can be found over 
South America and Africa in each 
individual model, indicating that 
state-of-the-art coupled models 
have caught the SST forcing and 
the right response to the forcing of 
the boundary conditions of ENSO 
(Fig. 6a). The multimodel 
ensemble has superior scores for 
these near equatorial regions, such 
as the east and west coasts of 
Australia and Sumatra in the 
western Indian Ocean and western 
equatorial Pacific (Fig. 6b). The 
prediction scores for temperature at 
2m averaged over the tropical band 
(30ºS-30ºN, land only) for each lead show the multimodel 
ensemble is the second best compared to all models (Fig. 7a), 
and RMSE is almost as good as the best individual model 
for the all lead (Fig. 7b). We are very encouraged by these 
preliminary results for the multimodel ensemble forecast 
assessment. The prediction scores suggest the NMME will 
help improve the CPC realtime monthly-to-seasonal 
prediction, and will provide improved climate forecast to 
decision makers and downscaling and other user 
communities. 

4. Summary and discussion 

Based on existing state-of-the-art US climate prediction 
models from these institutes (NCEP-CFSv1, NCEP-CFSv2, 
GFDL-CM2.2, NCAR/U.Miami/COLA-CCSM3, NASA-
GEOS5 and IRI-ECHAM4), the Climate Test Bed has 
launched a phase-1 of National Multi-Model Ensemble 
project in February, 2011. The monthly-to-seasonal 
multimodel prediction system is under development and 

Fig. 4a  Maps of anomaly correlation coefficient (ACC) of precipitation 
for individual models for prediction DJF with August ICs. 

Fig. 4b Maps of anomaly correlation coefficient 
(ACC) of precipitation for multimodel 
ensemble for prediction DJF with August 
ICs. 
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experimental realtime forecasts have been made on 
the 8th of each month routinely since August, 2011 to 
adhere to the schedule of the operational monthly and 
seasonal forecast in NCEP Climate Prediction Center. 
Maps of the NMME experimental prediction can be 
found on the web site: 
http://www.cpc.ncep.noaa.gov/products/people/wd51
yf/NMME. The graphical forecast guidance includes 
North America and the global domain of precipitation 
and temperature at 2m anomalies and SST anomaly. 
The plots are monthly and seasonal means, with or 
without skill mask, applied for 7 lead months or 5 
lead seasons (3-month averages). 

All NMME forecast are bias corrected by using 
the 29 years of hindcast data for each participating 
model. The model climatology and skill mask are 
calculated so as to apply to the realtime forecast in 
each month. The assessment of prediction scores of 
the three fields for both individual model and NMME 
ensemble are also given on the web for information 
about the confidence and reliability of the prediction. 
This report only discusses the preliminary evaluation 
of the NMME prediction system for forecast 
precipitation, temperature at 2m and SST for 2011/12 
winter (DJF) with August initial conditions. More 
detailed information on forecasts and verifications on 
other months can be found at the web site mentioned 
above. 
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1. Introduction 

There has been increasing evidence that the atmosphere influences land surface processes, which in turn 
affect the atmosphere via feedback mechanisms, particularly at decadal time scales. More than a century ago, 
Blandford (1884) documented an inverse relationship between winter snow over the Himalayas and 
subsequent all-India monsoon rainfall. There has been increasing evidence that snow may generate anomalous 
atmospheric forcing via changing the process of energy and water transfer between land surface and the 
atmosphere. The existence of snow-monsoon relationship was supported by subsequent studies with updated 
snow data and numerical models. For example, Wu and Kirtman (2007) showed that the enhanced spring 
snow cover in western Siberia corresponded to above-normal spring rainfall in southern China. Some studies 
emphasized the complex nature of the relationship between Eurasian snow and broader-scale Asian monsoon 
which is also strongly influenced by El Niño-Southern Oscillation (ENSO) and the Arctic Oscillation (AO). 
However, it has been found that the connection between Asian climate and ENSO is weakening in the recent 
decades. Several studies reported that Eurasian snow is playing a more important role in Asian climate 
variations than before.   

Here we summarize two recent papers by Zuo 
et al. (2011) that examined the decadal variations 
in Eurasian snow, focusing on the relation with 
circulation and the influence on spring rainfall 
over China. 

2. Data and Methods 

The present analysis is based on monthly 
observed rainfall data recorded at 595 stations in 
China over the period 1958–2004 provided by the 
National Meteorological Information Centre of 
China. The monthly snow water equivalent (SWE) 
dataset (1979–2004) was provided by the National 
Snow and Ice Center (Armstrong and Brodzik 
2005). The monthly mean winds and geopotential 
heights were obtained from the National Center of 
Environmental Prediction (NCEP) and the 
National Center for Atmospheric Research 
(NCAR) reanalysis version 1 outputs for the 
period 1948–2006. The 0-month lead (LM0) 
NCEP Climate Forecast System version 2 
(CFSv2) hindcasts, the ensemble of 16 members, 
were used to investigate the predictability of the 
relationship between Eurasian SWE and rainfall in 
China (Saha et al. 2010). 

Fig. 1  (a) Spatial pattern of springtime SWE 
anomalies of the leading mode for the period 
1979–2004, and (b) the corresponding time 
series. 
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Empirical orthogonal 
function (EOF) analysis 
was used to examine the 
spatial and temporal 
characteristics of variability 
in Eurasian SWE (‘Eurasia’ 
defined as the domain from 
0°E to 180°E, north of 0°N 
in the present study). In 
addition, correlation and 
composite analyses were 
performed to investigate the 
relationship between SWE 
and spring rainfall in China, 
assessed using Student’s t-
test. 

3. Results 

Figure 1 shows the first 
EOF mode of Eurasian 
spring (March-April-May) 
SWE and the corresponding 
time series. The variance 
percentage explained by the 
mode is 41.7%. Variation in 
spring snow in the leading 
EOF mode is homogeneous 
over large parts of Eurasia, 
with a maximum value of 20 mm in western and central Siberia, whereas the opposite variation is found over 
small areas such as the region south of Lake Balkhash and the eastern Tibetan Plateau (Fig. 1(a)). The leading 
mode of the SWE variability shows an apparent decadal shift in the late 1980s, with negative phases during 
1988–2004 (hereafter LSWI) and a mainly positive phase during 1979–1987 (hereafter HSWI), which 
indicates a decreasing decadal trend in spring Eurasian snow from 1979 to 2004 (Fig. 1(b)). 

Figure 2(a) shows the climatology of spring rainfall over China for the period 1979–2004. The rainfall 
shows a gradual increase from northwestern to southeastern China. Precipitation exceeds 300 mm in 
southeastern China, with a maximum value of 700 mm. To identify the relationship between rainfall in China 
and spring snow in Eurasian, the composite difference in spring precipitation was calculated between the 
LSWI and HSWI cases (Fig. 2(b)). Negative differences are seen across most of northwestern China and 
eastern China, except the Yangtze River valley and parts of Inner Mongolia. The maximum difference, 
greater than –100 mm, is seen in southeastern China. Figure 2(d) shows the first EOF mode of the spring 
rainfall anomaly. The first mode is similar to the composite difference between LSWI and HSWI. Note that 
the variance percentage explained by the mode is 23.5%, demonstrating that the bulk of rainfall variability is 
explained by decadal variations in Eurasian spring SWE. Figure 2(c) shows the distribution of stations for 
which the composite differences exceed the 0.1 level of significance. As expected, the composite differences 
of spring rainfall are significantly negative in southeastern China and positive in southwestern China. 
Although the difference is small in northern China, spring precipitation shows a significant decrease in 
southeastern area in Northeast China and a significant increase in northern Inner Mongolia. 

Figure 3(a) shows the composite difference of wave activity flux between LSWI and HSWI. Downward 
and equatorward wave activity flux anomalies appear at mid- and high-latitudes below 200 hPa. The wave 
activity flux is a three-dimensional extension of the Eliassen–Palm flux (Edmon et al. 1980), which reveals 
the propagation of wave activity and the effect of waves on the flow. Thus, the reduced Eurasian snow acted 

Fig. 2  (a) Climatology of the springtime accumulated precipitation (mm) 
during 1979–2004, (b) composite difference between the LSWI and 
HSWI cases, (c) distribution of stations for which the composite 
difference exceeds the 0.1 level of significance [triangles (dots) indicate 
significant positive (negative) difference], and (d) the spatial pattern of 
springtime rainfall anomalies of the leading EOF mode for the period 
1979–2004. 
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to weaken the upward and poleward wave activity flux in the troposphere over Siberia. The center of upward 
and poleward zonal-mean wave activity flux was also strongly weakened due to reduced snow in Eurasia. 

Figure 3(c) shows the composite differences in SLP 
between LSWI and HSWI. A positive AO phase was 
associated with decreasing Eurasian snow. A large area of 
negative anomalies (maximum values exceeding –3 hPa) 
emerged over the polar cap, extending from Siberia to 
northern Canada and covering almost the entire polar cap 
at the land surface. Positive centers appeared in mid-
latitude regions, with maximum values exceeding 2 hPa 
over the North Pacific. The negative SLP anomalies over 
the Arctic and positive anomalies over mid-latitude areas 
provided quantitative evidence that deficient snow over 
the Eurasian continent corresponded to a positive AO 
phase. The 500-hPa geopotential height field followed a 
similar pattern to that of SLP. 

With a persistent decrease in Eurasian snow, the 
positive AO phase is associated with anomalous anti-
cyclonic circulation over Siberia, resulting in turn in 
robust northerly anomalies over all of eastern China, with 
maxima in Northeast and southeastern China (Fig. 3(b)). 
Consequently, the warm and moist southerly is weakened, 
resulting in divergence anomalies over Northeast and 
southeastern China and reduced regional rainfall. In 
contrast, the northerly anomaly corresponds to greater 
amounts of water vapor being blocked in southwestern 
China, resulting in enhanced rainfall. Moreover, the 
westerly anomaly due to the anomalous anti-cyclone over 
Siberian is associated with enhanced water vapor 
convergence over northwestern China, resulting in a 
positive precipitation anomaly. 

The CFSv2 captures the decreasing trend of spring 
SWE over Eurasia reasonably well (Figure 4(a)), with 
maximum negative anomalies of -30kg/m2 in eastern 
Europe and Siberia. The reduced precipitation over 
southern China and surrounding oceans is also captured by 
the CFSv2 successfully, with maximum anomalies -1.2 
mm/day over southeastern China (Figure 4(b)). The 
characteristics aforementioned indicate that the CFSv2 is 
skillful for predicting the relationships of the Eurasian 
SWE with the rainfall in southeastern China. 

4. Summary and Conclusions 

The relationship between decadal variability in spring snow water equivalent (SWE) over Eurasia and 
spring rainfall over China is investigated using satellite-observed SWE, rainfall observations from 595 
stations, and NCEP/NCAR reanalysis data. Decreasing spring SWE in Eurasia corresponded to reduced 
spring rainfall over southeastern and Northeast China, and more rainfall over southwestern and northwestern 
China. This relationship was supported by the feedback effect of snow in high-latitude areas to changes in 
background atmospheric circulation. 

Fig. 3 Composite difference between the LSWI 
and HSWI cases in terms of meridional and 
vertical (×10) wave activity flux (m2 s–2) 
along 90°E (a), the horizontal wind field 
(vectors, m s–1) and horizontal moisture flux 
divergence (contours and shading, g × (s × cm 
× mb)–1 × 10–7) at 850 hPa (b) and SLP (c). 

(a)

(b)

(c)
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A decadal shift in spring Eurasian SWE occurred in 
the late 1980s, marked by a change from persistent 
positive phases in 1979–1987 to frequent negative 
phases. The reduction in Eurasian SWE resulted in 
reduced upward and poleward wave flux activity, which 
corresponded to anomalous negative heights/pressures in 
the Arctic and anomalous positive heights/pressures in 
mid-latitude regions from the upper-level troposphere to 
the surface. There was an anomalous anti-cyclonic 
circulation over Siberia and the western Pacific 
subtropical high was weakened, accompanied by an 
anomalous northerly in eastern China and westerly in 
northwestern China. The anomalous northerly resulted in 
reduced water vapor convergence in southeastern and 
Northeast China. Thus, negative rainfall anomalies 
developed over southeastern and Northeast China, and 
positive rainfall anomalies appeared over southwestern 
and northwestern China. Restropective forecasts from 
CFSv2 successfully simulated the relationship between 
Eurasian SWE and southeastern China rainfall. 
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ABSTRACT 

Maximum covariance analysis is performed on the fields of boreal summer, tropical rainfall 
and Northern Hemisphere (NH) 200 hPa height for the 62-year period of record 1948-2009. The 
leading mode, which appears preferentially in summers preceding the peak phases of the El Niño-
Southern Oscillation (ENSO) cycle, involves a circumglobal teleconnection (CGT) pattern in the 
NH extratropical 200 hPa height field observed in association with Indian monsoon rainfall 
anomalies. The second mode, which tends to occur in summers following ENSO peak phases, 
involves a Western Pacific-North America (WPNA) teleconnection pattern in the height field 
observed in association with western North Pacific summer monsoon rainfall anomalies. The CGT 
pattern is primarily a zonally oriented wave train along the westerly waveguide, while the WPNA 
pattern is a wave train emanating from the western Pacific monsoon trough and following a great 
circle. The CGT is accompanied by a pronounced tropical-extratropical seesaw in the zonally-
symmetric geopotential height and temperature fields and the WPNA is observed in association 
with hemispherically-uniform anomalies. These ENSO-related features modulate surface air 
temperature in both tropics and extratropics. ENSO also affects the wave structure of the CGT and 
WPNA indirectly, by modulating the strengths of the Indian and western North Pacific monsoons. 
Linear barotropic mechanisms, including energy propagation and barotropic instability of the basic 
state flow, also act to shape and maintain the CGT. The implications of these findings for seasonal 
prediction of the NH extratropical circulation are discussed. 

 

It is well known that ENSO can affect the NH circulation during the boreal winter. Here we have shown 
that it can also excite a strong extratropical circulation response in the boreal summer preceding the peak 
phase of an El Niño or La Niña event and a weaker, but sometimes detectable response in the summer 
following the event. ENSO affects the extratropical circulation during the boreal summer by relocating the 
monsoonal heat sources.  

Global scale co-variability between NH 200 hPa geopotential height (0-87.5ºN) and tropical rainfall 
(15ºS-30ºN) has been analyzed by applying Maximum Covariance Analysis (MCA) to a 62-year-long dataset 
consisting of JJA-means. This analysis yields a comprehensive picture of the global scale tropical-
extratropical teleconnections that reveals how tropical heating anomalies force an NH extratropical response 
on the interannual timescale. Emphasis has been placed on assessing the role of the summer monsoons in 
mediating the response. In Fig. 1 we present a schematic diagram that highlights complementary roles of 
ENSO and monsoons in driving tropical-extratropical teleconnections during various phases of the ENSO 
cycle.  

The leading MCA mode M1, which accounts for 47% of the squared covariance between tropical rainfall 
and NH 200 hPa height links the CGT pattern with precipitation anomalies over Indian monsoon regions. The 
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CGT is mainly confined within the 
wave guide associated with the 
westerly jet stream. The centers of 
action of the CGT tend to occur at 
preferred longitudes, which is 
reproduced in the left hand panel of 
Fig. 1. The second MCA mode M2, 
which explains another 25% of the 
squared covariance, reflects the 
relationship between summer rainfall 
anomalies in the WNPSM and the 
WPNA teleconnection pattern (right 
hand panel of Fig. 1).  

The extratropical circulation 
patterns in M1 and M2 closely 
resemble the leading EOFs of the NH 
upper-tropospheric circulation. The 
CGT pattern (M1, EOF2) and the 
WPNA pattern (M2 and EOF1) both 
exert a substantial impact on surface 
temperature over tropical and extratropical land areas. The CGT pattern is linked to Indian summer monsoon 
variability, while the WPNA pattern is more connected with the WNPSM. The CGT explains most of 
interannual variability along the westerly jet. Thus, the CGT is the primary agent in conveying the influence 
of tropical thermal forcing to the NH extratropics.   

M1 and M2 are associated with developing and decaying phases of extreme in the ENSO cycle, 
respectively. The strong tropical SST anomalies observed during the summer preceding the peak phases of the 
ENSO cycle excite a strong extratropical response. In the summers following the peak phase of the ENSO 
cycle, ENSO-related rainfall anomalies are too weak to produce a robust extratropical response. The 
asymmetry between the strength of the extratropical patterns in the pre- and post- peak phase summers is 
largely a reflection of the seasonality of the ENSO cycle itself, and, in particular, the predictability barrier in 
the boreal spring. 

The circulation patterns associated with M1 and M2 both contain zonally symmetric and zonally 
asymmetric components (Fig. 1). The wave components of the CGT and WPNA patterns are mainly related to 
the ISM and WNPSM forcing, respectively. The zonally symmetric component exhibits a deep equivalent 
barotropic structure. M1 is marked by an out of phase relationship between tropospheric temperature 
anomalies in the tropics and extratropics while the zonally symmetric component of M2 tends to be spatially 
homogeneous throughout the tropical and extratropical NH. These zonally symmetric features exhibit a 
distinctive pattern of evolution in association with the ENSO cycle, with the tropical-extratropical seesaw 
prevailing in summers preceding the peak phase and the hemispheric uniform pattern prevailing in the 
summers following the peak phase. Tropical and extratropical land surface temperatures vary in a similar 
manner. 

We have shown evidence suggesting that linear, barotropic mechanisms, including energy propagation 
and barotropic instability of the midlatitude basic flow, shape the structure of the CGT and contribute to its 
prominence. Such internally generated extratropical variability can exist in the absence of tropical forcing but 
may also be excited by tropical forcing. 

Our results suggest that three different factors are instrumental in producing tropical-extratropical 
teleconnections during the boreal summer. ENSO forces a zonally symmetric response in the tropics and 
extratropics and it also modulates the rainfall in the ISM and other regional NH monsoons. The monsoons, in 
turn, act to excite the wave components of the CGT and WPNA patterns. Internal dynamics of basic state 
flow contributes to the characteristic structure of the CGT as well as to its maintenance. 

Fig. 1  Schematic showing the role of ENSO in organizing monsoon 
rainfall and the zonally-symmetric and wave components of the 
boreal summer (JJA) circulation in Year (0) preceding and Year 
(1) following the peak phases of the ENSO cycle. See text for 
further details.
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1. Introduction 

The North American Monsoon System (NAMS) produces most of the annual rainfall over the 
southwestern (SW) United States (US) and Mexico (Douglas et al. 1993; Stensrud et al. 1995).  Previous 
studies have suggested that the interannual variation of the NAMS is mainly controlled by the El Niño-
Southern Oscillation (ENSO), whereas its decadal variability can be linked to the Pacific Decadal Oscillation 
(PDO) (Higgins and Shi 2000; Castro et al. 2001, 2007, Grantz et al. 2007), the Atlantic Multi-decadal 
Oscillation (AMO) and the Arctic Oscillation (AO, e.g., Hu and Feng 2008, 2010).  These studies have been 
focused on variability of its onset and rainfall amount, whereas variability of its retreat has received much less 
attention.  This study aims to identify whether seasonality and strength of the NAMS have changed during the 
period 1948-2009.  If so, what causes 
such a change?  A recent study of Li et 
al. (2011) has shown a westward 
expansion of the North Atlantic 
Subtropical High (NASH) since late 
1970s during the summer season (June-
August).  This change has increased 
rainfall variability over southeast US.  
We will investigate whether such a 
change could also influence climate 
variability of the NAMS. 

2. Data and Methodology  

We used 1-degree gridded daily 
precipitation over the US and Mexico 
during 1948-2009 from the National 
Oceanic and Atmospheric 
Administration (NOAA) Climate 
Prediction Center (CPC, Higgins et al. 
1999).  The daily rain rate was averaged 
over this analysis domain (Fig. 1a) and 
converted to mean pentad values (i.e., 5-
day averages) before obtaining the 
onset/retreat dates.  We also use the 
National Center for Environmental 
Prediction (NCEP) reanalysis and 
extended reconstructed monthly mean 
sea surface temperature (SST) from the 
NOAA Climate Diagnostic Center 
(CDC) (Reynolds 1988) to determine 

Fig. 1  a) Monsoon region (NWMEX) considered for onset and 
retreat computations. b) Monsoon onset (lower line) and retreat 
dates (upper line) over NWMEX during 1948-2009 obtained 
from the CPC rain rate data. Solid black lines represent periods 
with early onset and late retreat whereas solid grey lines 
represent periods with late onset and late retreat. c) Total 
rainfall (solid black line) and daily average rain rate (dashed 
grey line) during the entire monsoon season over NWMEX. In 
b), vertical dashed lines indicate the years when monsoon 
regime changed. Mean values during 1948-2009 are indicated 
in b) and c). 
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atmospheric circulation and SST 
changes associated with changes of 
NAMS rainfall and seasonality. 

Different definitions for NAMS 
onset have been used in previous 
studies (e.g., Higgins et al. 1999; Zeng 
and Lu 2004).  The onsets and retreats 
of the NAMS were identified using the 
Li and Fu (2004) method to identify 
tbecause of its objectivity and potential 
for unifying definitions of the North 
and South American monsoon onsets 
and retreats.  Because NAMS rainfall is 
more variable than that of South 
America, the duration threshold is 
relaxed from 6 consecutive pentads 
used in the South American region to 5 
consecutive pentads in the North 
American monsoon region.  Timing of 
the onsets of the NAMS obtained by 
this definition is generally consistent 
with those defined by Higgins et al. 
(1997).  Early (late) retreat monsoon 
events are defined as those when the 
retreat occurred one pentad before 
(after) the climatological retreat pentad, 
namely, during the period August 21-
September 5 (September 25-October 
30), following Gutzler (2004).  Weak 
(strong) monsoons were identified as 
those when the monsoon total rainfall 
(i.e., total amount of rainfall during the 
monsoon season) was 0.5 standard 
deviation (σ) below (above) its the 
climatological mean.  We also use a 
sequential t-test analysis of regime 
shifts (STARS; Rodionov 2004; Rodionov and Overland 2005) to test for changes in monsoon retreat and 
onset dates, and composites for early and late-retreat events to identify changes of the atmospheric fields.  The 
statistical significance of the composite difference between weak and strong monsoons was tested using a 
bootstrap test (Efron 1979).  We performed 1000 iterations using 95% as the statistical significance threshold 
and used the bias corrected and accelerated percentile method to estimate the confidence interval.  Rotated 
Empirical Orthogonal Functions (REOFs) was applied to the September global SSTAs during 1948-2009 to 
identify the leading modes of SSTA, following Schubert et al. (2009).  

3. Results 

The decadal variations of onset/retreat dates are more clear over northwestern Mexico (NWMEX, Fig. 1a) 
than over southwestern Mexico. The sequential analysis STARS identified shifts in monsoon retreat during 
1971, 1991, and 2006 whereas shifts in monsoon onset were identified during 1960, 1991, and 2006. A simple 
running-mean-based analysis (not shown) supports the shifts identified using STARS. This analysis suggests 
that both monsoon onset and retreat exhibit multi-decadal variations: more late-onset and early-retreat 
monsoons occurred during the periods 1948-1970 and 1991-2005 whereas more early-onset and late-retreat 
monsoons occurred during 1971-1990 and 2006-2009. Early-onset events are associated with late-retreat 

Fig. 2  Changes of a) onset and b) retreat dates over the SW US and 
Mexico between weak and strong monsoons. Composite 
difference between weak and strong monsoons for c) total 
monsoon precipitation anomalies and d) daily average monsoon 
rain rate. The differences are statistically significant according 
to a bootstrap test. Dotted (solid) contours indicate negative 
(positive) changes. The color scale indicates the magnitude of 
the change. 
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events while late-onset events are 
associated with early-retreat events.  
Fig. 1c shows periods of lower 
monsoon rainfall over NWMEX during 
1948-1970 and 1991-2005, whereas 
periods of higher monsoon seasons 
occur during 1971-1990 and 2006-2009.  
The periods of lower and higher 
monsoon rainfall were generally 
overlap with those of late onset/early 
retreat and early onset/late retreat, 
respectively, except for the ending of 
the first early retreat and lower 
monsoon rainfall regime.  Correlation 
coefficients between monsoon total 
rainfall and onset and retreat dates are -
0.58 and 0.6, respectively, both 
significant at 1% level. 

Figs. 2a and 2b show the spatial patterns of composite difference in onset/retreat dates between 21 weak 
and 25 strong monsoon events, passed the bootstrap test (Efron 1979). A weaker summer monsoon over 
NWMEX is associated with a later monsoon onset and an earlier retreat over the entire core area of the 
NAMS, namely, the western Mexico region.  In addition, changes in the monsoon retreat associated with 
variations in the monsoon strength occur over the entire NAMS domain whereas changes in the monsoon 
onset are more confined to NWMEX.  Monsoon total precipitation anomalies and daily average monsoon rain 
rate were also composited for 14 early and 17 NAMS late retreats.  Early retreats are associated with reduced 
precipitation over the monsoon region and increased rainfall over the central United States (US), not only in 
terms of total monsoon rainfall (Fig. 2c) but also in terms of average daily rain rate (Fig. 2d). This out-of-
phase relationship between rainfall over the central US and the monsoon region has been extensively 
documented (e.g. Douglas et al. 1993; Douglas and Englehart 1996; Mo et al. 1997; Higgins et al. 1997; 
Barlow et al. 1998).  

To explore the causes of NAMS early retreats, we plot the anomalous circulation patterns at 850 hPa 
associated with early retreats in Fig. 3, and compare to those associated with positive anomalies of AMO 
mode, the warming SST mode and northwestern expansion of the NASH in September when NAMS retreats 
occurred (Figs. 4a-4c).  The SST warming mode and AMO mode are represented by the first and third REOF 
of the global SSTA in September during 1948-2009 (Schubert et al. 2009).  The composite anomalous 
circulation patterns for these two SSTA modes were based on the events with their principle component 
values greater than 0.5.  The 2nd REOF mode represents variability of ENSO like SSTA in Pacific.  This mode 
is not chosen because its associated anomalous circulation pattern does not resembles the pattern associate 
with variation of NAMS retreats. 

Fig. 3 shows that the early retreats are characterized by a clearly defined lower tropospheric cyclonic 
center over the Gulf of Mexico and the SE US and an anticyclonic center over Baja California. These 
circulation anomalies are associated with the positive rainfall anomalies over the SE US and negative rain rate 
anomalies over the NAMS region (i.e., most of Mexico and the SW US).  The southwesterly lower 
tropospheric wind anomalies over the NAMS region associated with the positive AMO and SST warming 
modes (Figs. 4a and 4b) are similar to those associated with the early-retreat events (Fig. 3).  However, these 
two modes cannot adequately explain the anomalous cyclonic circulation over the SE US and the Gulf of 
Mexico associated with the NAMS early retreats, which appears to be associated with northwestward 
expansion of the NASH (Fig. 4c).  Thus, the composite anomalous lower tropospheric circulation pattern of 
the combined positive AMO, SST warming modes and northwestward expansion of the NASH appears to 
contribute to the anomalous circulation pattern associated with NAMS early retreats. 

Fig. 3  September mean 850 hPa wind anomalies (arrows) and rain 
rate anomalies (shades) composites for early NAMS retreat 
events during 1948-2009. Dark (light) shades represent positive 
(negative) rain rate anomalies. 
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Fig. 4  September mean rain rate anomalies (shades) and 850 wind anomalies (vectors) composites for the 

events for (a) warming mode, b) AMO mode, c) NASH northwestern expansion, and d) warming + AMO 
+ NASH northwestern expansion occurred during 1948-2009. The vector scale is shown in the right-
bottom corner of each panel. Dark (light) shades represent positive (negative) rain rate anomalies. 

Main features of the 200 hPa circulation changes associated with early-retreats are an anomalous 
anticyclonic circulation centered over Texas and northeastern Mexico (to the northwest of the lower 
tropospheric anomalous cyclonic circulation) and a northwestward shift of the subtropical jets over western 
US and North Mexico (not shown).  These features also most closely resemble those obtained from the 
combined anomalous circulation patterns associated with positive AMO, SST warming modes and 
northwestern expansion of NASH. 

4. Conclusion 

This study shows a decadal scale NAMS regime change occurred during the period of 1948-2009.  
NAMS was weak due to its late onset, early retreats and weak rainrate during the periods of 1948-1970 and 
1991-2005, and was strong due to early onset, late retreat and stronger rainrate during the period of 1971-
1990.  NAMS appears to have recovered its strength after 2006.  This study focuses on causes of the decadal 
variability of the NAMS retreats because it is not as well understood as those of NAME onset and rainfall.  
The NAMS early-retreats are associated with an anomalous anticyclonic flow over Baja California and an 
anomalous cyclonic low-level flow and an increase of rainfall over the SE US and Gulf of Mexico. These 
changes appear to be more related to an increased atmospheric stability than to a decreased moisture transport 
to the monsoon region. In the upper troposphere, the early retreats are associated with anomalous divergence, 
increased (decreased) 200 hPa geopotential height over the SE US (the SW US and northern Mexico), and a 
northwestward displacement of the subtropical jets over western North America. 

The comparison of the anomalous circulation patterns between the variations of NAMS, AMO and SST 
warming modes suggests that the early NAMS retreats are contributed by positive anomalies of the two SST 
modes, as represented by the first and third REOFs of SSTA during Septembers.  In particular, they contribute 
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to the westerly anomalous wind and anticyclonic circulation in the lower troposphere over the NAMS region.  
They also contribute to an increase of geopotential height in the upper troposphere over the SE and the south 
central US, and in part to an anomalous cyclonic circulation in the lower troposphere over the SE US and the 
Gulf of Mexico associated with early NAMS retreats. However, these two SST modes cannot explain the 
anomalous cyclonic circulation in the lower troposphere over SE US and the Gulf of Mexico and the 
northwestward shift of the subtropical jets in the upper troposphere associated with the early NAMS retreats.  
The northwestward shift of the NASH appears to be primarily responsible for these two changes.  The former 
probably drives the upper tropospheric divergence over the SE US and compensational upper tropospheric 
convergence and subsidence over the NAMS region, whereas the latter has been found to cause weaker 
NAMS by previous studies (e.g., Hu and Feng, 2010).  Thus, decadal variation of the NAMS retreats, 
especially over the NWMEX, appear to be contributed by expansion/contraction of the NASH western edge, 
AMO and SST warming modes. 
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1. Introduction 

The tropical intraseasonal oscillation (ISO) is one of the most prominent short-term climate variability in 
the tropics that has a far reaching influence worldwide (Lau and Waliser 2005). In boreal winter, ISO is 
characterized by the eastward propagating Julian oscillation (MJO) along the equator (Madden and Julian 
1972, 1994), which influences a wide range of weather and climate phenomena and may act an important 
source of predictability at the subseasonal time scale (Lau and Waliser 2005). In boreal summer, northward 
propagating monsoon ISO (MISO) is prominent at both 10-20 day and 30-60 day periods in the Asian 
summer monsoon region (Yasunari 1979, 1980; Webster and Hoyos 2004; Kajikawa and Yasunari 2005 and 
many others). The MISO is more complex 
in nature than the MJO due to intrinsic 
monsoon variability as well as the 
interaction between the basic monsoon 
circulation and Madden-Julian Oscillation 
MJO (Webster et al. 1998; Lau and Waliser 
2005; Wang 2006). The MISO is known to 
affect summer monsoon onsets, the 
active/break phases and the seasonal means 
of summer monsoons. The wet and dry 
spells of the MISO strongly influence the 
extreme hydro-meteorological events, which 
composed of about 80% of natural disaster, 
thus the socio-economic activities in the 
World’s most populous monsoon region.   

The Real-time Multivariate MJO 
(RMM) index (Wheeler and Hendon 2004) 
is most widely used the first two leading 
multi-variate EOF modes of the equatorial 
mean (between 15ºS and 15ºN) OLR, and 
zonal winds at 850 and 200 hPa. This index 
captures equatorial eastward propagating 
mode, the MJO, very well and has been 
applied all year around to depict MJO 
activity. It has been well recognized that the 
tropical intraseasonal variations exhibits 
prominent seasonal variation (Madden 1986, 
Wang and Rui 1990). During boreal summer, 
the variability centers of OLR are shifted 
from equatorial zone during boreal winter to 
off-equatorial monsoon troughs and the 

Fig. 1  Spatial pattern (a, b) and PC time series (c) of the first 
two leading MV-EOF modes of pentad OLR and zonal 
wind at 850 hPa. In (c), the blue solid line indicates the 
first and the red dashed line the second principal 
component (PC). The MV-EOF modes were obtained 
during MJJAS for the 33 years of 1979-2010. 
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propagation patterns changed 
dramatically. It is hence not clear 
whether RMM remains a best measure 
of the boreal summer monsoon 
intraseasonal oscillation (MISO). This 
study has made an effort on design a 
better index to describe boreal summer 
MISO. 

2. Definition of MISO index 

The data used include interpolated 
daily outgoing longwave radiation 
(OLR) with 2.5o horizontal resolution 
from NOAA (Liebmann and Smith 
1996) and daily horizontal wind at 850 
and 200 hPa from NCEP/department of 
Energy (DOE) reanalysis II (Kanamitsu 
et al. 2002).   

The MISO metrics introduced in 
this study was designed to represent 
larger fractional variance and to better 
capture the observed northward 
propagating ISO over the Asian summer 
monsoon (ASM) region than the RMM 
index after considerable sensitivity tests. 
Multivariate empirical orthogonal 
function (MV-EOF) analysis was 
applied to daily mean normalized OLR and 850-hPa zonal 
wind (U850) anomalies over the ASM region (10oS-40oN, 40o-
160oE) from May 1st to September 30th in the 30 years of 1981-
2010. The OLR and U850 anomalies were obtained from 
removing the first three harmonics in climatological annual 
cycle and removing the effect of interannual variation through 
subtracting last 120 day mean. After that, each of two anomaly 
fields were normalized by area averaged temporal standard 
deviation over the ASM region. The standard deviation used is 
33.34 W m-2 for OLR and 4.02 m s-1 for U850. We do not 
apply filtering to define the index for monitoring and forecast 
purpose except 1-2-1 filtering. After applying the MV-EOF on 
the normalized OLR and U850 anomalies, we identified the 
first four modes as important components for representing ISO 
propagation over the ASM region. The first four PCs were 
defined as components of the MISO index. Percentage variance 
of each mode is 8.57, 5.49, 4.43, and 3.66% for the first, 
second, third, and fourth mode, respectively. Thus, the first 
four modes can account for 18.4% of total daily variance of the 
OLR and U850 anomalies over the ASM region. 

3. Characteristics of the MISO Components 

Figures 1 and 2 show the spatial distribution of eigen 
vector (EV) and principal component (PC) time series of the 
first four leading MV-EOF modes of the normalized OLR and 

Fig.2  Same as Fig. 1 except for the third and fourth mode. 

Fig. 3  Lead-lag correlations (a) between the 
MISO 1 and itself, and with MISO 2 and 
(b) between the MISO 3 and itself, and 
with MISO 4 during MJJAS. 
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U850 anomalies. The first two MV-EOF 
modes together represent the dominant 
northward propagating ISO over the ASM 
region during entire warm season (Fig. 1) 
addressed in many previous studies 
(Waliser et al. 2003) and the third and 
fourth modes mainly capture the grand 
onset mode (LinHo and Wang 2002) of the 
ASM system (Fig. 2). 

The first two EOF modes represent 
prominent northward propagating ISO over 
the entire ASM region which is typically 
oriented in a northwest-southeast direction 
(Fig. 1a and b). Power spectra of the PCs 
indicate that the bulk of the variance of the 
PCs is concentrated at intraseasonal periods 
(biweekly and 20-60 days). The northward 
propagating ISO is obvious with PC1 (or 
MISO1) lagging PC2 (or MISO2) by 7 to 
12 days (Fig. 3a). The maximum 
correlation between MISO1 and MISO2 is -
0.4 at a lag of 12 days. The RMM index 
captures the OLR variability primarily in 
the equatorial region whereas the MISO 1 
and 2 capture large portion of the 
variability in the off-equatorial region, 
yielding more realistic variance pattern. 
Figure 4 shows the life cycle composite of 
the normalized OLR and 850-hPa wind 
anomalies using PC1 and PC2 phase space. 
It is noted that the MISO 1 and 2 describe 
better ISO variability center and represent 
better northward as well as eastward 
propagating pattern in the ASM region than 
the RMM. 

This study demonstrates that the third 
and fourth MV-EOF modes are also 
important northward propagating ISO mode, 
particularly during early summer in 
association with the grand onset of the 
ASM system which was described by 
LinHo and Wang (2002). Differently from 
the first and second modes, OLR and wind 
anomalies are in phase over the Indian 
monsoon and West North Pacific-East 
Asian monsoon with a southwest-northeast 
tilt (Fig. 2a and b). Power spectra of the 
third and fourth PCs indicate that the bulk 
of their variance is concentrated at 
intraseasonal periods (biweekly and 20-40 
days). The northward propagating ISO is 

Fig. 4  The life cycle composite of pentad OLR (shading) and 
850-hPa wind (vector) anomalies reconstructed based on 
the MISO1 and MISO2 in 8 phases.  

Fig. 5  Same as Fig. 4 except for MISO3 and MISO4. 
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obvious with PC4 (or MISO 4) lagging PC3 (or MISO 3) by 6 to 8 days (Fig. 3b). The maximum correlation 
between PC1 and PC2 is -0.28 at a lag of 7 days. The life cycle composite of the MISO 3 an MISO4 
represents stepwise onset over the entire ASM region (Fig. 5). 

4. Application to real-time monitoring 

The northward-propagating MISO component can be monitored using the phase diagram between the 
MISO 1 and MISO 2 and between the MISO 3 and MISO 4 similar as the eastward-propagating MJO. Figure 
6 show example of application to real-time monitoring. During late June to early December, the typical 
northward propagating ISO was dominant well represented by the points in the two-dimensional phase space 
defined by the MISO 2 and MISO 1 starting from June 17, 2006. Figure 6b well represents early onset and 
strong ISO activities over the East Asian monsoon region during early this summer of 2011. 

Fig. 6  (a) (MISO2, MISO1) phase space points starting from June 17, 2006. Eight defined regions of the 
phase space are labeled, as it the region considered to signify weak MISO activity. (b) same as (a) except 
for (MISO4, MISO3) phase space points starting from May 24, 2011. 

5. Summary 

Boreal summer Monsoon Intraseasonal Oscillation (MISO) is one of the most prominent short-term 
climate variability in the global monsoon system and more complex in nature than the Madden-Julian 
Oscillation (MJO) due to the interaction between the basic monsoon circulation and tropical ISO. To monitor 
and forecast MISO, we defined real-time multivariate MISO index using daily outgoing longwave radiation 
(OLR), zonal wind at 850 hPa (U850) over the Asian summer monsoon (ASM) region (10oS-40oN, 40o-
150oE), differently from Real-time Multivariate MJO (RMM) index. 

The RMM index captures the OLR variability primarily in the equatorial region whereas the new MISO 
index captures large portion of the variability in the off-equatorial region, yielding more realistic variance 
pattern. In addition, The MISO index describes ISO variability center better, captures more fractional variance 
and describes northward as well as eastward propagating pattern better in the ASM domain then RMM index. 
Sensitivity tests revealed that the MISO index with the first four modes using pentad OLR and U850 is most 
adequate in terms of fractional variance explained by the reconstructed field and ability to capture the 
northward propagating MISO. 

The northward-propagating MISO component can be monitored using the phase diagram between the first 
and second PC similar as the eastward-propagating MJO. Taking into account distinct regional characteristics 

(a) MISO 1 and 2 (b) MISO 3 and 4
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of MISO with smaller horizontal scale than MJO, the reconstructed field from the first four modes may 
provide more useful information. 
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1. Introduction 

The April 2011 flood event in Ohio River Basin and related lower Mississippi River floods was the latest 
of a set of major such flooding events recorded over the twentieth century (defined in terms of a 10-year 
return maximum in streamflow). Composite analysis of these events reveals an anomalous northward 
moisture transport in a “moist conveyor belt” from the Gulf of Mexico and the tropical Atlantic, focused by 
convergence associated with the “Bermuda High” and the synoptic events impinging on it (Nakamura et al. 
2011). The questions of whether the recent 2011 event heralds a return of more frequent flooding, and the 
degree of potential climate predictability of such events both require a better understanding of how the 
frequency and intensity of the synoptic events responsible for the floods vary on interannual to interdecadal 
timescales, and are thus potentially influenced by large-scale modes of low frequency climate variability. 

2. Data and methodology 

We employ an analysis of daily 
weather regimes over North 
America [30ºN–50ºN, 105ºW–
75ºW] derived from NCEP-NCAR 
reanalysis 700hPa geopotential 
height data using a K-means cluster 
analysis (e.g. Robertson and Ghil 
1999) for the March–May (MAM) 
season, 1961–2011 
(http://iridl.ldeo.columbia.edu/SOU
RCES/.NOAA/.NCEP-
NCAR/.CDAS-1/.DAILY/), 
together with a complementary 
analysis of daily rainfall gridded 
gauge-based data over the Ohio 
River Basin, [88ºW–84ºW, 36–
40ºN] for the same period using a 
hidden Markov model (HMM; e.g. 
Greene et al. 2008), based on the 
CPC Unified Precipitation dataset 
1979-2011 
(http://iridl.ldeo.columbia.edu/SOU
RCES/.NOAA/.NCEP/.CPC/.UNIF
IED_PRCP/).  Ten-year flood 
events were estimated from daily 

Fig. 1  Six-cluster K-means solution, showing 700hPa geopotential 
height anomalies (CI 20 gpm), together with anomaly composites of 
vertically integrated moisture fluxes. Panel titles give the number of 
MAM days assigned to each cluster. Box in first panel indicates the 
region used in the K-means analysis.
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river discharge data at 7 gauging 
stations in sub-basins of the Ohio 
River based on the Hydro-Climatic 
Data Network (HCDN) of the U.S. 
Geological Survey (Nakamura et 
al. 2011). 

3. Results 

The K-means six-cluster 
solution was found to yield a near-
maximum classifiability index 
(Michelangeli et al. 1995), within 
the range of K = 5 – 10, and was 
selected for further analysis; it is 
depicted in Fig. 1 in terms of 
geopotential height anomalies 
from the long-term MAM average, 
with vertically-integrated moisture flux anomaly composites superimposed. Clusters 1, 2 and 6 are each 
associated with southerly moisture advection over the eastern U.S. 

To determine whether these flow regimes were active during past extreme flooding events in the Ohio 
River basin, the frequency of occurrence of each regime (i.e. cluster) during the 10-day period preceding five 
10-year MAM flood events during the 1961–1996 period (Nakamura et al. 2011) is plotted in Fig. 2a; there is 
a clear preference for clusters 1 and 2 during the lead up to these five events. 

The association between cluster frequency and the El Niño-Southern Oscillation is plotted in Fig. 2b, in 
terms of the anomaly correlation between the Nino34 index, averaged over each MAM season, 1961–2011. 
There is a tendency for clusters 1 and 2 to be preferentially associated with La Niña events, statistically 
significant at the 99% confidence level. 

Figure 3 shows the daily evolution of rainfall and cluster membership during April 2011, when extreme 
floods were recorded on the Ohio River, peaking on 27 April. Much of the month was characterized by cluster 
2, with clusters 1 and 6 also playing role. All three of these circulation types are characterized by strong 
northward moisture fluxes from the Gulf of Mexico. 

4. Discussion and concluding remarks 

The work reported here demonstrates clear 
associations between synoptic circulation types and 
historical flood events on the Ohio River. Anomalous 
southerly fluxes of moisture from the Gulf of Mexico are 
pronounced in weather types that occurred in connection 
with these floods. Two of these circulation types are 
preferentially associated with La Niña, providing one 
causal mechanism for the recent flooding during April of 
2011. Daily rainfall states identified using a rainfall-based 
Hidden Markov Model indicate a clear eastward 
propagating synoptic scale wave (not shown). Further 
work is underway to isolate in more detail the pathways 
between climate anomalies and extreme flood events 
through the intermediaries of large-scale atmospheric 
circulation patterns and synoptic-scale waves. 

Acknowledgements.  This work was supported by a NOAA Climate Prediction Program for the Americas 
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Fig. 2  (a) Frequency of occurrence of each cluster during the 10-day 
period preceding five 10-year MAM flood events: 13 May 1961, 5 
March 1963, 10 March 1964, 25 May 1968, and 4 May 1996. (b) 
Anomaly correlation between the number of days in each cluster in 
each MAM season, and the value of the Nino34 index. 

Fig. 3  Daily rainfall averaged over the Ohio 
Basin (red curve), together with cluster 
membership (bars), during April 2011. 
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1. Introduction 

A wide range of studies have concluded that anthropogenic greenhouse gas increases have very likely 
caused most of the warming on global and continental scales since the middle of the twentieth century, and 
that further warming over the next century is expected (Hegerl et al. 2007).  This conclusion is not necessarily 
“actionable” by local governments and policy makers without more precise predictions on smaller spatial and 
temporal scales. The question arises as to what are the shortest space and time scales for which detection, 
attribution, and prediction are possible. One may also question whether the role of separate forcings, such as 
the role of greenhouse gases, aerosols, solar variability, can be investigated in specific climate events. 
Another complication is whether the indices for climate events have been selected specifically for their 
extreme nature, leading to selection bias.  Also, pre-selecting indices (e.g., based on spatial average) may lead 
us to overlook certain kinds of important events.  This study proposes an objective framework for addressing 
the above questions by identifying components that maximize the signal-to-noise ratio of an externally forced 
event. 

2. Method 

Assuming forced climate variability (i.e., response to external natural and anthropogenic forcing, 
including anthropogenic, volcanic and solar forcing) is an independent and additive perturbation to internal 
unforced variability, the total variance equals the sum of the variances due to forced and unforced 
components. Therefore, the variance of forced runs ought to be larger than the variance of unforced runs, 
since the forced runs contain an “extra” component of variability relative to the unforced runs.  Moreover, 
components whose forced variance differs as much as possible from the unforced variance define components 
in which the forced response is most easily distinguished from unforced variability. Therefore, we seek the 
component that maximizes the ratio of forced variance to unforced variance. It can be shown that maximizing 
the variance ratio leads to the generalized eigenvalue problem (Noble and Daniel 1988; DelSole and Tippett 
2009) 

ΣF

^
q = λ ΣU

^
q ,        (1) 

where ΣF

^

and ΣU

^

are sample covariance matrices of forced and unforced runs respectively. The eigenvalue 
λ turns out to be the variance ratio corresponding to eigenvector q. Equation (1) has more than one 
eigenvalue and eigenvector. Each eigenvector corresponds to a discriminant component. It is convention to 
order eigenvectors in decreasing order of their eigenvalues, such that the first eigenvector maximizes the 
variance ratio, the second eigenvector maximizes the variance ratio subject to being uncorrelated with the first, 
and so on.  The time series associated with forced and unforced runs are  

r F = Fq   and  r U = Uq ,      (2) 

where F and U are matrices containing the (centered) time series for the forced and unforced simulations, 
respectively.  It is shown in Jia and DelSole (2011) that the pattern given by  
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p = ΣU

^
q 

   
  
 (3) 

maximizes the mean statistic used 
to perform detection analysis in 
optimal fingerprinting analysis, 
and therefore maximizes 
detectability in the models. It 
follows that if no significant 
pattern can be found, the role of 
external forcing cannot be 
distinguished from internal 
variability. 

3. Models and data 

The data set used in this study 
is from the Coupled Model 
Intercomparison Project phase 3 
(CMIP3) multimodel dataset. The 
3-month means of surface air 
temperature and precipitation 
from the twentieth century runs 
(i.e., forced runs) and pre-
industrial control runs (i.e., 
unforced runs) were analyzed. All 
fields were interpolated to a 
common 72 x 36 grid.   

All statistical quantities are 
estimated in a multi-model sense; 
more precisely, the covariance matrices from different model simulations are averaged together.  Only the last 
300 years of unforced runs were used. The first half of the 300-year data was used as training data to 
maximize the variance ratio, and the second half was reserved for verification. Only one unforced run from 
each model was used as training. Models with significant trends in unforced runs, and significantly different 
variances compared to other models, were omitted. This screening procedure leads to a selection of eight 
models (GFDL-CM2.0, GFDL-CM2.1, IPSL-CM4, MIROC3.2 (medres), ECHO-G, MRI-CGCM2.3.2, 
CCSM3, UKMO-HadCM3). The selected unforced runs from each model were first centered with respect to 
each model’s mean, and then lined up in temporal dimension to generate multi-model training and verification 
datasets. 

For the forced runs, we used a maximum of five ensemble members in each model, and if the ensemble 
members are less than five in a model, we used all available members. One member of each model was used 
as training data to maximize the variance ratio, and the remaining members were used as verification data. 
Each member was centered with respect to the mean of the run.  Similarly, members of eight models were 
lined up to form multi-model training and verification datasets. 

To mitigate overfitting, we reduced the dimension of the data by projecting the data onto the leading 30 
principal components. This study shows results only from independent verification data. 

4. Results 

4.1 Identifying forced response of continental surface air temperature in JFM 

Fig. 1  Time series of the leading component of JFM mean surface air 
temperature in each forced ensemble member (thin grey curves) over 
six continents in independent verification data. The thick black curve 
in each panel shows the multi-model mean time series. 
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We first identify the 
component that maximizes the 
ratio of forced-to-unforced 
variance of JFM mean surface 
air temperature in training data 
over six continents. The 
resulting components were 
then projected onto the 
verification data to determine 
the variance ratios.  According 
to the standard F-test, only the 
ratio of the leading component 
is well above the 5% 
significance level for all six 
continents except Europe (not 
shown).  Thus, except for 
Europe, the forced response is 
distinguishable from unforced 
variability. The fact that 
Europe has no significant 
variance ratio implies that it is 
impossible to detect a forced 
response in these models over 
Europe based on JFM mean 
surface air temperature.  
Furthermore, since the 
response is not detectable in 
this “perfect model scenario”, 
there is no reason to expect it to be detectable with real observations.  Our conclusion pertains to seasonal 
mean response, whereas most previous studies, which claim that a forced response is detectable over Europe, 
employ longer-term means (for instance, Fig. 1 of FAQ 9.2 in Hegerl et al. (2007) is based on ten-year 
means). 

The fact that only one significant variance ratio can be found in other continents implies that 1) detection 
of a forced seasonal response pattern in the other continents is possible, and 2) separating the response to 
different forcings using JFM mean surface air temperature pattern alone will prove difficult, because the 
similarity of the responses is so great that the responses can be compressed into a single pattern. Therefore, if 
there are more than one response patterns, they all project on the leading component, and will be collinear and 
hence difficult to separate. 

We emphasize that our analysis is based only on JFM mean spatial structure, i.e., no time lag information 
is taken into account.  This allows us to apply detection and attribution on seasonal scale, but it limits our 
ability to attribute anomalies to specific forcings.  Previous studies that attribute temperature changes to 
distinct forcings were based on both spatial and temporal information (Stott 2003; Zwiers and Zhang 2003). 

The time series of the leading component for forced runs are shown in Fig. 1. The time series of the 
ensemble mean (thick black curve) shows an increasing trend in each continent except Europe. No significant 
trend in Europe is consistent with the fact that the corresponding variance ratio is insignificant. The spatial 
patterns of the leading component (Fig. 2) are of single sign.  The positive sign associated with the increasing 
trend in each continent indicates warming on continental scales. Largest amplitudes are concentrated in high 
latitudes of North America. 

4.2 Identifying forced response of continental surface air temperature in JAS 

Fig. 2  Spatial pattern of the leading 
component of JFM mean 
surface air temperature in 
verification data. The spatial 
pattern has units of degree 
Kelvin and indicates deviations 
from the time mean. 
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We repeated the above 
analysis except this time for JAS 
mean surface air temperature. 
Only the ratio of the leading 
component is well separated from 
the others and is statistically 
significant in each continent 
except Europe (not shown). The 
time series of the leading 
component for forced runs (Fig. 3) 
reveal increasing trends in all 
continents except Europe. The 
trends are generally larger in JAS 
than in JFM.  The lack of obvious 
trend in Europe is consistent with 
the fact that Europe has no 
significant variance ratio.  
However, the forced time series in 
Europe does show an increasing 
trend in the last two decades of 
the twentieth century. It is 
possible that the trend is real, but 
that the short time for which the 
forced response is distinguishable 
from unforced variability leads to 
small (and statistically 
insignificant) variance ratio. 

The spatial patterns of the 
leading component, shown in Fig. 
4, are of positive sign, as those in 
JFM. The positive sign in spatial 
pattern associated with the increasing trend in forced time series indicates warming on continental scales. The 
largest amplitudes are concentrated in high latitudes of North America in JFM, but in the interior of the 
continent in JAS. 

We have tested that the variance ratios determined by projecting vector q onto verification data are larger 
than the ratios of continental averages for all seasons and all continents, except for Europe (not shown). 

4.3 Identifying forced response of seasonal precipitation 

As for precipitation, none of the variance ratios of JFM and JAS mean precipitation are significant at a 
5% level in any continent, implying that the forced response of seasonal mean precipitation is not detectable. 
This conclusion is somewhat at odds with Zhang et al. (2007), who claim that anthropogenic forcing has had 
a detectable influence on observed changes in precipitation.  Although Zhang et al. (2007) use land averages 
in zonal bands while we use continental patterns, we have repeated our analysis for global domains and zonal 
bands and still find only marginal-to-no significant component. A key difference between the two studies is 
that Zhang et al. (2007) test a trend pattern, which includes decadal scale information of the response, 
whereas here we test a seasonal mean pattern.  Nevertheless, the fact that no significant forced response for 
precipitation can be found suggests that the precipitation trend must be weak, if it exists at all.  This is in fact 
the case, as Zhang et al. (2007) use scaling factors around 5-10 to match modeled trends with observed trends. 
It is not surprising that different statistical procedures produce different conclusions for weak signals. 

5. Summary 

Fig. 3  Time series of the leading component in forced runs over six 
continents in independent verification data, as in Fig. 1, but for JAS 
mean surface air temperature. 
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This study addresses the limit to 
which the response to anthropogenic 
and natural forcing can be 
distinguished from unforced variability 
on seasonal and continental scales. 
Only one statistically significant forced 
pattern of seasonal mean surface air 
temperature can be identified in each 
season and continent (except Europe, 
which has no significant forced 
response), implying that detection of 
anthropogenic and natural forcing of 
temperature on seasonal and 
continental scales is possible. The 
pattern in each continent is of single 
sign and consistent with long-term 
warming, but varies with season.  
However, the fact that only one 
significant pattern was obtained implies 
that different forcings produce similar 
patterns that may be difficult to 
separate in an attribution analysis on 
seasonal and continental scales.   No 
significant forced pattern of seasonal 
mean precipitation could be identified, 
implying that detection of 
anthropogenic and natural forcing of 
precipitation is not generally possible 
on seasonal and continental scales.  The 
forced response identified in this study provides the basis for detection and attribution studies on seasonal 
scales, for instance, in the detection and attribution of observed extreme events. 
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Fig. 4  Spatial pattern of the leading component of JAS mean 
surface air temperature in verification data. The spatial pattern 
has units of degree Kelvin and indicates deviations from the 
time mean. 
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1. Introduction 

The boreal wintertime midlatitude response to a significant El Niño Southern Oscillation (ENSO) event 
has been studied extensively for over 30 years.  As well as the forcing itself, the response is primarily 
understood in terms of an average across the season.  However, its development and variability in terms of the 
sub-seasonally varying forcing is still unclear.  For instance, which is more important, short-lived strong 
convective events or persistent moderate convective events?  Can knowledge of the sub-seasonal forcing yield 
any additional seasonal predictability? 

In this study we present model results using large ensembles forced with observed 1982/83 sea surface 
temperature (SST).  The model is modified such that diabatic heating (Q) is prescribed across the tropical 
Indo-Pacific for which sub-seasonal and ensemble Q variability is neglected.  Results indicate a significant 
impact of low frequency sub-seasonal Q variability for the response in 1982/83. 

2. Experimental framework  

We use the NCAR Community Atmospheric Model v4.0 (CAM4.0) with a finite volume dynamical core 
and a resolution of 1.9° x 2.5° x L26.  1982/83 DJFM monthly interpolated SST and sea ice is prescribed for 
boundary conditions taken from the Hadley Centre observed SST and sea ice dataset.  DJFM climatological 
conditions are generated similarly by forcing the model with climatological SST and sea ice.  50 ensemble 
members are used for each set of experiments and are generated by slightly perturbing Nov. 1st initial 
conditions. 

Taken from a control set of integrations (CTL), Q is decomposed into the evolving climatological and 
SST-forced signal (Q0), the seasonal mean deviation about that signal (Q1), the 30-120 day low frequency 
variability (QLOW), and the < 30 day high frequency variability 
(QHIGH).  Q0 is constructed in a way roughly equivalent to a least 
squares fit to Legendre polynomials (T=8).  QLOW & QHIGH are 
computed by partitioning Q-Q0-Q1 using spherical harmonics.  
We perform experimental integrations by prescribing varying 
subsets of Q (Table 1, Fig. 1) at every vertical level across the 
tropical Indo-Pacific (62.5°E - 87.5°W, 24°S - 15°N) such that 
the seasonal/ensemble mean is maintained in all experiments.  In 
order to reduce potential boundary issues, Q is relaxed along the 
boundaries of the domain at a zonal and meridional width of 100 
and 7°, respectively.  Initially, prescription is turned on through 
gradual relaxation for a period of 10 days.  The local effect of Q-
circulation decoupling is assessed in separate integrations and 
confirmed to not have any systematic influence (not shown). 

3. Seasonal/ensemble mean response 

CAM4.0 realistically simulates the tropical upper-level 
divergence/convergence and the midlatitude wave train (Fig. 2) 
and is quite strong compared to typical model responses.  Results 

FIX Q0(t) 
EFIX Q0(t) + Q1(e) 

ESUBFIX Q0(t) + Q1(e) + QLOW(t,e) 

Table 1  Experimental integrations and 
prescribed Q varying in time (t) and 
ensemble member (e) at every grid 
point across the tropical Indo-Pacific. 

Fig. 1  800-200 hPa vertically integrated Q 
(QVERT, W/m2) for all integrations at an 
individual grid point in equatorial 
Pacific (165° W, 1° N). 

t 
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from FIX and EFIX are very similar with the local tropical response is amplified in the equatorial Pacific 
(maximum div. 9e-6 s -1 + 3e-6 s-1).  The extratropical response is amplified significantly, particularly with a 
deeper upper-level low in the North Pacific (minimum height -200 m - 40 m) as well as lower heights over the 
southern U.S. and Mexico, and over western Asia.  For ESUBFIX, only minor differences with CTL occur 
suggesting that primarily the low frequency Q variability has a tendency to weaken the response for 1982/83. 

 
Fig. 2  Seasonal/ensemble mean 200 hPa Z (upper, Z200) and tropical 200-150 hPa divergence (lower, DIV) 

for CTL-CLIM (left, Z200 in 20 m, DIV in 2e-6 s-1), FIX-CTL, EFIX-CTL, and ESUBFIX-CTL (middle 
left, middle right, and right, respectively, Z200 in 5 m, DIV in 1e-6 s-1).  Significance shaded at 5% level 
according to Student’s t-test. 

We find similar differences for the response when examining other ENSO events using different SST (as 
well as climatological SST), although a similar attribution to low frequency Q variability cannot be made in 
the extratropics (not shown).  This suggests that under other ENSO events, higher frequency variability (< 30 
days) may also be playing a role. 

Examining the distribution of these seasonal mean differences during the season, we find that tropical 
upper-level divergence is consistently stronger evenly throughout the season whereas the deepening of the 
low in the North Pacific has a clear peak in mid-winter (not shown).  Consistent with this, additional mid-
winter suppression of baroclinic activity occurs along with a peak in eddy feedback onto the mean flow and in 
the jet extension. 

4. Mixing vertical Q profiles 

Significantly enhanced upper-level divergence occurs in the equatorial Pacific for FIX and EFIX despite 
having identical seasonal/ensemble mean forcing.  We examine the daily grid point vertical column 
relationship where the seasonal mean differences occur (120°E - 120°W, 0 - 5°N) and find that the differences 
are evident for all positive values of QVERT (Fig. 3, left panel).  In terms of the probability density function 
(PDF) of QVERT (Fig. 3, middle panel), values corresponding to moderate convection (0 W/m2 < QVERT < 70 
W/m2) occur much more often for FIX and EFIX, compensating for the lack of values that correspond to the 
absence of convection and deep convection (an effect of averaging).  Across the same range of values for 
moderate convection, the corresponding vertical profiles reveal a level of peak Q that is elevated compared to 
that in CTL.  The column redistribution of Q occurs from averaging which consequently absorbs profiles 
associated with deep convection that have a much higher level of peak heating.  This effect is shown for FIX-
CTL (Fig. 3, right panel) but also evident in all other prescribed Q experiments.  For FIX and EFIX, we 
estimate that this effect linearly accounts for at least half of the enhanced divergence.  For ESUBFIX, the 
same issues are evident but lessened due to a PDF more similar to that of CTL – a result of including low 
frequency variability. 

5. Conclusion and discussion 

We find that for the CAM4.0 simulation of the 1982/83 DJFM El Niño, low frequency (30-120 day) Q 
variability primarily weakens the response both locally in tropical upper-level divergence, and in the height 
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response across the Pacific and North America, whereas the seasonal mean ensemble spread of Q 
interestingly does not seem have much of a role.  Results suggest that the local enhancement of tropical 
divergence may be the primary mechanism forcing the midlatitude differences in the North Pacific, though 
the potential existence of a dynamical mechanism dependent on the temporal characteristics of the forcing is 
not ruled out.  For instance, Li and Nathan (1997) show preferential jet stream interaction with tropically 
forced waves of periods > 30 days (in contrast to < 30 day periods) in a barotropic model.  Could such 
behavior have an accumulated effect on  the seasonal mean? 

For other ENSO events, differences are qualitatively similar although the consistency between differences 
in tropical divergence and North Pacific upper-level height for ESUBFIX is not found (not shown) suggesting 
that high frequency variability may be important.  When interpreting different events, we keep in mind that 
characteristics of Q variability have some dependence on the mean and underlying SST, and variability of the 
extratropical response is dependent on the basic state circulation modified by ENSO as well as changes Q 
variability.  This was examined by Schubert et al. (2001) who also investigated the role of sub-seasonal 
variability during the 1982/83 El Niño, though any potential impact on the ensemble mean signal itself was 
not addressed.  Another thing to keep in mind is that Q variability is highly dependent on the model’s 
convective parameterization, e.g. much more ensemble variability is generally simulated during El Niño using 
CAM4.0 compared to CAM3.1 (not shown).  Nevertheless, the use of a state-of-the-art nonlinear moist GCM 
for this particular work is a strength and an advantage over past studies. 

In order to more adequately address the role of sub-seasonal and intra-ensemble Q variability, more work 
is currently under way examining relationships with the extratropical circulation at sub-seasonal time scales 
with emphasis on its consequences on the seasonal mean response.  This is not trivial provided the large 
degree of chaotic internal variability in the extratropics that is completely independent of tropical Q, however 
an adequately large ensemble size may allow potential relationships to be distinguishable. 
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Fig. 3  Average DIV (s-1) as a function of QVERT (left) and PDF for QVERT (middle, total integral value in upper 
right) for CTL, FIX, EFIX and ESUBFIX.  Vertical profile of Q for FIX-CTL as a function of QVERT (right) 
across the Eq. Pacific (right, for 120°E - 120°W, 0 - 5°N in W/m2).  Binning is used with bins of width 1 
W/m2 
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1. Introduction 

The monsoon (hereafter, South American Monsoon System, SAMS) is the most important climatic 
feature in South America (Zhou and Lau 1998; Vera et al. 2006; Marengo et al. 2010). The main feature of 
the SAMS is the enhanced convective activity and heavy precipitation in tropical South America, which 
typically starts in October-November, is fully developed during December-February and retreats in late April 
or early May (Kousky 1988; Horel et al. 1989; Marengo et al. 2001; Grimm et al. 2005; Gan et al. 2006; 
Liebmann et al. 2007). 

Although the variability of precipitation in the SAMS has been extensively investigated over the years, 
one of the main challenges has been the availability of data sets with suitable spatial and temporal resolutions 
able to resolve the large range of meteorological systems observed during the monsoon. While some stations 
in South America have precipitation records going back several decades, the sparseness of stations is not 
adequate to characterize mesoscale precipitation systems. To overcome this difficulty, some studies have 
developed considerable efforts to collect precipitation records from stations and develop quality-controlled 
gridded precipitation data sets (Legates and Willmott 1990; Liebmann and Allured 2005; Silva et al. 2007). 

Recently, new generation of reanalysis products have been completed (Saha et al. 2010; Dee et al. 2011; 
Rienecker et al. 2011). The new reanalyses, which are derived from state-of-the-art data assimilation systems 
and high resolution climate models, provide substantial improvements in the spatiotemporal variability of 
precipitation relative to the first generation of reanalyses (Higgins et al. 2010; Saha et al. 2010; Rienecker et 
al. 2011; Silva et al. 2011). 

This paper evaluates and compares statistical properties of daily precipitation in three types of data sets: 
gridded station data, satellite-derived precipitation and reanalyses. This study employs several analyses to 
determine consistencies and disagreements in the representation of precipitation over SAMS. The period 
1998-2008 is selected in order to minimize missing data and develop a consistent comparison among the data 
sets. In addition, since the data sets are available with different horizontal resolutions, the comparison is 
performed in two ways: 1) all data sets regridded to a common resolution and 2) data sets with their original 
resolutions. 

2. Data 

The statistical properties of precipitation in the SAMS region are investigated with daily gridded data 
from multiple sources during 1 Jan-31 Dec 1998-2008. The following data sets are used: 

i) Physical Sciences Division, Earth System Research Laboratory (PSD):  This data set is formed from 
observed precipitation collected at stations distributed over South America (Liebmann and Allured 
2005, 2006). The daily gridded precipitation is constructed by averaging all observations available 
within a specified radius of each grid point. Two grid resolutions (1° and 2.5° lat/lon) are used in this 
study. 
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ii) Global Precipitation Climatology Project (GPCP): The daily GPCP combines Special 
Sensor/Microwave Imager (SSM/I), GPCP Version 2.1 Satellite-Gauge, geosynchronous-orbit Infrared 
(IR), (geo-IR) Tb histograms (1°x1° grid in the band 40°N-40°S, 3-hourly), low-orbit IR GOES 
Precipitation Index (GPI), TIROS Operational Vertical Sounder (TOVS) and Atmospheric Infrared 
Sounder (AIRS) data (Huffman et al. 2001). The GPCP data used in this study have 1o lat/lon grid 
spacing. 

iii) Climate Prediction Center unified gauge (CPC-uni):  The NOAA Climate Prediction Center (CPC) 
unified gauge uses an optimal interpolation technique to re-project precipitation reports to a grid 
(Higgins et al. 2000; Silva et al. 2007; Chen et al. 2008; Silva et al. 2011). This study uses data with 
0.5o lat/lon grid spacing. Although the PSD and CPC-uni data sets share some of the same station 
observations, it is worth noting that the quality control and gridding methods are distinct. In addition, it 
is likely that the number and origin of station data in both data sets are different. 

iv) Climate Forecast System Reanalysis (CFSR):  Daily precipitation from the NCEP CFSR (Saha et al. 
2010) is used at 0.5o lat/lon grid spacing. It is also important to note that precipitation is not assimilated 
in the CFSR production and is a forecast (first-guess) product. 

v) Modern-Era Retrospective Analysis for Research and Applications (MERRA):  Daily precipitation from 
MERRA at 0.5o latitude/0.3o longitude is used (Rienecker et al. 2011). As in the CFSR, precipitation is 
a forecast product. 

vi) Tropical Rainfall Measurement Mission (TRMM 3B42 V6):  Daily precipitation from TRMM is used 
with 0.25o lat/lon (Bookhagen and Strecker 2008; Bookhagen and Strecker 2010; Bookhagen and 
Burbank 2011). 

3. Results 

Several statistical analysis have been applied to the daily precipitation and the reader is referred to 
Carvalho et al. (2011) for additional details. The annual evolution of SAMS is examined to determine 
consistencies and disagreements among the data sets. The large-scale features of interest are: the dominant 
spatial precipitation pattern, dates of onset and demise, duration and amplitude of the monsoon. These 
characteristics are determined with empirical orthogonal functional (EOF) analysis applied to the daily 
precipitation (only land grid points) from each data set separately. Before computation of EOF analysis, the 
time series of precipitation in each grid point are scaled by the square-root of the cosine of the latitude and the 
long-term mean removed (1 Jan-31 Dec, 1998-2008). The first mode (EOF1) and associated temporal 
coefficient (PC1) explain the largest fraction of the total variance of precipitation over land and are used to 
describe the annual evolution of SAMS.  

To determine dates of onset, demise and duration of SAMS, the daily PC1 is smoothed with ten passes of 
a 15-day moving average. This smoothing procedure is obtained empirically and used to decrease the 
influence of high frequency variations during the transition phases of SAMS. The large-scale onset of SAMS 
is defined as the date when the smoothed PC1 changes from negative to positive values. This implies that 
positive precipitation anomalies during that time become dominant over the SAMS domain. Likewise, the 
demise of SAMS is defined as the date when the smoothed PC1 changes from positive to negative values. The 
duration of the monsoon is defined as the period between onset and demise dates. The seasonal amplitude of 
the monsoon is defined as the integral of positive unsmoothed PC1 values from onset to demise. Therefore, 
the seasonal amplitude index represents the sum of positive precipitation anomalies and minimizes the effect 
of “break” periods in the monsoon especially near the onset and demise. Active/break periods in SAMS are 
particularly frequent on intraseasonal time scales (Jones and Carvalho 2002). 

Figure 1 shows the spatial patterns of EOF1 derived from each data set with 2.5o lat/lon grid spacing and 
expressed as correlations between PC1 and precipitation anomalies. Positive correlations are interpreted as 
positive precipitation anomalies and indicative of active SAMS. In general, all data sets show similar features 
such as positive precipitation anomalies over central South America and negative anomalies over the northern 
parts of the continent. The region of negative anomalies over northern South America is substantially smaller 
in the PSD due to missing data (the “bull’s eye” at ~60oW, 10oS is a grid point with missing data). The 
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magnitude of positive correlations varies slightly and is highest for PSD. The largest positive correlation in 
MERRA is slightest to the west relative to the other data sets. 

The percentages of explained 
variance by EOF1 are: 20.5% 
(PSD), 11.6% (GPCP), 8.4% (CPC-
uni), 10% (CFSR), 17.9% (MERRA) 
and 6.9% (TRMM). EOF1 captures 
the largest fraction of the total 
variance, which includes 
subseasonal, seasonal and 
interannual variations, since the 
EOF analysis is performed 
removing only the long-term mean. 
Main differences in explained 
variance are associated with how 
much each PC1 represents the 
distribution of subseasonal, 
seasonal and interannual variations. 
These percentages are comparable 
to the percentages obtained with the 
data sets at their original resolutions, 
which suggests that spatial 
resolution of the data sets is not the 
main issue, but rather how each 
data set represents temporal 
variations. 

Dates of onset, demise and duration of SAMS derived from each data set with the original resolution are 
shown in Fig. 2. The mean onset date (Fig.2 top) is highly coherent among PSD, GPCP, CPC-uni and TRMM 
(~21 October) including the ranges of minimum and maximum onset dates. In contrast, the mean onset dates 
in CFSR and MERRA are off by several weeks. The variability in dates of mean demise (Fig. 2 middle) 
indicates agreements among PSD, GPCP, CPC-uni and TRMM and some differences in CFSR and large 
disagreement in MERRA. Consequently, the mean durations of SAMS (~180 days) agree reasonably well 
among PSD, GPCP, CPC-uni and TRMM data and is shorter and more variable in the CFSR and MERRA 
reanalyses (Fig. 2 bottom). These results indicate that differences in data resolution do not explain 
disagreements in the annual evolution of SAMS especially between CFSR and MERRA and the other data 
sets. 

5. Conclusions 

Carvalho et al. (2011) compares some statistical properties of daily gridded precipitation from different 
data (1998-2008): 1) Physical Sciences Division, Earth System Research Laboratory (PSD) (1.0o and 2.5o 
lat/lon), 2) Global Precipitation Climatology Project (GPCP at 1o lat/lon), 3) Climate Prediction Center 
unified gauge (CPC-uni) (0.5o lat/lon), 4) NCEP CFSR reanalysis (0.5o lat/lon), 5) NASA MERRA reanalysis 
(0.5o lat/0.3o lon) and 6) TRMM 3B42 V6 data (0.25o lat/lon).  The same statistical analyses are applied to 
data in: 1) a common 2.5 o lat/lon grid and 2) in the original resolutions of the data sets. 

All data sets consistently represent the large-scale patterns of the SAMS. The onset, demise and duration 
of SAMS are consistent among PSD, GPCP, CPC-uni and TRMM data sets, whereas CFSR and MERRA 
seem to have problems in capturing the correct timing of SAMS. Power spectrum analysis shows that 
intraseasonal variance is somewhat similar in the six data sets. Moreover, differences in spatial patterns of 
mean precipitation are small among PSD, GPCP, CPC-uni and TRMM data and some discrepancies are found 
CFSR and MERRA. Fitting of gamma frequency distributions to daily precipitation shows differences in the 
parameters that characterize the shape, scale and tails of the frequency distributions. This suggests that 

Fig. 1  First EOF patterns described as correlations between the first 
temporal coefficient (PC1) and precipitation anomalies.  Solid 
(dashed) contours indicate positive (negative) correlations at 0.1 
intervals (zero contours omitted).  Shadings indicate correlations ≥ 
0.2 (≤ -0.2) and are significant at 5%.  Data grid spacing: 2.5° lat/lon.
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significant uncertainties exist in the characterization 
of extreme precipitation, an issue that is highly 
important in the context of climate variability and 
change in South America. 
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1. Introduction 

 Beginning around the early 1980s, the Sahel belt of Africa has undergone a continual increase in both 
precipitation and vegetation greening (Herrmann et al. 2005; Olsson et al. 2005).  This so-called Sahel 
greening has been a signal of a gradual recovery from very dry conditions in the 1980s, and from the days of 
prolonged droughts and famines during the late 1960s–mid-1990s (Nicholson and Yin 2001; Dai et al. 2004).  
The increase in Sahel rainfall has been attributed to a combination of factors such as global warming (Lu and 
Delworth 2005; Hagos and Cook 2008), decadal-scale variability in the global sea surface temperature (SST) 
(Giannini et al. 2003; Hoerling et al. 2006; Cook 2008; Latif et al. 2010) and associated changes in the carbon 
cycle (Schimel et al. 2001).  Previous studies have also pointed to a robust connection between the low-
frequency rainfall variability in the Sahel and the Atlantic Multi-decadal Oscillation (AMO) – a basin-scale 
pattern of SST variability driven by Atlantic meridional overturning (Knight et al. 2005).    

As shown in Fig. 1, the summer precipitation differences between 1995-2009 and 1979-1994 illustrates 
the northward displacement of the oceanic rainband that is connected to the wetness domain along the Sahel. 
Precipitation in the Sahel is produced through a set of complex interactions between different circulation 
systems – in particular, the Tropical 
Easterly Jet (TEJ) in the upper 
troposphere that extends from South Asia, 
the African Easterly Jet (AEJ) in the 
middle troposphere, and the tropical 
monsoon westerly in the lower 
troposphere that lies beneath the TEJ; 
these circulation features are depicted in 
Fig. 1. African Easterly Waves (AEWs) 
contribute to about 50% of the June-
September rainfall in West Africa (Chen 
and Wang 2007).  Moreover, AEWs are 
important precursors to intense 
hurricanes of Category 3 or above 
(Landsea and Gray 1992; Landsea 1993; 
Chen et al. 2008) and recent studies 
(Hopsch et al. 2007; Fink et al. 2010) 
have found a positively correlated, yet 
fluctuating relationship between the 
tropical cyclone activity, the West 
African monsoon, and AEWs.   

Here we report a recent study by Wang and Gillies (2011) that examined the synoptic environment 
associated with the increasing precipitation in the Sahel.  We also investigated the extent of any downstream 
effects the Sahel climate change has had on the increase in tropical cyclone threat (Emanuel 2005, 2007).  
Precursors to the analysis were first the adoption of several precipitation datasets and different generation 
global reanalyses as described in Section 2.  The analysis in Section 3 is followed by a discussion of the 

Fig. 1 July-August precipitation differences between the periods 
1995-2009 and 1979-1994, from the University of Delaware 
data over land and the GPCP data over ocean. Jet cores along 
the African Easterly Jet and the Tropical Easterly Jet are 
indicated. The tropical monsoon westerly lies underneath the 
TEJ. The left boundary in red outlines the latitude zone used 
in Figs. 2-4. 



WANG AND GILLIES 
 

 

167

temporal-spatial evolutions of 
prescribed meteorological 
variables and their links to 
Atlantic tropical cyclones. 
Concluding remarks are presented 
in Section 4. 

2. Data sources 

Our study utilized three sets 
of precipitation data: the Climate 
Prediction Center (CPC) Merged 
Analysis of Precipitation (CMAP; 
Xie and Arkin 1997), the Global 
Precipitation Climatology Project 
(GPCP) version 2 (Adler et al. 
2003), and gauge-based 
precipitation compiled by the 
University of Delaware (UDel) 
(Legates and Willmott 1990).  For 
verification purposes, we adopted 
the un-interpolated version of 
outgoing longwave radiation 
(OLR) measured from NOAA’s 
polar orbiting satellites. For sea 
surface temperatures we utilized 
the NOAA Extended 
Reconstructed SST V3b (Smith 
and Reynolds 2003); for surface 
temperatures over land we used 
the CRU Air Temperature 
Anomalies Version 3 (Brohan et 
al. 2006) with the time period up to present. In the later part of the study we examined the occurrences of 
Atlantic tropical cyclones.  Information of tropical cyclones was obtained from two sources: 1) the Atlantic 
Hurricane Dataset Re-analysis Project (Landsea et al. 2004) for the period 1979-2009, and 2) the National 
Hurricane Center’s Tropical Prediction Center for 2010.     

Five global reanalysis datasets (hereafter referred to as reanalyses) were utilized: (1) the National Centers 
for Environmental Prediction/National Center for Atmospheric Research Global Reanalysis (NCEP1; Kalnay 
et al. 1996), (2) the NCEP/Department of Energy Global Reanalysis II (NCEP2) – the improved version of 
NCEP1 that included additional satellite-derived atmospheric information and newer physics schemes 
(Kanamitsu et al. 2002), (3) the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr 
Reanalysis (ERA-40; Uppala et al. 2005), (4) the ERA-Interim reanalysis (Simmons et al. 2007), and (5) the 
Modern Era Retrospective-analysis for Research and Applications (MERRA) developed by NASA (Rienecker 
et al. 2011). All of the reanalyses are daily means. Because ERA-40 is only available up to 2002, the period 
1989-2010 was merged with ERA-Interim by interpolating ERA-Interim’s higher resolution onto ERA-40’s 
2.5° resolution through a bilinear approach.  This merged reanalysis is referred to as ERA40/I. 

3. Results 

a. Changes in the Sahel climate 

The change of precipitation during July-August (i.e. Sahel’s rainy season) of 1979-2010 is illustrated in 
Fig. 2 as latitude-time diagrams of GPCP, CMAP, UDel and ΔOLR (=235 Wm-2 – OLR), averaged between 
10°W and 10°E representing the central Sahel. A clear northward shift is revealed in these precipitation data 

Fig. 2  Latitude-time profiles of precipitation averaged between 10°W 
and 10°E for the July-August season, derived from (a) GPCP, (b) 
CMAP, (c) University of Delaware, and (d) ΔOLR (= 235 Wm-2 – 
OLR).  Yellow dashed lines are linear trends of the designated value. 
The solid black lines indicate the average latitudinal position of 
maximum precipitation for the depiction of the Sahel rainband. 
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and proxy, without a discernable change in the amount (as inferred from the parallel trends).  This feature is 
indicative of the fact that the increasing Sahel rainfall is not an expansion of the seasonal rainband but rather 
is a result of a positional shift.  On the other hand, ΔOLR reveals a noticeable increase in magnitude in the 
precipitation condition (as noted from the diverging trends), suggestive of an intensification in the convective 
activity within the migrating rainbands.  The latitudinal shift of the rainfall maximum – averaged from all four 
datasets – amounts to about +1.1° over the 32 year period and is indicated by the solid black line in Fig. 2.  
However, an examination of the model-generated precipitation from the four reanalyses (not shown) revealed 
a systematic bias that consisted of a southward displacement of the mean rainband (i.e. positioned at 7.5°N 
instead of 11°N as is the case in Fig. 2), without a discernable positional shift.  Such reanalyses biases 
highlight a primary challenge of global climate models when it comes to producing reliable climate 
simulations and projections.  For this reason we decided to use only the kinetic fields of the reanalyses. 

Figure 3 shows changes in the TEJ, AEJ, and the tropical monsoon westerly in terms of zonal winds at (a) 
200mb, (b) 600mb, and (c) 850mb, respectively, from the four reanalyses over the central Sahel.  The point to 
note here is that there is a 
substantial increase in the TEJ 
and a slight southward shift of 
the jet core, although MERRA 
depicts less of a positional shift 
but does show a much stronger 
jet speed compared to the other 
reanalyses.  NCEP2 and ERA40/I 
depict a similar structure of the 
TEJ but are somewhat different 
from the other reanalyses. Even 
though the TEJ has intensified, 
its southward expansion does not 
seem to correspond to the 
decreased tropical rainfall (south 
of 10°N; Fig. 2).  For the AEJ 
(Fig. 3b), all the reanalyses, with 
the exception of MERRA, depict 
a northward shift of the jet 
consistent with the migrating 
rainband.  Both NCEP2 and 
ERA40/I depict a clear 
intensification of the AEJ, 
whereas the intensification is 
weaker in NCEP1 and MERRA.  
For the tropical monsoon 
westerly, the reanalyses are 
somewhat divergent – while 
NCEP1 points to an increase in 
the westerly wind speed, 
ERA40/I indicates a sharp 
decrease.  Nevertheless, all 
reanalyses agree upon a quasi-
stationary behavior of the 
monsoon westerly.  It appears 
that the four reanalyses exhibit 
somewhat different 
characteristics of the African 

Fig. 3  Same as Fig. 2 but for zonal wind speeds at levels of (a) 200 mb, (b) 
600 mb, and (c) 850 mb derived from (top-down) NCEP1, NCEP2, 
MERRA, and ERA40/I. The solid blue lines indicate the Sahel 
rainband migration. The dotted lines indicate linear trends of the 
designated value. Note the different latitudinal scales for each level. In 
ERA40/I, year 1989 is masked out to highlight the transition from 
ERA40 to ERA-Interim. 
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circulations, while newer reanalyses do not appear to correspond with each other, such as the AEJ’s trend 
between MERRA and ERA40/I. Therefore, in the ensuing analysis we adopted an ensemble approach by 
averaging the four reanalyses with an equal weight, denoted as the ensemble reanalyses. 

Recall from Fig. 2 that, although the precipitation amounts have not increased significantly, ΔOLR has 
intensified.  The root-mean-square (RMS) of daily OLR over the central Sahel (Fig. 4a) supports this 
observation as it reveals an enhanced fluctuation along the northern edge of the migrating rainband (~15°N).  
This likely is due to the rainband moving towards the Saharan boundary where stronger potential temperature 
gradients and lower static stabilities are present; this subsequently leads to greater thermal and convective 
instabilities (discussed later).  To examine the change in moist convection, we computed the frequency from 
which the daily OLR values at each grid point were lower than 200 Wm-2, which is an empirical threshold 
obtained for deep convection that usually occurs over tropical oceans (Zhang 1993).  The result (Fig. 4b) 
portrays a northward migration in the frequency of intense convection that is coupled to the migrating 
rainband (i.e. the blue line). The eastern Sahel (not shown) undergoes consistent changes in convective 
activity.   

It is known that, within the latitude zone of 10°-15°N, AEWs contribute a significant portion to the 
seasonal precipitation (Grist et al. 2002; Chen and Wang 2007).  The association of the changing convective 
activity with AEWs was examined by calculating the covariance of the ΔOLR in conjunction with the 
vorticity advection forcing of vorticity tendency at 600 mb, –V⋅∇(f +ζ), where V indicates horizontal wind 
vectors, f is the planetary vorticity, and ζ is the relative vorticity.  Both variables were bandpass filtered with 
2-8 days in order to isolate the signal of AEWs. As is shown in Fig. 4c, a substantial increase and a northward 
position shift are observed in the covariance of ΔOLR and vorticity advection. This suggests an expansion 
and northward shift of the wave-convection interaction.  The RMS of the filtered vorticity advection (Fig. 4d) 
shows a similar shift with an amplifying tendency that may be interpreted as a northward displacement of the 
AEW track accompanied by an amplification of those waves.  The wave activity in the eastern Sahel – i.e. one 

Fig. 4  Same as Fig. 3 but for (a) root-mean-square (RMS) of the 2-8 day bandpass filtered OLR, (b) 
frequency of the OLR values lower than 200 Wm-2, (c) covariance of the filtered OLR with horizontal 
vorticity advection at 600 mb, (d) RMS of the filtered horizontal vorticity advection at 600 mb, (e) 
meridional gradient of Ertel potential vorticity at 600 mb, and (f) vorticity source due to vortex stretching 
at 600 mb. Dashed lines are linear trends of the designated value. The Sahel rainband is indicated by 
solid blue lines. 
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of the breeding zones of AEWs – is generally weaker than in the central Sahel but shows a similar tendency: a 
northward shift and a latitudinal expansion. Chen and Wang (2007) have noted a 20% increase in the number 
of “moist” AEWs that occur south of the AEJ (the so-called southern track).  These results indicate that the 
migrating and intensifying convection, AEJ, and AEWs are connected with the shifting Sahel rainband and, 
that convection coupled to the AEJ-AEW system has become stronger over the northern part of the Sahel. 

b. Changes in the dynamic structure 

It is well established that the formation mechanism of AEWs, particularly the southern track, relies upon 
the Charney-Stern instability (Charney and Stern 1962) in which the meridional gradient of potential vorticity 
changes sign south of the AEJ and is negative underneath the AEJ (Burpee 1972; Thorncroft and Hoskins 
1994a, b).  The Charney-Stern instability occurs in an environment of combined thermal gradient and vertical 
shear that promotes the release of available potential energy (from the mean circulation) towards any pressure 
perturbations.  Therefore, we examined the change in this dynamics through the meridional gradient of 
potential vorticity, dq/dy, at 600 mb (Fig. 4e).  Compared with the AEJ as depicted in Fig. 3b, the sign change 
of dq/dy indeed occurs south of the jet while exhibits a northward progression corresponding to the AEJ’s 
migration.  Noteworthy is that the intensified AEJ may also induce stronger shear instability south of the jet; 
this being favorable for the development of AEWs.  As has been shown previously (Chen 2006), mid-
tropospheric vortex stretching is a dominant forcing source in the vorticity budget over the AEW genesis 
region. An examination of the seasonal mean vortex stretching at 600 mb reveals an amplifying tendency 
associated with a northward migration (Fig. 4f), with a more pronounced amplification in the eastern Sahel. 
These features correspond well with the intensification and positional shift of AEWs revealed from Figs. 4c 
and 4d. Since the AEW activity is positively correlated with the Sahel rainfall (on the interannual timescale; 
Thorncroft and Rowell 1998), these also seem to support the position shift of the Sahel rainband. 

During the last 30 years, surface temperature over the Saharan desert has warmed within the range of 
0.5°-1.0°C (not shown); a warming like this strengthens the heat low and lowers the static stability.  The 
change in warming and static stability [from the combination of low static stability and a stronger meridional 
temperature gradient; Chang 1993] likely reinforces the heat low’s interaction with the northward migrating 
AEJ, leading to an enhancement in 
baroclinic instability.  When coupled 
with the increased moisture supply and 
enhanced moist convection conditions, 
mixed barotropic and baroclinic 
instabilies likely result in a stronger 
reversal of the mid-tropospheric 
potential vorticity gradient, thus 
enhancing dq/dy. This appears to be the 
case as is evident in Fig. 4e.  Such 
processes further explain the intensified 
AEW-OLR activity suggested from Fig. 
4c. 

c. Link with Atlantic tropical cyclones 

During the past 30 years, both the 
frequency and the intensity of Atlantic 
tropical cyclones have increased 
significantly. A growing number of 
studies have suggested that tropical 
cyclone activity and Sahel rainfall 
anomalies are linked to the uptrend 
phase of the AMO [as reviewed by 
Latif et al. 2010], but such a linkage 
has not yet been substantiated.  Landsea 

Fig. 5  July-September climatological streamlines at 925mb overlaid 
with tropical cyclogeneses of AEW origin and the trajectory and 
genesis of AEWs for (a) the southern track (AEWS) and (b) the 
northern track (AEWn). Symbols are explained in the right. The 
AEJ core is indicated by the black solid line. Data period: 1979-
2006. (Modified from Chen et al. 2008) 
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(1993) has estimated that about 60% 
of tropical storms and moderate 
tropical cyclones in the Atlantic basin, 
and over 80% of intense tropical 
cyclones (i.e. Category 3 and above) 
originate from AEWs.  Later studies 
(Thorncroft and Hodges 2001; Hopsch 
et al. 2007; Chen et al. 2008) found 
that southern-track AEWs contribute 
the most to tropical cyclogenesis, 
because their nature of moist 
convection facilitates the conversion 
of cold-core waves into warm-core 
tropical cyclones (Pytharoulis and 
Thorncroft 1999).  

The Atlantic tropical cyclogeneses 
and those that originate from AEWs 
was examined by performing a back-
tracking method of AEWs as was used 
in Chen et al. (2008).  The back-
tracking procedure begins with the 
genesis location of a tropical cyclone, 
then tracks any pre-existing 
perturbation associated with the 
tropical cyclogenesis back to its origin 
of perturbation by using daily-mean 
wind and vorticity fields at 925 mb 
and 600 mb in conjunction with daily 
OLR.  Here, if the perturbation 
originated over the African continent, 
then its related tropical cyclogenesis is 
regarded as being of AEW origin.  The 
tracking was performed manually and 
only those tropical cyclones during the 
period 2005-2010 were tracked, while cases prior to 2005 were adopted from Chen et al. (2008). Illustrated in 
Fig. 5 are tropical cyclogeneses with an AEW origin, the initial locations of those AEWs, and the trajectory 
between the two. Southern-track AEWs tend to form tropical cyclones further to the east and closer to West 
Africa than northern-track AEWs, likely due to stronger latent heat release in the West African monsoon 
region (Thorncroft and Hodges 2001).  

Figure 6a shows the number of tropical cyclones initiated in the July-September season and their linear 
trend. Year 2010 was not included in the trend analysis because the track records at the time were provisional.  
Of the 86% increase in the number of tropical cyclones since 1979, 62% originated from AEWs (Fig. 6b) 
while 50% are linked to southern track AEWs (Fig. 6c).  The connection between AEWs and intense tropical 
cyclones is more pronounced: Given a dramatic 148% increase in the number of intense tropical cyclones, 
88% are of AEW origin (Fig. 6e), while 84% (out of the 88%) originated from the southern track of AEWs 
(Fig. 6f).  It has been found that the large-scale atmospheric conditions leading to the increase in tropical 
cyclone frequency and power involve net surface radiation, thermodynamic efficiency, surface wind speed, 
and vertical wind shear (Emanuel 2007), whose variations turn to the favorable side for tropical cyclogenesis 
during the recent AMO uptrend (Hoerling et al. 2006; Latif et al. 2010). The results presented in Fig. 6 are a 
further substantiation of the synoptic condition that exists to “fuel” the observation of increasing rainfall in 
the Sahel and the Atlantic tropical cyclones (especially the intense ones). 

Fig. 6 Number of Atlantic tropical cyclones (TCs) during July-
September, for (a) total TCs, (b) AEW-induced TCs, and (c) 
southern-track AEW-induced TCs. (d)-(f) Same as (a)-(c) but for 
intense TCs of Category 3 and above. The linear trends and slopes 
are given. All trends are significant at the 95% confidence interval 
per t-test. 
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5. Concluding remarks 

Increased Sahel rainfall over the 1979-2010 period and associated synoptic conditions was found to result 
from the northward migration of the seasonal rainband.  Convective activity associated with the migrating 
rainband also intensified, mostly along the northern boundary of the rainband and south of the AEJ.  We also 
found a positional shift and intensification of the AEJ, consistent with the northward migration of the Sahel 
rainband.  These features are accompanied by stationary tropical monsoon westerlies, an expanding TEJ, and 
an increase in moisture flux convergence (not shown).  Furthermore, the poleward shift and amplification of 
AEW activity associated with the AEJ changes play a crucial role in the change of tropical cyclogenesis over 
the North Atlantic.  Through a manual back-tracking method that connects tropical cyclones to their AEW 
origin, 88% of the dramatic (148%) increase in intense tropical cyclones were found to originate from AEWs.  
These results provide a synoptic linkage between the documented increase in tropical cyclone threat and the 
increasing Sahel rainfall, over the past 30 years.  In view of the severe spreads in GCM projections of the 
Sahel climate, simulation quality in terms of the AEJ-AEW system may serve as an additional criterion for 
the assessment of projection uncertainties.  Moreover, projected AEW activities may also provide an 
indication for future tropical cyclone threat. 
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1. Introduction 

Over the last several years CPC has created products and adopted protocols, which are new to the 
organization.  The net result is an emerging R2O protocol, which promises to radically improve our capability 
to implement new products, while continuing to maintain our existing ones.   

We identify 5 critical elements: (1) Project Planning, (2) Software Version Control, (3) Issue-Tracking, 
(4) Wiki usage, and (5) Collaborative Software Development; and provide 2 example projects: (1) a 
Verification web tool (VWT), and (2) a Dynamic Probability of Exceedance web tool (dPOE), both of which 
are nearing completion. 

Section 2 gives a comparison of research (“R”) and operations (“O”).  Section 3 describes the 5 elements 
of a new R2O.  Section 4 describes how CPC’s interactions with CLIMAS inspired development of two web-
based tools to allow users to interact with databases of forecasts and observations. The Verification Web Tool 
and the Dynamic POE Web Tool are also described.  Section 5 gives Lessons Learned. 

 

High-Level Design of VWT 

 Fig. 1  High-level design schematic for CPC’s new 
Verification Web Tool  
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2.  Research versus Operations. 

Research: Untested technologies, new knowledge of uncertain or distant future application valued 

1. Funding supports entirely new topics 
2. Products are papers, published episodically 
3. Code standards, documentation often of secondary importance 
4. Driven by funding and quest for new results 
5. Research personnel is largest cost  
6. Narrow, highly-trained user community 

Operations:  Robust technologies, continuity, practicality valued 

1. Funding limits ability to do new things 
2. Routine/rigid delivery of products  
3. Code standards, documentation essential 
4. Driven by system security considerations 
5. Software maintenance is largest cost  
6. Broad user base, often untrained 

Fig. 2  The VWT is a Java-based interactive web tool which allows a user to request skill graphs or maps, for 
temperature and precipitation forecasts, for a variety of forecast periods, geographical regions, and 
historical periods. 

3.  The 5 essential R2O project elements 

1. Collaborative Development: Leverages the talents and resources of developers inside and 
outside of the organization.  This is facilitated by software which allows simultaneous 
development of code by multiple people at the same time, such as CVS or Subversion. 

Verification Web Tool 
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2. Project Planning :  A formal process, starting with a Charter, which lists purpose, in and out of scope 
activities, costs & benefits, deliverables, resources, risks, participants. 

3. Software Version Control: This software facilitates orderly code development and is essential to 
collaborative development.  Facilitates collaborative development of code (see item 1.). 

4. Issue-Tracking :  Facilitates management of project through accountability.  Trac issue-trackiing 
software is used at CPC. 

5. Wiki-Usage:  Enables shared documentation of information. 

4. How the CLIMAS-CPC collaboration led to innovation at CPC 

CLIMAS introduced issue-tracking, version control, and collaborative development to CPC through a 
series of lectures, culminating in a project to collaboratively develop a web tool.   In the process of working 
together, CPC and CLIMAS successfully developed and implemented web services, dynamic process 
initiation, and user interfaces at CPC.  They also overcame security issues involving non-NWS access to 
NWS computers. 

As a direct result of this work, CPC embarked on an effort to internally develop the Verification Web 
Tool.  CPC and CLIMAS also continued their joint collaboration by developing the dynamic Probabability of 
Exeedance (dPOE) web tool.  These are illustrated by Figures 1-3. 

Fig. 3  The dPOE is a Java-based interactive web tool which allows a user to request graphs which place a 
temperature or precipitation forecast into the context of a reference distribution.  These distributions may 
be viewed in 3 different formats controlled by the user, who may also vary the thresholds which bracket 
the range of possible values of a forecast. 

Dynamic POE Web Tool 
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5. Lessons learned 

1. R2O is hard, partly due to natural differences in culture and communication between the research and 
operations side of an organization. 

2. CLIMAS introduced issue-tracking, version control, and collaborative development to CPC.  These 
powerful tools provide accountability and leverage the talents of coders inside and outside of the 
organization in a way never-before attempted at CPC. 

3. These tools are being increasingly incorporated into CPC’s Operations Branch, and have permanently 
changed our mode of day-to-day operations. 

4. VWT and Dynamic POE were successfully developed using these, along with wiki-usage and project 
planning (5 elements). 

5. CPC/CLIMAS Successes: web services, dynamic process initiation, user interfaces, security issues 
with non-NWS access to NWS computers, specific software development tools, dPOE. 

6. Other parts of NCEP are adopting these software development techniques (NCO, EMC). 
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The CPT is a software package developed by the International Research Institute for Climate and Society 
(IRI) designed for making seasonal climate forecasts. The CPT is an easy-to-use tool that runs on Windows 
95+, and a source-code version that can be compiled under other types of operating systems is available for 
running batch jobs. It is available free of charge from the IRI’s web page: 
http://iri.columbia.edu/climate/tools/cpt/. At the time of writing, the latest version of CPT (11.10) consists of 
about 50,000 lines of Fortran 95 code, and uses compiler extensions for the user-interface and graphics, and 
so is not portable to other platforms. The source-code version consists of about 33,000 lines of Fortran 90 
code, and provides no graphics functionality. This version has been tested with gfortran, ifort, nagfor, pgf90, 
and pgf95, but up-to-date versions of the compilers are required to avoid issues with compiler bugs.   

The underlying goal in developing 
the CPT has been to promote the 
widespread creation and communication 
of quality-controlled seasonal climate 
forecasts that address specific needs of 
different user groups. The software was 
initially developed to enable forecasters 
at National Meteorological Services 
(NMSs) in Africa to produce updated 
seasonal forecasts for their country, and 
to provide greater consistency in inputs 
to the Regional Climate Outlook Forums 
(RCOFs) to facilitate consensus building, 
but the CPT has been used widely 
beyond the RCOFs (Fig. 1). 

There are two main approaches to 
generating seasonal forecasts: using large-scale models of the global atmosphere, known as general 
circulation models (GCMs), or using a statistical approach to relate seasonal climate to changes in sea-surface 
temperatures, such as those associated with El Niño, or to other predictors. In the former case, predictions are 
made for large-areas, and are often not very relevant for specific locations. In addition, because of the coarse 
scale at which the GCMs operate, the geography in the models is often distorted, and so geographical 
locations can be displaced. These GCM outputs therefore need to be adjusted so that they can be applied at 
the local level. The CPT tool is designed to perform both forms of prediction, namely downscaling of GCM 
output, and purely statistical predictions. 

The statistical approach to making seasonal forecasts from sea-surface temperatures has been used for a 
number of years at many National Meteorological Services. Since the late 1990s, these statistical forecasts 
have been combined to produce a consensus forecast, representing a patchwork of nationally-based forecasts 
for subcontinental areas, in Regional Climate Outlook Forums (RCOFs; Ogallo et al. 2008). While such 
forums have been very successful in building the capacity to produce seasonal climate forecasts, a number of 
problems have emerged, and some systematic errors in the forecasts have been identified (Mason and 
Chidzambwa 2009). The CPT tool was designed in response to these problems, and, specifically, was 
developed to address the following issues: 

Fig. 1  Locations of downloads of the CPT software, 2004 – 2011. 
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a. Slow production time: the time taken to construct the statistical forecasts at the RCOFs was requiring 
long and expensive pre-forum workshops. By using CPT, forecasts can be produced in just a few 
hours or less. The quick production time makes it possible to hold shorter, and thus cheaper, pre-
forum workshops, and provides more time at these workshops for advanced training. It also makes it 
viable for forecasters to produce updated forecasts on a monthly basis back in their home countries. 

b. Artificial skill: an important step in producing a reliable seasonal forecast is to obtain a realistic 
estimate of how good the model predictions are. CPT performs rigorous cross-validation and 
retroactive tests for estimating skill levels, and adjusts the forecasts accordingly. Extensive diagnostic 
statistics are provided, including most of the scores and procedures recommended by the WMO CBS 
SVSLRF (including the calculation of significance levels and error bars). 

c. Dependence on one model: it has been demonstrated extensively that the best seasonal forecasts are 
produced by generating a number of predictions and then combining these, perhaps by simply taking 
the average of the predictions. In the past, however, there has been a strong reliance on the prediction 
from a single model, simply because the effort invested in constructing the statistical model tended to 
encourage an over-confidence in the prediction from this model. Inputs from other sources (most 
notably the GCM predictions) were largely down-played because of the lack of a sense of ownership 
of these additional products. By making it much easier to generate a set of predictions by using CPT, 
the official forecasts from the National Meteorological Services and from the RCOFs now consider a 
broader range of inputs than was possible in the early years of seasonal climate forecasting efforts. 

d. Unreliable probabilities: seasonal climate forecasts are expressed probabilistically because of the 
large uncertainties involved in forecasting the next few months. However, most statistical forecasting 
methodologies do not explicitly indicate the uncertainty in the prediction, and so this uncertainty has 
to be estimated. Some simple and intuitive ways of estimating forecast uncertainty are unfortunately 
not very reliable (Mason and Mimmack 2002). A more reliable system has been implemented in CPT 
based upon the error variance of the cross-validated forecasts over the training period. 

e. Forecast format: seasonal forecasts are typically presented as the probability that the seasonal rainfall 
total, for example, will fall within pre-defined ranges. These ranges are most commonly set as the 
upper and lower terciles of the historical rainfall totals. This format tends to be unpopular with users 
of the forecasts, partly because the forecast is too abstract (it is not clear how much rainfall is meant 
by the upper and lower terciles), and partly because the forecast is too unspecific (the upper and lower 
terciles are often not very interesting thresholds). Within CPT there are options that provide 
considerable flexibility to tailor forecasts for specific user requirements, including options to redefine 
the ranges. Forecasts can be produced in a variety of formats, and detailed information is provided so 
that the forecast can be communicated to the end users in easy-to-understand terms. 

Although the software is designed to implement best-practices, a second underlying principle has been to 
respond to user requests for improved functionality and ease of use. Major enhancements to the CPT have 
been released approximately once per year. The major new versions are indicated in Table 1. 

The software has been introduced to most of the RCOFs and is now used fairly extensively: there are 
currently over 650 registered users of the Windows versions from all over the globe. Visitors to the CPC 
Africa Desk are provided extensive training in the software. Numerous training workshops in the use of the 
software have already been held, including under the auspices of the WMO CLIPS activities. 
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CPT Versions 
Version Date New features 
CPT 0  MATLAB code for performing canonical correlation analysis 
CPT 1 Dec 2002 Translation into about 650 lines of Fortran 77 as interface to LAPACK SVD 

routines (requires recompilation each time) 
Principal component regression 

CPT 2 Aug 2003 Conversion to Fortran 95 
Graphical user interface 
Validation statistics 
Option to calculate a forecast using updated predictors 

CPT 3 Feb 2004 Mapping of station data 
Missing value estimation 

CPT 4 Feb 2005 Improved graphics 
Bootstrap confidence intervals and p-values 

CPT 5 Aug 2005 Forecast uncertainty estimates based on prediction intervals 
WMO SVSLRF verification procedures 
Optional transformation of predictand to Gaussian distribution 
Options to define categories using climatological probabilities other than 33%, or 

using absolute values 
CPT 6 Nov 2005 Multiple concurrent users 

Exceedance probability curves 
Options to calculate forecasts as, and to define categories in terms of, anomalies or 

standardized anomalies 
CPT 7 Aug 2006 Option to set model update interval in retroactive procedure 

Option to set a zero-bound (useful for precipitation forecasts) 
Option to calculate forecasts as, and to define categories in terms of, % of average 

CPT 8 May 2007 Retroactive forecast probabilities and verification including attributes diagrams 
Multiple linear regression option 
Permitted input of daily data 

CPT 9 Mar 2008 Break up of executable to reduce executable size by using DLLs to simplify 
download of updates 

Major internal restructuring of code for closer parallel between Windows and Linux 
versions 

Additional verification procedures 
CPT 10 Oct 2009 Multiple predictor fields, including extended EOFs 

New user-interface 
“Ensemble” forecasts based on error variance 
Additional verification procedures 
New input data formats for improved identification of forecast lags 
Forecasts as odds 
Option to define categories in terms of analogue years 
Calculation of p-values for skill maps 
Improved graphics functions 

CPT 11 Jan 2011 Multi-lingual user-interface 
GCM verification option 
Probabilistic verification scores for retroactive forecasts 
Category thresholds, averages, and correlation maps 
Improved missing value estimation 
Improved handling of daily data 
Prevention of over-fitting of CCA models 
Decreased sensitivity to different compilers 

Table 1  History of CPT versions indicating the major new features.   
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Wildland Fire Climate Needs Roundtable  
Peter B. Roohr 

Office of Science and Technology, NOAA’s National Weather Service 

In March 2011, Dr. Jack Hayes, NOAA Assistant Administrator for Weather Services and Director of the 
NWS, met with senior level representatives of the National Wildfire Coordinating Group to discuss NWCG 
requirements for weather and climate information that would improve firefighting operations and planning. 
The number one requirement brought up by the NWCG was climate information that could help them arrange 
resources and allocate funding effectively around the country in preparation for major wildfires. This 
presentation brings up the overall need for climate information for firefighting and the specific NWCG needs. 

The overall need for information on projected long-term weather patterns is addressed in many high level 
documents, to include the 2008 NOAA Science Advisory Board “Fire Weather Research: A Burning Agenda 
for NOAA” report and the 2007 Office of the Federal Coordinator for Meteorology “National Wildland Fire 
Weather Needs Assessment”. The requirements brought forth by the NWCG in 2011 validate and specify the 
needs from these documents. 

The NWCG uses mid-range fore weather information for pre-positioning of initial attack resources (2-3 
days in advance of an event) and movement of resources (typically 1-2 days to mobilize). They use long-
range fire climate information to determine the start date of seasonal crews (which can only be used for 90 
days), determine start date of air resources under contract, and to ascertain budget planning for fuel treatments. 
The NWCG specifically brought up needs for seasonal prediction of: (1) mean upper level flow patterns (500 
mb level), (2) frequency of precipitation, (3) wind events, (4) relative humidity trends, and (5) predictions out 
to 120 days (at weekly or biweekly time-steps to show trends that could impact planning and operartions). 
The NWCG also brought up need for climate information out to 2-3 years to help determine basis for fuel 
treatment and land management objectives, since planning that is impacted by climate change ties directly to 
fiscal year budget planning, and ensure firefighters know how climate variability and complexity interacts 
with fires; future potential impacts of climate on a decadal scale are also desired. 

After the presentation the conference attendees discussed climate products and information that could 
address firefighting needs, especially those that could increase the ability of firefighting agencies and groups, 
like the NWCG, to assess the range of outcomes and narrow down range of plans. 
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NOAA’s National Weather Service 

1. Introduction 

 The National Weather Service (NWS) Mission for Science & Technology Infusion is an agency-wide 
collaborative effort among planning, operations and services, with support by strategic community partners.  
A prominent focus is to enhance the connection between weather and climate for the advancement and 
provision of integrated services.  This is a summary based on presentations for NOAA CTB Joint Seminar 
Series, Joint Center for Satellite Data Assimilation Workshop, Climate Prediction Application Science 
Workshop, Ensemble User Workshop, NCEP/EMC Seminars and COLA Seminars in 2010-2011.  It 
highlights recent progresses and challenges in three key development areas: 1) unified modeling, 2) seamless 
prediction, and 3) integrated services.   

2. Unified modeling 

Modeling of weather and climate fluctuations and their interactions with the Earth system are integral to 
the simulation/prediction problem.  A unified modeling approach can be used to address common processes in 
both classes of models, such that the progress in short-range weather forecasts will translate into 
improvements in long-range climate predictions and vice-versa. 

NASA/Goddard multi-scale modeling system (MMS) 
with unified physics 

 The Goddard MMS shown in Figure 1 consists of 
the Goddard Cumulus Ensemble Model (GCE, a cloud-
resolving model), the NASA unified Weather Research 
and Forecasting Model (WRF, a regional-scale model), 
and the coupled fvGCM-GCE (the GCE coupled to a 
general circulation model).  The same cloud 
microphysical processes, long- and short-wave radiative 
transfer and land-surface processes are applied in all of 
the models to study explicit cloud-radiation and cloud-
surface interactive processes and identify the optimal 
grid size and physical process. By incorporating the 
physical packages originally developed for high-
resolution process model into both NWP and GCM, it 
demonstrated significant reduction of model biases and  
more realistic simulation of weather and climate, such 
as diurnal variation of precipitation systems, Typhoon, 
etc. 

UMD/ESSIC CFS-CWRF nested system with optimized 
physics 

The Climate extension of the WRF model (CWRF) developed in the Earth System Science 
Interdisciplinary Center (ESSIC), the University of Maryland inherits all WRF functionalities for numerical 

fvGCM

GCE Model WRF

MMF

Initial Condition

Initial Condition

LIS

Microphysics
Radiation

Physical Packages

Fig. 1  Schematic diagram of the Goddard Multi-
scale Modeling System with unified physics.  
(Tao 2010) 
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weather prediction while enhancing the 
capability to predict climate.   The CWRF 
incorporates a grand set of physics schemes, 
which contain more than 1024 of alternative 
configurations, representing interactions 
among surface, planetary boundary layer, 
cloud, aerosol, and radiation. An optimized 
physics (geographically dependent) ensemble 
approach is applied to improve weather 
forecasts and climate prediction along with 
reliable uncertainty estimates. 

The CWRF model has been nested in the 
National Centers for Environmental 
Prediction (NCEP) operational Climate 
Forecast System (CFS).  The Figure 2 shows 
significant improvement of cold season 
precipitation prediction over the United States 
by downscaling. 

3. Seamless prediction 

The seamless prediction concept 
emphasizes the importance of scale 
interconnectivities and puts the stress on the 
weakest link of the prediction chain. In 
forecast practice, reducing biases and better representing uncertainties are the common foci of both weather 
and climate predictions for improvement.  Enhanced cooperation and exchange of experiences between the 
two communities would accelerate progress for both. 

Progress in satellite data assimilation   - Land surface data improvement  
The amount of satellite data assimilated over land in the Gridpoint Statistical Interpolation (GSI) was 

found to be far less than over ocean. Figure 3 shows a reduction of errors in simulated brightness temperature 
and an increase in the number of observations (NOAA-18 AMSU-A) assimilated in GSI, especially over 
forest regions, by using new roughness lengths formulations in the Global Forecast System (GFS) and 
updated microwave land emissivity model in the Community Radiative Transfer Model (CRTM).  

                         Channel                                              Channel                                             Channel  

Fig. 3  Comparisons of brightness temperature (Tb) over land at 12Z assimilated by GSI averaged over the 
period of 1-31 July 2010,  (a) bias, (b) RMSE and (c) the number of observations assimilated.  (Zheng 
2011) 

Challenges of decadal simulation for CFS 

Based on the analysis of NCEP Climate Forecast System (CFS v2) decadal runs for CMIP5, Figure 4 
reveals that the simulation of Atlantic Meridional Overturning Circulation (AMOC) is weak and its 10-year 
trend is larger than that in the GODAS assimilation.  Since the AMOC is related to the Atlantic Multidecadal 

Fig. 2  (a) Frequency distributions of root mean square 
errors (mm/day) predicted by the CFS and downscaled 
by the CWRF and (b) CWRF minus CFS differences in 
the equitable threat score for seasonal mean 
precipitation interannual variations. The statistics are 
based on all land grids over the entire inner domain for 
DJF, JFM, FMA, and DJFMA from the 5 realizations 
during 1982–2008. (Liang 2011) 

(a) (b) (c)
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Oscillation, which can modulate 
ENSO activity (Te Raa et al. 2009), it 
has become a focus in CFS 
development to improve ENSO 
prediction. 

Shared focus areas with weather 
ensemble forecast development 
community 

How does weather forecast handle 
uncertainty?  Why seasonal and 
decadal forecasting is possible, despite 
the limits to atmospheric predictability 
suggested by Lorenz? How should 
uncertainty be addressed in climate 
prediction and projection? These are 
issues fundamental for forecasters to 
understand to make reliable prediction 
with confidence.  Here are some common focus areas learned from the 5th Ensemble User Workshop. 

1. Ensemble configuration and ensemble forecast  
• Ensemble initializations  
• Multi-model, multi-physics and stochastic physics for ensemble perturbation 
• True coupled initialization 

2. Statistical post-processing 
• Lead-time dependent systematic errors 
• Non-stationarity of real climate and changes of model-error statistics 
• Relating model variables to sensible weather 
• Choice of proxy of truth  - error variance and ensemble of analyses to represent uncertainty 

3. Issues to consider  
• Forecast of joint probability, e.g. “What is joint probability of heavy precipitation and strong winds?”  
• Better ways to make members (representativeness vs. ensemble size and resolution), not only for 

simple statistics but also for 
higher order statistical 
moments 

• Resolution change in mid-run 
• Resource allocation for real-

time fore- vs. hind-casts 

4.  Integrated services 

 Regional services need reliable 
climate predictions integrated with 
weather and water information as long 
term adaptation is inseparable from 
near term decisions.  Figure 5 shows 
that short-term variability becomes 
more significant compared to the 
long-term trends at smaller spatial 
scales.  This information is critical 
when attributing anthropogenic causes 
to local climate variations. 

Fig. 4  Comparisons of NCEP CFSv2 decadal runs for CMIP5  
(bottom) with GODAS (top). The left shows the mean AMOC; 
and the right: the decadal trend.  (Nadiga and Wang 2011)   

Fig. 5  Washington state temperature trend and annual variation (1895-
2009).  (Sarachik 2011) 
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Water supply forecasting for the Colorado 

To meet stakeholder demands for climate information, the Colorado Basin River Forecast Center 
(CBRFC) supported by collaborative research with academic partners has launched a seasonal to year-two 
streamflow forecast intercomparison effort that has the most impact on Colorado River management (Werner 
2011).  CBRFC has also implemented an ensemble forecast technique developed at the NWS Office of 
Hydrologic Development to create a streamflow forecast ensemble based on GFS and CFS output.  It is a 
centerpiece of the nascent NWS Hydrologic Ensemble Forecast Service.  

Climate Change Impact Assessments for International Market Systems (CLIMARK) project 

With broader spatial perspective and greater incorporation of temporal dynamics, new researches in 
climate impact assessment employed complex integrated models, which contained system components and 
included feedbacks.  A conceptual framework for a dynamic and statistical hybrid modeling system was 
developed by the CLIMARK project (Winkler 2011) to make industry-wide assessments for market systems 
with multiple production regions.  Its application to assess the impact of climate change on the tart cherry 
international market demonstrated impressive improvement. 

Questions and concerns from local users 

Local users are asking:  

1. What reliable decision-support tools could be designed and deployed at current skill levels and 
uncertainty of climate predictions? 

2. How well could climate projections predict local trends for the next 10 – 20 years? How could best 
practices be developed for use of projections in decision making and preparation for change? 

Our regional climate service advancement is awaiting significant research progresses.  

Acknowledgements.  We thank Wei-Kuo Tao of NASA/GSFC, Xin-Zhong Liang of UMD/ESSIC, 
Weizhong Zheng, Nadiga and Jiande Wang of NWS/NCEP/EMC, Edward S. Sarachik of University of 
Washington, Julie Winkler of Michigan State University, and Kevin Werner of NWS/CBRFC for their 
contributions.  
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1. Introduction 

The “model output statistics” (MOS) approach has long 
been used in forecasting to correct systematic errors of 
numerical models and to predict quantities not included in the 
model (Glahn and Lowry 1972). The MOS procedure is based 
on capturing the statistical relation between model outputs and 
observations and, in its simplest form, consists of a linear 
regression between these quantities. In theory, this procedure 
optimally calibrates the model forecast and provides reliable 
forecasts.   

In practice, the regression parameters must be estimated 
from data. In seasonal forecasting, forecast histories are short, 
and skill is modest. Both factors lead to substantial sampling 
errors in the estimates. This work examines two problems 
where sampling error affects the reliability of regression-
calibrated forecasts and provides solutions based on two 
“penalized” methods: ridge regression and lasso regression 
(Hoerl and Kennard 1988; Tibshirani 1996). The first problem 
comes from the observation that, even in a bivariate setting, 
ordinary least squares estimates lead to unreliable forecasts. The 
second problem arises in the context of multivariate MOS and 
is that common methods of predictor selection lead to negative 
skill and unreliable forecasts. 

 

2. Are regression forecasts reliable? 

The task of a forecaster is to make the best estimate of a 
future observation given available model output. In the case of 
probabilistic forecasts, the uncertainty of the estimate is also 
needed. Modeling the forecast f and its verifying observation o 
as random variables, the goal of the forecaster is to obtain the 
conditional distribution p(o|f) which is defined to be the 
probability distribution of the verifying observation o given that 
the forecast f is known to have a particular value (DelSole 
2005). The mean of the conditional distribution is the “best” 
estimate in the sense that it minimizes the expected squared 
error. Uncertainty information such as the forecast variance can 
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Fig. 1  Reliability diagrams for regression 
forecasts in (a) moderate skill (r=0.5) 
and (b) low skill (r=0.3) setting. The 
blue line is the in-sample reliability 
and the red line is the out-of-sample 
reliability. 
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be computed from the conditional distribution and used to make probabilistic forecasts.   

The challenge is to obtain the conditional distribution, which, in general, requires a complete description 
of the statistical relation between the forecast and the verifying observations. However, when forecast and 
observations have a joint Gaussian distribution, this only requires knowing the means and variances of o and f, 
and their correlation. In this case, the conditional distribution is itself Gaussian, and moreover, the conditional 
mean is simply given by linear regression; the conditional variance is the error variance of the regression. 
Such regression forecasts are known to be reliable when the regression parameters are known (Johnson and 
Bowler 2009). In practice, regression parameters must be estimated from data, and in the case of seasonal 
climate forecasts, from fairly short records. Therefore, an important issue is the impact of sampling error on 
the quality of forecasts, and in particular, on their reliability. 

Fig. 2. RPSS and reliability diagrams for DJF t2m forecasts based on gridpoint ridge regression (a,b), EOF 
predictors (c,d) and lasso applied to EOF predictors. 
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Monte Carlo experiments with bivariate synthetic Gaussian data show (Fig. 1) that regression forecasts 
are reliable with respect to the data used to estimate the regression parameters (in-sample). However, when 
regression forecasts are made for independent data (out-of-sample), they display systematic unreliability in 
the form of overconfidence. This problem is worse when the training sample is small and the underlying skill 
is low, both factors contributing to sampling error in the regression coefficient. Additional analysis of the 
synthetic data, as well as analytical expressions, indicate that the overconfidence is due to too strong signals 
rather than too small forecast error variance. Shrinkage methods like ridge and lasso reduce signal variance 
and improve reliability.  
3. Selecting predictor patterns 

A common multivariate regression forecast approach is to use spatial patterns as predictors. To illustrate 
our findings we use two-tier hindcasts of Dec-February (DJF) 2-meter temperature using the ECHAM4.5 
atmospheric GCM with 24 ensemble members forced by Constructed Analogue (CA) forecast SST. The CA 
SST forecasts use data through the end of October. We use the period 1958-2001 and University of East 
Anglia observation data sets. Applying ridge regression on a gridpoint basis give reliable forecasts with skill 
in some regions as measured by the ranked probability skill score (RPSS; Figs. 2a,b). Using correlation-based 
EOFs of model output as predictors, results in increased RPSS in many regions (Fig. 2c), especially in the 
tropics, but is accompanied by negative RPSS in some regions, especially ones where the gridpoint MOS 
showed little or no skill. The average RPSS is 0.036, and the reliability diagram shows overconfidence (Fig. 
2d). As in the bivariate case, this is due to excessive forecast signal, especially in areas where a climatological 
forecast of equal odds would be more appropriate. One way to proceed is to cast the problem as model-
selection one, where one must choose between a pattern-based regression forecast or a climatological forecast. 
Methods like cross-validation and Akaike Information Criteria (AIC) can be used to select the model. This 
model selection approach offers some improvement, but does not entirely eliminate areas of negative skill and 
forecast overconfidence (not shown). Lasso regression is similar to ridge regression but more aggressively 
eliminates poor predictors. Lasso regression retains much of the skill improvements of EOF regression while 
not introducing negative skill, and improving reliability (Figs. 2e,f); average RPSS is 0.053. 
4. Summary 

Regression methods are often used to post-process model forecasts. When the regression parameters are 
known precisely, such regression forecasts lead to reliable probability forecasts. However, even in the 
idealized situation when the forecast and observation distributional forms are known (for instance, joint 
Gaussian), sampling error leads to unreliable forecast probabilities, with the lack of reliability being in the 
form of overconfidence. Sampling error is worse when the sample size is small or the underlying skill level is 
low. This systematic overconfidence is somewhat surprising since estimated regression coefficients are 
known to be unbiased estimates of the actual coefficients. The explanation for this behavior is that the signal 
variance of a regression forecast is the sum of the actual signal variance and a term that depends on the 
variance of the coefficient estimate. To the extent that the latter term is nonzero, the signal variance of the 
regression forecast is positively biased. This explanation suggests that shrinkage methods like ridge are useful. 
Shrinkage methods also are useful in the selection of predictors in multivariate pattern-based MOS 
approaches. 
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1. Introduction 

With a substantial portion of the 
world’s population influenced by 
climate variability, such as drought, 
flood, heat and cold waves, any 
capability to anticipate these 
fluctuations one or more seasons in 
advance would have measurable 
benefits for decision making in many 
sectors of society (Barnston et al. 
2005). From the early 1980s to late 
1990s, our ability to develop and 
improve coupled climate models 
have led to the ability to predict 
tropical climate variations with some 
success (Kang and Shukla 2006; 
Kirtman and Pirani 2009). Here, we 
examine the seasonal forecast 
performance of the National Centers 
for Environmental Prediction 
(NCEP) Coupled Forecast System 
(CFS) over the Tropics, and in 
particular, over the United States 
Affiliated Pacific Islands (USAPI).   

Seasonal prediction over the 
tropics, and to a certain degree over 
the extratropics, is essentially linked 
to the accurate prediction of tropical 
SST (Shukla 1998; Kumar and 
Hoerling 1998; Goddard et al. 2001). 
Due to their impact on global climate 
anomalies (Ropelewski and Halpert 
1987), predicting SST variations 
during the life cycle of El Niño–
Southern Oscillation (ENSO) has 
been the focus of coupled model 
development.  While efforts are 
underway to reduce model systematic 
errors, many Coupled General Circulation Models (CGCMs) have shown skill in capturing ENSO 
characteristics, paving ways for routine operational seasonal forecasts (Anderson et al. 2003; Saha et al. 
2006). Recent studies have evaluated ENSO skills by analyzing hindcasts produced by CGCMs (Jin et al. 

Fig. 1  Climatological precipitation (mm/day, shaded) and variance 
(mm2/day, contours) for four standard seasons, (a-d) Observations 
and (e-h) 0-month CFS forecast.  The boxed areas in (e) represent 
the regions where CFS ability in forecasting seasonal SST or 
precipitation anomalies are assessed. The area averaging used are: 
south west Indian Ocean (15oS-0o, 55o-75oE; SWIO); eastern 
equatorial Indian Ocean (10oS-0o, 90o-110oE; EEIO); northern 
Atlantic (20o-80oW, 10o-20oN) ; western north Pacific (5o-15oN, 
125o-155oE; WNP); south Pacific (10o-30oS, 160o-200oE; SP); 
Hawaii (15o-30oN, 140o-170oW; HI), and equatorial Pacific (10oS-
5oN, 170o-110oW; EPAC). Contours are drawn starting from 1 
mm2/day with an interval of 2 units. 
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2008; Luo et al. 2008; Stockdale et al. 
2011; Sooraj et al. 2011).  Despite 
success, the predictive skills of 
models are degraded during the 
ENSO onset and decay periods 
(Barnston et al. 1999). Recent 
research interests have also focused 
on twotypes of El Niño namely, 
western Pacific and cold tongue 
events (e.g., Kug et al. 2009). 

While it is recognized that ENSO 
influences global climate anomalies, 
sensitivity experiments with AGCMs 
suggest that SST variations over the 
southwest Indian Ocean (SWIO) also 
modulate the amplitude of ENSO-
induced circulation and precipitation 
anomalies over the tropical west 
Pacific (Watanabe and Jin 2003; 
Annamalai et al. 2005), and over the 
Pacific – North American (PNA) 
region (Annamalai et al. 2007). In 
summary, the expectation is that the 
combined effects of the tropical 
Pacific and Indian Oceans probably 
can further strengthen global climate 
anomalies.   

For the target regions over the 
USAPI (Fig. 1), the current 
operational seasonal precipitation 
prediction system is based on 
empirical methods in which SSTs 
provide the most reliable predictive 
information, and higher prediction skill is noticed during ENSO winters (He and Barnston 1996).  During 
non-ENSO and weak to moderate ENSO events too, USAPI experience significant seasonal rainfall 
anomalies.  In these circumstances, the precipitation forecast skill by empirical model is low, and the reasons 
may be manifold including: a) nonlinear relationship between ENSO SST and precipitation is not 
incorporated, b) details in the space-time evolution of SST during different flavors of ENSO are not properly 
accounted for, and c) SST anomalies other than ENSO may be responsible for rainfall variations. A prediction 
system based on a fully coupled dynamical model may overcome some of the above limitations. 

2. Hindcasts and skill measures 

Here, we analyze the output from CFS retrospective predictions (or alternatively referred to as hindcasts) 
that cover all 12 calendar months from 1981 to 2005. These hindcast runs, each of which is 9-month 
integration, are ensemble of 15 members starting from perturbed real-time oceanic and atmospheric initial 
conditions (ICs). Note that, for a 9-month integration, prediction at 6-month lead (L6) is the longest lead 
available for seasonal means while it is 8-month lead (L8) for prediction of monthly means. Variables 
examined in our analysis include SST, precipitation, and wind at 850 hPa. To infer the ocean Rossby waves in 
the tropical Indian Ocean (TIO), we also analyzed sea surface height (SSH). Hindcast anomalies are 
computed by removing the model climatology for each grid point, each initial month, and each lead time from 
the original ensemble hindcasts. Regarding verification of the real-time forecasts for the period 2006-09, we 

Fig. 2  (a) Anomaly correlation coefficient (ACC) of CFS ensemble 
mean forecasts of the monthly mean Nino3.4 SST over the period 
(1981-2005) as a function of initial condition month (x-axis) and 
lead months (y-axis). Nino3.4 is defined as the spatial mean SST 
over 5oS-5oN, 170o-120oW. (b) same as (a) but for persistence 
forecast. (c) same as (a) but for root mean square error (RMSE) for 
CFS ensemble forecast, and (d) same as (c) but for persistence 
forecast. (e) same as (a) but for CFS mean forecasts of the monthly 
mean precipitation anomalies over the equatorial Pacific (10oS-
5oN, 170oE-110oW). (f) same as (c) but for monthly mean 
precipitation anomalies over the equatorial Pacific. 
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examined 15-member ensemble members 
corresponding to the same ICs as in 
hindcasts. For the period 1981-2009, 
observed datasets used for verification 
include the CPC merged analysis of 
precipitation (CMAP) (Xie and Arkin 
1996), winds from the NCEP/DOE 
reanalysis (Kanamitsu et al. 2002), and 
the NOAA optimally interpolated SST 
analysis (Reynolds et al. 2002). SSH is 
taken from the Global ocean data 
assimilation system. For verification 
observed data are interpolated to CFS’ 
horizontal resolution (T62). 

The entire range of available 
hindcasts (0 to 6 month lead) for all the 
four standard seasons is verified. To infer 
the uncertainty measures associated with 
forecasts, the skills are assessed using 
deterministic [anomaly correlation 
coefficient (ACC), the ensemble spread 
and signal-to-noise ratio (S/N)], 
categorical [Heidke skill score (HSS)], 
and probabilistic [rank probability skill 
score (RPSS)] methods. For the target 
regions (Fig. 1), the distribution of 
ensemble members, ensemble mean, and 
observed anomalies are plotted for every 
year. These plots aid in understanding 
year-to-year variations in the spread and 
its association with predicted value, and 
if there is asymmetry in model’s 
predictive skill (positive vs negative 
values). More details are in Sooraj et al. 
(2011). 

3. Hindcast skills 

Figure 1 shows climatological precipitation (shaded) and variance (contours) for standard seasons from 
observations (left) and at 0-month lead hindcast from CFS (right).  Compared to observations, CFS captures 
the seasonal dependency in the position and intensity of the rainfall maximum and also regional variance 
maxima over the tropics with some systematic errors. Motivated by this, apart from examining SST skill, we 
also evaluate CFS’ ability in forecasting: (i) tropical and regional precipitation anomalies; (ii) different flavors 
of El Niño and their associated regional response; and (iii) teleconnection between the tropical Pacific and 
Indian Ocean (TIO). In terms of regional indices, skill is examined for precipitation (area outlined in solid 
lines in Fig. 1), and SST influenced by thermocline variations over the TIO (area outlined in dotted lines in 
Fig. 1). 

a. SST over the equatorial Pacific 

Figure 2 shows ACC (Fig. 2a) and RMSE (Fig. 2c) for Niño3.4 SST anomalies estimated for the entire 
period. Results are shown for all lead times (0-8 months), and for all ICs (January through December). The 
corresponding measures estimated for persistence as the forecast are shown in Figs. 2b and 2d. The inverse 
association between ACC and RMSE holds good, and ensemble mean offers higher skills than persistence.  

Table 1  Values of anomaly correlation coefficient (ACC) and 
signal to noise ratio (SN) estimated for regional SST time 
series for four standard seasons, and for 0-6 month lead 
forecast.
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For instance, for leads up to 6-7 months and 
hindcasts initialized during late spring 
through early fall (May through October), 
the ensemble mean ACC is > 0.8 with 
relatively small RMSE (0.3-0.4) but for 
persistence forecast the ACC drops below 
0.6 with higher RMSE (~0.7-0.8). This 
means that skill in forecasting the 
intensification and peak amplitude of ENSO 
is indeed high. However, for forecasts 
initialized during winter (November through 
January), skill in hindcasting the transition 
phase of ENSO is modest at best. 
Specifically, both methods share similar 
ACC and RMSE values in the first 3-5 
months (Figs. 2a-d), but they drop off 
rapidly during spring with a minimum in 
July. This decay in skill, often referred to as 
the spring predictability barrier, is common 
to most models (e.g., Jin and Kinter 2009), 
and the forecast performance of CFS over 
Niño3.4 region is comparable to the new 
ECMWF S3 system (Stockdale et al. 2011). 

ENSO prediction is further assessed in 
many different ways. First, the model’s 
relative skill in hindcasting individual El 
Niño and La Nina events (Fig. 3a) is 
assessed for the peak phase (December 
through February; DJF) at 0-month lead. 
This is necessitated because observations 
during the period 1982-2005 indicate unique 
feature that models need to forecast. They 
include: (i) two of the strongest El Niño of the 20th century (1982 and 1997) and (ii) persistent La Nina 
during 1998-2000 (thick red circles in Fig. 3a). It is encouraging that all the ensemble members (green circles) 
capture correctly the amplitude during 1982 and 1997, and the model’s ability in hindcasting these two events 
is remarkable even for leads up to 6 months (Sooraj et al. 2011). For the prolonged La Nina episode, however, 
the predicted amplitude is higher in conjunction with a larger ensemble spread. We also note that the model is 
able to correctly forecast near-normal conditions in many years. Second, we analyzed CFS’ skill in 
forecasting different flavors of El Niño (Fig. 3b). Observations indicate that SST maximum for cold tongue 
events is over the eastern Pacific or Niño3 region (5oS-5oN, 90oW-150oW), and that for warm pool events the 
maixmum lies over the west-central Pacific or Niño4 region (5oS-5oN, 160oE-150oW). Therefore, skills in 
hindcasting SST anomalies over Niño3 and Niño4 regions are examined. Owing to the role of wave-induced 
thermocline displacements influening SST through vertical advection even at 6-month lead time, the ACC 
remains high (0.9) for Niño3 region and other skill measures are as good as that over the Niño3.4 region, and 
hence, are not discussed further. Over the Niño4 region, local warming during boreal winter of 1990-91; 
1994-95; 2002-03 and 2004-05 are forecasted with a minimum spread (Fig. 3b).  An examination for the 
entire period (not shown) suggests that prediction of SST anomalies over both Nino3 and Nino4 regions are 
comparable to those over Nino3.4 for all short leads. In summary, CFS’ skill is higher for forecasting stronger 
and persisting El Niño events that are primarily due to thermocline displacements. When seasonally stratified, 
predicting winter and autumn seasonal SST anomalies have higher skill. However, forecasting weaker El 
Niño events is limited to 0-2 month leads. 

Fig. 3  (a-c) Temporal evolution of December through February 
average (DJF) SST anomalies (oC) hindcast by CFS at lead 
0-month. Ensemble mean (blue), all 15 individual members 
(green) and observations (red) are shown for three regions: 
(a) Nino3.4 (5oS-5oN, 190oE-120oW); (b) Niño4 (5oS-5oN, 
160oE-150oW); (c) same as (a) but for equatorial Pacific 
rainfall anomalies (mm/day) averaged over (10oS-5oN, 
170oE-110oW). 
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b. Precipitation along the equatorial 
Pacific 

The over-all skill measures for 
precipitation forecast along the equatorial 
Pacific (170oE-110oW; 10oS-5oN) are 
shown in Figs. 2e-f.  High values of ACC 
(> 0.7) with less RMSE are along the 
diagonal representing fall and winter 
seasons. Only for short lead times (0-2 
months), predicting spring and summer 
rainfall is skilful, and similar to SST, 
forecasting precipitation anomalies during 
ENSO phase transition is difficult. 
Encouraged by the skill in forecasting 
aspects of El Niño-related SST anomalies 
in individual years, we turn our attention to 
precipitation skill along the equatorial 
Pacific at 0-month lead for DJF season (Fig. 
3c). While the ensemble mean follows the 
observed, the spread is larger yielding a 
S/N of about 4.2, and this skill is 
considerably less than that for Niño3.4 SST 
(Table 1a). Other limitations include excess 
rainfall during the winter of 1997/98, and 
the failure in capturing above normal 
rainfall during the winter of 1986-87. In 
addition, during cold phases of 1983-84 
and 1998-99 (Fig. 3a), precipitation 
forecast is weaker than observed (Fig. 3c) 
despite predicting stronger SST anomalies 
compared to observations. SST anomalies 
translating into rainfall anomalies depends 
on physical parameterizations employed, 
particularly convective schemes. Further, SST-rainfall relationship is also not local, and rainfall anomalies 
can be influenced by circulation anomalies forced by rainfall at other locations. 

Finally, to depict coherency among variables responsible for ocean-atmosphere interactions, lagged 
correlations between DJF Niño3.4 SST and SST (contours), rainfall (shaded), and 850 hPa wind (vector) 
anomalies at lead 0 month and spanning the 24-month period (entire life-cycle of ENSO) are shown in Fig. 4b.  
Similar results from observations are also shown in Fig. 4a. In CFS, the onset, development, mature and 
decay stages of El Niño, as well as the development of cold SST and negative precipitation anomalies over 
the Maritime Continent (120oE-150oE) together with low-level divergence corresponding to anomalous 
Walker Circulation are in good agreement with observations. To the west of this center of divergence, easterly 
wind anomalies cover the entire equatorial Indian Ocean, and their influence on local ocean dynamics is 
explained next. 

c. Teleconnection to the TIO 

Figure 4c shows lagged correlations between DJF Niño3.4 time series and SSH (shaded) and SST 
(contours) averaged over (8oS-12oS) the TIO from observations, and the corresponding results from the 0-lead 
CFS forecast are shown in Fig. 4c. Starting from May-June of Year [0], upwelling- favourable winds off Java-
Sumatra coasts (Figs. 4a-b; 80oE-100oE) promote negative SSH values (i.e., shallow thermocline anomalies, 
Fig. 4d) and subsequent local SST cooling attains a maximum in fall (Figs. 4a-b). The wind-stress curl 

Table 2  As in Table 1 but for regional precipitation time series 
over the Pacific Islands.
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associated with the easterly wind anomalies 
forces downwelling oceanic Rossby waves, and 
the westward tilted structure in SSH and SST 
anomalies with respect to time (Figs. 4c-d) 
support that interpretation. These Rossby 
waves advect warm water and act to deepen the 
thermocline as they cross the ocean basin (Xie 
et al. 2002). The maximum perturbation to SSH 
(i.e., deepened thermocline) and SST are noted 
over SWIO during boreal spring of Year [+1]. 
The warm SST anomalies persist for about 10-
12 months primarily due to the presence of 
shallow-mean thermocline and passage of 
oceanic Rossby waves. In summary, CFS 
captures the teleconnection from the tropical 
Pacific to TIO, and also the essential 
mechanisms responsible for the anomalous 
conditions in the TIO. 

Encouraged by the above results, we 
examined skill scores over both SWIO (55oE-
75oE; 15oS-0o), and EEIO (90oE-110oE, 10oS-
0o). Observations indicate SST anomalies peak 
during spring of Year [+1] over SWIO and 
during boreal fall over EEIO, respectively. For 
SWIO, CFS hindcasts initialized from June-
July of Year [0] onwards depicts higher ACC 
and lower RMSE than persistence method but 
in contrast, over EEIO ensemble mean barely 
does better than persistence even at shorter 
leads (Sooraj et al. 2011). 

d. Precipitation over the USAPI 

Figure 5 shows rainfall forecast over west 
Pacific islands (125oE-165oE; 5oN-15oN).  The 
left (right) panels are results for 0-month (6-
month) lead-time for standard seasons of 
summer (Figs. 5a-b), fall (Figs. 5c-d), winter 
(Figs. 5e-f) and spring (Figs. 5g-h).  
Observations (red circles) indicate that during strong El Niño years (e.g., 1982-83; 1991-92; 1997-98), 
dryness (or below normal rainfall) persist from winter of Year [0] to summer of Year [+1]. Quite remarkably, 
CFS ensemble-mean forecast (blue circles) captures this drying tendency from 6-months lead time except for 
summer of Year [+1].  Barring the two strong El Niño events of 1982/83 and 1997/98, the spread among the 
ensemble members is large but the sign of the anomalies is well-captured. For 6-month lead forecast of JJA 
rainfall the predicted sign is wrong in many years. While correlations between rainfall anomalies over west 
Pacific and Nino3.4 SST anomalies is negative for most of the year, it is rather positive during July-August. 
Thus, the difficulty in capturing this seasonally-varying teleconnection may well be a factor in the low skill 
scores during summer. A possible interpretation is that large amplitude swings in precipitation occur during 
winter (Fig. 5e), and hence are more predictable. 

Fig. 6 shows the results for the south Pacific islands (160oE-200oE; 10oS-30oS), and the skill statistics is 
summarized in Table 2b. In this region too, largest anomalies in precipitation are observed during ENSO 
winters (Figs. 6e-f) but the dryness starts in summer of Year [0] and persists until the following spring. 

Fig. 4  (a) Lagged correlations of SST (contours), rainfall 
(shaded) and 850 hPa wind averaged in 3oS-3oN with 
winter (DJF) Nino3.4 SST index from observations. (b) 
same as (a) but from CFS ensemble mean 0-month lead 
forecast. Results are shown for a twoyear period 
representing the entire life-cycle of ENSO. (c) lagged 
correlations of SST (contours) and SSH (shaded) 
averaged in 8o-12oS with winter Nino3.4 SST index from 
observations. (d) same as (c) but from CFS ensemble 
mean 0-month lead forecast.  Positive (negative) SST 
values are shown as solid (dashed) contours with an 
interval 0.1. 
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Interestingly, CFS correctly 
captures both the phase and 
amplitude of the dryness at longer 
lead times. However, for any given 
season ACC and S/N do not exceed 
0.75 and 2.0, respectively. 
Compared to other seasons, 
forecasting rainfall anomalies 
during summer is less skilful 
(Table 2b) since ENSO 
teleconnection is weaker. 

Another region of interest is 
the Hawaiian Archipelago (170oW-
140oW; 15oN-30oN), and the 
precipitation forecasts are shown in 
Fig. 7 and the statistics are 
summarized in Table 2c. For the 
islands situated over the Northern 
Hemisphere, west Pacific and 
Hawaii, the dryness attains a 
maximum in winter of Year [0] and 
continues into the spring of Year 
[+1], and CFS has skill in 
forecasting them. However, the 
spread among the members is 
indeed large even during 1982-83 
and 1997-98 El Niño years (Fig. 7) 
resulting in a low S/N (Table 2c). 
From Figs. 5-7 it is encouraging to 
note that observed anomalies (red 
dots), generally lie within the 
envelope of possible model 
solutions (green dots), and there 
are few instances of outliers.  

4. Assessment of different aspects of forecasts 

Here, ACC is compared and contrasted with HSS and RPSS to assess different aspects associated with 
forecasts that also rely on the spread information inherent in the ensembles (Kumar 2009). Our working 
hypothesis is that forecasts assessment based on ACC alone are perhaps not sufficient enough in the context 
of decision-making. As before, we assess the scores for SST indices (Fig.8). The left panels are scatter 
diagrams between ACC and HSS, while the right panels are scatter plots between ACC and RPSS, 
respectively.  

CFS demonstrates highest confidence in predicting winter SST anomalies (open squares, Figs. 8a-b) over 
Niño3.4 region at all lead months with ACC upwards of 0.85.  High skill in deterministic forecasts as 
measured by ACC is also captured for categorical and probabilistic forecasts with high HSS (> 50%) and 
RPSS (> 40%). This is consistent with the results discussed earlier (Fig. 2). The confidence in predicting fall 
season is also high but limited to 0-4 month leads. Predicting spring and summer anomalies has limited 
confidence at 0-1 month leads, and for other leads, even if ACC lies around 0.8, RPSS drops off to very low 
values sometimes even negative, indicating possible issues related to the spread among the ensemble 
members that influence the probabilistic forecasts.  Therefore, forecasting the summer teleconnection features, 
e.g., ENSO-monsoon association will be limited in CFS. The inference is that results of Fig. 2a and Table 1a 

 Fig. 5  Seasonal rainfall (mm/day) forecast at 0-month (left) and 6-
month (right) lead time over tropical west north Pacific region for the 
period 1981-2005. Observations (red), ensemble-mean (blue) and all 
the 15 individual members (green) are shown. 
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are encouraging, but additional 
diagnostics are necessary to attest 
the errors associated with the 
forecast for any decision-making. 

For the SST indices over the 
TIO, the confidence in predicting 
the winter and spring variations 
over SWIO (Figs. 8c-d) are high at 
leads up to 5 months. Watanabe and 
Jin (2003) and Annamalai et al. 
(2005; 2007) noted that it is the 
winter and spring SST anomalies 
over SWIO that influence regional 
and global climate anomalies. In 
observations, summer and fall SST 
variations over SWIO are indeed 
small, and hence models have 
limited predictability. Confidence 
in predicting Indian Ocean Dipole 
Zonal Mode (IODZM) SST 
anomalies during fall is the least 
(Figs. 8e-f). 

The scatter plots over the 
USAPI are shown in Fig. 9. Over 
the west Pacific region, forecasting 
rainfall variations during winter is 
trustworthy for at least 0-3 months 
lead, followed by prediction for 
spring season at lead 0-1 months. 
For summer rainfall variations, 
while ACC is greater than 0.6 and 
HSS around 15-25%, negative 
RPSS indicates that the forecast is not better than climatology. The model’s forecast for fall rainfall anomalies 
is least skillful. A point to note here is that for the same value of ACC (~0.6) for 0-1 month lead forecast, 
RPSS is positive for spring but negative for summer indicating the seasonal dependency in the forecast errors. 
For the south Pacific region, predicting rainfall variations during winter and spring appear realistic for leads 
0-4 months. Here also forecasting summer precipitation anomalies are not reliable. For the Hawaiian region, 
at shorter leads (0-1 months) and for all seasons except fall, convergence of all the three scores suggests that 
different rainfall forecast information are skilful and probably useful. In summary, for regional precipitation 
forecast over USAPI, ACC values greater than 0.7 and correspondingly high HSS and RPSS values occur 
particularly for winter and spring seasons. 

5. Implications for dynamical seasonal prediction of precipitation 

Both observational (Ropelewski and Halpert 1987; 1989) and modeling (e.g., Shukla 1998; Su and Neelin 
2002) studies provide a guide to the expected climatic impacts of ENSO over the tropics. The fact that an 
accurate prediction of the tropical Pacific SST is a necessary condition for successful prediction of rainfall 
along the equatorial Pacific is supported by the present analysis. Based on the lagged association between TIO 
and tropical Pacific SST anomalies, past seasonal prediction studies have used statistical methods to predict 
TIO SST anomalies (e.g., Mason et al. 1999). However, recent studies also suggest that these ENSO-induced 
regional SST anomalies may possibly alter the strength of the circulation and rainfall anomalies elsewhere 

Fig. 6  Same as Fig. 5 but for the precipitation (mm/day) over south 
Pacific region.
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(Annamalai et al. 2005; 2007). The 
ability of CFS in representing the 
coupled processes in the TIO, 
particularly over SWIO during 
ENSO years, deserves further 
attention. 

Predictive skill of regional 
precipitation, however, is usually 
lower compared to SST and 
circulation (Kumar and Hoerling 
1998) because of the “noisy”, 
small-scale character, and complex 
physics of precipitation. Even 
averaged over a season substantial 
irregularities in the spatial pattern 
are likely, particularly over the 
Tropics where convective rainfall is 
most common (Gong et al. 2003). 
Even so, observational and 
modeling studies suggest that the 
large-scale circulation pattern 
responsible for the precipitation 
anomaly may be predictable several 
months in advance, particularly 
during ENSO events. An 
examination of spatial pattern of 
DJF SST and rainfall anomalies 
during all El Niño events indicate 
that CFS is capable of forecasting 
the “details”, in particular the 
observed negative rainfall 
anomalies over all the three USAPI 
regions during 1982/93 and 
1997/87, as well above normal 
rainfall over Hawaii during 1990-
91, and 2004-05 events (figure not shown). 

Till date, the operational seasonal forecasting of precipitation over the USAPI stations relies on empirical 
method in which precipitation measured at individual stations itself is treated as a predictor (He and Barnston 
1996). Their results based on the period 1955-94 suggest that at 1-month lead, ACC for predicting winter 
rainfall anomalies is ~ 0.4, 0.6, and 0.4 over south Pacific, west Pacific and Hawaiian regions, respectively 
(their Fig. 4).  The dynamical forecast system based on CFS, on the other hand, demonstrates much higher 
skill at longer lead times over the USAPI (Table 2) when area-averaged fields are examined. Dynamical 
models represent the major components of the climate system (ocean, land and atmosphere) and can 
incorporate linear and nonlinear interaction processes among the components, and are expected to provide 
better seasonal forecasts than statistical models. A word of caution is that output from CFS represents 
averages over a relatively coarse grid, and therefore statistics of precipitation in regions of steep orography 
can differ substantially from that of station data. Nevertheless, owing to the success of CFS in forecasting the 
timing and amplitude of ENSO-related SST and precipitation anomalies along the equatorial Pacific and the 
associated teleconnection over the TIO we speculate that CFS has useful skill in forecasting regional rainfall 
anomalies over the USAPI. However, identifying individual physical processes responsible is beyond the 
scope of the present study. Lyon and Mason (2009) noted that the correct prediction of winter rainfall 

Fig. 7  Same as Fig. 5 but for the precipitation (mm/day) the Hawaii 
region.
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anomalies during 1998 over 
southern Africa by some 
coupled models is probably 
not for the correct reasons. 
Our future study will examine 
the reasons for CFS 
performance over the USAPI. 

6. Summary 

The results presented here 
suggest the feasibility that a 
dynamical system based 
seasonal prediction of 
precipitation over the USAPI 
can be considered. It is 
necessary to continually 
assess the sources, and level 
of prediction skill as newer set 
of hindcasts based on 
improved models, and initial 
conditions obtained from 
more advanced data 
assimilation systems become 
available. For instance, one 
clear limitation in the 
hindcasts analyzed here is that 
for short-lead forecasts the 
initial conditions are from the 
old reanalysis system, a 
situation that would be 
rectified with the new CFS 
forecast model. In addition, in 
the updated CFS version the 
atmospheric model has a 
higher horizontal resolution 
(T126 compared to T62 in the current version), and may provide a better resolution necessary for precipitation 
prediction. In a future study, the physical processes that may be responsible for the performance of the model 
in predicting regional rainfall anomalies will also be examined. To attain station-level prediction of rainfall 
anomalies over the USAPI a downscaling system may need to be constructed. 
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1. Introduction 

Numerous studies have discussed the role of the El Niño/Southern Oscillation (ENSO) in providing a 
source of skill in climate prediction on seasonal timescales across much of the globe, particularly over the 
Pacific/North America region.  More recently, studies have shown that the dominant form of variability in the 
tropics on intraseasonal timescales, the Madden-Julian Oscillation (MJO), also impacts patterns of 
intraseasonal variability in the northern hemisphere extratropics, providing a possible source of predictive 
skill over this region on intraseasonal timescales.  By modulating tropical convection, the MJO can initiate 
poleward propagating Rossby waves that impact extratropical weather patterns and influence the leading 
patterns of low-frequency northern hemisphere variability, the Arctic Oscillation (AO) and Pacific North 
America pattern (PNA) (e.g., Higgins and Mo 1997, L’Heureux and Higgin 2008, Cassou 2008, Mori and 
Watanabe 2008, Lin et al. 2009, Johnson and Feldstein 2010).  Through these mechanisms, the MJO may 
provide some degree of enhanced predictability for precipitation and temperature in the northern hemisphere 
extratropics, especially during the winter months at extended range timescales (~10 – 30 days) (e.g., Cassou 
2008, Vitart and Molteni 2010, Lin and Brunet 2010, Jones et al 2011).   

One challenge for forecasters at NOAA Climate Prediction Center (CPC) is finding a way to incorporate 
these known relationships among the MJO, ENSO, and the large-scale atmospheric circulation into existing 
extended-range forecast products for the one-to-four week time period.  In an effort to provide a framework 
for incorporating these influences, we present preliminary results that demonstrate a strong influence of the 
MJO and ENSO on the frequency of winter geopotential height patterns over the PNA region. The purpose of 
this study is 1) to explore when and for how long tropical MJO activity impacts commonly occurring 
intraseasonal climate patterns over North America and the surrounding oceans; and 2) to examine how these 
impacts change during different phases of ENSO.  In addition, we discuss the potential for a Bayesian 
framework to combine this information with dynamical model forecast performance to generate enhanced 
extended-range forecasts in the one-to-four week time period. 

2. Data and methods 

We characterize the continuum of wintertime 500 hPa geopotential height patterns in the PNA region 
with the use of k-means cluster analysis (e.g., Michelangeli et al. 1995, Johnson and Feldstein 2010).   The 
method of k-means clustering essentially partitions a potentially large, high-dimensional dataset to a smaller 
number (K) of representative clusters.  Each seven-day geopotential height field (described below) is assigned 
to a best-matching cluster, and each cluster centroid represents the mean of all height fields assigned to the 
cluster.  Because the method essentially maximizes the similarity between the seven-day height fields and 
their corresponding cluster centroids, we have reasonable assurance that the resulting centroids correspond 
with physical, representative patterns.    

The cluster analysis is performed on 500 hPa height anomalies from the NCEP/NCAR reanalysis at 2.5º x 
2.5º resolution.  Only days during the winter months (DJFM) are considered over years ranging from January 
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1979 to March 2011.  This time period is chosen to match 
the dates when outgoing longwave radiation (OLR) data are 
also available to compute the MJO index (discussed below).  
The domain for the cluster analysis ranges from 20ºN to 
87.5ºN and from 157.5ºE to 2.5ºW, covering North America 
and the surrounding ocean basins.  This domain was chosen 
because it encompasses regions with the strongest MJO 
response, and because our focus is on prediction over North 
America.  Anomalies in the 500-hPa height data are 
calculated with respect to the daily 1981-2010 climatology, 
and smoothed by a flat seven-day filter.  The cluster analysis 
is performed on the smoothed daily height anomalies.  This 
smoothing ensures that the cluster analysis focuses on large 
scale features in the height field and matches the averaging 
timescale of extended range week-2, week-3 and week-4 
forecasts. 

To examine how the MJO affects the cluster occurrence 
frequencies, we must identify periods when the MJO is 
active, and summarize the spatial location and propagation 
of MJO during these periods. To do this, we use the 
Wheeler-Hendon MJO index (Wheeler and Hendon 2004) as 
provided by the Australian Bureau of Meteorology.  The 
index is derived from the leading two empirical orthogonal 
functions (EOFs) of three combined fields: tropical OLR, 
equatorial zonal wind at 850 hPa, and equatorial zonal wind 
at 200 hPa.  Based on the values of these leading EOFS, the 
Wheeler-Hendon (WH) index traces through eight phases as 
the MJO signature propagates eastward.  Between phase 2 
and phase 6, for example, a convectively active region 
propagates from the western Indian Ocean across the 
maritime continent and into the western Pacific.  The OLR 
and zonal wind signatures of each phase of the MJO are 
referenced in a number of previous papers (e.g., Wheeler and 
Hendon 2004, Cassou et al. 2008, Johnson and Feldstein 
2010) and can be viewed on the CPC website, 
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/Composites/Tropical/. 

Following L’Heureux and Higgins (2008) we identify active MJO events based on a pentad-averaged 
version of the WH index.  An MJO episode is identified when the following requirements are met for at least 
six consecutive pentads: 1) The index amplitude is greater than one and 2) The index phase progresses in a 
counter-clockwise direction without reversing directions or stalling in a particular phase for more than four 
pentads.  El Niño, La Niña and neutral days are classified by month based on the central month in the Oceanic 
Niño Index (ONI) definition provided on the CPC website. 

3. Results 

3.1 Geopotential height cluster patterns 

In Figure 1 we show the seven 500 hPa geopotential height cluster patterns that represent the continuum 
of dominant wintertime teleconnection patterns in the Pacific/North America region.  The choice of seven for 
K is based on an optimal volume index ratio, which essentially signifies the number of cluster patterns that 
efficiently cover the hyperspace without excessive cluster overlap, as described more thoroughly in Riddle et 
al. (2011).  Overall, the results we present, however, are not sensitive to the precise choice of K.  The seven 
cluster patterns bear a strong resemblance to well known teleconnection patterns such as the positive (clusters 

Fig. 1  K-means cluster centroid patterns of 
500 hPa geopotential height anomalies (m) 
over the extended North America region. 
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2 and 6) and negative (clusters 3 and 7) phases of the PNA as well as the positive (clusters 1 and 3) and 
negative (clusters 4 and 6) phases of the North Atlantic Oscillation (NAO)/AO.   

The remainder of this paper focuses on clusters 4, 6 and 7 because, unlike the other four clusters, these 
three clusters are significantly influenced by MJO activity, as discussed in the next section.  Clusters 4, 6, and 
7 are associated with substantial upper tropospheric zonal wind, precipitation, and surface temperature 
anomalies over regions of the continental United States (Figure 2).  In particular, the negative phase AO-like 
cluster 4 is associated with a southward shift of the North American jet exit region, and a merging of this jet 
with the entrance region of the North African jet (Fig. 2a).  In association with this southward shift, cluster 4 
features widespread cold anomalies across the eastern and mid-western United States (Fig. 2g) and a 
southward shift in the storm track that is reflected in the precipitation anomalies (Fig. 2d). 

Fig 2  (a) – (c) Shading shows 25 m/s (light grey) and 50 m/s (dark grey) contours for a composite of 200 hPa 
zonal winds for all days in Clusters 4, 6, and 7 compared with the same two contours for the winter 
(DJFM) climatology (solid lines).  (d) – (i) Composite of (d,e,f) precipitation and (g,h,i) temperature 
anomalies over the United States for all winter days in Clusters 4, 6, and 7.  Zonal wind data are from the 
NCEP reanalysis, surface temperature composites are derived from the gridded daily cooperative dataset 
of Janowiak et al. (1999), and the precipitation composites are derived from the Climate Prediction Center 
Merged Analysis of Precipitation (CMAP) (Xie and Arkin 1997). 

Over the Pacific, the positive phase PNA-like cluster 6 is associated with a strengthening and southward 
shift of the jet exit region of the East Asian jet (Fig. 2b).  Although both cluster 6 and 4 are associated with 
negative AO index values, the two clusters have very different signatures in terms of perturbations to jets over 
the North Atlantic.  Cluster 4 is associated with an extension and southward shift of the jet exit region in the 
Atlantic whereas cluster 6 is associated mainly with a retraction of the North American jet over the Atlantic.  
Rainfall anomalies over the continental United States for cluster 6 are positive along the eastern coastal US 
and negative over an extensive region in the interior southeastern states and the Midwest (Fig. 2e).  Except for 
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a wet region in northern California, dry anomalies are also observed over most of the west coast and western 
mountain states.  Temperature anomaly composites are negative over the eastern US and positive over the 
western and northern mountain states in association with the PNA ridge-trough pattern (Fig. 2h). 

The negative phase PNA-like cluster 7 composites (Fig. 2c, f, i) largely oppose those of cluster 6.  The 
biggest asymmetry is seen in the temperature composites: whereas cluster 6 is associated with widespread 
warm anomalies over the western states (Fig. 2h), cluster 7 features only weak anomalies in the west (Fig. 2i). 

3.2 Influence of ENSO and the MJO on cluster pattern frequency of occurrence 

To examine how the frequency of cluster occurrence is modulated in the days and weeks following an 
MJO event and during different phases of ENSO, we follow a very similar approach to that of Cassou (2008).  
Like Cassou, we examine how the frequency of a cluster occurring under certain external conditions E (e.g., 7 
days after the MJO is active in phase 1) is elevated or suppressed with respect to the cluster’s climatological 
frequency of occurrence over all 3962 days. The percent change in frequency, C, is a function of the external 
conditions, E, and the cluster number i: 

           C (i, E) = 100 * 
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where NT is 3962, the total number of days in the study, Ni is the number of times in the study that cluster i 
occurs,  NE is the number of days when the external conditions, E, are met, and Ni, E is the number of times 
that cluster i occurs under the conditions E.   The percentage C(i, E) is equal to 100 if cluster i occurs twice as 
frequently under the conditions E as it does in the full record, and is equal to -100 if the cluster never occurs 
under the conditions E.  C is calculated for a range of external conditions, E, including an active MJO during 
each of the 8 phases and at lead times ranging from zero to 40 days, and for La Niña and El Niño MJO days 
only.  In all of these cases, the full reference climatology is always used for comparison. 

Figure 3 shows C as a function of lag with respect to MJO phase for clusters 4, 6, and 7.  For each cluster 
pattern in Fig. 3, we consider all MJO episodes and MJO episodes during El Niño and La Niña episodes only.  
Statistical significance of C is assessed with a Monte Carlo test whereby 10,000 synthetic, first-order Markov 
chain cluster pattern time series are generated with transition probabilities that follow the observed transition 
probabilities, as discussed more thoroughly in Riddle et al. (2011).  Moreover, global significance, which tests 
against the null hypothesis that the MJO has no overall effect on cluster frequency of occurrence, is assessed 
by controlling the “false discovery rate” (Benjamini and Hochberg 1995, Wilks 2006).  Again, further details 
can be found in Riddle et al. (2011). 

Consistent with previous studies, Figure 3 reveals that the MJO exerts a significant influence on the 
dominant teleconnection patterns of the Pacific/North America region over lags of a few weeks.  The 
occurrence frequency of cluster 4, which resembles a negative AO, is elevated significantly with respect to 
climatology following active MJO episodes in phases 6 and 7 (Fig. 3a), which are indicative of enhanced 
convection and upper level divergence over the eastern Pacific Ocean, and suppressed convection and upper 
level convergence over the western Pacific and maritime continent.  The largest positive anomalies in these 
frequencies occur approximately 20-25 days after MJO phase 6, and approximately 8-13 days after phase 7.  
Under these conditions Cluster 4 occurs between 2 and 2.5 times as likely as it is in the overall climatology.  
Though weaker, significant anomalies are observed as far out as 40 days after an occurrence of MJO phase 5.  
The most significant suppression of Cluster 4 frequencies occurs approximately 24-28 days after phase 2 of 
the MJO and 18-22 days after phase 3 of the MJO.  The phasing of these responses is expected and consistent 
with an MJO signal propagating from phase 1 through phase 8.  The results shown in Figure 3a are consistent 
with findings from L’Heureux and Higgins (2008), Cassou (2008), Roundy et al. (2010), and others who have 
noted an increase in negative AO events approximately 10-20 days after the occurrence of an MJO phase 6-7 
event.  Moreover, Fig. 3a shows that this enhancement is more pronounced during El Niño episodes relative 
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to La Niña episodes, which is consistent with findings that ENSO can modulate the response to the MJO 
(Schrage et al. 1999, Roundy et al. 2010, Moon et al. 2011). 

Figure 3b shows that the frequencies of cluster 6 are elevated significantly with respect to climatology 
following active MJO episodes in phases 5 and 6, which are indicative of convection and upper level 
divergence over the central Pacific, and suppressed convection and upper level convergence over the maritime 
continent and eastern Indian Ocean.  The strongest positive anomalies occur 23-26 days after MJO phase 5, 
and 12-14 days after MJO phase 6.  These results are consistent with previous studies that link an increase in 
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c) Fig. 3  Anomalous frequency of occurrence (%) 
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function of MJO phase (rows) and time lag 
(x-axis of each column).  Values of 100 mean 
twice as frequent as climatology, whereas 
values of -100 mean no occurrence of the 
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convection over the central Pacific with a strenthening of the local Hadley circulation, an extension of the 
East Asian jet over the Pacific, and the development of a cyclonic circulation anomaly over the northern 
Pacific.  Higgins and Mo (1997) and Hoskins and Karoly (1981) and others show that positive anomalies in 
the PNA occur approximately 10 days following MJO phase 6, in line with the results presented here.  
Consistent with this finding, the anomalous frequencies of the negative PNA-like cluster 7 (Fig. 3c) are 
generally opposite to those of cluster 6. The strongest changes in frequency occur simultaneously with MJO 
phase 5, 3-8 days after phase 4, 8-12 days after phase 3, and 12-16 days after phase 2.  These are consistent 
with studies that suggest that negative PNA anomalies occur approximately 10 days after phase 3, which is 
indicative of suppressed convection and upper level convergence over the central Pacific.  Figures 3b and c 
reveal that the response of clusters 6 and 7 to the MJO is substantially altered by ENSO.  In fact, the enhanced 
probabilities of cluster 6 (cluster 7) following phase 6 (phase 2) of the MJO are completely absent in La Niña 
(El Niño) years.  This may be expected given that convection anomalies over the Pacific are in phase between 
El Niño (La Niña) and phase 6 (phase 2) of the MJO. 

4. Future work 

The preceding analysis demonstrates that the MJO significantly impacts atmospheric circulation patterns 
with strong surface temperature and precipitation signatures in the continental United States for lead times 
generally between one and four weeks.  An important question remains: how can forecasters at NOAA CPC 
use this information to enhance extended range forecasts?  A suitable framework should incorporate both the 
expected MJO impacts and the information provided by dynamical model forecast guidance.  We propose to 
merge these two sources of information in a framework based on Bayes’ theorem.  In the present context, we 
informally may express Bayes’ theorem by 

            P(θj| fj) ∝P(θj) P(fj|θj),                                                                                (2) 

where P(θj| fj) is the probability of the occurrence of cluster pattern j, given the model forecast of cluster 
pattern j in the time period of interest.  Bayes’ theorem states that the posterior probability, P(θj|fj), which 
reflects the forecaster’s confidence in the occurrence of cluster j, is proportional to the prior probability P(θj) 
multiplied by the conditional probability P(fj|θj).  In our proposed application, the expected, combined 
influence of the MJO and ENSO provides the forecaster with prior information (i.e., before viewing the 
patterns forecast by the dynamical models) on the occurrence of each cluster pattern that can be incorporated 
into P(θj).  In addition, archived model hindcasts may provide information on model forecast performance 
that can be used to construct P(fj|θj).  Therefore, Bayes’ theorem provides a basic framework with which both 
the expected MJO/ENSO influence can be combined with dynamical model forecast performance to generate 
probabilities of cluster pattern occurrence in the forecast period of interest.  These posterior probabilities then 
may be used to weight model forecast fields in a multi-model ensemble forecast.  Current efforts are focused 
on converting this informal framework into a formal Bayesian forecast system for extended range forecasts in 
the one- to four-week time period. 
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1. Introduction 

The Madden–Julian Oscillation (MJO) is the most prominent mode of tropical intraseasonal variability in 
the climate system (Madden and Julian 1994; Lau and Waliser 2005; Zhang 2005; Jones and Carvalho 2006; 
Jones 2009; Jones and Carvalho 2011a). Important linkages have been found between the MJO and 
precipitation variability including occurrences of extreme events (Jones et al. 2004; Donald et al. 2006). 
Significant signals have been shown over the contiguous United States (CONUS) (Mo and Higgins 1998a, 
1998b; Mo 1999; Higgins et al. 2000a; Jones 2000; Bond and Vecchi 2003; Becker et al. 2011; Ralph et al. 
2011; Zhou et al. 2011). 

The present study focuses on the MJO and occurrences of precipitation over the CONUS during boreal 
winter. This problem is investigated by considering two joint properties: intensity and spatial extent of 
extreme precipitation. The following questions are investigated: 1) What is the probability of extreme 
precipitation over the CONUS when the MJO is active? 2) Does the spatial-intensity probability of extreme 
precipitation associated with the MJO significantly vary with ENSO? 3) Do probabilities of spatial-intensity 
characteristics of extreme precipitation over the CONUS vary with MJO phases? 4) Are large amplitudes of 
the MJO associated with high probabilities of extreme precipitation over the CONUS?  

2. Data  

Daily gridded precipitation 
from the NOAA Climate 
Prediction Center (CPC) 
unified gauge (CPC-uni) 
(Higgins et al. 2000b; Chen et 
al. 2008) is used to investigate 
the variability of extreme 
events. Data with 0.5º in 
latitude by longitude are used 
for the period 1 January-31 
December, 1979-2010. Figure 1 
shows the mean daily 
precipitation over the CONUS 
during boreal winter seasons 
defined from 1 November to 31 
March (1979-2010). In the 
western CONUS, mean 
precipitation exceeds 2 mm day-1 and shows large gradients associated with topographic features over the 
Coastal Ranges, Sierra Nevada and Rocky Mountains. In contrast, the mean winter precipitation in the eastern 
CONUS shows smooth horizontal gradients and maximizes over the southeastern States. To make the 
presentation manageable, the CONUS is divided into six sectors: southwest (SW), central-south (CS), 
southeast (SE), northwest (NW), central north (CN) and northeast (NE). The spatial-intensity characteristics 

Fig. 1  Mean precipitation during 1 November - 31 March, 1979-2010 (1 mm 
day-1 interval).  Thick solid lines indicate six sectors dividing the 
continuous United States (CONUS). 
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of extreme precipitation, their 
probabilities of occurrence and the 
importance of the MJO are 
aggregated in each sector over the 
CONUS. 

To identify MJO events, daily 
averages of zonal wind components 
at 850-hPa (U850) and 200-hPa 
(U200) from the National Centers for 
Environmental Prediction/National 
Center for Atmospheric Research 
(NCEP/NCAR) reanalysis (Kalnay et 
al. 1996) are used (1 January-31 
December 1979-2010). MJO events 
are identified according to the 
method discussed in Jones (2009) 
and Jones and Carvalho (2011b). 

 The spatial-intensity variability 
of extreme precipitation in the 
CONUS is analyzed by first 
identifying extreme events in daily 
gridded precipitation. Two thresholds 
of daily precipitation intensity are 
used: exceeding the 75th and 90th 
percentiles. In additional, the spatial 
extent of extreme precipitation is 
analyzed by considering the frequency distribution of areas. Regions of spatially connected gridpoints in 
which precipitation exceeds the 75th or 90th percentiles are identified. In summary, two types of contiguous 
regions of extreme precipitation (hereafter CREP) are analyzed. Type I: intensity of precipitation and size 
exceeds the 75th percentiles of frequency distributions. Type II: intensity and size exceed the 90th percentiles 
of the frequency distributions. 

3. The MJO and probabilities of CREPs 

This section presents a quantitative analysis of probabilities of CREP occurrences and relationships with 
the MJO. To make the presentation more manageable, the results are aggregated for each CONUS sector. We 
define fractional area as the area of the sector covered by CREPs divided by the total area of the sector. The 
calculation for each sector considers the area of the CREP contained within the sector. Likewise, intensity is 
defined as the total precipitation associated with CREPs falling in each sector. 

Figure 2 shows joint probabilities that the fractional area in each sector associated with 75th percentile 
CREPs exceeds specific thresholds (horizontal axis) and the MJO is active (in any phase). Similarly, joint 
probabilities for fractional area exceedance and inactive MJO days are plotted. Over the NW CONUS, for 
instance, the probability that the MJO is active and the sector is covered by more than 10% with 75th 
percentile CREPs is about 0.33. In contrast, the joint probability for the NW sector being covered by more 
than 10% CREPs during inactive MJO days is ~0.14. As the thresholds of fractional area increase, the joint 
probabilities decrease. The joint probabilities are significantly higher when the MJO is active than in inactive 
days. Joint probabilities decrease slower over the NW, NE and SE sectors relative to the CN and CS sectors, 
probably because precipitation over the central CONUS is not too intense during winter and weather systems 
quickly move eastward over those regions. 

Joint probabilities of precipitation intensity and active (inactive) MJO days associated with 75th extremes 
are shown in Fig. 3. The joint probabilities are at least twice higher when the MJO is active than during 

Fig. 2  Joint Probabilities of 75th percentile CREP during active and 
inactive MJO days.  Panels are for each sector in the CONUS.  
Solid lines with squares show joint probabilities that the 
fractional area of the sector due to 75th percentile CREPs 
exceeds a given threshold (horizontal axis; percentages) and the 
NJO being active (in any phase).  Solid lines show joint 
probabilities that the fractional area of the sector due to 75th 
percentitle CREP exceeds a given threshold and the MJO being 
inactive. 
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inactive days. The results above 
demonstrate quantitatively that the 
MJO has a substantial influence on 
both the spatial and intensity 
characteristics of extreme 
precipitation over the CONUS during 
winter. 

4. Conclusions 

Jones and Carvalho (2011b) 
investigated the spatial-intensity 
variability of extreme precipitation 
over the CONUS during boreal 
winter and relationships with the 
MJO. Daily gridded precipitation is 
used to define two types of 
contiguous regions of extreme 
precipitation (CREPs): intensity and 
spatial extent exceeding the 75th and 
90th percentiles of frequency 
distributions. Extreme precipitation 
occurs twice more frequent when the 
MJO is active than inactive. Joint 
probabilities of fractional area of 
CONUS sectors when the MJO is 
active are 2.0-2.5 higher than probabilities during inactive days for both 75th and 90th percentiles CREPs 
(similarly for intensity of CREPs). Probabilities of fractional area of 75th percentile CREPs when the MJO is 
active in neutral ENSO are higher than during warm or cold ENSO. Joint probabilities of fractional area 
during MJO and warm ENSO are higher than MJO and cold ENSO and statistically significant over southern 
sectors. Results are similar for joint probabilities of intensity exceedance and MJO activity in warm and cold 
ENSO phases. Proportions of 75th and 90th percentile CREPs for each sector and phase of the MJO are 
predominantly large when MJO convective signals are over the central Indian Ocean or western Pacific. 
Probabilities of fractional area of 90th percentile CREPS conditioned on MJO phases, however, do not show 
clear predominance. This indicates that the MJO is not the sole player in the occurrences of CREPs. Lastly, 
this study concludes that probabilities of fractional area and intensity of 75th and 90th percentile CREPs in the 
CONUS do not depend on the amplitude of the MJO. 
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1. Introduction 

The interpretation of drought signals has proven to be difficult because of a general lack of ground-based 
“truth” metrics available at continental scales; therefore, forecasters must rely on a convergence of evidence 
strategy using multiple drought index datasets. Standard indicators currently used in drought monitoring focus 
on different components of the water budget: precipitation, soil moisture, groundwater, runoff and streamflow. 
The goal of our NOAA CPO-funded project is to develop a thermal-based drought index based on estimates 
of the actual to potential evapotranspiration ratio provided by the Atmosphere Land-Exchange Inverse 
(ALEXI) model (Anderson, et al., 2007a,b; 2011), focusing on the water-use component of the hydrologic 
cycle.   

Current drought indices include precipitation-based analyses (e.g., Standardized Precipitation Index (SPI; 
McKee et al. 1995); the Palmer indices (Palmer 1965)), and satellite-based vegetation/TIR indices (e.g., 
Vegetation Health Index (VHI; Kogan 1997); VegDRI (Brown et al. 2008)), along with soil moisture and ET 
datasets generated with land-surface models (LSMs) in the National Land Data Assimilation System 
(NLDAS; Mitchell et al. 2003). Each of these index classes has issues: datasets like NLDAS and SPI require 
precipitation and/or soil texture fields that are difficult to observe/specify accurately over large spatial 
domains; while empirical TIR-based drought indices currently in use (like the VHI) do not account for 
important forcings on land-surface temperature (LST) (e.g, available energy, atmospheric demand), and can 
therefore generate spurious drought detections under certain circumstances – particularly at high latitudes 
(Karnieli et al. 2006; Karnieli et al. 2010). 

In contrast, diagnostic LSMs based on TIR remote sensing of LST, like ALEXI, require no information 
regarding antecedent precipitation or soil moisture storage capacity - the current surface moisture status is 
deduced directly from the remotely sensed radiometric temperature signal. This results in a seamless 
implementation over the continent, unaffected by discontinuities in soils and precipitation dataset collected by 
individual countries.  In contrast with the VHI, ALEXI is based on energy balance, so radiation, atmospheric 
and soil moisture controls are all considered in the interpretation of the LST signal.  The TIR remote sensing 
data used in the Evaporative Stress Index (ESI) also provide information about non-precipitation related 
moisture inputs to the land-surface system arising from processes such as irrigation, shallow groundwater 
sources, and lateral flows – processes that must be known a priori and modeled explicitly in prognostic LSMs 
(such as in NLDAS) but may significantly mitigate drought impacts during local rainfall deficits. And 
whereas vegetation index (VI) is a relatively slow response variable to moisture deficits, showing decline only 
after the damage has been done, thermal remote sensing has the potential to provide valuable drought early 
warning preceding detectable degradation in VIs. 
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2.  Model methodology  

The ALEXI surface energy balance model 
(Anderson et al. 1997, 2007a; Fig. 1) was 
specifically designed to minimize the need for 
ancillary meteorological data while maintaining 
a physically realistic representation of land-
atmosphere exchange over a wide range in 
vegetation cover conditions.  It is one of few 
land-surface models designed explicitly to 
exploit the high temporal resolution afforded by 
geostationary satellites. 

a. Interpretation of the thermal land-surface 
signature 

Surface energy balance models estimate ET 
by partitioning the energy available at the land 
surface (RN – G, where RN is net radiation and 
G is the soil heat conduction flux, in Wm-2) into 
turbulent fluxes of sensible and latent heating (H 
and λE, respectively,Wm-2): 

RN – G = H + λE                                 (1) 
where λ is the latent heat of vaporization (J kg-1) 
and E is ET ( kg s-1 m-2 or mm s-1).  The land-
surface representation in ALEXI model is based 
on the series version of the two-source energy 
balance (TSEB) model of Norman et al. (1995), 
which partitions the composite surface radiometric temperature, TRAD, into characteristic soil and canopy 
temperatures, TS and TC, based on the local vegetation cover fraction apparent at the thermal sensor view 
angle, f(θ):   

TRAD ≈ { f(θ)Tc + [1 - f(θ)] Ts }             (2) 

(Fig. 1), where f(θ) can be related to leaf area index (LAI) using Beer’s law.  Eq. 2 is a linear approximation 
to an aggregation of surface radiance values.  With information about TRAD, LAI, and radiative forcing, the 
TSEB evaluates the soil (subscript ‘s’) and the canopy (‘c’) energy budgets separately, computing system and 
component fluxes of net radiation (RN = RNC + RNS), sensible and latent heat (H = HC + HS and λE = λEC + 
λES), and soil heat (G).  Importantly, because angular effects are incorporated into the decomposition of TRAD, 
the TSEB can accommodate TIR data acquired at off-nadir viewing angles by geostationary satellites. The 
TSEB has a built-in mechanism for detecting thermal signatures of stress in the soil and canopy.  An initial 
iteration assumes the canopy transpiration (λEC) is occurring at a potential (non-moisture limited) rate, while 
the soil evaporation rate (λES) is computed as a residual to the system energy budget.  If the vegetation is 
stressed and transpiring at significantly less than the potential rate, λEC will be overestimated and the residual 
λES will become negative.  Condensation onto the soil is unlikely midday on clear days, and therefore λES < 0 
is considered a signature of system stress.  Under such circumstances, the λEC is iteratively down-regulated 
until λES  ~ 0 (expected under dry conditions). 

b. ALEXI Evaporative Stress Index   

The Evaporative Stress Index (Anderson et al. 2007 a, b; 2011) represents standardized anomalies in the ratio 
of actual-to-potential ET, fPET = ET/PET, where ET and PET are instantaneous clear-sky estimates at shortly 
before local noon, retrieved using the ALEXI algorithm.  Normalization by PET serves to minimize 
variability in ET due to seasonal variations in available energy and vegetation cover, further refining focus on 
the soil moisture signal.  Limiting the assessment to clear-sky conditions separates signals of soil moisture 

RS

TC
TAC

TS

RA

Rx

TA

ALEXI
5-10 km

TS
EB

TRAD (θ ),  f (θ )

ABL Model

blending height

H = ρcP = HC + HS
TAC - TA

RA

HS = ρcP
TS - TAC

RS

HS = ρcP
TS - TAC

RS

HC = ρcP
TC - TAC

RX

HC = ρcP
TC - TAC

RX

Fig. 1  Schematic diagram representing the ALEXI 
modeling framework, highlighting fluxes of sensible 
heat (H) from the soil and canopy (subscripts ‘s’ and ‘c’) 
along gradients in temperature (T), and regulated by 
transport resistances RA (aerodynamic), Rx (bulk leaf 
boundary layer) and RS (soil surface boundary layer).   
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variability from that of cloud climatology.  To highlight differences in moisture conditions between years, 
standardized anomalies in fPET are expressed as a pseudo z-score, normalized to a mean of zero and a standard 
deviation of one with respect to baseline fields describing “normal” (mean) conditions over the period of 
record. 

 c. Model archive generation 

Input datasets required by ALEXI are listed in Table 1. The sources of input data are a mix of operational 
inputs that are available daily (GOES Sounder / insolation and North American Regional Reanalysis (NARR) 
model output), and MODIS land products (such as LAI and albedo), which are routinely generated but 
available with a several week time lag.  The ALEXI domain covers the CONUS at a spatial resolution of 10 
km and a temporal resolution of 1 day. 

Data Purpose Source Spatial 
Resolution 

Temporal 
Resolution 

LST ΔTrad, RN GOES  10 km 1 hr 
LAI Trad partitioning MODIS 0.01° 8-day 
Insolation RN GOES  20 km 1 hr 
Longwave radiation RN GOES  20 km 1 hr 
Albedo RN MODIS 0.05° 16-day 
Wind Speed Aerodynamic resistances NARR 32 km 3 hr 
Atmos lapse [dθ/dz] ABL growth model NARR 32 km 3 hr 
Landcover type Canopy characteristics UMD 0.01 fixed 

Table 1  Primary inputs used by the current CONUS ALEXI ESI system. 
3.  Results 

An intercomparison study of ALEXI ESI and a suite of drought indices (Table 2) was conducted from 
2000 to 2011 over the CONUS, focusing on the primary growing season for most of the United States (April 
– October).  As is the case with ESI, standardized anomalies were computed for each drought index. 
Temporal and spatial correlations between index anomalies were examined to assess the similarity between 
drought indices in their ability to rank drought severity and to visualize spatial patterns in index congruity. 

Index Acronym Type 
U.S. Drought Monitor USDM Multi-index synthesis 
Evaporative Stress Index (X-month composite) ESI-X Remote sensing of fPET 
Vegetation Health Index VHI Remote sensing of LST, VI 
Standardized precipitation index (X-month composite) SPI-X Precipitation 
Palmer Z Index Z Precipitation + storage 
Palmer drought severity index PDSI Precipitation + storage 
Palmer modified drought index PMDI Precipitation + storage 
Palmer hydrologic drought index PHDI Precipitation + storage 
Noah-LDAS evapotranspiration Noah-ET Land surface model 
Noah-LDAS soil moisture Noah-SM Land surface model 

Table 2  Drought indices included in the intercomparison study. 

Drought features in the USDM classifications are generally reflected in one or more of the other indices 
but to varying degrees depending on drought type and time scale. Figure 2 shows the seasonal anomalies for a 
selection of drought indices listed in Table 2 for the study period of 2000 to 2011. In general, ESI reproduces 
patterns evident in the precipitation-based indices, indicating the value of the LST signal as a surface moisture 
proxy. For example, the thermal band inputs to ALEXI capture the major drought events in 2002 and 2007, 
even in the eastern United States, an area in which dense vegetation is dominant during the warm season. This 
is particularly important because standard soil moisture retrievals based on microwave remote sensing tend to 
lose sensitivity due to strong attenuation of the surface soil moisture signal by the overlying vegetative 
canopy. However, in this case, the thermal signal is able to detect vegetation stress related to root zone soil 
moisture deficits and elevated canopy temperatures. 
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Fig. 2  Seasonal (Apr-Oct) anomalies in US Drought Monitor classes, ESI, Noah soil moisture, Noah 

evapotranspiration and SPI-3. 

Of the products included in the intercomparison, Noah soil moisture anomalies were found to be the most 
similar to the USDM with respect to temporal correlation (averaged over CONUS).  The ALEXI 2-month ESI 
composite (ESI-2) shows higher average temporal correlations with the USDM than do the precipitation 
indices of shorter or comparable time scales (Z and SPI-1 to SPI-3).  ESI-2 also outperforms Noah ET 
anomalies and VHI in terms of correlation with USDM. The strongest correlations between ESI and USDM 
are observed over the Great Plains and in the southeastern United States. These are areas identified by 
Karnieli et al. (2010) where LST and NDVI tend to be anticorrelated, indicating moisture-limiting (as 
opposed to energy limiting) vegetation growth conditions. In these areas, ET will be most sensitive to 
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changing root-zone soil moisture condition, and subsequently providing indications of drought. There are also 
regions where ESI shows reduced correlations with the USDM, e.g. over the Mississippi River basin, where 
shallow water tables and intensive irrigation tend to decouple ET rates from precipitation to some extent. ESI 
also shows lower correlations with the USDM over the Everglades in southern Florida, an area which is 
largely inundated with water over much of the year, and ET variations at the seasonal scale may be more 
related to climatic variability than to moisture availability. Finally, lower correlations are also found in the 
northern states where, particularly in early spring, ET is driven more by radiation and climate and is less 
tightly coupled with moisture conditions. 

 
Fig. 3  Monthly USDM drought classification and anomalies in USDM, ESI-2 Noah soil moisture, Noah 

evapotranspiration, and SPI-3 for 2011. 

Spatial anomaly correlations were also computed to assess how well the indices agree on a spatial rather 
than temporal scale. On a seasonal (April-October) time-scale, all indices show the weakest correlations in 
2003 during the long-term hydrologic drought event in the western CONUS, which is captured only by 
indices with time constants exceeding one year. The highest correlations, among all indices, is found during 
2007 where there was a strong contrast in moisture conditions, with extensive drought conditions across the 
southeast US and anomalously wet conditions in the south central US.  At the monthly time-scale, 
correlations between ESI-2 and the USDM are the weakest during April and May, likely due to poor temporal 
sampling in the ESI related to increased snow and cloud cover. However, spatial correlation with ESI-2 
increases throughout the warm season as ET becomes more closely coupled to moisture conditions. 

In contrast, correlations between the short-term precipitation indices (Z, SPI-2, SPI-3) and the USDM 
tend to degrade in August and September. An example of the monthly comparison of spatial anomalies 
between the USDM and ESI-2 is shown in Figure 3 for the year 2011. All five drought indices show excellent 
agreement with the extent and severity of the drought conditions across much of the south central US. 
However, an area of disagreement between ESI-2 and the USDM is evident in southern GA, where the 
USDM shows more severe drought conditions than is shown in ESI-2 during the period from May to August. 
ESI-2 does show small areas of dry conditions in May and June, yet conditions return to near normal during 



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

 

220 

July and August, before a rapid expansion of dry conditions in September through October. The improvement 
shown in July may be related to several precipitation events which likely lead to a replenishment of root-zone 
soil moisture and a decrease in vegetation stress. This is to some extent shown in both Noah SM and ET 
anomalies which showed slight improvement in July and August, although both Noah indices still had 
stronger negative anomalies than ESI-2 during both months. However, as dry conditions returned in August, 
root-zone soil moisture deficits likely increased and lead to a rapid appearance of significant dry anomalies in 
ESI-2 as shown in September and October. 

A few caveats must be considered in this case, first, the USDM in not independent of many of the indices 
listed in Table 2, as they are commonly used in the construction of USDM drought classifications. ALEXI 
ESI was not used in the USDM classification process during the period of record in this analysis, and 
therefore is wholly independent. Second, the USDM drought classes incorporate information relevant to 
different kinds of drought over varying timescales, and we cannot expect a single indicator to agree perfectly 
with the USDM.  For example, socioeconomic drought features in the USDM may indicate increased human 
demand for water rather than natural hydrological deficits. A more detailed analysis of all the drought index 
intercomparison results can be found in Anderson et al. (2011). 

4. Future Work 

The final year of our NOAA-CPO project will mainly focus on two core objectives: (1) developing an 
open interface with end-users at the Climate Prediction Center (CPC) and the National Drought Mitigation 
Center (NDMC) to provide feedback on the use of ESI maps and (2) automating the ALEXI ESI system to 
provide weekly ESI maps to the National Integrated Drought Information System (NIDIS) portal and end-
users at CPC and NDMC. Figure 4 shows an example of the ALEXI ESI website developed to provide ESI 
maps to end-users at CPC and NDMC. The website will be open to the entire drought community during the 
spring of 2012 and through the NIDIS portal at (www.drought.gov). 

 
Fig. 4  Screenshot of the ALEXI Evaporative Stress Index (ESI) website developed at the USDA Hydrology 

and Remote Sensing Lab. 

Furthermore, the use of ALEXI as a proxy for soil moisture conditions will be expanded to produce an 
operational data assimilation system for the optimal assimilation of thermal and microwave soil moisture into 
the Noah LSM component of the NLDAS towards the goal of improved LSM-based drought monitoring. As 
mentioned earlier, ALEXI has been shown to perform well over densely vegetation regions such as the 
southeast US, an area in which microwave retrievals can suffer from significant vegetation-related errors. 
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Therefore, thermal and microwave retrievals methods have been shown to be quite complementary: thermal 
methods provide soil moisture information over a wide range of vegetation conditions, while microwave 
methods provide high temporal information (can retrieve through cloud cover) over areas of low vegetation 
cover (Hain et al. 2001). Finally, although this application of ESI focused solely on the CONUS, ALEXI 
domains are currently being developed both on a global scale (spatial resolution of 0.25°) and on a regional 
scale (e.g., Europe, Africa, and Australia; spatial resolution of 3 to 10 km), facilitating production of ESI 
maps over these domains in the near future. 
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1. Introduction 

In recent years, many advances have been made in the science and practice of seasonal climate 
predictions. For example, seasonal climate predictions have attained operational status and have come to rely 
increasingly more on dynamical prediction models. Such advances notwithstanding, application of seasonal 
climate outlooks to applications of societal importance has been slow to materialize. The aim of this project is 
to develop one such application, i.e., a capability to forecast terrestrial ecosystem productivity and carbon 
sources and sinks on seasonal-interannual time-scale. The modeling system is global, but the focus of 
validation and application will be for North America.   

The development of an outlook capability for the ecosystem will rely on several components that have 
evolved following independent pathways and have reached a state of maturity in their respective domains of 
interest.  The key effort here brings together these modeling and prediction component systems. 

The modeling components of the predictive capability include: 
a) A dynamic Vegetation-Global-Atmosphere-Soil (VEGAS; Zeng et al. 2005, 2008) model with full 

terrestrial carbon cycle 
b) Operational climate forecasts at the Climate Prediction Center and dynamical seasonal forecasts based on 

the Climate Forecast System (CFS) (both at NCEP) 

Specific targets include: 
Developing a procedure to specify vegetation and soil initial conditions derived from some form of data 
assimilation system. 
a) Developing procedures to forecast ecosystem and carbon variables using ensemble climate prediction 

information from CFS 
b) Validation of prediction system based on hindcast skill by comparing model predictions against a suite of 

observed variables such as satellite vegetation index, CO2 flux measurements, and assimilated carbon 
fluxes 

c) Comparison of the CFS based skill with other baseline estimates of skill for predicting eco-carbon 
variables, e.g., prediction based on operational CPC forecasts 

d) Testing the prediction system in a real-time operational setting, getting feedbacks from a wider 
community, improving the system. 

Deliverable of this project will be a seasonal forecasting system for terrestrial ecosystem productivity and 
carbon fluxes that later will be transitioned to operations using the Climate Test-Bed (CTB) infrastructure. 

2. Hindcast experiments 

We have conducted a 25-year hindcast experiment to explore the possibility of seasonal-interannual 
prediction of terrestrial ecosystem and the global carbon cycle. This has been achieved using a prototype 
forecasting system in which the dynamic vegetation and terrestrial carbon cycle model VEGAS was forced 
with the 15-member ensemble climate prediction and lead time up to 9 month from the NCEP/CFS climate 
forecast system. The results show that the predictability is dominated by the ENSO signal for its major 
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infuence on the tropical and subtropical regions, including the Amazon, Indonesia, western US and central 
Asia. The hindcasted ecosystem variables and carbon flux show significantly slower decrease in skill 
compared to the climate forcing, partly due to the memories in land and vegetation processes that filter out the 
higher frequency noise and sustain the signal.  (Examples shown in Figs.1 and 2) 

3. Pseudo-operational forecast 

We have completed the initial setup 
of a one-way pseudo-operational 
forecast system. This is ‘pseudo’ in the 
sense that it was not actually issued, and 
the run was not always done in real time. 
However, it uses only the operational 
CFS input so it is what one would have 
got if it was done operationally. The 
system consists of the following key 
steps, which involved: 
a) A shell script was developed to 

automatically download CFS 
operational forecast once a day. 
These forecasts are archived only 
for 1 week, and the daily download 
is for safety. 

b) The data are processed by spatial 
interpolation. Climate variables such 
as precipitation and temperature 
anomalies are computed, then added 
to a climatology. 

Fig. 1  Example of the CFS/VEGAS handcast: a time section of the predicted Net Primary Productivity (NPP) 
anomalies kg C m-2 y-1 for two grid points, one over the Amazon, the other one southwestern US, compared 
to the validation (black line). Each line represents one individual member of a 15-member ensemble 
forecast.  For clarity, the forecasts were ‘thinned’ to show only every 6 months and for a 6-month long 
forecast while the actual forecasts were monthly and 9 month long. The top two panels are for anomalies 
while the lower panels include seasonal cycle

Fig. 2  Probabilistic prediction of direct carbon fluxes due to fire 
for the CONUS region (monthly in black and 12 month 
running mean in red) by (a) dynamical model using climate 
information alone, and (b) dynamical model but also including 
nonlinear effect of human management and fire suppression. 
Panel (c) shows satellite observations of fire counts. Large 
amount of carbon was released during major drought years of 
2000 and 2002. 
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c) An ensemble of 9 climate predictions drives the vegetation/carbon model. 

The forecast is conducted each month, with initial condition comes from the ensemble mean of the 1 month 
lead forecast from the previous month’s forecast. 

This system is being actively tested. 
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