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PREFACE 

It is with great pleasure that the Climate Prediction Center (CPC) and the Office of Science and 
Technology Integration (STI) offer you this synthesis of the 42nd Climate Diagnostics and Prediction 
Workshop (CDPW).  The CDPW remains a must attend workshop for the climate monitoring and 
prediction community.  As is clearly evident in this digest, considerable progress is being made both 
in our ability to monitor and predict climate.  The purpose of this digest is to ensure that climate 
research advances are shared with the broader community and also transitioned into operations.  This 
is especially important as NOAA works to enhance climate services both across the agency and with 
external partners.  We hope you find this digest to be useful and stimulating.  And please drop me a 
note if you have suggestions to improve the digest. 

I would like to thank Dr. Jiayu Zhou of the Office of Science and Technology Integration, for 
developing the digest concept and seeing it through to completion.  This partnership between STI 
and CPC is an essential element of NOAA climate services. 

Director, Climate Prediction Center 
National Centers for Environmental Prediction 
NOAA’s National Weather Service
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OVERVIEW 

NOAA's 42nd Climate Diagnostics and Prediction Workshop was held in Norman, Oklahoma on 23-26 
October 2017.  The workshop was hosted by the School of Meteorology at the University of Oklahoma and 
was co-sponsored by the Climate Prediction Center (CPC) of the National Centers for Environmental 
Prediction (NCEP) and the Climate Services Branch (CSB) of the National Weather Service (NWS). 

The workshop focused on five major themes, with an emphasis on climate prediction, monitoring, 
attribution, and diagnostics related to: 

1. Recent high-impact weather, climate, and water events, such as the 2016-17 La Niña and its transition 
from the 2015-16 El Niño and the repeated atmospheric river events of January 2017 impacting the 
North Pacific; 

2. Subseasonal-to-seasonal (S2S) extremes and hazards, such as severe weather; 

3. Drought and pluvial events, with particular focus on the Great Plains;  

4. High-latitude and Arctic variability and change, and linkages with the lower latitudes; 

5. Climate prediction applications for decision support services. 

The workshop featured daytime oral presentations, invited speakers, and discussions with a poster session 
event in one evening. 

This Digest is a collection of extended summaries of the presentations contributed by participants. The 
workshop is continuing to grow and expected to provide a stimulus for further improvements in climate 
monitoring, diagnostics, prediction, applications and services. 
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1.  Introduction 

 The multiyear drought in California (2012-2016) was broken by a dramatic reversal in the form of 
extreme precipitation and flooding in early 2017.  The widespread floods led to the declaration of yet another 
State of Emergency, this time from a very different perspective vis-a-vis the 2014 drought.  Many studies that 
were motivated by the post-2014 drought have focused on the persistent high-pressure ridge stationed off the 
West Coast during the height of the drought (GRL-AGU 2015; Wang et al. 2014; Swain et al. 2014).  In the 
winter of 2016-2017, an enhanced low-pressure trough appeared in the same location, initiating and directing 
sequential atmospheric river events toward California and causing high precipitation.  We would like to 
underline that the dramatic appearance of this enhanced trough in 2016-2017 is “the other side of the coin”; 
this flip side was implied and even projected in some previous studies (Wang et al. 2014; Singh et al. 2016; 
Yoon et al. 2015a) analyzing the drought-producing ridge. 
2. Diagnostics 

One prominent feature associated with the drought winters of 2013-2015 was the extreme warm-
West/cool-East surface temperature anomaly pattern in North America, accompanied by a pronounced “ridge-
trough” circulation pattern in the upper atmosphere.  Collectively, this temperature-wave pattern is referred to 
as the North American winter “dipole” (Singh et al. 2016; Yoon et al. 2015a; Wang et al. 2015; Swain et al. 
2016), which coincides with the winter-mean stationary waves (indicated in Figure 1 by contours and “x/+”).  
The winter stationary waves establish the climatologically warmer west and colder east forming the surface 
temperature division of North America.  Any perturbation of the climatological ridge in the west can excite 
downwind amplification of the eastern trough through Rossby wave dispersion and vice versa, so the two are 
very much anticorrelated (Wang et al. 2014).  Consequently, an amplification of the stationary wave leads to 
enhancement of such differences in the atmospheric circulation and surface temperature, while a weakened 
stationary wave reverses it. 

In early 2017, the cool-West/warm-East surface temperature pattern did indeed suggest a reversal of the 
dipole from that of the 2013-2015 winters.  By plotting the 250-hPa geopotential height anomalies (ΔZ) 
during November 2016-January 2017, one can observe an opposite-phase wave pattern (Figure 1a), as 
compared to that for the 2013-2014 drought winter (Figure 1b).  Spatial correlation analysis of ΔZ computed 
between the two winters yielded a significant value of -0.86, supporting their reverse correspondence.  Figure 
1c displays the dipole index constructed by the ΔZ difference between the ridge and trough centers, following 
previous studies (Wang et al. 2014; Singh et al. 2016).  The 2016-2017 winter features a significantly low 
value, in contrast to the record high value in 2013-2014, suggesting that the 2016-2017 winter circulation 
leading to the California deluge resembles a reversal of the 2013-2015 situation.  Though not shown here, the 
detrended sea surface temperature anomalies (SSTA) in the 2013-2014 and 2016-2017 winters are also 
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opposite, with a significant spatial 
correlation of -0.7 in the North 
Pacific Ocean.  More importantly, 
the 7-year running variance of the 
dipole index (Figure 1c light blue 
line) shows a pronounced increase 
since the beginning of the 21st 
century, and this dipole 
amplification is projected to 
continue (Yoon et al. 2015; Wang et 
al. 2015). 

To further illustrate the dipole’s 
association with winter precipitation 
anomalies in North America, we 
constructed the correlation maps of 
November-January (NDJ) 
precipitation with the dipole index 
for two periods (a) before and (b) 
after 1985, in comparison with that 
of three other indices: El 
Niño/Southern Oscillation (ENSO, 
i.e. the Nino3.4 SSTA), the North 
Pacific Pattern (NP), and the Pacific 
Decadal Oscillation (PDO) from 
https://www.esrl.noaa.gov/psd/data/c
limateindices/list/.  As shown in 
Figure 2, the dipole’s correlation 
with precipitation has been 
significant over much of the West 
Coast (p<0.01) encompassing 
northern and central California, and 
consistently so throughout the 
different periods.  By comparison, 
the precipitation correlation with 
ENSO is much lower and highly 
fluctuating, averaging to only half of 
that of the dipole (0.32).  
Precipitation correlations with NP 
and PDO reveal weak and unstable association in California (Figure 2).  Therefore, given the dipole’s 
persistently high correlation with the California precipitation, its observed and projected amplification implies 
an increased impact on California’s water cycle extremes, which could translate to severe drought and 
excessive deluge. 

There is always a component of internal variability in the atmosphere that underlies the persistence of the 
North Pacific circulation anomalies and unique regional processes that increase event extremeness (i.e. 
without external forcing from either SSTA or of anthropogenic origin).  However, a large body of research 
(GRL-AGU 2015) has shown evidence of remote teleconnections to North Pacific circulation stagnation 
through pronounced atmospheric Rossby waves of tropical origin.  Warming in the West Pacific (Funk et al. 
2014), North Pacific (Hartmann 2015), the ENSO region (Stevenson et al. 2012), and even the Indian Ocean 
(McDonald et al. 2016) can amplify the drought-producing ridge with differing patterns and temporal 
characteristics (Funk et al. 2014).  Coupled model studies (Yoon et al. 2015a) have connected the 
strenthening of the relationship between the dipole and California’s precipitation to relevant climate 

Fig. 1  November–January climatological geopotential height at 250 
hPa (contour, with the zonal mean removed) depicting the 
atmospheric stationary waves, overlaid with the anomalies 
(shading) during (a) the flooding winter of 2016–2017 and (b) the 
drought winter of 2013–2014. The dipole location is indicated by 
× and + symbols over North America. Notice the geographical 
coincidence of each year's circulation anomalies with the dipole 
location and the apparent opposite patterns between the two 
winters.  (c) The dipole index from 1950 to 2017 (orange line) 
along with its 7-year running variance (light blue). Data source is 
the NCAR/NCEP Global Reanalysis. 
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oscillations with resulting projections of an increase of both drought and deluge.  Other factors such as 
midlatitude internal atmospheric dynamics could power drought conditions regardless of ENSO conditions 
(Teng and Branstator 2016). Furthermore, the extent to which the warming Arctic interacts with the mid-
latitude circulation and its influence on the dipole amplification has also entered the debate (Kim et al. 2014) 
suggesting that future sea ice loss may drive large changes in the regional circulation over the North Pacific 
(Blackport and Kushner 2017).  The alternation of extreme wet/dry seasons every few years prompts the 
growth of vegetation, which increases “fuel” for wildfires and further increase fire danger days (Yoon et al. 
2015b).  

3. Future direction 

Despite the debate concerning the causes of the drought-producing ridge in the Northeast Pacific Ocean, 
the various hypotheses about natural variability did suggest one thing in common: the flip-flop nature of the 
anomalous circulation.  In other words, the amplified ridge in one winter can turn into a deepened trough in 
another and this tendency appears to have intensified (Figure 1c).  Motivated by these recent studies, we 
suggest that future exploration of extreme climate anomalies in California should focus on attributing the 
linkages between North American winter atmospheric conditions and teleconnections under a projected 
warming climate.  To improve the predictability of future climate extremes, the community can benefit from 
having coordinated numerical experiments with multiple models, with region-specific analyses on quantifying 
the relative importance of the internal/external factors.  A cohesive evaluation and assessment should, in 
theory, result in more well-informed mitigation plans and water management to offset the future hazards and 
risks that are implied in a warming climate. 

(This summary has been adopted from Wang et al. 2017.)  
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1.  Introduction 

 June 2016 saw concurrent extreme climate/weather events in the U.S., with scorching heat (Liberto, 2016) 
in the Southwest associated with an upper-atmospheric ridge and record flooding in West Virginia. The ridge 
condition on 23 June induced a series of mid-tropospheric short waves that propagated across the Ohio valley, 
producing the “1-in-1000-year” precipitation event in West Virginia with 10 inches of 24-h rainfall (Grote 
and Dyer 2017; Corrigan et al. 2017; Perfater et al. 2017). The extreme precipitation in West Virginia was not 
associated with a deep synoptic trough, but occurred during the prevailing mid-level northwesterly flow 
(NWF) setting (Fig. 1a). The ridge type weather pattern that is commonly considered as the warm and 
pleasant weather condition, have occasionally created extreme weather including the 2012 DC derechos (Fig. 
1c). The predominant ridge and NWF setting are related to summer outbreaks of thunderstorms (Johns 1982) 
and convectively induced windstorms or derechos (Johns and Hirt 1987; Bentley and More 1998).  However, 
most of the climate projection studies overlooked the NWF severe weather outbreaks as they focused on 
strong low-pressure systems which are sustained by large-scale baroclinic forcing (e.g., Weaver et al. 2016; 
Feng et al. 2016; Feng et al. 2012; Jiang et al. 2006; Berg et al. 2015).  The aforementioned extreme events 
occurring under the “weakly forced” synoptic setting, i.e. the continental-scale ridge with the NWF or the so-
called warm season pattern (Johns 1982, 1993), prompted us to question whether and how such storms may 
have changed. 

This study is targeted at diagnosing the climatology and variation of weak sub-synoptic-scale features in 
the central U.S. associated with the propagating mesoscale convective systems (MCSs) during early to mid-
summer. The majority of these sub-synoptic features embedded in the NWF are generated on the east of the 
Rocky Mountains and propagate across the northern plains in the form of serial short-wave perturbations, 
referred to as the mid-tropospheric perturbations (MPs; Wang et al. 2009, 2011a, b). MPs provide the forcing 
for the progressive MCSs when they travel a long distance creating extreme weather events (Wang et al. 
2011a, b), but the climate variation linked to their genesis and steering mechanism has not been explored. 
This study presents a method to track MPs by using reanalysis data and discusses the variation and trend of 
MPs. 

2.  Data sources and methodology 

We use the 3-hourly North American Regional Reanalysis (NARR, Mesinger et al. 2006) data as the main 
dataset to calculate the MPs. We also utilize the NCEP-NARR reanalysis R1 data and the Storm Prediction 
Center’s Warning storm reports compiled from the Coordination Meteorologist (WCM) website 
(http://www.spc.noaa.gov/wcm/). The storm report has been used to construct the NWF outbreak frequency 
(John 1982). However, storm observations originate from sighting and are highly dependent of population; 
this presents a data quality problem due to human and population biases (Weiss et al. 2002; Gallus et al. 
2008). During the course of 38 years (1979-2016), the perturbations are calculated based on the midlevel 
winds and relative vorticity at 600-hPa for the June, July and August. Because the average life cycle of MPs 
is 48 hours (Wang et al. 2011a), the vorticity field is filtered using both low- and high-pass filters in order to 
retain the MPs characteristics. To exclude the synoptic-scale trough, the filtered vorticity is masked out by 
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applying the circulation criteria; this excludes the region of negative stream function. Moisture is an important 
precursor for the MP-related convective activity and, therefore, further moisture criteria is applied in which 
vertically integrated precipitable water should be larger than certain thresholds (we use 24 mm in this study). 
Finally, the root-mean-square of vorticity (RMSVORT) is averaged weekly from June to August. The storm 
report data are used for verification by mapping onto a 1° x 1° grid mesh and averaging similarly with 
RMSVORT.  

3.  MPs events and climatology 

3.1   Case analysis 

The 2016 West Virginia flood and the 2012 Mid-Atlantic derecho, both occurring in late June, serve to 
exemplify the extreme events related to NWF outbreaks.  In both events, the mid- to upper-level high pressure 
was centered over the southcentral U.S. spreading prevailing NWF from the northern plains to the mid-
Atlantic regions. The 2012 NWF produced several damaging hail and wind events throughout the Midwest 

Fig. 1  Synoptic conditions storm frequency and MPs during two extreme weather events of June 2016 (left 
panel) and June 2012 (right panel). a) and c) are the 600-hPa wind (vectors) with storm (wind, hail and 
tornado) frequency (shading) from storm reports. Blue curve in a) shows the shortwave trough. b) and d) 
are the 600-hPa height (contours) with MPs (shading). The MPs (storm frequency) and 600-hPa height, 
are averaged (added) from the 21-24 June and 28-30 June for 2016 and 2012, respectively. The wind 
vectors in a) and c) are taken from the middle of the extreme events at 18Z on 23 June 2016 and at 00Z 
on 30 June 2012, respectively. 
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and Mid-Atlantic regions in 2012 
(Fig. 1c) while 2016 system 
produced 8-10 inches of 
precipitation in West Virginia 
within 12-24 hours (NOAA NCEI, 
2016) in addition to the wind and 
hail damage (Fig. 1a). 

The noticeable difference with 
the 2016 case was the presence of a 
mid-level shortwave trough on the 
23rd of June (Fig. 1a). Such a 
shortwave feature was not present 
in the June 2012 case when the 
Derecho propagated with the MP 
(Fig. 1c). We note both cases show 
a good agreement between the 
storm track (Fig. 1a and c) and 
propagated MPs (Fig. 1b and d). 
More detailed comparison between 
the two cases is given in Box 1. 

3.2  Climatology and variability of 
MPs 

The 38-year climatology of 
RMSVORT shows similar pattern 
with the 10-year, manually tracked 
MP climatology by Wang et al. 
(2011a, b). The spatial distribution 
of the MP climatology developed 
here is also in good agreement with 
the derecho frequency in mid-
summer (Guastini and Bosart 2016; 
John and Hirt 1987). The MP frequency peaks in the three-week period of 17 June to 7 July, which is adopted 
to examine the interannual variability using the empirical orthogonal function (EOF). As shown in Fig. 2, the 
first and fourth EOFs reveal the MP spatial pattern that is most relevant to 2016’s West Virginia case, 
including the Upper Midwest track and the increased frequency in the East Coast. EOF1 reveals the main 
track of MPs (Fig. 2a) while its corresponding principal component (PC1, not shown) correlates well with the 
storm frequency (Fig. 2b). EOF4 (Fig. 2e) reveals the east-west fluctuation of MPs and its PC correlates with 

Box 1 

COMPARISON OF TWO EXTREME EVENTS BETWEEN JUNE 2012 AND 2016 

Even though we applied a moisture criteria in our MPs calculation, a continuous source of moisture plays 
an important role to create the extreme precipitation. During the 2016 case, the low-level jet and mid-
level shortwave provided continuous moisture from the Gulf of Mexico (GoM), helping to create deep 
convection (figure not shown). The hydrometeor mixing ratio was significant during the 2016 event – as 
high as 100-hPa – indicating the extreme magnitude of the continuous source of moisture and mid-level 
shortwave moisture pooling. However, the 2012 derecho case shows slightly different flow – mainly at 
low levels –  reducing the moisture supply from the GoM. Another noticeable difference between these 
two cases is that the location of the high pressure center was located westward during the 2016 case 
compared to a more eastward placement during the 2012 event. 

Fig. 2  Interannual variation of MPs a) first EOF and e) fourth EOF 
from 17June to 7July for 38 years (1979-2016). Temporal 
correlation of PC1 and PC4 with June-July average of storm 
frequency ((b) and (f)), 600-hPa height ((c) and (f)), and surface 
temperature ((d) and (h)), respectively. Hatched areas indicate 
significant values with p<0.05. 
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the eastward shift of extreme weather (Fig. 
2f), similar to the one over West Virginia 
in 2016 which has the largest values of 
PC1 and PC4. Though not shown, we 
note that the north-south shift of MPs is 
reflected in EOF2 and it resembles the 
2012 storm track with a high PC2 value.  

Since EOF1 depicts the major MP 
track and mimics the NWF outbreaks (Fig. 
2b), we analyzed the anomalous 
circulations associated with PC1. The 
correlation map of 600-hPa geopotential 
height with PC1 (Fig. 2c) shows a 
predominant anticyclone centered in the 
southern U.S. providing enhanced NWF 
conditions.  Surface air temperature in the 
southern U.S. increases correspondingly 
during high PC1 (Fig. d).  By comparison, 
PC4 is positively correlated only with 
increased meridional gradient of the 
geopotential height over the mid-Atlantic 
region (Fig. 2g) and this corresponds with 
the increased storm frequency and warmer 
air in the southeast US (Fig. 1h). We 
further diagnosed the correlation of PC1 
with GoM SST for different months and 
observed that the Gulf SST seems to 
respond during the early summer months 
(not shown). We also observe an 
increasing trend in the MP frequency as 
well as PC1 (Fig. 3). The increasing trend 
of MPs is even larger after 1990 (not 
shown), suggesting a post-1990 increase 
in MPs and arguably in NWF outbreaks. 

4.  Discussion 

Climate models have a difficulty 
producing weakly forced storms and resultant extreme precipitation and this drawback may affect how the 
models project future climate extremes. To understand the extent to which devastating floods like the one in 
West Virginia will occur relies on how well climate models depict the NWF synoptic settings and embedded 
MPs. The present objective analysis for the MP climatology is intended to help develop metrics that will 
evaluate model projections of the MP track. Future work will also include the diagnosis of larger-scale 
teleconnections associated with the circulation setting relevant to the MP track and frequency (e.g., Fig. 2).  
Preliminary analysis not included here has indicated that ENSO does not correlate with the MP frequency, but 
the Pacific-North American (PNA) and the Arctic Multidecadal Oscillation (AMO) do. During the positive 
phase of AMO and PNA, the MP frequency over the Midwest and Mid-Atlantic region seems to enhance. 
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1.  ENSO evolution and forecasts during 2016-17 

 A very brief and weak La Niña followed the major El Niño of 2015-16.  NOAA Climate Prediction 
Center (CPC) issued its first La Niña Watch in April 2016, during the decay of the major El Niño of 2015-16 
(L’Heureux et al., 2017).  At that time, most model forecasts were strongly anticipating a transition to a 
moderate La Niña by Northern Hemisphere summer 2016 (Niño-3.4 index values between -1°C and -1.4°C).  
The grey lines in Fig. 1 show that ensemble mean forecasts of Niño-3.4 from the North American Multi-
Model Ensemble (NMME), initialized in early-mid 2016, were much colder than what actually occurred 
(black line).  That most ensemble members from the NMME were too cold was reflected in the very negative 
Log Skill Scores (LSS) for almost all forecast leads for the target month of July 2016 (Fig. 2- top and middle 
panels).  

By August 2016, sea surface temperature (SST) 
anomalies in the Niño-3.4 region (5°S-5°N, 
120°W-170°W) decreased to near -0.5°C.  By then 
the models were forecasting borderline La Niña or 
ENSO-neutral conditions for the upcoming fall and 
winter, so there was much uncertainty whether the 
period would qualify as a historical La Niña 
episode as classified by NOAA (requiring 5 
consecutive 3-month overlapping seasons at or less 
than -0.5°C in the Niño-3.4 index).  As a result, a 
La Niña Advisory was not issued until early 
November 2016 when it became more certain that 
the event would last long enough to meet NOAA’s 
criteria. 

Not only did the NMME predict too cold 
conditions in Niño-3.4 during the summer of 2016, 
but for runs made in mid-to-late 2016, the majority 
of model members were also indicating too cold 
conditions for early 2017.  Figure 2 (bottom panel) 
shows that NMME forecasts of Niño-3.4 had a 
negative bias for April 2017, particularly at longer 
forecast leads.  While the individual forecast 
members are not displayed for other target months, 
this bias occurred at longer leads for targets during 
January-March 2017 as well (Fig. 2- top panel).  
Thus, the majority of models were anticipating La 
Niña to last longer than it did, abruptly ending by 
January 2017 and returning to ENSO-neutral. 

In retrospect, the 2016-17 La Niña ended up as one of the weakest and shortest episodes in the ERSSTv5 
data (Huang et al., 2017) extending back to 1950, lasting exactly five consecutive seasons from July-

 Fig. 1  Observed monthly Niño-3.4 index values 
(black line) from daily OISST (Reynolds et al. 
2007) and once monthly forecasts of Niño-3.4 
from the North American Multi-Model (NMME) 
from January 2016 through October 2017 (grey 
lines showing ensemble means).  The pink and 
purple lines show the NMME forecast ensemble 
initialized in October 2017.  The x-axis shows the 
month and the y-axis shows the Niño-3.4 index 
value.  Departures are formed by removing 
monthly means during 1982-2010. 
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September (JAS) 2016 – November-January (NDJ) 2016-17 (with a maximum amplitude of -0.7°C).  Notably, 
the La Niña of 2016-17 was so marginal that the Bureau of Meteorology in Australia never reached its own 
La Niña thresholds, meaning it is debatable whether the 2016-17 La Niña was robust enough to be considered 
a full-blown event.  
2. Global temperature, precipitation, and circulation anomalies during NDJ 2016-17 and their relation 
with ENSO 

CPC defines the Northern Hemisphere winter season as the December-January (DJF) average, but 
because La Niña officially only lasted through NDJ 2016-17 (see previous section), the analysis in this 
section is only presented for NDJ.  The left column of Fig. 3 shows observed climate anomalies during NDJ 
2016-17 and the right column shows the regression of these climate anomalies onto the Niño-3.4 index, which 
helps to diagnose the anomalies 
linearly associated with ENSO (note: 
there are also non-linear anomalies, 
but these are not presented herein).  
The regression patterns presented in 
the right column are multiplied by a 
factor and multiplied by minus one, 
so that the La Niña anomalies can be 
seen more clearly and compared with 
the observations.  In the top right 
corner of each row, the spatial 
correlation (with the spatial mean 
removed) between the observations 
and the ENSO regression is displayed 
for 500-hPa geopotential height and 
winds (top row), surface temperature 
(middle row), and precipitation 
(bottom row). 

Among all the variables, the 
largest spatial correlation (r=-0.42) or 
match between the observed 
anomalies and the expected linear 
ENSO pattern occurs for precipitation 
(Fig. 3, bottom row).  Corresponding 
to La Niña, NDJ 2016-17 
precipitation was enhanced over the 
Maritime Continent and Southeast 
Asia, northwestern Australia, over 
parts of southern Africa (excluding 
the southern tip), and over most of 
northern South America.  Reduced 
precipitation occurred over parts of 
southern Brazil and northern 
Argentina.  While the La Niña pattern 
emerged over parts of the globe, over 
the contiguous southern United States, 
the expected drier-than-average 
pattern did not materialize (with the 
exception of Florida) and instead the 
pattern was largely average or wetter-
than-average. 

Fig. 2  (top panel) The Logarithmic Skill Score (LSS) of the Niño-
3.4 index for target months between January 2016 and 
September 2017 out to 12-months lead from the NMME (more 
info on LSS in Tippett et al., 2017).  Red shading indicates skill 
that is worse than climatological forecasts and blue shading 
indicates skill better than climatological forecasts.  Also shown 
are the forecasts of Niño-3.4 for all ~100 members from the 
NMME (blue lines) for targets of July 2016 (middle panel) and 
for April 2017 (bottom panel). The horizontal black line shows 
the observed Niño-3.4 index value for that target month.  On the  
x-axis is the lead time in months. 
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Figure 4 shows scatterplots between the Niño-3.4 index values and the NDJ 2016-17 spatial correlations 
(red dot) relative to other NDJ seasons between 1979-2016 (black dots) for 500-hPa geopotential height (left 
panel), surface temperature (middle panel), and precipitation (right panel).  At the top of each panel in Fig. 4, 
the temporal correlation is provided between the Niño-3.4 index value and the spatial correlations (between 
the observed maps and the ENSO regression).  From this analysis, it is clear that precipitation and 500-hPa 
heights have the strongest linkage with Niño-3.4 (r is ~0.9), meaning that larger values of Niño-3.4 are 
generally associated with larger spatial correlations.  Phrased another way, the similarity between the 
observed global anomalies and the “expected” ENSO pattern is higher with stronger ENSO events.  That NDJ 
2016-17 was a marginal La Niña with index values closer to -0.5, it follows that the spatial correlations 
indicated in Fig. 3 are not particularly high. 

In fact, one interesting aspect of the NDJ 2016-17 anomalies was how dissimilar the 500-hPa heights 
were from the ENSO regression (Fig. 3 - top two panels and Figure 4 - left panel). The spatial correlations 
were positive (r=0.23), meaning the anomalous height pattern was mostly opposite of what would be expected 
during La Niña.  In particular, the global tropics during NDJ 2016-17 were remarkable for its above-average 

Fig. 3  November 2016-January 2017 (NDJ) anomalies of 500-hPa geopotential height and winds (top row), 
surface temperature (middle row), and precipitation (bottom row). The left column shows the 
observational data, while the right column shows the reconstruction for 2016-17 (weighted regression map 
of the Niño-3.4 index).  The reconstruction is multiplied by a factor of eight to aid comparison. The r-
values show the spatial correlation coefficient between the observational and the reconstructed anomalies 
(cosine weighted by latitude). Geopotential height and wind data is from the NCEP/NCAR Reanalysis, the 
temperature is from the gridded GHCN+CAMS dataset (Fan and van den Dool, 2008), and precipitation 
data is from the gridded Precipitation Reconstruction Dataset (PREC) dataset (Chen et al., 2002). 
Departures are formed by removing monthly means during 1981-2010.  
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heights, which are typically below average during La Niña.  Also, in the Southern Hemisphere mid-to-high 
latitudes, the circulation anomalies were reflective of a negative state of the Southern Annular Mode or 
Antarctic Oscillation, which is usually positive during La Niña.  Only over the North Pacific Ocean did an 
anomalous anticyclone emerge, which is consistent with a retracted Asian jet stream, a common signal during 
La Niña.  The poor fit of the circulation pattern during NDJ 2016-17 has some parallels with other marginal 
La Niña events (see the black dots surrounding the red dot in Fig. 4- left), but it was certainly striking. 

Finally, the correspondence between the expected surface temperature pattern and the observations were 
very close to zero (r=0.08), indicating little fit between the two.  This is evident by the large areas of above-
average temperature anomalies that are not commonly seen during La Niña, when below-average 
temperatures tend to prevail over the globe (Fig. 3- middle row).  However, Fig. 4 (middle panel) clearly 
shows that a weak correspondence between the observations and ENSO regression is often the case during a 
weak La Niña such as the one that occurred in 2016-17. 

Acknowledgements.  The ENSO forecast team: Anthony Barnston, Emily Becker, Gerry Bell, Tom Di 
Liberto, Jon Gottschalck, Mike Halpert, Zeng-Zhen Hu, Nathaniel Johnson, Wanqiu Wang, Yan Xue. 
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Fig. 4  Scatterplots of the spatial correlation between the ENSO regression maps of 500mb geopoential height 
(left panel), temperature (middle panel) and precipitation (right panel) and the observed anomalies.  The 
spatial correlation coefficient is on the y-axis and the seasonal average Nino-3.4 index value is on the x-
axis.  Each dot represents a single year between 1982-2017. The red dot indicates the 2016-17 La Niña (the 
spatial correlations are also presented in Fig. 3).   At the top of each panel are the temporal correlations 
between the Niño-3.4 values (x-axis) and the spatial correlations (y-axis).  The spatial mean is removed. 
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1.  Introduction 

 In August 2016, tropical cyclones formed over an area of enhanced convective activities to the southeast 
of Japan and moved westward or northward (Fig. 2d) with warm and moist air inflow, causing significant wet 
conditions in eastern and northern Japan (Fig. 1). Japan Meteorological Agency (JMA) performed climate 
diagnoses for the event and suggested that the Rossby wave-breaking (RWB) to the east of Japan might 
induce the enhanced convective activities to the southeast of Japan.  

As some associated previous studies, Sato et al. 
(2005) showed that the southward high potential 
vorticity (PV) intrusion associated with the upper 
cold low tends to contribute to enhanced convective 
activities in the sub-tropical western North Pacific. 
Molinari and Vollaro (2012) also reported on a 
similar event with a time scale of several days and 
suggested the contribution of enhanced troughs near 
the jet stream exit to the east of Japan to the sub-
tropical cyclonic gyre. 

In this study, we examine how the RWB to the 
east of Japan excited the enhanced convective 
activities and the responses of the cyclonic 
circulation anomalies which caused the anomalous 
weather conditions over Japan. This line of the 
approach is important for JMA to accumulate our 
knowledge about anomalous circulation and how to 
monitor it. 

2.  Data and methodology 

The Japanese 55-year reanalysis dataset (JRA-55, 
Kobayashi et al. 2015) was used to diagnose 
atmospheric circulation in August 2016. “Normal” 
was defined as the 30-year average during the period 
from 1981 to 2010, and “anomalies” were defined as 
deviations from the normal. The propagation of 
quasi-stationary Rossby-wave packets was analyzed using wave activity flux (WAF) after Takaya and 
Nakamura (2001). To infer convective activities, we used outgoing longwave radiation (OLR) data provided 
by NOAA.  

To examine atmospheric responses to diabatic heating anomalies associated with enhanced convective 
activities, we used a linear baroclinic model (LBM; Watanabe and Kimoto 2000, 2001) comprising primitive 
equations exactly linearized about a basic state defined as the normal. The model has the resolution of T42 
and is vertically discretized by a finite difference to 40-sigma levels.  

Fig. 1 Monthly mean temperature anomalies, 
precipitation ratios and sunshine duration ratios in 
Japan for August 2016. 
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3. Results 

Figure 2 shows 300-hPa and 850-hPa 
stream function anomalies and 360-K 
isentropic PV and OLR anomalies 
averaged in August 2016. The wave 
patterns of the circulation anomalies in 
the upper troposphere are observed along 
the Asian jet stream over an area 
extending from Eurasia to the seas east of 
Japan (Fig. 2a). An omega-shaped 
blocking high, with distinct anti-cyclonic 
circulation anomalies and an associated 
meridional PV overturning and 
southward intrusion of the high PV (Fig. 
2b), is observed to the east of Japan. On 
the other hand, convective activities are 
enhanced over latitude bands near 20°N 
to the southwest of the high PV (contour 
lines in Fig. 2b). Six tropical cyclones 
formed over the seas south to southeast 
of Japan in the month (Fig. 2d), 
corresponding to the enhanced 
convective activities (Fig. 2b). In the 
lower troposphere, large-scale cyclonic 
circulation anomalies are clearly 
observed over the wide area in the sub-
tropical western North Pacific (Fig. 2c), 
indicating not only circulation 
accompanied by the tropical cyclones but 
also a Rossby-wave response to the 
enhanced convective activities.  

To examine the dynamic relation 
between the southward intrusion of the 
high PV and the enhanced convective 
activities based on the quasi-geostrophic 
(QG) theory, vertical motion induced by 
the QG balance was diagnosed using Q-
vectors field. In the Q-vectors and its 
divergence derived from the monthly 
mean in August 2016 shown in Fig. 3, 
convergence anomalies are seen along 
just south of the area (near 20°N; Fig. 3c) 
where the stronger-than-normal 
southward intrusion of high PV is 
observed (Figs. 3a and 3b), indicating 
that QG upward motion is induced due to 
temperature advection or vertical 
derivatives of vorticity advection. A daily 
time series for the Q-vectors divergence 
over the same area (bars in Fig. 3d) 
indicates convergence, particularly two 

Fig. 2 Monthly mean (a) 300-hPa and (c) 850-hPa stream 
function (contour lines) and its anomalies (shading); contour 
lines at intervals of 5×10

6
 m

2
/s; WAF (vector) and (b) OLR 

anomalies (contour lines at intervals of 10 W/m
2
, positive 

anomaly values omitted); and 360-K PV (shading at intervals 
of 1 PVU) in August 2016. The red closed circle and lines in 
(d) shows the points of origin for the typhoon formed over 
the seas south to southeast of Japan in the month and its best 
tracks, respectively, based on data from JMA. 

Fig. 3  (a) Actual, (b) normal, and (c) anomalous Q-vectors at 
500 hPa (vector; unit: m2/kg/s) and its divergence (shading; 
unit: m/kg/s) derived from monthly mean in August 2016. 
The contour lines in (a) and (b) show 360-K PV at intervals 
of 1 PVU. (d) Daily time series of the Q-vectors divergence 
(brown bars denote divergence and green ones denote 
convergence) and OLR (blue dashed lines) averaged over 
15oN–25oN and 150oE–180oE. 
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or three peaks of strong convergence during the period from end of July to late August. The time variation of 
the Q-vectors divergence is consistent with that of OLR, indicating that the QG upward motion induced by 
the high PV primarily contributed to the enhanced convective activities over the sub-tropical western North 
Pacific (Figs. 2b and 2c).  

Figure 4 shows vertical differences of vorticity advection by QG horizontal wind between 200 hPa and 
850 hPa. In association with cyclonic vorticity advection due to stronger-than-normal southward wind in the 
upper troposphere, positive anomalous vertical differences of the vorticity advection are seen (Fig. 4) over 
and around the area where the Q-vectors convergence anomalies are observed (Fig. 3) and south of the 
intruding high PV (Fig. 2b). Warm-air advection in the mid-troposphere, which is one of the factors that 
induces the QG upward motion, is not clearly seen over and around the same area (not shown). For the 
influence of extra-tropical circulation on the sub-tropical circulation in August 2016, the Q-vector and 
vorticity budget diagnoses indicate that the 
RWB to the east of Japan and the associated 
strong mid-Pacific trough contribute to the 
enhanced convective activities over the sub-
tropical western North Pacific through the 
QG upward motion.  

An inter-annual time series of 350-K PV 
averaged over the area east of Japan and 
OLR anomalies and Q-vector divergence 
averaged over latitude bands near 20°N in 
the western Pacific (Figs. 5a, 5b and 5c) 
indicates the lowest on record in August 
2016 since 1979 and that they exhibit the 
significant characteristics of the circulation 
mentioned above. These characteristics 
suggest that compared with the normal, a 
Rossby-wave packet that propagated along 
the Asian jet stream converged to the east of 
Japan and contributed the enhanced 
convective activities through the QG upward 
motion and the associated formation of 
tropical cyclones.  

To assess the impact of the tropical 
convective activities on the atmospheric 
circulation, a deterministic numerical 

Fig. 4  Monthly mean (a) actual, (b) normal, and (c) anomalous vertical differences (200 to 850 hPa) of 
vorticity advection (shading; unit: 10

-5
 s

-1
 day

-1
) by QG horizontal wind (vector) in August 2016. The 

contour lines in (a) and (b) show 360-K PV at intervals of 1 PVU. 

Fig. 5  For August, from 1979 to 2016, inter-annual time 
series of monthly mean (a) 350-K PV (PVU) averaged 
over 35

o
N–45

o
N and 150

o
E–180

o
E; (b) OLR anomalies 

(W/m
2
) averaged over 15

o
N–25

o
N and 150

o
E–180

o
E; and 

(c) Q-vectors divergence anomalies (10
-17

 m/kg/s) 
averaged over 15

o
N–25

o
N and 150

o
E–180

o
E. 
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experiment was performed using the LBM. The LBM was solved with monthly mean diabatic heating 
anomalies over the area from 30°S to 30°N in August 2016. The vertical integrated heating anomalies 
(shading in Fig. 6) indicate the existence of strong heat sources associated with enhanced convective activities 
over and around 20°N in the western North Pacific. The LBM responses of 300-hPa and 850-hPa height fields 
show positive (anti-cyclonic) and negative (cyclonic) anomalies over the seas southeast of Japan, respectively, 
indicating the Rossby-wave response to the strong heat sources (Figs. 6a and 6b). The responses of cyclonic 
circulation anomalies at 850 hPa are consistent with the circulation anomalies observed in August 2016 (Fig. 
2c), indicating the influences of the enhanced convective activities over the sub-tropical western North Pacific 
on the large-scale cyclonic circulation anomalies and presumably on the origin and track of the tropical 
cyclones. By contrast, the responses of anti-cyclonic circulation anomalies at 300 hPa differ from the anomaly 
patterns observed in August 2016 (Fig. 2a), indicating that the upper tropospheric circulation anomalies 
primarily formed not by the responses to the enhanced convective activities in the sub-tropical western North 
Pacific but by the quasi-stationary Rossby-wave propagation from Eurasia along the Asian jet stream (see 
WAF shown in Fig. 2a). 

The results of Q-vectors diagnoses and LBM experiments mentioned above suggest that the RWB to the 
east of Japan and the quasi-geostrophically induced convection over the sub-tropical western North Pacific 
contributed to a series of typhoon formations or landfalls, which caused significant wet conditions in eastern 
and northern Japan in August 2016.  
4. Discussion and conclusions 

We investigated the dynamic relation between the RWB to the east of Japan and the associated enhanced 
convective activities over the sub-tropical western North Pacific and their influence on Japan’s climate in 
August 2016. In the monthly mean atmospheric circulation, the quasi-stationary Rossby-wave propagation is 
observed along the Asian jet stream and resultant wave packet convergence to the east of Japan (i.e., the 
occurrence of RWB). The RWB accompanies meridional PV overturning and southward intrusion of the high 
PV in the upper troposphere (i.e., the enhanced mid-Pacific trough). The enhanced convective activities in the 
sub-tropical western North Pacific are presumed to be mainly associated with the upper tropospheric 
southward positive vorticity advection through the QG upward motion. The LBM experiment indicates that 
the 850-hPa cyclonic circulation anomalies over the wide area in the sub-tropical western North Pacific are 
associated with the Rossby-wave response to the enhanced convective activities. The convective activities and 
cyclonic circulation anomalies are presumed to be related to the formation of six tropical cyclones and 
significant wet conditions mainly owing to a series of typhoons passing over eastern to northern Japan. 

Fig. 6  Steady linear responses of (a) 300-hPa and (b) 850-hPa height (contour lines) in the LBM to 
diabatic heating anomalies in the tropics (30

o
S–30

o
N) for August 2016 (shading). The anomalies 

represent deviations from the basic states of the normal in August. The contour intervals is (a) 10 and 
(b) 5 m. Dashed contours show negative values. 
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The Q-vectors and vorticity budget diagnoses infer that the QG upward motion associated with the strong 
mid-Pacific trough induced the enhanced convective activities in the sub-tropical western North Pacific. To 
demonstrate the causal relation between them, some impact experiments with the relaxation area over and 
around the mid-Pacific trough were performed using JMA’s operational one-month ensemble prediction 
system. The results of the experiments indicate the existence of the causal processes from the mid-Pacific 
trough to the sub-tropical convective activities associated with the QG balance; these results support the 
inferences mentioned above. The detailed results and discussion will be presented in another paper. 

Further investigations are needed to identify the primary factors that caused the significant atmospheric 
circulation in August 2016, as shown in the interannual time series of some area-averaged elements in Fig. 5. 
The significant amplification of the blocking high to the east of Japan (Fig. 2a) and the lower tropospheric 
large-scale cyclonic circulation over the sub-tropical western North Pacific are presumed to be associated 
with some atmospheric instability with its seasonal basic states. To assess the contribution of the atmospheric 
instability to the significant amplification, baroclinic and barotropic energy conversion from the basic states 
defined as the normal to the anomaly patterns will be calculated in future studies and detailed results will be 
presented. 

Although this is a case study for the anomalous summer conditions over and around Japan in August 2016, 
we expect that studying the dynamic interaction between extratropical and tropical circulation is important to 
make further progress in both climate system monitoring and seasonal forecasting. 
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1.  Introduction 

 Across the Northern Great Plains (NGP) states of the United States, in large parts of Montana, North 
Dakota and South Dakota, drought like conditions emerged  suddenly in spring 2017, which progressively got 
worse quickly in late spring and summer lasting  throughout  the year, and the drought conditions have not 
eased even in early 2018. This brief note describes the conditions under which the NGP drought emerged, 
whether its emergence could have been identified a bit earlier, and for how long it is likely to last.  

2.  Drought fact and 2017 NGP condition 

The first and foremost fact about this or any other drought is the very obvious, that, it is the consequence 
of the lack of, or significant deficit in, the “normal/expected precipitation” in a given region during a “certain 
time” of the year. The severity, extent and longevity of the resulting drought depend on how much the 
precipitation deficit is from normal levels, and for how long that deficit lasts. If that “certain time” of the year 
happens to be among the  few months in the main rainy season for that region, then the consequences of the 
rainfall deficit possibly leading to the local drought is certain, and that drought conditions will probably last 
until next year when the rainfall season returns. In Fig. 1 is shown the sequence of weekly United States 
Drought Monitor (USDM) maps beginning with the week of 2nd May 2017 map, until the 18th May 2017 
map.  From these USDM maps, it appears that drought conditions were declared in very late May in eastern 
Montana and the Dakotas at the D0 level of drought and quickly spreading and intensifying in the subsequent 
weeks to the maximum D4 category by August and September (bottom two big panels of Fig.1). At the 
beginning of this sequence of maps, except for a small patch of drought in the southeast US, drought free 
conditions prevailed in general over much of the country, and by the end of summer into early fall, the 
Northern Plains Drought was the dominant meteorological event and newsmaker in the country. 

3.  Early detection of drought onset 

Even though, once the Northern Great Plains (NGP) drought was forecast well, in successive months after 
the drought got established, the quick emergence and the sudden development of the drought caught many 
local farmers by surprise, and there was even an inkling if the NGP Drought was not “declared” even earlier, 
during the onset period. We will address this issue partly by using Figures 2 and 3. In Fig. 2, is shown the1-
month (1st column), 2-months (middle column), and 3-months (last column) accumulated precipitation deficit 
(yellow/red) and surplus (blue/green) in months ending Jan 2017 through May 2017. Medium percent of 
annual precipitation during the different 3-month calendar seasons for the United States (courtesy of Rich 
Tinker, CPC/NCEP) are shown in Fig. 3.  Here we highlight the main precipitation season May-June-July 
(MJJ) for the Northern Plain states, the region of drought under study here. Note that in the NGP states, even 
though over half to two thirds (possibly above) of the annual rain falls during MJJ months, the region begins 
to get some early rain in late March and April, which is critical to the farmers there, after the rigid winter cold, 
when much of the surface is frozen. Here, the pre-rainy season Feb-Mar-Apr (FMA) gets about 15-20 percent 
of the median rainfall.  But in 2017, as can be seen in Fig. 2 (middle/last columns across April),  as indicated 
by a red square,  there has already been a deficit building up towards end of April, which must have been a 
warning sign for possible emerging  drought.  Precipitation deficit/excess maps like Fig. 2 (which can be 
made at any day of the month) made in the last week of April or first week of May, for the preceding 
contiguous 30, 60 or 90 days (not shown here) period accumulations, show in fact, that even by late April or 
early May,  the  clear  warning  signs of  developing  dryness and  an  emerging  drought,  are already in place.   
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With the established deficit already in place in the region, if the “expected rain” did not arrive in successive 
week(s), the caution/alarm bells should have triggered to initiate the drought warning there. But it was not 
done until very late May, when the US drought monitor caught the drought condition.  

Fig.1   The weekly U.S. Drought Monitor at various stages of the 2017 Great Northern Plains Drought.  The 
top 12 panels are weekly sequential DM maps and the last two are at peak drought stage. 
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Fig. 2 1-mon (1st column), 2-months (middle column), and 3-months (last column) accumulated precipitation 
Deficit (yellow/red) Surplus (blue/green) in months ending Jan through May 2017. 

Jan 

Feb 

Mar 

Apr 

May 
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The monthly drought outlook (MDO) issued on April 30, 2017 (Fig. 4) or the seasonal drought outlook 
(SDO) issued on both 20 April or 18 May did not indicate any drought in the NGP. Only the MDO issued on 
31 May pointed to a drought in the region and that it was likely to persist. 

4.  Remarks 

In closing, why was such a delay? In retrospect, a few reasons come to mind.  First, this NGP states is not 
the typical region that drought usually occurs, so overall possibly less attention was given to the region (rarity, 
low population density (?), etc.). Second, until just a few months earlier (late 2016/early 2017) the major 
focus and more attention had been on the other two major drought areas in more “important” drought prone 
regions namely California and the southeast US. Also the focus was centered on the totally unexpected rains 

 Fig. 3  Medium percent of annual precipitation during the different 3-
month seasons (from JFM to JAS) for the United States (courtesy of 
Rich Tinker, CPC/NCEP), to highlight the main rainy season (MJJ) 
for the Northern Plain states, the region of drought under study here. 
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in California during 2016/2017 La Nina winter which abruptly ended the long lasted drought in that region 
and the gradual improvement in the drought in the southeast US. Thirdly, and more importantly, the NMME 
models and the official forecasts (not shown here) called for above normal MJJ seasonal rain in the region 
(which of course did not happen!), and consequently the NLDAS models followed suit to return the dryness 
towards normal (did not verify!). These are valuable lessons learned from this NGP drought, and it is hoped 
that the onset of the 2018 rainy season (possibly a good one!) will probably end the drought in the region 
which started in spring 2017.  

Fig. 4  Monthly Drought Outlooks issued in April, May and June 2017 on the right panels, and the Seasonal 
drought outlooks issued in the middle of the same months on the left. 
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The Australian Climate of 2016: 
A Strong Negative Indian Ocean Dipole Dominates 
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1.  Introduction/Overview 

 The very strong 2015–16 El Niño brought dry conditions to many parts of Australia right up until its 
decay in the austral autumn (March to May). But then the climate flipped: May to November 2016 saw the 
Australian climate, and indeed many locations surrounding the Indian Ocean, dominated by a strong negative 
Indian Ocean Dipole (IOD) event, which resulted in very wet conditions across Australia, particularly in the 
south.   

2.  The Indian Ocean Dipole (IOD) 

The IOD (Saji et al. 1999, Saji 
and Yamagata 2003 a, b) is defined 
by the difference in sea surface 
temperature anomalies between the 
western and eastern tropical Indian 
Ocean (see Fig. 1). A negative phase 
of the IOD is indicated by cooler 
than average waters closer to Africa 
and warmer than average waters 
closer to Indonesia. These warmer 
waters close to Indonesia act to 
favour convection to the northwest 
of Australia, triggering a Rossby 
wave train that encourages lower 
pressures over southeast Australia 
(Lim and Hendon 2017) and more 
moisture into the Australian region 
(Risbey et al. 2009). Cooler waters 
and hence subsiding air in the west 
reduce rainfall in eastern Africa/Horn of Africa. Typically, IOD events develop during May or June, peak 
around October, and rapidly decay by November or early December. The IOD pattern is unable to form 
during December to April. This is because the monsoon trough shifts south over the IOD regions, changing 
the wind patterns, and upsetting the east/west circulation over the tropical Indian Ocean. 

3.  Event development 

In March and April 2016 (Australian Bureau of Meteorology 2016 a, b), international climate models were 
suggesting the development of a negative IOD event. Event onset occurred slightly sooner than forecast, with 
a dipole pattern developing in late May, reaching peak strength in July (Fig. 2), which then persisted through 
to the end of October. Values were strongly negative at times, with the monthly IOD index value for July the 
most negative since reliable records began in 1960. Historical index values are based upon the NOAA 
Extended Reconstructed Sea Surface Temperature Version 5 (ERSST v5), Huang et al. 2017, sourced from: 
http://www.esrl.noaa.gov/psd/. 

Fig. 1  East and west nodes of the Indian Ocean Dipole. West node covers 
the area from 50°E to 70°E and 10°S to 10°N while east node covers 
the area from 90°E to 110°E and 10°S to 0°S. Source: Australian 
Bureau of Meteorology. 
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4.  Rainfall effect and Australian cropping season 

The strong negative IOD heralded wetter conditions for much of southern Australia, and helped bring 
Australia its wettest May to September period in 117 years of national rainfall records (Fig. 3). This was a 
much needed turnaround for previously drought-affected regions in Victoria and inland Queensland.  

The end of the negative IOD event in November, and a subsequent return to near-average rainfall and 
temperatures, meant the Australian grain crop of 2016 had experienced a near-perfect growing-season climate. 
Ideal conditions for the grain crop are good rainfall and few frosts during its growing season, and little rainfall 
or heatwaves during the harvest time, which is typically around November or December. These ideal growing 
conditions in 2016 resulted in Australia's largest winter grain crop on record, around 30 per cent above the 
previous record set in 2011–12 (ABARES 2018). 

In contrast, eastern Africa continued to experience dry conditions, with the failure of their long rains 
(March to May) and short rains (October to December) extending an already significant drought, leading to 
poor crops and ultimately a food shortage crisis (World Food Program 2016 a, b). 
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1.  Introduction 

In June-July 2016, a barrage of extreme rainfall hit the middle and lower reaches of Yangtze River in 
eastern China, which caused severe urban inundations in big cities such as Wuhan and Nanjing, and resulted 
in direct economic loss of 70 billion RMB (about 10 billion US dollars). The rainfall anomaly exceeded 300-
400 mm within 10 days, and was ranked as the 1st heaviest 10-day rainfall since 1951 (Yuan et al., 2018). 
Understanding the causality and predictability of the 2016 Yangtze River extreme rainfall is crucial for 
flooding early warning and adaptation in a changing climate. 

The Yangtze extreme rainfall was supposed to be associated with the 2015/16 big El Niño, nevertheless 
its spatial pattern was different from the 1997/98 El Niño-induced Yangtze River extreme rainfall. The June-
July mean rainfall was regressed against NINO3.4 index during preceding DJF, and it is found that the ENSO 
forced teleconnection pattern shifts from southeastern China to the middle and lower reaches of Yangtze 
River after 2000, resulting in a pattern that is similar to the 2016 extreme rainfall (Fig. 1). This suggests the 
northward shift of the ENSO forced teleconnection may increase the risk of extreme rainfall over Yangtze 
River. 

Fig. 1  Decadal change in ENSO-East Asian summer rainfall teleconnection. Regressed June-July mean 
rainfall anomaly (mm/day) against NINO3.4 SST in the preceding December-February during 1977-
1999 and 2000-2016 respectively, where the stippling indicates a 90% confidence level. 

2. Causality and potential sub-seasonal predictability 

To explore the causality of the risk change, CMIP5 model simulations with all and natural only forcings 
were used. CMIP5 models seem to over-represent the ENSO-seasonal mean rainfall teleconnection and 
under-represent the ENSO-extreme rainfall teleconnection, but the models’ simulations on the teleconnection 
pattern can be improved to some extent with the consideration of anthropogenic forcings, suggesting that 
anthropogenic climate change may play an important role in influencing the likelihood of the Yangtze River 
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extreme rainfall. In fact, anthropogenic climate change has increased risk of 2016 Yangtze River extreme 
summer rainfall by 1/3, and it could reach 2/3 in El Niño years (please see Yuan et al. 2018 for details). 

CFSv2 model roughly captured the rainfall anomaly at 1.5-month lead, with an underestimation of the 
magnitude (Fig. 2). The sub-seasonal predictability of the Yangtze River extreme rainfall was investigated by 
using CFSv2 hindcasts and real-time forecast with a “perfect model” assumption. It is found that the potential 
predictability of atmospheric moisture flux, which is a key factor for extreme rainfall, is higher than the 
potential predictability of the extreme rainfall at sub-seasonal time scale (Wang and Yuan 2018). This 
suggests that atmospheric moisture flux may also be a good indicator for extreme rainfall prediction such as 
2016 at sub-seasonal scale. 
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Fig. 2  June-July mean rainfall anomaly in 2016 predicted by CFSv2 at different lead times. 
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ABSTRACT 

 Upon landfall, atmospheric rivers (ARs)―plumes of intense water vapor transport—often trigger 
weather and hydrologic extremes. Presently, no guidance is available to alert decision makers to anomalous 
AR activity within the subseasonal time scale (~2–5 weeks). Here, we construct and evaluate an empirical 
prediction scheme for anomalous AR activity based solely on the initial state of two prominent modes of 
tropical variability: the Madden–Julian oscillation (MJO) and the quasi-biennial oscillation (QBO). The 
MJO—the dominant mode of intraseasonal variability in the tropical troposphere—modulates landfalling AR 
activity along the west coast of North America 
by exciting large-scale circulation anomalies 
over the North Pacific. In light of emerging 
science regarding the modulation of the MJO by 
the QBO—the dominant mode of interannual 
variability in the tropical stratosphere—we 
demonstrate that the MJO–AR relationship is 
further influenced by the QBO. Evaluating the 
prediction scheme over 36 boreal winter seasons, 
we find skillful subseasonal “forecasts of 
opportunity” when knowledge of the MJO and 
the QBO can be leveraged to predict periods of 
increased or decreased AR activity (Fig. 1). 
Certain MJO and QBO phase combinations 
provide empirical subseasonal predictive skill 
for anomalous AR activity that exceeds that of a 
state-of-the-art numerical weather prediction 
model. Given the wide-ranging impacts 
associated with landfalling ARs, even modest 
gains in the subseasonal prediction of anomalous 
AR activity may support decision making and 
benefit numerous sectors of society.  

This work was published in npj Climate and 
Atmospheric Science in 2018. 
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Fig. 1  Heidke skill score (HSS) values as a function of 
MJO phase (y axis) and forecast lead time (x axis) for 
the British Columbia (left column) and California (right 
column) landfall boundaries, (a, b) independent of the 
state of the QBO, as well as conditioned on (c, d) 
easterly QBO (EQBO) and (e, f) westerly QBO 
(WQBO). Only conditional combinations where the 
HSS is positive are shaded. The shading is based on the 
dominant AR activity response: decreased activity 
(oranges) or increased activity (greens). Statistical 
significance of the skill scores is denoted by the light 
gray diamonds (≥80th percentile) and dark gray squares 
(≥90th percentile), based on 1000 block bootstrap 
samples. 
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ABSTRACT 

 In recent years, the topic of seasonal predictability of tornado outbreaks has attracted the attention of 
researchers.  Previous studies on this matter have focused mainly on the influence of global circulation 
patterns (e.g., El Niño Southern Oscillation (ENSO), North Atlantic Oscillation, Pacific Decadal Oscillation) 
on tornado outbreaks. However, these studies have yielded conflicting results of the roles of these climate 
drivers on tornado intensity and frequency. The present study seeks to establish linkages between ENSO and 
tornado outbreaks over the U.S. during winter and early spring. These linkages are established in two ways: 1) 
Statistically, by relating raw counts of tornadoes in outbreaks (defined as six or more tornadoes in a 24-hour 
period in the U.S. east of the Rocky Mountains), and their destructive potential, to sea surface temperature 
anomalies observed in the Niño 3.4 region; and 2) Qualitatively, by relating ENSO to shifts in synoptic-scale 
atmospheric phenomena that influence to tornado outbreaks.  The latter approach is critical for interpreting 
the statistical relationships, thereby avoiding the deficiencies in previous studies that failed to provide 
physical explanations relating ENSO to shifts in tornado activity. The results suggest shifts in tornado 
occurrence are clearly related to ENSO.  In particular, La Niña conditions consistently foster more frequent 
and intense tornado activity 
compared with El Niño, particularly 
at higher latitudes (Fig. 1).  Tornado 
activity changes are tied not only to 
the location and intensity of the 
subtropical jet during individual 
outbreaks, but also to the positions 
of surface cyclones, low-level jet 
streams, and instability axes.  

This work has been published in 
the Journal of Applied Meteorology 
and Climatology in September 2017. 
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Fig. 1   Contour plots representing normalized gridded tornado counts 
during April in each ENSO phase.  Tornado data was normalized 
against the number of April months classified as El Niño (EN), La 
Niña (LN), and Neutral (N).   The black stars indicate locations of 
maximum normalized tornado occurrences. 
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ABSTRACT 

With warm sea surface temperature (SST) anomalies in the tropical Atlantic and cold SST anomalies in 
the east Pacific, the unusually quiet hurricane season in 2013 was a surprise to the hurricane community. The 
authors’ analyses suggest that the substantially suppressed Atlantic tropical cyclone (TC) activity in August 
2013 can be attributed to frequent breaking of midlatitude Rossby waves, which led to the equatorward 
intrusion of cold and dry extratropical air. Rossby wave breaking (RWB) perturbs the wind and moisture 
fields throughout the troposphere in the vicinity of a breaking wave. When RWB occurs more frequently over 
the North Atlantic, the Atlantic main development region (MDR) is subject to stronger vertical wind shear 
and reduced tropospheric moisture; the basinwide TC counts are reduced, and TCs are generally less intense, 
have a shorter lifetime, and are less likely to make landfalls (Fig. 1). A significant negative correlation was 
found between Atlantic TC activity and RWB occurrence during 1979–2013. The correlation is comparable to 
that with the MDR SST index and stronger than that with the Niño-3.4 index (Fig. 1). 

 
Further analyses suggest that the variability of RWB occurrence in the western Atlantic is largely 

independent of that in the eastern Atlantic. The RWB occurrence in the western basin is more closely tied to 
the environmental variability of the tropical North Atlantic and is more likely to hinder TC intensification or 
reduce the TC lifetime because of its proximity to the central portion of TC tracks. Consequently, the 
basinwide TC counts and the accumulated cyclone energy have a strong correlation with western-basin RWB 
occurrence but only a moderate correlation with eastern-basin RWB occurrence. The results highlight the 
extratropical impacts on Atlantic TC activity and regional climate via RWB and provide new insights into the 
variability and predictability of TC activity. 

Fig. 1  (Left) Composites of 
TC tracks based on the 
RWB index; (upper 
right) the number of 
named tropical cyclones 
and hurricanes in eight 
positive years and eight 
negative years of the 
RWB index; (lower 
right) correlations 
between the TC activity 
indices (hurricane 
counts and accumulated 
cyclone energy) and 
climate indices during 
1979-2013.   (Adapted 
from Zhang et al. 2017) 
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The works presented were published in Journal of Climate in 2017 and Journal of Atmospheric Sciences 
in 2016. 
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1.  Introduction 

 Developing week 2 to 4 severe weather outlooks is one of the CPC projects under the Office of Science 
and Technology Policy initiative.  The goals of this project are (1) to expand development and perform 
evaluation of week-2 severe weather model guidance in the first year, and (2) to explore the potential and 
develop experimental forecast tools for week 3 and 4 severe weather in the second year.  The results presented 
at the workshop focus on week 2 forecast. 

 Based on different timescales, forecasts can be categorized into three types.  One is short-term prediction for 
several days, mainly determined by initial conditions.  Another is seasonal outlook from one month to several 
seasons.  At this timescale, slow evolving components, such as SST, ENSO and AMO, are the sources of 
predictability.  In-between is the extended-range prediction from week 2 to week 4.  At this time range, the forecast 
skill is relatively low mainly due to a lack of source of predictability.  

A recent study by Carbin et al. (2016) uses the Supercell Composite Parameter (SCP) derived from the CFSv2 
45-day forecast to provide extended-range severe weather environment guidance.  When SCP is greater than one, it 
is expected that severe weather will likely occur.  Here we take one more step to forecast severe weather based on 
empirical relationship between model predicted SCP and actual severe weather in historical records. 

2. Data and methods 

The data used in this study 
consist of both observational dada 
and model forecast.  For 
observations, the Climate Forecast 
System Reanalysis (CFSR) and 
local storm report (LSR) are 
employed.  The LSR includes hail, 
tornado, and damaging wind, as 
well as their location, time and 
intensity.  The sum of the LSRs for 
hail, tornado and damaging wind 
are referred to as LSR3 hereafter.  
They are re-gridded to a 0.5°×0.5° 
grid.  We use the NCEP GEFS 16-
day hindcasts for week 2.  
Hindcast period is from 1996 to 
2012.  The hindcasts were made 
every 4 days with 5 members and a 
0.5°×0.5° resolution.  The analysis 
presented was performed with the 
5-member ensemble mean. 

Following Carbin et al. (2016), 

Fig. 1 Climatological monthly mean daily SCP for January, April, July 
and October derived from (a–d) CFSR and (i–l) GEFS day-1 
forecast and (e–h) observed climatological monthly LSR3 in the 
period of 1996–2012. 
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the SCP is defined as 

SCP = (CAPE/1000 J kg−1) × 
(SRH/50 m−2 s−2) × (BWD/20 m s−1), 

where CAPE is convective available 
potential energy, SRH storm-relative 
helicity, and BWD bulk wind difference.  
The three constants are used to 
normalize SCP so that when SCP is 
greater than 1, there is a chance for 
severe weather to occur.  

The forecast model developed in this 
study is a hybrid dynamical-statistical 
model (e.g., Wang et al. 2009).  It uses 
the dynamical model (GEFS) predicted 
SCP as a predictor, and then forecast 
severe weather (LSR3) based on the 
statistical relationship between model 
SCP and actual LSR3 in historical 
records.  The forecast skill is cross-
validated over the GEFS hindcast period 
(1996–2012). 

3.  Results 

The observed seasonality of SCP is 
examined first.  Figure 1a–d shows the 
climatological monthly mean daily SCP 
over the U.S. for January, April, July, 
and October, respectively, derived from 
CFSR.  The seasonal variation of SCP is 
characterized by relatively large values 
of SCP appearing in the Gulf States 
during winter months.  Then SCP 
intensifies and peaks in spring.  The 
region of the maximums moves 
northward from the Southern Plain in 
spring to the Northern Plain in summer.  
From summer to the following winter, 
the SCP value decreases and the center 
of the maximums movers back to the 
south.  The SCP displays strong 
seasonality over the central U.S.  Over 
the same region, the LSR3 also shows 
similar seasonality with strong severe 
weather activity in spring and summer 
(Fig. 1e–h).  During these two seasons, 
however, there are also strong activities 
in the eastern U.S. where SCP value is 
small.  Therefore, in terms of seasonal 
cycle, there is a good correspondence 
between SCP and LSR3 in the central 
U.S.  

Fig. 3 Correlations between observed LSR3 and SCP from the 
GEFS hindcasts for (a) week 1 and (b) week 2 and anomaly 
correlations between observed LSR3 and predicted LSR3 from 
the dynamical-statistical model for (c) week 1 and (d) week 2 
based on cross-validations over the 1996–2012 GEFS hindcast 
period. 

Fig. 2 Anomaly correlation between SCPs from CFSR and GEFS 
hindcasts for (a) week 1 and (b) week 2 over the 1996–2012 
period. 

Fig. 4 One-point correlation map between the observed weekly 
anomaly (1996–2012) at (95.5oW, 37.5oN) and that at each grid 
point over the U.S. for (a) CFSR SCP and (b) LSR3 at 0.5o×0.5o 
grid and for (c) CFSR SCP and (d) LSR3 averaged over 5o×5o 
boxes, respectively. 
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For comparing the seasonal cycle 
between observations and GEFS forecast 
for SCP, Fig. 1 i–l also shows the long-
term monthly mean SCP from the GEFS 
day-1 forecasts.  Overall, the model 
captures the observed seasonality of SCP.  
For other leads (day-2 to day-14 
forecasts), the monthly climatology of 
SCP slightly decreases with lead time 
(not shown).  

The GEFS forecast skill for SCP is 
assessed by anomaly correlation (AC) 
between GEFS SCP and CFSR SCP.  
The forecast skill decreases with lead 
time from day 1 to day 14.  Particularly, 
there is a sharp decrease from day 7 to 
day 8 (not shown).  Consistently, the 
week-2 forecast skill is much lower than 
week 1, as shown in Fig. 2. 

To develop a hybrid forecast model, we first need to establish some relationship between GEFS predicted 
SCP and observed LSR3.  The relationship is the basis for the dynamical-statistical prediction.  Given the 
strong seasonality of both SCP and LSR3 (Fig. 1), a 3-month moving window is used in the analysis.  As an 
example, Fig. 3a–b shows the correlations between observed LSR3 and GEFS week-1 and week-2 forecasts 
of SCP, respectively, for March, April, and May (MAM), the peak severe weather season.  The correlation 
with the week-2 forecast is less than the week-1 forecast, indicating a weak relationship between GEFS SCP 
and LSR3 for week 2.  

A linear regression model is developed to forecast the number of 
severe weather (LSR3) using the GEFS predicted SCP as a predictor 
and based on their relationship depicted in Fig. 3a–b.  The forecast 
skill is cross-validated over the GEFS hindcast period (1996–2012).  
The anomaly correlation skills (Fig. 3c–d) for week 1 and week 2 
are very similar to the corresponding correlations between GEFS 
SCP and LSR3 (Fig. 3a–b).  The forecast skill is low, especially for 
week 2. 

The difficulty in forecasting severe weather is mainly due to its 
short lifetime and small spatial scale.  Figure 4a–b shows the one-
point correlation map for weekly CFSR SCP and LSR3, respectively, 
at the 0.5°×0.5° grid.  It is the correlation map between weekly 
anomaly at one grid point (here 95.5°W, 37.5°N) and that at every 
grid point over the U.S.  For SCP (Fig. 4a), there are high 
correlations between the selected grid point and the surrounding grid 
points, indicating that SCP has a large-scale feature.  For LSR3 (Fig. 
4b), in contrast, the correlations are small, except the correlation 
with itself, consistent with the small spatial scale of severe weather.  
However, when averaging LSR3 over a 5°×5° box and then re-
calculating the one-point correlation map, the result (Fig. 4d) shows 
much higher spatial coherence for LSR3 and is comparable to that of 
SCP (Fig. 4c).  

Next, we use the 5°×5° area-averaged anomalies to reestablish 
the relationship between model SCP and observed LSR3.  Their 

 Fig. 5  Same as Fig. 3, but for anomalies averaged over the 5o×5o 
box.  

Fig. 6 Standard deviation of (a) 
observed weekly LSR3 and (b) 
week-2 forecast and (c) ratio of the 
observed standard deviation to the 
week-2 forecast. 
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correlations (Fig. 5a–b) are much higher than the 0.5°×0.5° grid (Fig. 
3a–b) for both week 1 and week 2.  Similarly, the forecast skill of 
the hybrid model is significantly improved (Fig. 5c–d) by using the 
5°×5° area-averaged anomalies. 

Figure 6 shows the spatial distribution of the standard deviation 
of the observed weekly LSR3 (top) and that of the week-2 forecast 
(middle) from the hybrid model, respectively, as well as the ratio of 
the observed standard deviation to the forecast (bottom).  The 
amplitude of the forecasted anomalies is much smaller than the 
observed.  Their ratio is greater than 3 over most of the U.S.  

The forecast of the total weekly LSR3 is the hybrid model 
predicted anomaly plus the observed weekly climatology.  Because 
the amplitude of the forecasted anomalies is much smaller than the 
observed, the forecast of the total LSR3 tends toward the observed 
climatology.  To avoid this, we can make adjustment for the 
forecasted anomaly by multiplying it with the ratio in Fig. 6c.  In 
this way, the amplitude of the forecasted anomalies will be closer to 
the observations.  However, this procedure cannot improve the 
anomaly correlation skill, but may reduce the root-mean-square error 
of the forecast.  

Figure 7 shows an example for the week of May 24 to 30, 2011.  
On May 24, 2011, there was a tornado outbreak in central and 
northern Oklahoma.  By the end of that day, there were one EF5 
tornado, two EF4 and two EF3 tornadoes.  Figure 7a is the 
distribution of weekly total LSR3 with 5°×5° area-averages.  The 
week-2 forecast and the adjusted forecast are presented in Fig. 7b and 7c, respectively.  For this extreme event, 
some signals in the week-2 forecast are consistent with the observations. 

4.  Conclusions 

Following Carbin’s work, the Supercell Composite Parameter (SCP) was selected as a variable to 
represent the large-scale environment and link the model forecast to actual severe weather.  The hybrid model 
forecasts suggest a low skill for week-2 severe weather.  However, the forecast can be improved by using the 
5°×5° area-averaged anomalies and the adjustment of the amplitude of the forecasted anomalies. 

For future work, we plan to extend the analysis for weeks 3 and 4 using the CFSv2 45-day hindcasts and 
forecasts.  Because the forecast skill for week-2 SCP is already low, we will also need to explore other 
potential predictors for weeks 3and 4. 

Acknowledgements.  We would like to thank our colleagues Brad Pugh, Daniel Harnos, Jon Gottshalck, 
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1.  Introduction 

 Considerable year-to-year variability is evident in the Storm Prediction Center (SPC) tornado data set, 
despite inherent non-meteorological limitations (Fig. 1 left panel; Verbout et al., 2006; Doswell et al., 2009; 
Edwards et al., 2013). Year-to-year variability is also present when considering billion-dollar severe 
thunderstorm disaster events (Fig. 1 right panel; Smith and Matthews, 2015). A better understanding as to 
why tornado activity can vary considerably from one year to the next can help the public and insurers better 
prepare for future severe thunderstorm activity. Previous studies have identified relationships between the 
climate system and severe thunderstorms during the winter (DJF) and spring (MAM) seasons, including the 
El Niño-Southern Oscillation (ENSO; Allen et al., 2015; Cook et al., 2017) and Gulf of Mexico (GoM) sea 
surface temperatures (SSTs; Molina et al., 2016). La Niña has been related to increases in the frequency of 
tornadic activity across areas east of the Rocky Mountains, due increased leeside cyclogenesis and meridional 
flow (Allen et al., 2015; Cook et al., 2017). In contrast, El Niño has been associated with decreases in tornado 
frequency inland of the Gulf Coast (Allen et al., 2015; Cook et al., 2017). Warm (cold) GoM SSTs serve as a 
source of increased (decreased) moisture and buoyancy for advection towards the contiguous United States 
(CONUS), potentially contributing to severe thunderstorm development (Molina et al., 2016).  
2. Methodology 

In order to explore the year-to-year variability associated with tornadic activity, the GoM, and ENSO, this 
study uses the significant tornado parameter (STP; Thompson et al., 2003), serving as an environmental proxy 
of significant tornadoes (F/EF2+). STP values greater than one have been associated with most F/EF2 or 
greater intensity tornadoes, while STP values less than one have been associated with mostly non-tornadic 

Fig. 1 Tornadoes (1950-2016) in the U.S. stratified by E/EF intensity (left) and billion-dollar severe 
thunderstorm disaster events (Consumer Price Index (CPI) adjusted; right). 
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supercells (Thompson et al., 2003). Mirroring the 
formulation from Thompson et al., (2003) and Gensini 
and Marinaro, (2015), STP as used in this study is: 

 
where sbCAPE is surface-based convective available 
potential energy, sbLCL is surface-based lifting 
condensation level, SRH01 is storm relative helicity from 
0-1 km, and BWD06 is bulk wind difference from 0-6 
km (Thompson et al., 2003). Using the North American 
Regional Reanalysis (NARR; 1982-2016) data set of 32 
km horizontal grid spacing and 3-hourly temporal 
resolution (Mesinger et al., 2006), a binary data set was 
constructed from STP. Grid cells with STP ≥ 1 were 
assigned a value of 1, and grid cells with STP < 1 were 
assigned a value of zero (named “STP Hours” in this 
study), where STP Hours encompass a 3-hour time 
period. A climatology of STP was constructed for DJF 
and MAM (Fig. 2).  

The climatology of DJF 3-hourly mean STP Hours 
shows values of approximately 10-15 hours across 
southeast Texas, Louisiana, and southern Arkansas, 
which is equivalent to about 45 hours of STP ≥ 1. MAM 
3-hourly mean STP Hours shows values of greater 
magnitude than DJF, of approximately 20-40 from 
eastern Texas to the mid-south region. This is equivalent to approximately 5 full days of STP ≥ 1. A series of 
composite analyses were run using daily, 0.25-degree resolution SST anomalies (SSTAs; Reynolds et al., 
2007) and STP Hours, to explore the relationship between GoM SSTA variability and a favorable tornadic 
environment. Statistical significance was determined using a 95-percentile, two-tailed test from a 
bootstrapped set of composite differences. 

3. Results 

Results show that during DJF, the warmest quartile (25%) of GoM SSTAs results in a significant 50-66% 
increase in STP Hours frequency from northeastern Texas to the Great Lakes region, while the coldest 
quartile results in a 20-33% decrease in STP Hours frequency across the south (Fig. 3 upper two panels). 
MAM results show that the warmest GoM quartile results in a significant increase in STP Hours frequency 
across central Texas, while the coldest GoM quartile results in a significant decrease in STP Hours frequency 
across the Great Plains (Fig. 3 lower two panels). These results are physically plausible; warmer GoM SSTs 
make low level moisture more readily available for advection to the CONUS (east of the Rockies), resulting 
in greater buoyancy available for storm development. These results are consistent when considering ENSO-
neutral years (not shown), suggesting that GoM SSTs can serve as an independent predictand for MAM and 
potentially DJF severe thunderstorms, during ENSO and ENSO-neutral years. It is important to note that a 
favorable tornado environment does not necessarily lead to convective initiation, and that a number of other 
severe thunderstorm formation ingredients are necessary in the development of severe convection. 
Additionally, the STP parameter applied for this analysis is not without limitations. STP is calibrated for 
identifying conditions favorable to strong tornadoes produced by discrete supercells, and was formulated 
primarily for the Great Plains, and thus does not account for all strong tornado events (Thompson et al., 2003). 
Thus, STP will not capture the full range of possible tornado environments.  Overall, the results here suggest 
that GoM weights the likelihood of severe thunderstorm activity and should be considered a predictor for 
subseasonal and seasonal forecasts of convective weather. 

Fig. 2 1982-2016 DJF (top) and MAM (bottom) 
STP Hours climatology. 
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Fig. 3 GoM coldest (left column) and warmest (right column) SST quartile composites of STP Hours anomalies 
for DJF (upper panels) and MAM (lower panels). 
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1.  Introduction 

 This study explores the potential for probabilistic forecasts of extremes in monthly mean 2 m temperature 
and precipitation rate using the North American Multi-Model Ensemble (NMME; Kirtman et al. 2014), an 
ensemble of state-of-the-art coupled global climate models. Extremes are where the real impact of weather 
and climate are felt, yet there are currently very few forecasts for short-term climate extremes (STCE). 
Aggregate skill of deterministic forecasts of STCE (as assessed using the anomaly correlation) has previously 
been found to be higher than the aggregate skill of all forecasts (Becker et al. 2013; Becker 2017). This study 
examines the skill of a proposed forecast system providing probabilities of occurrence of the 15th and 85th 
percentile events, based on climatology.  

2.  Methodology 

The NMME currently provides real-
time guidance for NOAA’s operational 
short-term climate forecasts, and 
includes a database of retrospective 
forecasts (1982-2010), used for bias 
correction, calibration, and skill studies. 
Seven models from the NMME 
contribute to this study: NCEP-CFSv2, 
Environment Canada’s CanCM3 and 
CanCM4, GFDL’s CM2.1 and FLOR, 
NASA-GEOS5, and NCAR-CCSM4. 
This study spans the hindcast and 
forecast period from 1982-2016. 
Verification data is obtained from the 
GHCN+CAMS station-to-grid 2 m 
surface temperature dataset (Fan and van 
den Dool 2008) and the CMAP 
precipitation rate dataset (Xie and Arkin 
1997). 

Temperature extremes are herein defined as greater than 1 standard deviation or less than -1 standard 
deviation away from the mean of the 1982-2010 historical record at each gridpoint. This is very close to the 
85th and 15th percentile. A Gaussian distribution is assumed, but may not be the most accurate fit; this is a 
point that requires further examination. This study assesses forecast verification, that is, the question of “did 
the forecast come true?” at a one-month lead for the 3-month mean, over all initial conditions. Forecast 
probabilities are provided in a 3-category system, where a probability of occurrence is provided for each of 
the three unequal categories: < -1 standard deviation (SD); > -1 SD and < 1 SD; > 1 SD, very close to 
15%/70%/15% climatological likelihood. Observed probabilities are either 1 or 0.  Results are compared to 

Fig. 1  2 m temperature lead-1 3-month-mean reliability diagram 
showing forecast reliability aggregated over the northern 
hemisphere and all 12 initial conditions. Forecasts are binned 
by 10% increments. Histograms show sharpness diagrams, 
indicating how often each forecast bin was used. 
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the 3-category, equally likely tercile forecast system that is in use by the Climate Prediction Center: each 
category has a climatological likelihood of 33.33%. Metrics used in this study include the Brier skill score 
(BSS), Heidke skill score (HSS), and reliability diagram. 

3.  Results 

Cold temperature extremes in the Northern Hemisphere are found to be slightly underforecast in the 
1982-2016 data set, while warm extremes are slightly overforecast (Fig. 1); overall, however, the reliability is 
very good, indicating that forecast probabilities match up with observed frequencies. These are similar 
patterns to those found when the reliability of the tercile system is assessed. The Heidke skill score for 
extremes, examined over North America, shows similar annual-aggregate patterns to the terciles, with an area 
of low skill over the southeastern United States (Fig. 2). In general, HSS of extremes is slightly lower than for 
terciles; this is not unexpected, given the lower base rate of the extremes (15% climatological threshold). 
However, in some areas, such as the lower-skill southeastern US, the HSS is slightly higher for the extreme 
system. When comparing the BSS for the 15/70/15 category system to the BSS of the tercile system, the 
extremes system results in somewhat lower BSS (Fig. 3). However, when forecasts for extremes are isolated, 

Fig. 2  Heidke skill score of lead-1 3-month-mean 2 m temperature forecasts, aggregated over all 12 initial 
conditions. Left panel shows results for the tercile system, right panel for the extremes. 

Fig. 3  Brier skill score of lead-1 3-month-mean 2 m temperature forecast aggregated over the northern 
hemisphere land. Left panel shows results for the above average tercile, all forecasts in the 15th 
percentile, and “warm extremes,” where forecasts indicated > 25% probability of an extreme. Right 
panel shows the same for the below average/cold extremes. 
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in this case by examining only the subset of forecasts where the probability in the extreme category was > 
25%, the BSS is found to be generally higher than for forecasts in the tercile system (Fig. 3).  

Results for land-only precipitation rate over the northern hemisphere show very low skill for both the 
extreme and tercile system. Some regions and times show statistically significant positive skill, however. As a 
forecast for extremes could be issued only when there is reason for confidence, it’s possible that a forecast 
system could be developed for some regions or seasons. 

4.  Concluding remarks 

This is a preliminary study that demonstrates that there is some potential for skillful probabilistic 
forecasting of extremes. Further experimentation will examine the definition of “extreme”, including possible 
use of absolute temperature thresholds and the relationship between extreme temperature and precipitation. A 
large ensemble such as the NMME is valuable in constructing probabilistic forecasts, and further analysis will 
be necessary to discover valid thresholds for triggering an extreme forecast. 
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1.  Introduction 

Hybrid models have been utilized to predict tropical cyclone (TC) activity on the seasonal and monthly 
timescales. Subseasonal variabilities and variations, such as the Madden Julian Oscillation, can enhance or 
degrade the impacts of TC activity and the likelihood of TC formation. Due to successes in longer-lead 
forecasts, the NCEP Climate Forecast System v2 (CFSv2) has been used to create a dynamical-statistical 
model to forecast TC activity for weeks 3 to 4. This is a timescale that sees large variability and improving 
forecast skill for this time period will bridge a gap between the shorter-lead week-2 forecasts and the longer 
lead seasonal forecasts. With the improvement of CFSv2 in predicting MJO, the hybrid approach can be 
applied to predicting TC activity on a shorter timescale. The hybrid model was developed using multiple 
linear regression relationships derived from CFSv2 forecasts and hindcasts, and observational datasets, 
similar to that developed for seasonal forecasting (Wang et al. 2009). This project uses only CFSv2 data, 
rather than the North American Multi-model Ensemble, as seen with the seasonal forecasting (Harnos et al. 
2017), due to availability of data on the daily basis.  

2.  Hybrid model 

 The model predicts for three northern ocean basins, the Atlantic, the Eastern North Pacific and the 
Western North Pacific, for 31 weeks of the hurricane season, defined as the first week of May through the last 
week of November. Three variables, vertical wind shear (VWS), sea level pressure (SLP) and 2-m 
temperature (T2m) from the CFSv2 dynamical forecasts were tested as predictors for the statistical model. 
Correlations between the three variables and observed weekly TC days were used to determine the regions of 
highest correlations for each variable. These area-averaged variables were used as potential predictors in the 
model to forecast weekly TC days, weekly ACE values and probabilistic forecasts. Multiple and simple linear 
regression approaches were used to evaluate the potential 
predictors, performing cross-validations with CFSv2 hindcast 
data to test each variable individually and all combinations of 
the three over the 1999 to 2014 period. The results from this 
test are shown in Fig 1. From this evaluation of forecast skill, 
2-meter temperature and vertical wind shear were selected as 
the best predictors for the model. The same variables, averaged 
over different regions of skill, were used as predictors for all 
three basins.  

 3.  Forecasts of 2017 hurricane season 

Real-time forecasts, both probabilistic and deterministic, 
were made for weeks 1 to 4 for the 2017 season. For the 
purpose of this project, we focused on weeks 3 to 4. The 
deterministic forecasts for the 2017 season are show in Fig. 2. 
The correlations between the observed and forecasted values 
are shown in Table 1. The Eastern North Pacific forecast 
captured some of the variability in the 2017 season; however, it 
did over-predict activity for much of the season. The Western  

Week WNP ENP ATL 
3 0.277 0.474 0.658 
4 0.402 0.607 0.657 

 Table 1 Correlations between the 
forecasted ACE and observed ACE are 
shown for week 3 and 4 of 2017 
hurricane season for the three basins. 

Week WNP ENP ATL 
3 -0.09 -1.36 0.07 
4 0.14 -1.39 0.09 

Table 2 Heidke skill scores for the 
probabilistic forecast based on weekly 
tropical cyclones days are shown for 
weeks 3 and 4 of 2017 hurricane 
season for the three basins. 
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Fig. 1  Forecast skill for weekly TC activity is shown using the different potential predictors, as well as 
combinations. These are based on cross-validations over the 1999-2014 period. 

Fig. 2  The deterministic weekly ACE forecasts are 
shown for the 2017 season, with the forecasted 
weekly ACE values in blue and the observed 
values in red for the Atlantic, Eastern Pacific 
and Western Pacific basins.  VWS and T2m 
were used as predictors. 
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North Pacific basin was under-
forecast by the model, specifically in 
the middle of the season. The latter 
part of the season was actually over-
predicted by the model. The model 
did the best in the Atlantic basin in 
terms of capturing the peak of 
activity for the season, though it did 
fail at capturing the extreme values 
in the observations. The highest 
correlations between observed and 
forecasted activity are for the 
Atlantic basin, followed by the 
Eastern North Pacific and Western 
North Pacific. Overall, week 4 has a 
higher correlation than week 3 in 
almost all the basins. 

The probabilistic forecasts for 
weeks 3 and 4 for the 2017 season 
are shown in Fig 3.  The results are 
for the entire 2017 31-week season, 
from late April until the end of 
November. Heidke skill scores for 
weeks 3 and 4 are shown in Table 2. 
The hybrid statistical-dynamical 
model developed for forecasting 
week 3 and 4 had varied results for 
the three basins in the probabilistic 
real-time forecasts through the 2017 
season. The Eastern North Pacific 
had the lowest skill, with negative 
Heidke skill scores for both weeks 3 
and 4. The probabilistic forecast for 
the Eastern North Pacific basin was 
above normal for almost the entire 
season. Further diagnosis into this 
case is needed to determine what 
caused such a bias in the 
probabilistic forecast, when 
observations were near normal, if not 
below average. The Western North 
Pacific had the best skill overall in 
week 4, but was slightly negative 
skill for week 3. The Atlantic basin 
was the most consistent over the two weeks, with a slight positive skill score. In the hindcast evaluation (Fig. 
1), the Western North Pacific had the most skill, followed by the Atlantic and then the Eastern North Pacific. 
The probabilistic forecasts also show a similar pattern, which was to be expected.  

4.  Future plan 

This model will continue to be evaluated and optimized to provide a useful tool to forecasters for the 
week 3-4 time period. For further improvement, using different combinations of predictors for each basin 
could yield better results, most specifically for the Eastern North Pacific. Sea level pressure was shown to add 

Fig. 3  The probabilistic forecasts for weeks 3 and 4 for the 2017 season 
are shown for the Atlantic basin, the Eastern Pacific basin and the 
Western Pacific basin. Above normal activity is shown in red, near 
normal in yellow and below normal in blue. Observations are shown 
in brown, and overlap the category that was observed. Above normal 
activity is defined as one standard deviation above the mean and 
below normal activity as one standard deviation below.  
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skill in the hindcast evaluations for this basin. Another issue highlighted in the real-time forecast was the 
model’s inability to the capture extreme values seen in observation. Measures to increase the variability are 
being considered. Other possibilities considered will be including more recent years in the training period, as 
well forecasting for weeks 3 and 4 as one time period. Eventually, the goal is to transition this product to an 
operational framework to act as guidance for week 3-4 tropical forecasts. 
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1.  Introduction and motivation 

Expanding and improving impact-based decision support services (IDSS) to core partners continues to be 
one of the highest priorities for the National Weather Service (NWS). Seamlessly linking climate and weather 
through IDSS to support regional and local decision making is listed as one of eleven key concepts for 
services within the NWS “Weather Ready Nation” (WRN) Roadmap (NWS 2013). Enhancing climate 
services to help communities, businesses, and governments understand and adapt to climate-related risks is 
also mentioned as one of six NWS strategic plan goals in the WRN Roadmap. Furthermore, the Weather 
Research and Forecasting Innovation Act of 2017 (U.S. House of Representatives 2017) codifies funding for 
subseasonal and seasonal forecasting innovation to enhance national security. Considering that 219 weather 
and climate disasters between 1980 and 2017 have exceeded $1 billion in damages (Consumer Price Index 
(CPI) adjusted to 2017) leading to $1.5 trillion in losses (NCEI 2018) and thousands of fatalities, building 
resilience to extreme weather and climate events is critical in helping mitigate losses from these events. 

Improving forecasts and IDSS for extreme weather and climate events is critical for Texas, which has 
experienced 95 of the 219 billion-dollar weather and climate disasters. South Central Texas has recently 
experienced record floods during May 2015 (Furl et al. 2018) and October 2015 (Lin et al. 2018) that helped 
end a catastrophic drought (Nielsen-Gammon 2012) along with the most catastrophic wildfire (Murdoch et al. 
2016) and costliest hailstorm in Texas history (Hampshire et al. 2017), all since 2010. The likelihood of a 
significant loss of life and property from these events is increasing due to rapid urbanization and population 
growth in the Austin-San Antonio corridor, which doubled from 2.25 to 4.50 million from 1990 to 2017 and 
is forecast to increase to 7.59 million by 2046 (IHS Markit 2017). Flash flooding impacts are most critical in 
the Texas Hill Country and the Austin-San Antonio corridor due to a regular occurrence of heavy rainfall 
events over a region with steep channel beds and thin soils in small basins that contribute to rapid river rises. 
These factors combined with hundreds of low water crossings contribute to significant fatality rates caused by 
regular short return-period events instead of rare, high-casualty events found in other parts of the United 
States (Ashley and Ashley 2008; Saharia et al. 2017). 

In order to help local core partners build resilience to high impact and climate events, the Austin/San 
Antonio NWS Weather Forecast Office (WFO EWX) began delivering local impact-based seasonal outlooks 
(LIBSOs) in fall 2015. Briefings are first presented to emergency managers (EMs), broadcast media, and 
other core partners during an interactive webinar that averages 17 participants. Full recordings and specific 
content slides are then shared on social media and through targeted outreach and media interviews. Over 70 
unique core partners have participated in the live webinars, with archived webinars averaging 600 viewers on 
You Tube and specific social media posts approaching 100,000 views. This paper provides an adaptable 
structure for how LIBSOs may be created while taking into account antecedent conditions and locally relevant 
research. Core partner feedback is also briefly discussed to identify strengths and areas for improvement. 

2.  Objectives and structure of LIBSOs 

The main objectives of delivering LIBSOs is to brief, educate, and encourage action among EMs, 
broadcast meteorologists, and other core partners within WFO EWX’s county warning area (CWA). 
Increasing core partners’ situational awareness on the potential for high impact weather and climate events 
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while educating them on the regional 
seasonal threats and how to interpret 
NWS and CPC products is especially 
important for EMs who have a broad 
range of educational experiences and 
typically only attend 1-3 training courses 
or workshops per year (Weaver et al. 
2014). Figure 1 top panel shows an 
example slide given during several 
LIBSOs to explain the meaning of 
CPC’s seasonal outlooks to help prevent 
core partners from misinterpreting these 
forecasts, particularly the meaning of 
probabilities assigned to equally 
probable tercile categories (above, near 
or below normal) based on the most 
recent 30-yr climatological period. 
Finally, encouraging partners to make 
decisions or take action to improve 
preparedness for an increased potential 
of an extreme weather and climate event 
in a given season is the most latent and 
ambitious objective of LIBSOs. 
However, WFO EWX believes this is an 
attainable goal through building trust 
with core partners by delivering outlooks 
that they believe (and actually are) 
relatively accurate.  

Briefings issued by WFO EWX are 
approximately 20 minutes in length and 
are always given on Thursdays at 2 p.m. 
LT to provide a consistent time block 
that works best for core partners based 
on partner surveys discussed in section 4. 
In addition, this time takes advantage of 
the Thursday morning issuance of 
several weekly products including some 
CPC outlooks and the Drought Monitor 
(http://droughtmonitor.unl.edu/). WFO 
EWX typically delivers webinars during 
early December (winter; DJF), early March (spring; MAM), and early June (summer; JJA) after the National 
Oceanographic and Atmospheric Administration’s (NOAA) Hurricane Outlook is issued, matching the 
expected onset of winter, severe, and tropical weather seasons, respectively. The fall webinar has been issued 
anywhere from mid-September to mid-October depending on when the reasonable threat of tropical cyclones 
and excessive heat ends in a given year. This seasonal transition usually coincides with the first strong front 
that local research suggests is most likely to occur in late September, but may be delayed during El Niño 
years (Fig. 1 bottom panel). WFOs must determine what months work best for delivering webinars for their 
CWA based on their seasonal impacts and operational schedules. Quarterly webinars are recommended for 
WFOs east of the Rocky Mountains, but different schedules may be needed for other CWAs. 

All briefings begin by presenting current rainfall anomalies and the Drought Monitor before covering 
subseasonal and seasonal CPC temperature and precipitation outlooks and any relevant climate 

Fig. 1  Example (top) educational slide given during the fall 2015 
South Central Texas LIBSO briefing that shows the seasonal 
(OND) precipitation outlook issued by CPC on 17 September 
2015 and (bottom) locally relevant research slide that shows a 
histogram of the date of the first strong front of fall during 
ENSO-neutral and La Niña (green) and El Niño (red).  
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teleconnections behind them. Locally relevant research that helps provide context and confidence for the 
national outlooks is discussed next, highlighting common sources of seasonal forecast skill mentioned in 
Goddard and Hoerling (2006) that CPC staff account for to some extent in the long-lead forecast process 
(O’Lenic et al. 2008). These sources of skill include, but may not be limited to: (1) global climate change, (2) 
interdecadal variability, (3) El Niño-Southern Oscillation (ENSO), and (4) atmosphere-land surface 
interactions. Finally, the briefing wraps up with an impacts outlook and questions from core partners 
attending the live briefing and anyone who views it later online. Archives of South Central Texas LIBSO 
briefings are available at https://www.youtube.com/user/NWSSanAntonio/videos. 

3. Creating the impacts outlook 

An example of an impacts outlook that was issued by WFO EWX during fall 2015 is presented in Fig. 2. 
Similar to CPC outlooks, a tercile-based approach is used to forecast whether above, near, or below normal 
impacts are expected for a specific weather type relevant to a particular season. However, WFO EWX’s 
relatively subjective impact outlooks are purely categorical instead of assigning probabilities to a particular 
tercile as in CPC monthly and seasonal outlooks.  Impacts are given for the first and second half of a 
particular season (or first and last two months if needing to emphasize the first month’s forecast) to provide 
partners with the relative confidence of the forecast through the entire season, including any trends in how 
impacts may change. Outlooks are produced for severe weather, river and flash flooding, and fire weather for 
every season, with the addition of winter weather and summertime tropical weather based on the NOAA 
Hurricane Outlook during those seasons. WFOs in other regions may need to add or remove weather impact 
types by season depending on their climatology.  

Creating the impacts outlook is currently a subjective collaboration between the climate, fire weather, and 
tropical focal points and service hydrologist at WFO EWX to make sure all weather impact types are 
consistent. In addition to CPC and NOAA outlooks, antecedent conditions and locally relevant research are 
given significant consideration when creating the impacts outlook. Single categorical forecasts of above, near, 
or below normal impacts are usually given for the entire CWA, but multi-county areas whose antecedent 
conditions or CPC outlooks differ significantly from the rest of the CWA are occasionally featured with a 
different forecast. The following subsections briefly describe three primary forecast drivers in the context of 
the first impacts outlook that WFO EWX issued for fall 2015 on 8 October 2015 (Fig. 2). 

3.1  Antecedent conditions 

Significant wetter (drier) than 
normal antecedent conditions increase 
(decrease) the likelihood of flooding 
while decreasing (increasing) the threat 
of fire weather and drought going into 
a particular season, especially when 
CPC outlooks are forecasting an equal 
chance of above or below normal 
precipitation and temperature. Rainfall 
anomalies are an important antecedent 
condition that is covered at the 
beginning of the LIBSO because they 
are a proxy for soil moisture and 
potential fuel growth, but streamflow 
anomalies along with drought indicators and indices are also important. Prior to the fall 2015 webinar, an 
abnormally dry July-September period following the wettest April-June period on record in Texas (Furl et al. 
2018) resulted in 90-day rainfall anomalies that were 10-50% of normal (Fig. 3a), but 180-day rainfall 
anomalies that were 100-200% of normal (Fig. 3b) across South Central Texas. This triggered the 
development of a flash drought over the CWA by early fall with below normal streamflow and soil moisture 
anomalies (not shown) that decreased flood potential going into early fall. 

Fig. 2  Example impacts outlook given during the fall 2015 South 
Central Texas LIBSO briefing on 8 October 2015. This figure is 
adapted from its original form in that “First Half of Fall” was 
“October” and “Second Half of Fall” was “November-
December.” 



HOPPER ET AL. 
 

 

57 

However, excessive fuel growth due to the wet spring and early summer followed by very hot and dry 
conditions over the next three months set up favorable fire weather conditions by early fall across all of WFO 
EWX’s CWA. Energy Release Component (ERC) trends, that are considered to be a fuel moisture index that 
reflects the contribution of all live and dead fuels to fire intensity (Bradshaw et al. 1983; TICC 2018), 
increased dramatically across Central Texas during the summer and approached near record levels by the 
beginning of October (Fig. 3c). Consistent with the ERC trends and rainfall anomalies, the Significant 
Wildland Fire Potential Outlook issued by the National Interagency Coordination Center (NICC) highlighted 
the potential for fire weather conditions to increase above normal during October (Fig. 3d). The NICC 
monthly outlook and antecedent conditions combined with 8- and 14-day CPC outlooks favoring odds tilted 
towards continued warmer and drier than normal conditions increased forecaster confidence that fire weather 
conditions would be above normal during October if rainfall did not materialize. However, fire weather 
impacts would be expected to decrease to below normal as flood impacts increased if CPC’s prediction of 
above normal rainfall for the October-December period materialized (cf. Fig. 1 top panel), justifying the 
reversal of fire weather and flooding impacts highlighted in the impacts outlook (cf. Fig. 2). 

3.2  CPC and NOAA Outlooks 

In the absence of significant antecedent conditions, probabilistic monthly and seasonal CPC outlooks 
following O’Lenic et al. (2008) are the primary forecast drivers of the impacts outlook (excluding severe 
weather). Skill analyses performed by Livezey and Timofeyeva (2008; LT08) at lead times up to 1 year and 
Peng et al. (2012: P12) for 0.5-month lead forecasts issued by CPC display greater skill for temperature than 
precipitation, most likely due to long-term warming trends associated with climate change. LT08 shows that 
skill generally does not vary by lead time except for cold season forecasts during non-neutral ENSO 
conditions, which P12 shows is the dominant contributor to precipitation skill. Both LT08 and P12 display a 
distinct spatial preference of regions with higher skill that WFOs may evaluate for their CWA by using 

Fig. 3  Antecedent conditions presented in the fall 2015 South Central Texas LIBSO on 8 October 2015. The 
panels depict (a) 90-day rainfall anomalies, (b) 180-day rainfall anomalies, (c) Energy Release 
Components (ERCs) for Central Texas, and (d) the NICC Significant Wildland Fire Potential Outlook 
for October 2015. 
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NOAA’s Local Climate Analysis Tool (LCAT; Timofeyeva-Livezey et al. 2015). LCAT analyses (along with 
figures in P12 and LT08) show that South Central Texas has some of the highest skill scores for precipitation 
during non-neutral ENSO conditions in all seasons except summer and above average skill for temperature all 
year regardless of ENSO conditions. 

CPC outlooks from 17 September 2015 predicted a greater than a 40% chance of above normal (top third 
percentile) rainfall for South Central Texas during October and more than a 50% chance of above normal 
precipitation during the OND period (cf. Fig. 1 top panel). Although drier and warmer than normal weather 
was favored for the two weeks following the briefing, CPC predicted a transition towards wetter and cooler 
than normal weather evidenced by their 40% chance of below normal temperatures (bottom third percentile) 
for the OND period (not shown). These high confidence CPC forecasts made possible by one of the three 
strongest El Niño events since 1950 gave WFO EWX the ability to highlight a reversal from above normal 
fire weather and drought conditions to above normal flooding impacts during the fall season. In addition, the 
updated NOAA Hurricane Season Outlook issued on 6 August 2015 forecast a 70% chance of an above 
normal Pacific hurricane season common during El Niño. This is significant considering that moisture from 
Pacific storms often causes flooding in South Central Texas during fall when they interact with slow-moving 
fronts. A timeline of events from October 2015 shown in Fig. 4 shows that this transition from drought and 
above normal fire weather conditions to flooding did materialize due to two heavy rainfall events in late 
October.  
3.3 Locally relevant research 

Simplified explanations of locally relevant research also increase WFO EWX’s confidence in their impacts 
outlook and the CPC outlooks behind them. This research ranges from basic local office studies like the one given 
in Fig. 1 bottom panel that shows the first strong front is delayed during El Niño, to peer-reviewed studies that 
highlight impacts specific to South Central Texas. Although important for all weather hazards, locally relevant 
research is most critical for predicting subseasonal and seasonal severe weather impacts for which antecedent 
conditions and CPC outlooks provide little forecast skill.  Several recent studies have shown that La Niña 
conditions foster more frequent and intense tornado and hail activity across the U.S. relative to El Niño during 
winter and spring (Cook and Schaefer 2017; Lee et al. 2016; Allen et al. 2015), suggesting that long-range 
seasonal prediction of thunderstorm activity is possible. La Niña’s linkages with tornado activity and intensity are 

Fig. 4  October 2015 timeline of fire weather, flooding, and severe weather events in South Central Texas. 
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most pronounced at higher latitudes in January-March (Cook and Schaefer 2017) and in the Southeast, Ohio River 
Valley, and Upper Midwest in April-May during the second spring of “resurgent” La Niña episodes (Lee et al. 
2016). However, significant geographical variations displayed in these studies make performing local research of 
seasonal severe weather impacts critical. For example, local studies show that La Niña and ENSO-neutral 
conditions produce the greatest number of severe wind, hail, and tornado reports during spring within WFO 
EWX’s CWA, but El Niño conditions are associated with twice as many severe reports during late fall and winter 
compared to La Niña or ENSO-neutral conditions (not shown). Finally, Research-to-Operations (R2O) innovations 
like the Climate Forecast System, version 2’s (CFSv2; Saha et al. 2014) Severe Weather Guidance Dashboard 
(Carbin et al. 2016) may provide additional skill for both LIBSOs and seasonal severe thunderstorm outlooks as 
the CFSv2 model’s skill improves in the future. 

4. Core partner feedback and next steps 

Anonymous surveys were administered in October 2017 to 72 core partners who had attended at least one 
live webinar to receive feedback on how well LIBSOs were serving them and evaluate whether the objectives 
stated in section 2 were being satisfied. This survey was completed by 22 core partners (15 EMs, 3 broadcast 
meteorologists, 2 government officials, and 2 other) for a response rate of 31%. These surveys indicated that 
82% of respondents use the information to maintain situational awareness, 59% improved their understanding 
of local weather, and 50% made decisions or took actions to improve preparedness based on the LIBSO. 
Although there is room for improvement, these surveys suggest that objectives to brief, educate, and 
encourage actions are being met for at least half of core partners. 

Over 90% of core partners who completed the survey indicated that the briefings were useful and 
understandable, and that presenters were accessible for questions during and after the webinars. More than 
half of survey respondents indicated that they would like monthly updates between the seasonal briefings 
(77%) and quarterly email briefings with a short bullet-point summary (59%), changes that WFO EWX plans 
to make the later in 2018. WFO EWX also began combining river and flash flooding into a single outlook in 
fall 2017 because river and flash floods typically occur simultaneously in the Texas Hill Country and Austin-
San Antonio corridor, a change supported by 64% of core partners and preliminary verification work 
described in Dickinson et al. (2018). Most core partners also indicated that categorical forecasts of above, 
near, or below normal impacts are easier to understand than a numerical scale, but a large number of 
respondents are open to utilizing their preferred tercile-based forecasts to provide context for a numerical 
scale. Assigning probabilities to a particular tercile for each weather impact type as in CPC outlooks may 
achieve this in the future. 

Finally, and perhaps most importantly, 73% of core partners believed that the LIBSOs issued by WFO 
EWX have been accurate or very accurate. In order to evaluate the true accuracy of LIBSOs, WFO EWX has 
developed preliminary impact-based verification indices for severe weather, flooding, and fire weather, all of 
which verified the forecasts made during fall 2015. A full description of this deterministic verification 
approach for categorical, tercile-based LIBSO forecasts with examples is given in Dickinson et al. (2018). 
Overall, LIBSOs issued since fall 2015 have performed 36% better than climatology (with a range of 25-50% 
for each impact) based on Heidke Skill Scores. Therefore, it appears that the LIBSOs issued by WFO EWX 
are quantifying above, near, or below normal impacts in a way that matches both public perception and 
“reality,” something which may be critical for building trust among core partners so that they may take 
preparedness actions based on the LIBSOs. In addition to refining the existing verification process, future 
work will also focus on expanding LIBSOs to other CWAs and developing a more objective process for 
issuing LIBSOs using ENSO, antecedent conditions, and other predictors like CPC’s seasonal outlooks and 
other climate teleconnections. 
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1.  Introduction 

“Is this an above normal year?” Forecasters and broadcast meteorologists get questions like this on a 
regular basis. Although for different reasons, the answer to that question may be useful to both meteorologists 
and members of the public, but how does one truly answer it? Currently, the meaning of “above normal” 
generally lies in terms of subjective perceptions based on experiences as opposed to objective measures 
(temperature and precipitation being two notable exceptions). As impact-based decision support services 
(IDSS) for weather and climate continue to expand in the National Weather Service (NWS), one question 
arises immediately: “Can we accurately quantify impacts at seasonal and sub-seasonal timescales, especially 
for extreme weather?” 

As improvements come in statistical and dynamical tools, consolidation tools used to create an objective 
forecast from multiple sources, and skill in forecasts driven by ENSO, the Climate Prediction Center’s 
(CPC’s) seasonal outlooks will continue to increase in skill and provide more insight to users (O’Lenic et al. 
2008). However, proper interpretation of these outlooks is sometimes not done correctly. In addition, some 
users have trouble taking a national outlook and scaling it to a regional or local level. Thus, the NWS Weather 
Forecast Office Austin/San Antonio (WFO EWX) began delivering impact-based seasonal outlooks to their 
stakeholders in fall 2015. These outlooks use a blend of national outlooks (e.g., CPC’s seasonal outlooks, 
NOAA’s drought outlooks, etc.) and local research to combine various levels of expertise into a single 
outlook [for more information on delivering these outlooks, see Hopper et al. 2018]. The Austin-San Antonio 
metroplex is currently one of the most rapidly growing urban areas in the United States. Current estimates 
have the population in this area tripling by 2050 compared to 2000. Rapid population growth combined with 
hydrological challenges, such as a lack of soil infiltration due to low depth to bedrock over a region with 
relatively complex terrain, cause the ever-increasing vulnerability to high-impact weather to become quickly 
apparent. National climate outlooks are currently used most in the agricultural sector and for drought planning. 
Haigh et al. (2015) found climate information to be very useful for agricultural risk management. Several 
studies continued this point to develop useful seasonal climate outlooks for agriculture, such as Finnessey et 
al. (2016), Klemm and McPherson (2017) and Prokopy et al. (2017).  Climate information is also used across 
emergency management networks, but these networks sometimes face challenges in using complex scientific 
information, such as ambiguous data and unclear uncertainty (Roberts and Wernstedt 2016). The delivering of 
these outlooks directly to stakeholders from a WFO provides an opportunity for the scientific information 
being presented to be explained clearly while also building on operational capabilities by expanding the tree 
of national climate outlooks to various high-impact weather. Thus, the primary objective of this study is to 
develop impact-based verification indices for severe weather, flooding, and fire weather. These indices 
attempt to quantify a relatively subjective perception of which tercile a season falls into so that more objective, 
verification-driven forecasts may be developed in the future. 

Section 2 discusses the development of an index to measure impacts from severe weather, river and flash 
flooding, and fire weather. Section 3 explains how the index is then used to verify forecasts made by the 
office. Lastly, Section 4 describes ongoing and future work to further improve this process. 

2.  Methodology: The verification index 

The overarching question of this study is how does one quantify impacts, and can they be objectively 
measured and predicted? We attempt to design our objective metrics in such a way that it matches public 
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perception and “reality” for any given season as well as be a repeatable but customizable process. The first 
step in objective forecasts is to have a baseline climatology for this WFO’s county warning area (CWA) in 
South Central Texas. Baseline climatologies are created for severe weather, river and flash flooding, and fire 
weather; river flooding and flash flooding are combined because most river floods are also flash floods where 
most of the population within WFO EWX’s CWA live. These climatologies utilize “indicators”, various data 
to describe one aspect of the weather phenomena that, when used collectively, will fully depict the season as 
it pertains to the respective weather event. We call these climatologies complete with indicators as 
verification indices because they are initially acting to verify outlooks done by the office. 

We began by defining seasons to be tested: December, January, February (DJF, hereafter referred to as 
winter); March, April, May (MAM, referred to as spring); June, July, August (JJA, referred to as summer); 
and September, October, November (SON, referred to as fall). For each index, indicators fall into one of three 
categories: occurrence, impacts, or meteorology/severity. These categories capture a full description of a 
season offering the strongest overall quantification. The basis for each index utilizes the number of reports 
and the number of report days for occurrence, damages and a blend of injuries and fatalities for impacts, and 
total CWA rainfall for meteorology/severity. Damages are adjusted to 2010 levels using the consumer price 
index (DOL 2017). Total CWA monthly rainfall was found using Texas Water Development Board 
quadrangles (TWDB 2017). These quadrangles divide Texas into a 1° latitude by 1° longitude grid. Any 
quadrangle that contained more than 75% of the CWA was considered in the analysis. An average of each 
quadrangle’s seasonal value then was used as total CWA rainfall. Additional indicators, like a blend of 
fatalities and injuries that is discussed in Section 2.1, were then added to each index to hone in on specifics 
from each hazard. 

Our verification indices are modeled after the CPC’s nonparametric tercile approach. Each indicator in 
the index in ranked, where 1 is the greatest number (i.e., the most number of reports/most damages) and n is 
the smallest number where n is the number of years in the climatology. Total CWA rainfall in the fire weather 
index is the only exception (smallest rainfall value given 1, largest given 30) since lower rainfall totals are 
more indicative of enhanced fire weather. In the case of a tie, all tied values are assigned the rank that is equal 
to the midpoint of the unadjusted ranks. Then, we take the sum of all indicator ranks across a year and find the 
rank of this sum. The final rank analysis thus weights all indicators equally throughout the index (see Table 1 
for a simplistic example of this process). The final rank analysis is done so that the smallest sum is given the 
top rank. The upper third ranks are deemed above normal, middle third are near normal, and bottom third are 
below normal. To check the internal consistency of our indices, a statistical measure called Cronbach’s Alpha 
was used (Cronbach 1951). Cronbach’s Alpha is a number from 0 to 1.0 where 1.0 represents perfect internal 
consistency. Commonly accepted rules to describe Cronbach’s Alpha values are: 0.90 and above is excellent, 
0.80 to 0.90 is good, 0.70 to 0.80 is acceptable, and anything below 0.70 should be questioned. Analysis was 
done with every indicator in each season in each index and then by taking one indicator out; the maximum 
value of Cronbach’s Alpha represented the group of indicators that were the most consistent and thus used as 
the final index. 

Table 1  An example of how ranking works in the verification index using only two indicators. Note that a low 
sum is given a higher rank as low sums indicate more significant indicator values. 
Year Reports Report Days Report Rank Days Rank Sum Sum Rank 
2006 22 6 3 3 6 3 
2007 279 35 1 1 2 1 
2008 8 4 4 4.5 8.5 4 
2009 7 4 5 4.5 9.5 5 
2010 25 8 2 2 4 2 

2.1.  Severe weather 

Severe weather was analyzed first, and the storm reports were collected from the National Center for 
Environmental Information’s Storm Events Database (NCEI 1999). Our 1981-2010 climatology includes 
storm reports for severe thunderstorm wind, severe hail, tornadoes, and lightning. We kept all penny-size hail 
reports and above (> 0.75 in) because this was the severe criteria for virtually the entire climatology prior to it 
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increasing to quarter size (> 1 in) in January 2010. Although lightning is not considered in making a 
thunderstorm severe, if it was listed as a storm report it means that there was either a fatality, injury, or 
damage figure associated with it, which by definition is an impact. Lightning reports were not added to the 
Storm Events Database until 1996 under NWS Directive 10-1605 so all Storm Data Publications prior to 1996 
were read and appropriate additions were made. 

Initially, fatalities and injuries were two separate indicators. Upon looking at the data, it was seen that 
there were a significant number of zeros for fatalities, especially in the winter. This presents a problem in 
statistical analysis (although certainly not in societal analysis) because all the zeros would share a common 
rank. As a result, there was not much differentiation between any given year when looking at the fatalities 
(and injuries) ranks alone. As a result, we define a blend of fatalities and injuries to capture both impacts 
while also providing differentiation among years. This blend ranks fatalities but uses injuries to break tied 
ranks in fatalities. This provided a solution that allowed the impacts of a fatality to have more weight than an 
injury and still accounted for both fatalities and injuries because the range and variability of fatalities was not 
large. 

To design an index specific for severe weather, we added the following indicators into the index: total 
tornado path length (occurrence) and maxima of tornado width, hail diameter, and non-tornadic wind 
magnitude (meteorology/severity). Cronbach’s Alpha analysis showed spring was the least consistent, but still 
good at about 0.80 for all indicators, and winter was the most consistent at about 0.87. However, it was found 
that by removing total CWA rainfall from the index, the Cronbach’s Alpha value increased. Since it is 
expected that increasing the number of items in the analysis would increase the Cronbach’s Alpha value 
(Cortina 1993), total CWA rainfall was making the index less internally consistent. From a meteorological 
standpoint, this makes sense since severe weather impacts, more often, come with discrete storm modes as 
opposed to a widespread rainfall event. 

2.2  River and flash flooding 

Like severe weather, storm reports were collected from NCEI’s Storm Events Database. However, the 
database only has reports from 1996 forward, again due to NWS Directive 10-1605. In order to expand our 
climatology to 30 years, Storm Data Publications and archived E-5 reports were thoroughly investigated for 
reports of flooding impacts. Although it may not have been perfect, since our index uses ranks, and not the 
raw data for each indicator, it is not so much the actual values as much as where it falls in comparison to the 
other years. It is almost certain that highly unusual years would become evident in the final ranks. 

In addition to the foundational indicators, we added the number of times river gages went above moderate 
flood stage (occurrence) and maximum one- and two-day rainfalls (meteorology/severity) to the index. 52 
river gages located on major rivers throughout the CWA were selected. All instances of a river gage going 
over its moderate flood stage threshold were recorded and then split into the seasons of each year. The 
collective total among all river gages for a single season was used as the indicator. In determining maxima in 
rainfall, 54 COOP stations were used. COOP stations were selected to cover all counties in the CWA, with 
several in larger population areas. The overall maximum for both one day and two days at these 54 stations 
given in xmACIS2 were used as the indicators. Cronbach’s Alpha analysis showed the index was very good, 
as three out of four seasons were above 0.9; spring was the exception and had a Cronbach’s Alpha of 0.85. 

2.3  Fire weather 

Fire weather was the last hazard we investigated. We were able to obtain an extensive dataset of all fires, 
including prescribed burns from the Texas State Fire Marshal’s Office spanning from 1982-present. Any 
prescribed burn that did not have acres burned entered was discarded from the dataset. After analysis, it was 
noticed that there were zero acres burned for every fire entered from 1982 through 1999. Therefore, we were 
forced to use a 15-year climatology of 2000-2014. 

Three indicators were added to the fire weather index: total acres burned (impacts), average maximum 
temperature (meteorology/severity), and a blend of frontal passages and a Keetch-Bynum Drought Index 
analysis (meteorology/severity; see Table 2 for a summary of all indicators used for the various indices). 
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Average maximum temperature was calculated using climate division data gathered from NOAA’s Local 
Climate Analysis Tool (Timofeyeva-Livezey et al. 2015); about 45.5% of the CWA lays within climate 
division 6 and about 54.5% of the CWA lays within climate division 7. Each climate division’s average 
maximum temperature was multiplied by the respective decimal to determine a spatially-weighted average. 
This is a process that can be done to determine total CWA rainfall if other datasets are not available. 
Cronbach’s Alpha values for this index were excellent. Like total CWA rainfall in the severe weather index, 
total damages were found to be making the fire weather index less internally consistent possibly due to 
inconsistencies in reporting monetary impacts caused by fires, so it was removed. 

Table 2  A summary of all indices and the indicators that comprise them. Total CWA rainfall was taken out of the 
severe weather index and total adjusted damages was removed from the fire weather index due to having poor 
statistical relationships in their respective indices. This was shown through Cronbach’s Alpha values 
increasing when the indicator was removed. 
Weather Hazard Occurrence Impacts Meteorology/Severity 

Severe Weather 

Number of storm reports Fatalities/Injuries Blend Maximum tornado width 
Number of report days Damages Maximum hail diameter 

Total tornado path length  Maximum non-tornadic wind 
magnitude 

River and Flash Flooding 

Number of storm reports Fatalities/Injuries Blend Total CWA rainfall 
Number of report days Damages Maximum 1-day rainfall 

Frequency of river gages 
above moderate flood stage  Maximum 2-day rainfall 

Fire Weather 

Number of fire reports Fatalities/Injuries Blend Total CWA rainfall 

Number of report days Total acres burned Average maximum 
temperature 

  KBDI/Frontal passages 
blend 

3. Verification of South Central Texas climate outlooks 

Figure 1 displays the plot made after analysis using the verification index for severe weather. Although all 
4 seasons are plotted on the same graph, comparisons between one season and another is dangerous. For 
example, a below normal year in the spring, the season that is climatologically most active for severe weather, 
tended to have about 20 to 30 severe reports while in the other seasons a below normal year could have less 
than 5. A better interpretation of the 
sum of any given year is how it 
compares to other sums relative to the 
season of interest. The top overall sum 
of 223 corresponds to fall 2001; that 
season saw 56 severe reports and 39 
injuries due to severe weather. 
Meanwhile, the lowest sum for a top 
rank corresponds to spring 1997 
which is the year of the deadly Jarrell 
EF/F5 tornado. Spring 1997 had a 
total of 140 severe reports and 28 
fatalities. Obviously, these two 
seasons are much different in their 
associated impacts, displaying how 
the same process can lead to varied 
results depending on the timeframe 
that is being analyzed. This is useful 
because it can quickly point out highly 
anomalous seasons relative to the 
season’s climatology. Finally, the 

Fig. 1  A plot displaying the distribution the distribution of years in 
the severe weather climatology. A larger dot means more than 
one year was tied for a final rank. The y-axis is the sum of the 
indicators and is reversed so that a larger sum correlates with 
above normal impacts. 
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meteorological forcings driving a 
season can vary yet still verify as the 
same tercile. In other words, a more 
active weather pattern may not 
necessarily lead to more impacts than 
a season with one single large event. 
While spring 1997 was largely driven 
by one large event, the second overall 
spring rank was 2007, a year where 
several moderate severe weather days 
aggregated to verify as above normal.  
This is a positive result since 
verification of above normal impacts 
can come from multiple types of 
seasons.  

Figure 2 depicts the river and 
flash flooding analysis plot. The 
overall distribution is similar to severe 
weather with less change of slope for 
the near normal points. Although the 
summertime is the season with the 
most flooding reports, spring and fall 
have relatively high climatological 
percentages of reports. For this reason, 
the distribution is more linear than the 
one for severe weather but not nearly 
as linear as the fire weather plot 
shown in Fig. 3 discussed below). For 
river and flash flooding, the top six 
above normal years clearly separate 
themselves and is a major motivation 
for delivering impact-based outlooks. 
This CWA has over half of Texas’s 
flooding deaths since 1996 and as the 
Austin/San Antonio metroplex 
continues to expand the potential for 
significant river and flash flooding will also grow.  

Figure 3 shows the results of the fire weather analysis. This plot is virtually linear, most likely owing to 
the climatology being 15 years as opposed to 30 years and that the occurrence of fire reports is virtually 
uniform across all four seasons. However, interseasonal comparisons should be avoided because the 
meteorological and agricultural mechanisms enhancing fire weather threats have a seasonal variability 
component. The large dot in the middle of the plot represents two years that ended having the same final rank. 
This point displays the need for a 30-year climatology; in one year, the first half of the season was very dry 
and hot which enhanced fire potential while the second half of the season was the opposite: wetter and cooler 
than normal. The other year comprising that single dot was one where fewer acres burned and the entire 
season had moderate fire risk. Hence, there is less discrimination between years in this index, especially in the 
near normal range. Fine tuning the indicators and expanding to a longer climatology as more data becomes 
available will act to make this index much better moving forward. 

Now that there is a baseline climatology, objective verification techniques can be undertaken to verify 
outlooks already issued by the WFO. The verification scheme developed using the indices outlined above can 
be broken down into 7 steps (Table 3 is another depiction of the process): 

Fig. 2  As in Fig. 1, but for river and flash flooding. 

Fig. 3  As in Fig. 1, but for fire weather. 
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Table 3  A depiction of the verification process for severe weather. For example, fall 2015 had 19 severe reports. 
The closest value in the severe weather index was 18 in 1997. Fall 2015 was then assigned the 1997 rank of 9. 
The index score is the sum of all ranks (e.g., 75), the closest value is again found, and given that rank (in this 
case, is 6) 

Fall 
Season Reports Report 

Days 
Fatalities 
Injuries 

Tornado 
Track 

Adjusted 
Damages 

Largest 
Hail Size 

High 
Wind 

Widest 
Tornado 

2015 19 6 0 18.6 mi. $2.07M 1.0 in. 71 mph 440 yd. 
Rank 9th 9th 20th 3rd 6th 20th 5th 3rd 
Value 
(Year) 

18 
(1997) 

6 
(3 times) 

0 
(21 times) 

26 mi. 
(2004) 

$1.75M 
(2000) 

1.0 in. 
(1994) 

70 mph 
(3 times) 

400 yd. 
(2004) 

1) Collect observed values for each indicator of an index; 
2) For any given indicator (e.g., number of reports), find the closest value within the index to the observed 

value; 
3) Assign the rank for the indicator of the season being verified as the same rank assigned to the value 

identified in step 2; 
4) Repeat steps 2 and 3 for each indicator in the index; 
5) Sum all the indicator ranks; 
6) Find the closest sum value from the index to the result found in step 5; 
7) The final rank of the season being verified is then assigned the same rank as the year with the closest sum 

value (i.e., the sum value found in step 6). 
Table 4 A summary of forecasts issued by WFO Austin/San Antonio and the season’s corresponding verification 

using our indices. Severe weather hit 6 of 9 forecasts while river and flash flooding and fire weather hit 3 out 
of 6. 

 Severe Weather River and Flash Flooding Fire Weather 
Season Forecast Verification Forecast Verification Forecast Verification 

Fall 2015 Slight Above Above (6) Above Above (3) Near Normal Near (6) 

Winter 2016 Above Near (12) Slight Above Below (21) Below Below (11) 

Spring 2016 Slight Above Above (6) Slight Above Above (3) Near Normal Below (15) 

Summer 2016 Slight Above Below (26) Slight Above Above (8) Slight Below Below (11) 

Fall 2016 Slight Below Below (26) Below Near (13) Slight Below Near (6) 

Winter 2017 Slight Below Above (3) Slight Below Near (11) Slight Below Near (8) 

Spring 2017 Slight Above Above (6)     

Summer 2017 Near Normal Near (11)     

Fall 2017 Slight Below Below (27)     

This verification scheme has been done to date completely for 21 forecasts made between fall 2015 to fall 
2017 for severe weather (9 seasons) and fall 2015 to winter 2016-17 for river and flash flooding and 6 fire 
weather (6 seasons each) (shown in Table 4). Six out of nine severe weather forecasts hit the correct tercile 
and three out of six forecasts hit for both river and flash flooding and fire weather. Skill in these seasonal 
forecasts was found using Heidke Skill Scores (HSS; Heidke 1926). The formula for a HSS is 

𝐻𝐻𝐻𝐻𝐻𝐻 =
𝐶𝐶 − (1

3 ∗ 𝑇𝑇)
2
3 ∗ 𝑇𝑇
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where C is the number of correct forecasts and T is the number of forecasts being scored. Using this formula, 
HSS’s were found to be 0.50 for severe weather and 0.25 for both river and flash flooding and fire weather. A 
HSS for climatology is 0 since it is assumed one out of every three climatology forecasts is correct. Therefore, 
WFO EWX’s skill is 50% better than climatology for severe weather and 25% better than climatology for 
river and flash flooding and fire weather for forecasts made since fall 2015. 

4. Conclusions and next steps 

Overall, objective verification indices that capture impacts can be created and are meaningful to both 
meteorologists and the public. Impacts are captured from a quantitative aggregation of various data describing 
the season quantitatively. Each indicator is weighted equally in the ranking process that produces a single 
number that sorts years within each season by their impacts. These ranks may then be sorted into terciles, 
much like CPC’s temperature and precipitation outlooks. The indices presented here are baseline indices that 
will be improved as operational capabilities and our understanding of quantifying impacts also are improved. 
In addition, these indices are used to verify the forecasts made by the office. Currently, the office has shown 
to have skill in combining national outlooks and local expertise to produce a forecast tailored to a CWA’s 
stakeholders. 

There are currently several areas of work still being explored to improve this process. For example, 
streamflow is being considered as an additional indicator to the river and flash flooding index. In addition, 
some measure of fuel moisture, such as fuel release component, looks to replace the KBDI blend in the fire 
weather index. Lastly, using the PRISM dataset to more accurately quantify total rainfall is being explored. 
Winter weather is an additional index being designed with guidance from WFO Detroit. The overarching 
process has been shown to have successes thus far and has also been designed in a repeatable but 
customizable way so that indices can be tailored to specific regional nuances. 
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1.  Introduction 

 How much water supply can come from a certain reservoir in 2020, 2030, 2040, 2050 and 2060? This is 
a key question that must be answered for the water planning process in Texas. Currently, the state’s water 
planning rules request regional planning groups to use the firm yield computed by the Texas Commission of 
Environmental Quality (TCEQ) updated Water Availability Model (WAM) Run3 (full permit diversion and 
no return flow) as available supply, plus consideration of future sedimentation effects which would reduce 
water supply. WAM is the official water accounting model used for water rights permitting, regulation, and 
water planning purposes in Texas. The WAM uses the Water Right Analysis Package (WRAP) developed by 
Texas A&M University (Wurbs 2015). WRAP simulates management of water resources of river basin(s) 
under a priority-based water allocation system with river basin hydrology represented by sequences of 
naturalized stream flows and reservoir net evaporation rate at pertinent locations. Naturalized flows are 
sequences of monthly flows representing natural hydrology and are typically developed by adjusting 
historical gauged streamflow data to remove the impacts of reservoir construction, water use, and other 
human activities. Currently, most of TCEQ’s WAMs use hydrologic input from 1940s to 1990s. That means 
the firm yield computed by such a model is only applicable for the period from 1940s to 1990s. One effort 
now is to extend the input hydrologic data to recent years to include 2011, which is the worst one year 
drought in the observational record going back to 1895. Using an extended hydrology reveals potentially 
critical issues with respect to water availability. For example, some river basins have decreasing streamflow 
and some reservoirs have had lower storage in the past decade (i.e., Lake Meredith since 2000) and some have 
even run dry (i.e., O.C. Fisher Lake in 2013). The firm yields from reservoirs decrease with the extended 
hydrologic input. This is an indication that the firm yield values used presently are probably not applicable for 
the future because future hydrological conditions will differ from present hydrology. 

In this study we investigate the potential of 
using stochastic hydrological forecasting with an 
incorporation of observed long-term trends in 
streamflow. The Monte Carlo method and the 
best trend line through regression are employed 
to generate a synthetic hydrology input for the 
future period (2020 through 2069), which is the 
time horizon needed in water resource planning. 
A constraint for limiting the number of wet and 
dry years that can cluster together is also 
incorporated in the process for generating the 
synthetic hydrology to maintain the observed 
patterns of wet and dry year clustering. In this 
study, we take Lake Meredith in the Canadian 
River basin (Fig. 1) as an example, because a 
clear downward trend has been observed at the 
Amarillo gauge, which is located upstream of 
Lake Meredith on the Canadian River. Finally, 

Fig. 1  Location of Lake 
Meredith, Amarillo gauge 
and Canadian River Basin 
in Texas. 
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we forecast the available water supply for Lake Meredith over the next 50 year time horizon (i.e. for 2020, 
2030, 2040, 2050, and 2060) at various given confidence intervals or certain criterion, such as 65-percent and 
85-percent exceedance probabilities.   

2.  Methodology 

As stated above, the existing WAM model is only applicable to the existing hydrologic condition from 
1940s to 1990s, because the future hydrologic condition is not as the same as existing conditions. Therefore, 
for that specific future time (up to 2060 or beyond), we must extend the hydrologic input and the simulation 
period to a future time (up to 2060 or beyond), if we are to use the WAM model to compute firm yield from 
reservoir. In this case, the future naturalized streamflow, which is generated by precipitation, has a random 
nature. Therefore, the Monte Carlo method is applied to generate a synthetic hydrology. However, trend in the 
existing hydrology should also be considered if there is a clear trend, especially a non-linear trend. Moreover, 
we must consider the maximum length of continued dry or wet period, because naturally a dry period must 
finally end with a wet period, and vice versa. In other word, naturalized streamflow also has a cyclical nature 
(i.e. not pure random process). This factor affects reservoir firm yield, which is determined for drought 
conditions. If we inadvertently generate an extremely long dry period through the random selection process, 
an unrealistically lower firm yield would be generated. Therefore, a constraint of maximum dry period and 
maximum wet period is introduced in our random selection process, based on the available historical record. 
As an example in this study, future firm yields from Lake Meredith in the Canadian River Basin are simulated 
by TCEQ’s WAM Model for the Canadian River Basin (Espey Consultants, Inc. 2002). The model has been 
updated by extending its hydrologic input data from 51 years (1948-1998) to 65 years (1948-2012) to obtain a 
better representation of the hydrology in the Canadian River Basin. The recent drought (2011-2013) event is 
included in this extended hydrology. Extending the hydrology also enables us to increase the population 
available for random sampling. The inflow to Lake Meredith is represented by the adjusted gauge flow (i.e. 
naturalized) at the U.S. Geological Survey gauge at Amarillo. Adjusted gauge flow refers to accounting for, 
and removing, diversions above the gauge. 

Stochastic models, which are often known as time series models have been used in scientific, economic 
and engineering applications for the analysis of time series data (Barndorff-Nielsen et al. 1998; Srikanthan 
and McMahon 2000; U.S. Bureau of Reclamation 2003). Time series modeling techniques have been shown 
to provide a systematic empirical method for simulating and forecasting the behavior of uncertain hydrologic 
systems and for quantifying the expected accuracy of the forecasts (Machiwal and Jha 2006). If there is a 
systematic linear trend in seasonal inflow, this could be incorporated in the simulated time series (Ward et al. 
2012).  Streamflow at the Amarillo gauge has a non-linear recession trend. We, therefore, propose a new 
methodology for generating the synthetic hydrology that incorporates the non-linear trend. Steps for 
generating the synthetic streamflow and modifying the model for simulation are discussed below: 

1.   Analyze existing annual naturalized flows to see if there is an obvious trend. If there is a trend, make 
the best fit trend line and its formulation. In this case, we found the best fit (highest R-square value) 
curve is exponential (Fig. 2).  

2. Find out the maximum length 
(year) of high flow and 
maximum length (year) of low 
flow by computing exceedance 
probability below 25-percent 
and above 75-percent, 
respectively (Fig. 3). These 
maximum lengths will be used 
in the synthetic process by 
random selection as a constraint 
to maintain the cyclic nature of 
naturalized flows. If the selected 
year exceeds the maximum limit, 

Fig. 2  Existing annual naturalized flows and its best fitted trend line 
at the Amarillo gauge.  
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it would be skipped and a year of different type will be selected to construct the synthetic hydrologic 
sequence. In this case, the maximum length for a clustering wet period is 3 years and 4 years for dry 
period (Fig. 3). 

3.  Select a year randomly from the 
existing naturalized flow to 
construct year by year the future 
flows till 2069 by following the 
trend line (or value of the slope 
for those years). This task is 
done using the following 
methodology:  

3a. Randomly select a year (t1) 
from the existing 
naturalized flow (Qt1) and 
compute the naturalized 
flow (Qt2) for a future year 
(t2) (Fig. 4) by the 
formulation: 

             Qt2 = (Vt2 / Vt1) * Qt1  

where Vt1 and Vt2 are the 
value of trend line at year t1 
and t2, respectively. 

3b. Repeat step 3a for next 
future year until all flows for 
the future years (up to 2069) are done. 

3c. If the maximum length of 4-year dry period defined in step 2 is exceeded at step 3b, the 5th dry 
year is skipped until a different type (wet or neutral) of year’s hydrology occurs. This will 
guarantee that the constructed hydrology does not exceed the known maximum length of drought. 
This step is important because too many years drought clustering together would be unrealistic 
and would lead to extreme low firm yield.  

3d. To preserve the trend in the existing streamflow, the newly constructed synthetic dataset should 
be adjusted to ensure that the existing trend is maintained exactly. The original trend line may be 
altered a little bit (less than 1%) in the above random process. This adjustment is done by 
comparing the difference between the existing and new trend line for the period from the 
beginning year (i.e., 2013) to the last year (2069) of new flows year by year.  Then the differences 
are distributed to the month flows proportionally based on the flow of each month in the entire 
calendar year. After applying the differences, the original regression equation is preserved.  

4.  Repeat step 3 to make a series of 1000 natural hydrology input datasets. The decision to use 1000 
input datasets is based on another study on the reliability of reservoir firm yield, which indicates that 
500 datasets are sufficient for a convergence of firm yield mean value (Yang et al. 2017). Figure 5 
shows the distribution of these 1000 simulated firm yields, which reveals a normal distribution. 

5. Modify the model input file for the sediment condition at 2020, 2030, 2040, 2050 and 2060. 
Sedimentation in reservoir reduces its capacity and affects storage volume and gives lower firm yield. 
We use an elevational sedimentation rate, derived from volumetric surveys undertaken by the Texas 
Water Development Board in 1965 and 1995 (1,330 acre-feet per year or 0.15 percent of 1965 
capacity), to construct the projected capacities and elevation-area-capacity rating curves of above 
planning decades for Lake Meredith (Zhu at al. 2018). 

Fig. 3  Identify wet and dry pattern from existing flows.  

Fig. 4  Construct flow at future time (t2) by randomly selecting 
existing time (t1) and by using the above formulation. 
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6.  Run the modified model of 2020, 
2030, 2040, 2050 and 2060 by 
using the newly constructed 
1000 hydrologic dataset for the 
simulation periods, respectively.  
For each decade, 1000 firm 
yields are computed for Lake 
Meredith. 

7. Analyze statistical properties of 
the computed 1000 firm yield 
results at each simulated decade 
(i.e., 2040; Fig. 5). Results 
indicate that firm yields are 
normally distributed, so mean, 
median and standard deviation 
are derived per normal 
distribution. The exceedance 
probability of the computed 
1000 firm yield results for each 
simulated decade is plotted too 
(Fig. 6).   

8. Evaluate available water supply 
for each decade simulated by 
selecting the best criteria, such 
as an exceedance probability, a 
certain percentile, or confidence 
interval. In this experimental 
study, we selected Confidence 
Intervals, 99-percent, 95-percent, 
90-percent, and 80-percent to 
examine the magnitude of the simulated firm yields for all decades designed. 

3.  Preliminary results for Lake Meredith in Canadian River Basin 

Results for Lake Meredith indicate that firm yield in the future decreases as the simulation period 
increases. The original TCEQ Canadian WAM (1948-1998) firm yield for Lake Meredith is 79,970 acre-feet 
per year at exceedance probability of 65-percent. The firm yield for 2010 (period of simulation is from 1948 
to 2010) is 75,280 acre-feet per year (also bears 65-percent exceedance probability). If one does not want to 
change the current exceedance probability (65-percent), the simulated firm yield is approximately 55,390, 
30,280, 17,040, 8,350, and 1,970 acre-feet per year for 2020, 2030, 2040, 2050, and 2060, respectively. 
Alternatively, at 85-percent exceedance probability, simulated firm yield is approximately 50,780, 25,180, 
13,170, 5,040, and zero (0) acre-feet per year for 2020, 2030, 2040, 2050, and 2060, respectively. 

Exceedance probability of firm yields in all simulated decades (2020, 2030,…..2060) are plotted in Figure 
6. Results indicate that firm yield declines from 2020 to 2060. For planning purposes, a planner could set a 
certain exceedance probability limit as a standard (criterion) for selecting the firm yield. As indicated in 
Figure 6, a higher exceedance probability would lead to a lower firm yield and a cautious approach (i.e. 
avoiding over-allocation of available water supply) for water allocation in the future. However, one should 
avoid selecting too high an exceedance probability (meaning extremely lower firm yield) because it would 
result in unrealistically low water supply projections for the future. This could lead to unmet water demands 
in the future resulting in adverse socio-economic impacts. It could also result in water loss to evaporation if 
the reservoir water is not allocated for beneficial use during the non-drought periods. 

Fig. 5  Distribution of firm yields for result of simulation for 2040. 

Fig. 6  Exceedance probability of firm yield for simulations for 
2020, 2030, 2040, 2050, and 2060. 
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A planner can also select a certain 
Confidence Interval for determining 
the future firm yield. A confidence 
interval is the probability that a value 
will fall between an upper and lower 
bound of a probability distribution. 
The lower bound is of interest to the 
designer or planner interested in 
adopting a cautious approach to water 
planning. For example, at the 99-
percent Confidence Interval, the lower 
bound of firm yield is 57,051, 32,748, 
19,109, 9,966, and 3,683 acre-feet per 
year for 2020, 2030, 2040, 2050, and 
2060, respectively (Fig. 7). These are 
greater than the above mentioned firm 
yields at 65-percent and 85-percent 
exceedance probabilities. For some 
decades, simulated firm yields become 
larger with decreased confidence 
interval. For instance, at 99-percent 
Confidence Interval, firm yield is 
57,051 acre-feet per year for 2020, 
while at 80-percent Confidence 
Interval, firm yield is 57,301 acre-feet 
per year for 2020. Table 1 provides 
some typical Confidence Intervals and 
their associated firm yields. 

In this particular study, it appears 
that exceedance probability around 80-
90 percent is a reasonable selection of 
future firm yield, because the slope 
drops sharply on curves of firm yield 
vs. exceedance probability in Fig. 6 
above 90 percent exceedance probability, meaning the occurrence is poor (probability of occurrence is low).  
If we pick exceedance probability at a higher percent (i.e. 99 percent), it would lead to a lower firm yield 
picked which may be never occurring. If we pick a lower exceedance probability, it means higher firm yield 
but it would cause over allocation and unmet shortage in the future. In this particular case, it appears that firm 
yields at around 85 percent exceedance probability is safe enough for planning purpose (green line in Fig. 7).  
Confidence Interval is another criterion that can be used in this type of stochastic study. The higher 
Confidence Interval means higher probability for the corresponding firm yield in this stochastic forecasting.  
A normal distribution with known mean and standard deviation of simulated firm yield is tested in this study.  
It appears firm yield does not change significantly from mean value with increased Confidence Intervals 
(Table 1).  

4.  Conclusion and recommendation 

As an experimental study, we combine a stochastic approach (Monte Carlo method) and the incorporation 
of trend to forecast firm yield for the 2020, 2030, 2040, 2050, and 2060 planning decades for Lake Meredith 
in Canadian River Basin.  A constraint (limit of dry and wet periods) for maintaining the cyclic nature of 
natural hydrology is also incorporated in the synthetic processes. Simulated results indicate that firm yields 
will decline significantly in future decades from 2020 to 2060. This can be a good reference for water 
resource planning. It appears that, with a sufficient population for sampling and proper consideration for 

Fig. 7  Simulated firm yields for decades 2020 through 2060 at 99-
percent Confidence Interval, 65-percent Exceedance Probability 
and 85-percent Exceedance Probability.  

Table 1  Selected confidence intervals and their associated firm yield 
for decades from 2020 to 2060. 
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future trends, simulated firm yields reveal a clear statistical distribution for planners to determine future 
projected water supply. 

Based on this study, we believe that the 2016 Regional Water Plan for the Panhandle Region (Freese and 
Nichols, Inc. 2016) can be improved in future planning cycles. The 2016 Plan gave a constant (static) 
estimated firm yield (37,505 acre-feet per year), safe yield (32,928 acre-feet per year), and zero available 
supply from 2020 to 2060. Safe yield is safer than firm yield because the 2016 Plan assumed a longer drought 
than the drought of record. Lake Meredith is an important source of water supply for 11 cities, including 
Amarillo and Lubbock in the Texas Panhandle. Drought in recent years had significantly affected the storage 
in this reservoir and drawn attention to water supply issues in the region. It forced the Canadian River 
Municipal Water Authority to develop groundwater resources from the Ogallala Aquifer to meet their supply 
shortage. Therefore, earlier planning for the worst case scenario is vitally important to overcome potential 
future shortages. This study demonstrates a methodology that could be applied to water planning in Texas to 
improve the reliability of water availability estimates over the next fifty year planning horizon. The study is 
particularly applicable to other locations in the state that have declining streamflow trends. Modifications to 
the methodology presented here would be needed if it is to be applied to locations that do not have declining 
streamflow trends in the observational record. 
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1.  Introduction 

 NOAA's operational climate monitoring and 
prediction products provide the public with 
critical information about environmental 
conditions for better preparedness and improved 
resiliency. NOAA's Modeling, Analysis, 
Predictions and Projections - Climate Test Bed 
(MAPP-CTB) projects support transition of 
research advances from external community to 
National Centers for Environmental Prediction 
(NCEP) to accelerate the improvement of 
operational climate monitoring and predictions 
(Fig. 1).  Three focus areas are 1) testing the 
performance of model components and schemes 
of methodologies, 2) testing experimental 
prediction methodologies and products, and 3) 
testing a multi-model subseasonal climate 
prediction system via model selection, system 
optimization and products evaluation. By tracking 
progresses on twenty-three MAPP-CTB projects, this presentation assesses the Transition Readiness Level 
(TRL) via measurements of benchmarks and deliverables following NOAA Administrative Order 216-105B 
(NOAA 2016), meanwhile highlights major achievements to date beyond the development phase (TRL > 5). 

2.  Performance of model components and schemes of methodologies 

Targets: 

  i) Model components critical to subseasonal-to-seasonal (S2S) prediction  
 ii) Representation of predictability sources                          
iii) Parameterization of subgrid scale dynamic-thermodynamic processes 
iv) Data assimilation 

Projects status: 

Fig. 1  NOAA research and development funnel.  
(MacDonald et al. 2006) 

Model Components and Schemes Research 
Developer 

Operation 
Beneficiary TRL 

1. Flash lake model USU CFS 6 
2. Community Noah-MPv2 LSM NCAR CFS 7 
3. NASA GMAO’s physically-based cloud/aerosol packages SUNY GFS,CFS 6 
4. Cloud and boundary layer processes UW, JPL GSF, CFS 7 
5. Turbulence and cloud processes UU GSF, CFS 6 
6. Land Information System NASA NLDAS 5 
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7. MOM6/SIS2 Hybrid-GODAS (eddy permitting) UMD GODAS 5 
8. Coupled wave-Ocean System GFDL CFS, NGGPS 5 
9. LETKF assimilation for sea ice  analysis and forecasting UMD CFS, NGGPS 5 

Progress reports: 

Project 1  Flash lake (Flake) model  (PI:  J. Jin) 

• The offline Flake model is improved to better simulate lake ice. 
• The lake ice simulations are significantly improved in the coupled CFS-Flake model for the Great 

Lakes. 
• The near-surface air temperature for winter and early spring is better predicted with different forecast 

leads (Fig. 2). 

Fig. 2  One-month-lead two meter height temperature ensemble forecasts over North America averaged for 
JFM 2014. The left panel is for observation.  The rest two panels are for the differences of forecast by CFS-
Flake (middle) and CFS (right) minus observation, respectively. 

Project 2  Community Noah-MP (Multiple Parameterization) version 2 land surface model (LSM)  (PI: F. 
Chen) 

• CFS land-surface modeling system is enhanced with new global land-use and land-cover (LULC) and 
soil texture data. Consistent with recent community efforts to improve the specification of surface 
characteristics. 

• Preliminary CFS reforecast results show encouraging signs of positive impact of using Noah-MP with 
ground-water and dynamic vegetation parameterizations on CFS prediction skills in precipitation and 
surface temperature (Fig. 3).    

Fig. 3  Anomaly correlation skill of averaged JJA 2-m temperature over CONUS from CFS experiments of 
using satellite-based GVF in Noah (left) and Noah-MP with dynamic vegetation (middle), comparing with 
CFS control (right). 

Project 3  NASA Global Modeling and Assimilation Office (GMAO)’s physically-based cloud/aerosol 
packages  (PI: S. Lu) 

• NOAA Environmental Modeling System (NEMS) Global Forecast System (GFS) physics suite is 
upgraded.  GMAO’s physically-based aerosol and cloud microphysics package (Modal Aerosol 
Model (MAM) aerosol scheme; Morrison-Gettelman (MG) cloud microphysics; and cloud 
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condensation nuclei in cloud (CCN/IN) activation) are implemented, tested and evaluated in NEMS 
GFS (Fig. 4).  

Fig. 4  High-level cloud optical depth from NEMS GFS runs (Clouds and the Earth’s Radiant Energy System 
(CERES) estimates (left), MG_NoAER (middle), and CTRL (right),) averaged for Aug 10-17, 2016. 

Project 4  Cloud and boundary layer processes  (Lead PI: C. S. 
Bretherton) 

• Further development of moist eddy diffusion-mass flux 
(EDMF) scheme implemented in GFS and port to the Finite-
Volume on a Cubed-Sphere Dynamical Core (FV3) model 
almost complete. 

• Further tuning of Thompson microphysics scheme 
implemented in GFS, which now improves CONUS 
precipitation skill scores compared to the operational model 
(Fig. 5).  Ported to FV3.  

Project 5  Turbulence and cloud processes  (Lead PI: S.K. Krueger) 

• To improve the prediction of the high-level tropical cloud 
fraction, which is too large in the SHOC (Simplified Higher-
Order Closure) test runs with the GFS, SHOC was modified 
to include two new prognostic equations for variances of 
total water and static energy; meanwhile the source terms for 
total water variance were diagnosed from a Giga LES, and a 
simplified representation of the impact of detrainment of 
total water on the variance developed. 

• Algorithms were developed that efficiently sample the 
distribution of cloud condensate diagnosed by SHOC for 
radiative transfer calculations. The algorithms have been tested against a time series of SHOC 
parameters fit to tropical deep convection (giga-large-eddy simulation (Giga-LES) simulations 
using high resolution (100-m horizontal grid size) and large domain (200 km by 200 km). (Fig. 6). 

Fig. 5  Modified Thompson cloud 
microphysics improves GFS 
precipitation skill over CONUS, 
as measured by the equitable 
threat score (ETS).  The 
horizontal axis is precipitation in 
mm/day.  The green regions 
show improvement.  For almost 
all precipitation intensities at 
forecast leads up to 72 hours, the 
ETS is improved by about 5%.  

Fig. 6  The figure shows domain-
mean profiles of cloud fraction 
(left panel) and cloud liquid water 
content (right panel) obtained 
directly from the simulation 
(blue), and as reproduced by 
Monte Carlo methods (red) using 
250 samples. The instantaneous 
errors are a few percent in cloud 
fraction and a few mg/kg in cloud 
water content. 
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• The closure for updraft fraction for multiple updraft types was tested by using a large-eddy simulation 
of deep convection in a large domain. 

3. Experimental prediction methodologies and products  

Targets: 

i)   Prediction of extreme events  
ii)  New tools and ideas  
iii) Products for End-user needs 

Projects status: 

Monitoring and Prediction Methodologies Research 
Developer 

Operation 
Beneficiary TRL 

10. CFS-based severe weather forecast tools CU CPC 7 
11. Week 3 & 4 T and P forecast products UCSD CPC 8 

12. Flash drought monitoring processes UCLA CPC in real-
time 7 

13. Subseasonal Excessive Heat Outlook System for global tropics and 
subtropics UMD/ESSIC CPC 6 

14. Water sector applications of S2S climate products NCAR CPC 5 
15. Calibration, bridging and merging (CBaM) for S2S prediction CPC CPC 5 
16. Application of seasonal climate forecast to wildland fire 
management in Alaska UAF CPC, 

NWS/AR 5 

Progress reports: 

Project 10  CFS-based severe weather forecast tools  (PI: M.K. Tippett) 

• Assessment of skill of monthly forecasts for NOAA regions (Fig. 7).  
• Case studies examining the relation between forecast consistency for notable events. 
• Upward trends in number of tornado reports per outbreak.  

Target 
 

Fig. 7  CFSv2 forecasts (colors) 
of daily Tornado 
Environment Index (TEI) 
summed over the US at 
varying lead during the 
period April-May 2011 when 
historic and deadly tornado 
outbreaks occurred. Bar plot 
shows the number of 
tornadoes reported on the 
corresponding day.  It shows 
good indications of 
active/inactive periods at 
around the 10-day lead and 
fairly accurate timing around 
the 5-day lead mark. 

Project 11  Week 3 & 4 T and P forecast products  (Lead PI: S.-P. Xie) 

• Continued monitoring and demonstration of skill of the MJO/ENSO statistical models in CPC’s 
Experimental Week 3-4 temperature and precipitation outlooks (Fig. 8).  
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Fig. 8  To examine the role of 
atmospheric initialization, two 
versions of initialization are 
compared using GFDL FLOR 
model. FLOR-v1 primarily 
captures the forcing from the 
ocean surface, whereas FLOR-
v2 includes the additional 
contribution from realistic 
atmospheric initial conditions 
(AICs).  The figure on left 
shows Heidke skill scores 
(HSSs) of wintertime (DJF) 
weekly ensemble mean T2m 
hindcasts of 50th percentile 
exceedance from FLOR-v1 (a-d) 
and FLOR-v2 (f-i) at lead times 
of 1 through 4 weeks. It reveals 
that the forecast skill of T2m 
increases dramatically for the 
first two weeks over the 
majority of North America from 
FLOR-v1 to FLOR-v2, and 
FLOR-v2 also performs 
noticeably better at week 3, 
indicating that accurate AICs are 
important for week 3-4 forecasts 
over North America. 

 
Project 12  Flash drought monitoring processes  (PI: D.P. Lettenmaier) 

• Evaluated the ability of the CFSv2 seasonal forecasts to capture the number of flash droughts of both 
types (Fig. 9). 

e)  f ) 

Fig. 9 The ability of the CFSv2 
seasonal forecasts to capture 
the number of flash droughts 
has been evaluated.  The figure 
shows the frequency of 
occurrence (%) of pentads 
under (a) heat wave flash 
droughts from analysis, (b) P 
deficit flash drought from 
analysis, (c) and (d) same as (a) 
and (b), but from CFSv2 
seasonal forecasts, starting 
from 1 April, 1 May, 5 June 
and 5 July pooled together for 
the period from 1982-2010,  (e) 
and (f)  are corresponding 
Heidke skill scores.  An 
experimental real-time flash 
drought monitor is provided on 
the CPC website. 
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• Produced daily ET and total soil moisture fields by forcing the VIC model with CPC precipitation and 
temperature analyses.  

• Now provide an experimental real-time flash drought monitor on the CPC website; 

Project 13  Subseasonal Excessive Heat Outlook System for global tropics and subtropics  (PI: A. Vintzileos) 

• Developed a quasi-operational real-time version of Global Subseasonal Excessive Heat Outlook 
System (G-SEHOS) and conducted a reforecast, which is diagnosed to show the need for a 
generalization of the definition of extreme heat events. 

• The generalized definition in principle of (1) describing adequately tipping points in human 
physiology that lead to heat disease, (2) being general enough to be applicable in both extra-tropical, 
subtropical and tropical areas, (3) having a relation with mortality, and (4) being predictable in 
subseasonal-to-seasonal lead times was tested (Fig. 10) and refined using direct observations from 
Meteorological Terminal Aviation Routine Weather Report (METAR). 

• Compared excessive heat events (EHE) intensity differences for METAR and Reanalysis data, and 
calculated quantile mappings between METAR observations and reanalysis products. 

Fig. 10  In order to extend existing 
operational SEHOS to the 
entire globe, a new definition 
of EHE was introduced The 
functionality of this new 
definition has been tested 
against a list of documented 
EHE.  The figure shows 
scatter plots of the intensity of 
EHE and abnormal mortality 
for Phoenix-PHX (humid 
type) and Chicago-ORD (dry 
type).  Red lines   show the 
linear regression between 
intensity of EHE and 
abnormal mortality.    For low 
EHE intensity mortality is not 
correlated with EHE however 
as the intensity of the EHE 
increases there is a clear 
increase of abnormal 
mortality. 

4.  Multi-Model Subseasonal Climate Prediction System 

Targets: 

i)   Optimization of model design  
ii)  Robust MME forecast system  

Projects status: 

Multi-Model System Research 
Developer 

Operation 
Beneficiary TRL 

17. Diagnosis of subseasonal NMME forecasts on skill, predictability, & 
multi-model combinations GMU CPC 6 

18. NCEP GEFS for monthly forecasts EMC CPC 6 
19. Operational NMME probabilistic seasonal forecast products 
improvement IRI CPC 9 
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20. Real-time MME subseasonal forecast system UM-RSMAS NMME 5 

21. NASA GEOS-5 system NASA, 
USRA NMME 5 

22. CCSM4 subseasonal prediction UM-RSMAS NMME 5 
23. Navy’s Earth System Model S2S prediction NRL NMME 5 

Progress reports: 

Project 17  Diagnosis of subseasonal 
NMME forecasts on skill, predictability, 
& multi-model combinations  (PI: T. 
Delsole) 

• Demonstration of forecast skill of 
temperature and precipitation 
over the contiguous United States 
on the 3-4 week timescale (Fig. 
11). These results provide a 
scientific basis for predictability 
on these timescales. 

• Formalization of a rigorous 
significance test for serially 
correlated daily data. 

• A new method for determining 
the ensemble size and 
initialization frequency of the 
lagged ensemble that minimizes 
the MSE. The method can 
identify the optimal lagged 
ensemble without having to 
actually run that particular 
forecast configuration. 

• Identification of the optimal 
lagged ensemble for subseasonal 
forecasts of the MJO and 
seasonal forecasts of ENSO in 
CFSv2. 

Fig. 11  Correlation skill of week 3-4 temperature (left) and 
precipitation (right) CFSv2 hindcasts over CONUS during 
January (top) and July (bottom), 1999-2010 (12 years). The 
hindcasts are based on a 4-day lagged ensemble (comprising 
16 members drawn from 4x daily hindcasts). Values that are 
statistically insignificant at the 5% level (according to the 
permutation test) are masked out.  The percentage area with 
significant correlation skill (positive and negative) is 
indicated in the title of each panel. 

Project 18  NCEP GEFS for monthly forecasts  (PI: Y. Zhu)  

• Investigation of the configuration for MGEFS through 4 suites of experiments during a 2-yr 
experiment period.  (Fig. 12).  

• Finished an 18-yr reforecast with a high-resolution (34km for 0-8 days and 52km for 8-35 day) model 
and 11 member ensemble, every other 7 days. 

Fig. 12  NCEP MGEFS MJO forecast skills in terms 
of bi-variant correlation of the Wheeler-Hendon 
RMM indices for four different experiments 
during the period of May 2014 to May 2016.  A 
significant improvement in MJO forecast skill 
(from 12.5 days to 22 days) is carried out after 
applying the new stochastic physics 
perturbation (SPs), updated SST (CFSBC) and 
new convective schemes (CNV). 
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• Readiness of a real-time MGEFS version with the identical configuration as reforecast but larger 
ensemble size (21 members).  

Project 19  Operational NMME probabilistic seasonal forecast products improvement  (PI: A Barnston) 

• At IRI, systematic errors in individual coupled model forecast spatial patterns were corrected, 
resulting in skill improvements in specific regions and seasons. Overall improvements are quite 
limited, however. On the other hand, improvements at a local (not pattern) level are substantial for 
both precipitation and temperature. The CCA was therefore found to be useful for an unintended 
purpose, as local corrections can be done using simpler methods than CCA. Another unexpected 
finding was that applying the CCA to the entire globe as a single region produced equal or better 
results (Fig. 13) than applying it to individual regions and merging the corrected forecasts into a 
global forecast. 

Fig. 13  Geographic distribution of root mean squared error skill score (RMSESS) over the globe as a 
single region, for temperature forecasts by the NCEP-CFSv2 model for January-March made in early 
December. The left panel shows the original skill, and the right panel the skill following the CCA 
correction. The RMSESS is in terms of standardized anomalies with respect to the observed mean 
and standard deviation. 

Project 20  Real-time MME subseasonal forecast system  (PI:  B. Kirtman) 

• Production of re-forecasts by modeling groups 
• Re-forecasts being posted at IRI 
• Coordination with CPC in preparation for real-time forecasts in July 
• Website (Fig. 14)  

Get 
Data 

5. Remarks 

The creditability of seasonal-to-subseasonal climate 
service relies heavily on the prediction skill, which 

Fig. 14  A website has been created to provide public 
information about the Subseasonal Experiment 
(SubX) project, datasets, models, and research 
activities.  (http://cola.gmu.edu/kpegion/subx/)  
Each modeling group is producing re-forecasts 
following the SubX protocol. The re-forecasts are 
being made available to the research community on 
the IRI data server. The IRI continues to update the 
NMME monthly archive in the IRI Data Library in 
real time every month as new output files are made 
available by the contributing forecast centers.  It 
also assists users of the NMME archive who send 
requests for help in accessing the data. 
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currently is limited in forecast operation, and the researches on the topic present many challenges (as 
appeared in the Project 19 research).  NWS sincerely invites partners in the research community to work 
together on the strongholds to meet the legislative act for S2S forecasting innovation passed recently (U.S. 
115th Congress 2017).  As the skill improvement brought about by the advancement of existing dynamical 
models and statistical tools has been approaching bottleneck, shifting research paradigm in approach to think 
outside of the box to foster innovation stimulated from rapid developing science areas, such as machine deep 
learning (Jones 2017), system experimental design (Zhou and DeWitt 2016) et al., needs much attention and 
encouragement for their potential helpfulness to make breakthrough. 
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1.  Introduction 

 Recent changes in the Arctic’s climate have been large and widely reported (AMAP, 2011; IPCC, 2013).  
These changes span multiple components of the climate system: sea ice, snow cover, glaciers and the 
Greenland Ice Sheet, and permafrost.  Changes in these various components are consistent with atmospheric 
warming, which has also been well documented, especially during the past few years when the Arctic has set 
new records for winter and annual temperatures (Richter-Menge and Mathis, 2017).  The present paper 
represents a step towards the attribution of this warming by evaluating the contribution of changes in 
atmospheric circulation in a region (Alaska) for which the warming of recent decades is typical of the Arctic. 

Figure 1 shows the post-1950 
Arctic warming in map form for the 
winter season (December-February) 
and at the annual (January-
December) time scale. Alaska’s 
annual mean warming, which is 
slightly more than 2°C since 1950, is 
typical of most of the Arctic (Fig. 
1a).  The Arctic’s warming is greater 
than most of the rest of the Northern 
Hemisphere, a manifestation of the 
well-known Arctic amplification 
(e.g., Pithan and Mauritsen, 2014).  
However, the Arctic’s winter 
warming (Fig. 1b) shows a spatially 
more complex pattern, with a 
maximum over Alaska, 
northwestern Canada and the 
Beaufort Sea. The greater spatial 
complexity of the winter pattern is 
consistent with a greater role of the 
atmospheric circulation in advecting into a region air that is warmer or colder than its climatological mean.  

Internal variability is readily apparent in the annual temperatures at the regional scale.  Figure 2 shows time 
series of the annual and winter (December-February) statewide average temperatures for Alaska for the 1950-2017 
period.  While positive trends are apparent in both time series, interannual and multiyear variations are large, and 
in some cases the year-to-year   variations are larger than the overall trend for the 68-year period. The 68-year 
changes based on least-squares fits to the time series in Fig. 2 are 2.1°C for the annual values and 4.1°C for the 
winter values. The corresponding trend-derived changes for the other seasons (not shown) are 2.2ºC for spring, 
1.3°C for summer and 0.8ºC for autumn, indicating that the warming has been largest in winter and smallest in 
autumn. 

The final two years of the winter time series in Fig. 2b provide support for the premise that the atmospheric 
circulation is a key factor in interannual temperature variations over Alaska.  The statewide average temperatures 
for December-February ending in 2016 and 2017 were -9.8ºC and -14.7°C, respectively. These temperatures 

Fig. 1  Surface air temperature change (°C) from 1950 to 2017 based on 
least-squares linear fit to annual (left)  and winter (Dec.-Feb.) (right) 
temperatures.  Source: NASA Goddard Institute for Space Studies, 
https://data.giss.nasa.gov/gistemp/maps/ 
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represent departures of +4.7°C and -0.2ºC from the mean for the 1980-2010 reference period. The difference of 
approximately 5°C in the 3-month mean temperatures is consistent with the sea level pressure anomalies for the 
same three-month periods.  Figure 3 shows that the 2015-2016 winter was characterized by negative pressure 
anomalies of more than 12 hPa in the Aleutian region, corresponding to an unusually deep Aleutian low with 
anomalous northward airflow and warm advection into mainland Alaska.  By contrast, the winter of 2016-17 had 
positive sea level pressure anomalies of more than 10 hPa in the Aleutians, with even larger anomalies to the south, 
contributing to the eastward advection into much of Alaska. The sensitivity of Alaskan temperatures to near-
surface atmospheric circulation, illustrated by the temperature and sea level pressure anomalies of these two recent 
winters, leads to the hypothesis that much of the trend of winter (and annual) temperatures over Alaska during 
recent decades is attributable to variations of the atmospheric circulation.  

Fig. 2  Time series of Alaska statewide temperature for 1950-2016/17 for (a) the full calendar year and (b) 
winter. Temperature scales for °F and °C are shown on the left and right ordinate axes, respectively.  
Source: National Centers for Environmental Information, https://www.ncdc.noaa.gov/cag/ 

Fig. 3  Departures from climatological mean (1981-2010) mean sea level pressure (hPa) for December-
February of 2015-16 (left) and 2016-17 (right). Contour interval (2 hPa) and color bar are the same for 
both panels. 

2. Methodology 

Our diagnostic evaluation of the contribution of the atmospheric circulation to the recent warming of 
Alaska is based on an analog methodology.  The analog methodology was illustrated for a single year by 
Walsh et al. (2017), who showed that winds accounted for a substantial portion of the anomalous warmth of 
the 2015-16 winter and spring (October-April).  The approach consists of a comparison of a particular year’s 
sea level pressure (SLP) field over the Alaska region with the SLP fields of all other years in the 1949-2017 
period, the selection of the five years with the closes match of SLP fields, and the construction of an analog-
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derived temperature by averaging 
the temperatures of the five best 
analog years.  Guided by the results 
in the previous study, we base our 
analog-year selection on the spatial 
pattern correlation over the Alaska 
domain bounded by 50ºN, 75°N, 
180°W and 130°W, SLP as the 
analog selection variable, and the 
five best analogs for each year.  We 
perform the analog selection for the 
statewide temperatures of each 
season (winter, Dec-Feb; spring, 
Mar-May; summer, Jun-Aug; 
autumn, Sep-Nov), although our 
emphasis will be on the winter 
season.  

We denote the portion of a 
seasonal temperature anomaly 
unexplained by the atmospheric 
circulation as the “excess warmth”, 
which is also referred to in the 
literature as the “dynamically 
adjusted temperature anomaly” (e.g., Deser et al. 2014).   The “excess warmth” can be attributable to (1) local 
effects that aggregate systematically in a statewide average, (2) anomalous surface states (anomalies of ocean 
temperature, sea ice, snow cover), or (3) external forcing such as the effects of increasing greenhouse gas 
concentrations.  A clean separation of the second and third potential attribution sources is not possible from 
the observational data because increasing greenhouse gas forcing can result in changes in ocean temperature, 
sea ice and/or snow cover, thereby augmenting direct radiative effects on air temperature.  The direct radiative 
effects of increasing greenhouse gas concentrations may be further partitioned into increased downwelling 
radiation from anthropogenic sources (CO2, CH4, etc.) and from water vapor, as atmospheric warming is 
expected to be accompanied by an increase of specific humidity (Serreze et al., 2012; Cullather et al., 2016).  
However, if the temperature anomaly unexplained by the atmospheric circulation shows a systematic 
warming over time, then one can point to a trend of “excess warmth” that is  consistent with the direct and 
indirect effects of increasing greenhouse gas concentrations.   

3. Results 

The “excess warmth” will be negative if the actual temperature is colder than the mean value of the five 
best circulation analog years, and it will be positive if the actual temperature is warmer than the analog-
derived value.  Figure 4 shows the excess warmth as a function of season and subperiod (quartile) of the 68-
year period of record.  In all seasons except autumn, the excess warmth increases monotonically from the 
earliest to the most recent 17-year quartile.  In all seasons except autumn, it is negative in the first two 
quartiles and positive in the two most recent quartiles.  Even in autumn, the most recent quartile has the most 
positive value of excess warmth.  The increase from the first to the final quartile ranges from 1.2°C in autumn 
to 3.0ºC in winter, with an annual mean increase of 1.5°C.  As an indication of the sensitivity to the metric 
used in analog selection, we note that the winter-season increase of excess warmth is 3.0°C when analogs 
selection is based on the spatial pattern correlation, while it is 4.1ºC when based on the root-mean-square 
difference of the gridded pressures. 

Least-squares linear fits to the time series of excess warmth for each season enable estimates of changes 
from 1949/50 to 2016/17.  These changes are shown in Fig. 5, together with the corresponding total changes 
in temperature (trends including the circulation-driven component) and the percentages of the total trend that 

Fig. 4  Excess warmth (°C) by season and quartile (17-year period), 
from earliest (blue) to most recent (orange).  Negative values 
indicate that actual temperature was cooler than the analog-
derived, positive values indicate actual temperature was warmer 
than analog-derived. Also shown (red bars) are the total changes in 
excess warmth from the first to the last quartile. 
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the excess warmth represents in 
each season.  During winter the 
linear-trend increase of excess 
warmth is approximately 2.1°C, 
which is 51% of the total linear-
trend-derived change of 4.2ºC.  
During autumn, the 0.5°C increase 
of excess warmth represents 64% of 
the total warming.  During spring 
and summer, essentially all the total 
increase of temperature is “excess 
warmth”, as there is essentially no 
trend in the circulation-derived 
component of the temperatures.  
Alternatively, one may say that the 
atmospheric circulation has not 
made a detectable contribution to 
changes of temperature over Alaska 
during spring and summer, while it 
has made a substantial contribution 
in winter and autumn.  If the values 
for the four seasons are averaged 
into annual values, the increase of 
excess warmth is 1.5ºC, which is 
approximately 75% of the overall 
2.1ºC increase of annual mean temperature from 1949 to 2017.  However, it should be emphasized that this 
percentage has a strong seasonal variation, with winter and autumn being the seasons in which the 
atmospheric circulation has been a major contributor (49% in winter, 36% in autumn) to the overall 
temperature trend. 

4. Conclusion 

The results show that (1) the atmospheric circulation explains a substantial portion of the winter and 
autumn variability and trends of temperature over Alaska, and (2) the portion of the temperature variations 
unexplained by the atmospheric circulation exhibits a systematic trend in all seasons over the 1949-2017 
period.  The “excess warmth” (the portion of the temperature variations unexplained by the circulation) 
accounts for about 1.5ºC of the total 2.1ºC warming of the annual mean temperature since 1949.  This 
contribution is largest (2.1ºC) in winter and spring, the two seasons in which the observed warming has been 
largest, and it compares favorably with the model-simulated warming attributable to increased greenhouse gas 
forcing. 

As noted in Section 2, the approach used in this study cannot distinguish the direct radiative effect of 
increasing GHG concentrations from the effects of varying surface conditions (ocean temperatures, sea ice, 
snow cover), for which changes may be driven at least in part by increasing GHG concentrations.  Nor can the 
analog methodology address the possibility that GHG forcing may be contributing to changes in the 
atmospheric circulation, although there is an emerging consensus that systematic changes of the atmospheric 
circulation in middle and high latitudes are presently obscured by internal variability (Shepherd, 2014; Screen 
et al., 2014; Overland, 2016).   Variations in the atmospheric circulation, in turn, play a role in the cloud 
cover, which can affect surface air temperatures in all seasons.  Controlled model experiments are required to 
sort out the effects of these various components of anthropogenic forcing. However, the results reported here 
do point to the importance of the atmospheric circulation in explaining the recent warming of Alaska during 
winter and autumn. 

Fig. 5  Change in excess warmth by season based on least-squares 
linear fit to yearly values, 1949/50 through 2016/17 (blue bars).  
Also shown are total changes of temperature (red bars) and change 
in excess warmth as a percentage of the total change of 
temperature (green line).  The latter is the same as the ratio of the 
trends. 
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1.  Introduction 

In this study, we aim to understand the influence of the summertime circulation on Arctic sea ice melt in 
September and find an important circulation mode with a single cell over Greenland that explains a 
substantial fraction of sea ice September variability at interannual and decadal time scales. This circulation 
feature is highly correlated with other key variables affecting the sea ice energy balance, such as vertical 
velocity and air temperature in the entire troposphere, cloudiness in the lower boundary layer and 
downwelling longwave radiation at the surface.  

2. Hypothesis of mechanism 

The mechanism behind these connections is hypothesized as follows: anomalous high pressure causes 
strong downdrafts in the Arctic and thus adiabatically warms the atmosphere above the sea ice. At the same 
time, increases in moisture advection and cloudiness are driven by the anomalous anticyclonic circulation 
pattern centered over Greenland. This combination of a warmer, cloudier, and more humid atmosphere 
increases downward longwave 
radiation and leads to increases in sea 
ice melt. We suggest that the observed 
circulation trend over the past 40 years 
resembles this mode and therefore 
explains as much as 60% of the recent 
sea ice decline in September. 

3.  Assessment of anthropogenic 
contributions 

To assess anthropogenic 
contributions to this circulation trend, 
we examine an ensemble mean of 26 
CMIP5 runs and 30 members of 
NCAR Large Ensemble Community 
Project (LENS) runs under 
anthropogenic forcing since 1979.  We 
find that the observed circulation 
change around Greenland results from 
a combination of a hemispherical 
uniform increase in geopotential height 
due to anthropogenic forcing and a 
strong regional barotropic increase 
from the surface to the upper 
troposphere centered over Greenland 
(Fig. 1).  Figure 2 shows the height-
latitude JJA zonal mean geopotential 

Fig. 1  Observed (reanalysis) and model estimated radiative forced 
trends in upper and lower tropospheric geopotential height and 
winds. Linear trends of summer (JJA) geopotential height (m 
per decade) and zonal and meridional winds at 200hPa (upper 
panels) and 700hPa (lower panels) for the period 1979–2014 
from a) and d) ERA-Interim, b) and e) the 26-model ensemble 
mean from the CMIP5 project, and c) and f) the 30-member 
ensemble mean from the LENS project. 
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height, temperature and specific 
humidity trends from ERA-Interim and 
ensemble means of LENS and CMIP5. 
The models exhibit different vertical 
structures from the observations, 
implying different underlying 
mechanisms associated with Arctic 
warming in the models and real world. 
The anthropogenically forced trend 
pattern is characterized by a uniform 
rise of heights everywhere in the Arctic 
with the larger rise in the upper 
troposphere. The observation features 
an obvious barotropic structure that 
favors the increase of height in the 
deep Arctic and adiabatic warming 
increasing towards the surface. The 
circulation change in the Arctic with a 
strong barotropic structure is not 
readily explained by anthropogenic 
forcing and sea ice feedbacks in 
summertime (Figs. 1 and 2).  

4.  Examination of causality  

We then use two sets of 
experiments to examine the direction 
of causality in the linkage between 
circulation and sea ice. The first set 
uses the ECHAM5 atmospheric 
general circulation model (GCM) 
coupled with a simple thermodynamic 
sea ice–ocean model. By nudging the 
model’s wind pattern to observations 
(reanalysis), we found that the model reproduces patterns of observed changes in temperature, vertical 
velocity, longwave radiation fields, and a subsequent decline in sea ice. From this set, we conclude that the 
circulation plays a leading role in modulating the thermodynamic state of the Arctic atmosphere. The second 
set quantifies the contribution of summer (JJA) circulation changes to sea ice loss in September. We employ a 
sea ice–ocean model that features sea ice dynamics and ice–ocean interactions but is driven by prescribed 
atmospheric forcing fields. In the control run, we use observed surface atmospheric forcing from ERA-
Interim and reproduce well the observed sea ice decline from 1979 to 2014. In the experiment, we remove any 
part in the forcing field that is linearly related to the circulation change over Greenland and then use the 
residual forcing fields to force the ocean–sea ice model again. We find that forcing due to the circulation 
change over Greenland explains 60% of sea ice decline in September.  

To our knowledge, these numerical experiments are for the first time demonstrating the connection 
between circulation variability and sea ice loss. 
 

Fig. 2  Linear trends of JJA zonal mean height (unit: m/decade), 
temperature (C/decade) and specific humidity (g/kg/decade) in 
the period 1979-2014 from ERA-Interim (upper panels) and the 
ensemble mean of 26 members of CMIP5 historical runs (middle 
panels) and 30 members of LEN historical runs (lower panels).  
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1.  Introduction 

Over the last decade since the International Polar Year (IPY) NOAA has led development of the 
International Arctic Systems for Observing the Atmosphere (IASOA) consortium (Uttal et al. 2016 and 
www.IASOA.org).  The IASOA (Fig. 1) consortium has resulted in a voluntary, international partnering of 
Observatories operated by institutions and agencies of the 8 Arctic countries.  The mission is to create 
networked observing practices, long-term data sets and groups of specialists to further understand and 
monitor the evolution and process of Arctic weather, climate and linkages to the rest of the planet. The data at 
the IASOA observatories is uniquely Arctic and represents a part of the planet where the diurnal cycle has 
significant variance over the year ranging from the extremes of 24 hours of night, 24 hours of day and long 
periods with mixed astronomical, nautical and civil twilight.  While this sun-earth geometry is of course a 
well know fact for the polar regions, the resulting need for choosing averaging periods that are representative 
of the annual cycles of solar irradiance at Arctic sites is often overlooked, and the use of more globally 
representative seasonal averaging periods can obscure and distort detection of even the simple analysis of 
temperature trends.  

2.  Data 

Most of the IASOA Observatories 
are collocated with weather stations, 
which have unusually long records 
especially for the Arctic region. In this 
study, the Tiksi Observatory in the 
Russian Arctic is highlighted by a 
detailed digitized historical records 
(referred to hereafter as AARI) starting 
in 1936 that was compiled by the 
Russian Arctic and Antarctic Research 
Institute from original detailed 
handwritten records. These are used to 
assess the Global Historical Climate 
Network Daily (GHCND) data for Tiksi 
that is available from NOAA/NCEI and 
described by Menne et al. (2012).  In the 
following sections, (1) a comparison is 
made of the digitized historical AARI 
and NCEI daily temperature minimum 
and maximum (Tmin and Tmax), (2) it is 
shown that Arctic seasons need to be 
defined as “cold”, “warm” and “transitional” based on temperature clustering, (3) temperature trends are 
analyzed based on resulting definitions of the Tiksi specific Arctic seasons and as a function of the length of 
the data record, and  (4) a preliminary assessment is made to identify decadal changes in the occurrence of 
extreme temperature events in Tiksi. 

Fig. 1 Screenshot of the Home Page of the International Arctic 
Systems for Observing the Atmosphere (IASOA) web site 
(www.iasoa.org).  The Tiksi Station in the Russian Arctic is 
highlighted as the focus of this surface temperature study. 
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3.  Comparison of the historical and NCEI daily temperature minima and maxima (Tmin and Tmax) at 
the Tiksi Station 

Temperature records in Tiksi started in 1934 with reported measurements at 00Z, 06Z, 12Z, 18Z and 21Z. 
Additional reported measurements were added at 03Z, 09Z, and 15Z from 1965.  Daily minima and maxima 
temperatures were separately recorded throughout the measurement period with six’s thermometers that are 
designed to record highest/lowest temperature until reset (after each 24 hour reporting period).  Figure 2 
shows comparison of AARI and GHCND for daily Tmin and Tmax.  

Despite the apparent visual scatter, daily values are identical (TAARI – TGHCND = 0) for 95.76% and 
95.96% of the time for Tmin and Tmax respectively. Preliminary analysis suggests that the small percentage of 
time (~ 4%), when sometimes large discrepancies occurred, is when the GHCND data set substituted a 
minimum and maximum temperature value from 3 hourly measurements; these have been shown to have 
exceedingly poor correspondence with actual daily minimum and maximum temperatures. Based on these 
results it was determined that the GHCND data are reliable for determining multi-decadal temperature trends 
and extremes and are used in the following sections. 

Fig. 2  Comparisons of AARI and GHCND for Tmin (left) and Tmax (right) over the period 1936-2014. 

Fig. 3  AARI and GHCND for Tmin (left) and Tmax (right) over the period 1936-2014. Months are color 
coded green (JJA (left) and JJAS (right), red (DJF (left) and NDJFMA (right)), blue (MAM (left) and 
M (right)) and turquoise (SON (left) and O (right)). 
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4.  Arctic seasonality 

Figure 3 shows monthly average 
temperatures at Tiksi from 1936 to 
2014 from GHCND data illustrating 
how monthly temperatures at this high 
latitude (71.596°N) site naturally 
cluster into a warm season, a cold 
season and 2 shorter transition seasons. 
Based on this clustering the Tiksi 
seasons are partitioned as ‘warm’ 
defined as June-July-August-
September (JJAS), ‘cold’ defined as 
November-December-January-
February-March-April (NDJFMA), 
‘cold-to-warm’ transition as May (M) 
and ‘warm-to-cold’ transition as 
October (O). 

5. Tiksi accumulating temperature 
trends 

In Fig. 5 accumulating trends and 
monthly averages are shown for both 
JJA-DJF and JJAS- NDJFMA seasons.  Accumulating trends (°C/year) are a function of the length of the 
record over which the trend is calculated.  Figure 4 illustrates how accumulating trends are calculated; the 
trend °C/decade for a start time of 1940 to 2014 (blue line in lower figure) is near 0°C/year.  The trend 
in °C/decade for a start time of 1980 to 2014 is 0.125°C/decade, the trend for a start time of 1998 to 2014 is 
0.27 0°C/year. Therefore the top panels in Fig. 5 shows the how the trend changes as data is utilized from 
further and further back in the record; this is an alternative to straight line regressions through different 
sections of a time-series which is a more standard practice.  Figure 5 indicates that the rate of warming is 
small when calculated from the beginning of the record; this is largely due to the fact the 1940s were a decade 
of notable Arctic warming, a phenomena that is still poorly understood (Yamanouchi 2011).  It is also noted 
that for the Arctic cold season, the sign as well as the magnitude of the trend can change depending on 
whether or not DJF or ONDMFM is used to subset the data.  This is especially true for trends calculated with 
start dates in the 1970s and later.  For the Arctic warm season JJA/JJAS, it is not unexpected that there are 

Fig. 4  Illustration of how trends 'accumulate' as the start time over 
which the trend is calculated varies.  Note: Trend calculation 
stops 10 years before end of record which in this example is 
2004-2014. 

Fig. 5  The accumulating trend (top panels) and the monthly mean temperatures (bottom panels) for Tiksi 
summer/warm season (left) and Tiksi winter/cold season (right).  Solid lines are for summer (JJA) and 
winter (NDJ) periods and dashed lines are for warm (JJAS) and cold (ONDJFM) periods.  
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only small changes in the trends as the Arctic is a state of melt that stabilizes surface air temperature. 

6.  Tiksi extreme temperature events 

The occurrence of temperature events exceeding the 95th and 99th percentiles was assessed. For the 95th 
percentile events and between the 1960s and the 2000s (last full decade) there was a fairly monotonic increase 
from 65 to 98 events/decade.  However, it should be noted that in the 1940s and 1950s there were 115 and 90 
extreme warm events respectively at the Tiksi station. 

7. Conclusions 

This article calls attention to the long-term detailed Arctic station data that is available through IASOA 
which is useful for model assessment and improvement, especially for the recent decades when the station 
meteorological data is accompanied with intensive measurements of process variables such as surface energy 
budget terms and clouds.  It is also demonstrated that trend analysis should be based on periods defined by the 
latitude dependent seasonal forcing of the sun; otherwise true trends can be obscured and or misinterpreted. 
Finally, it is concluded that Arctic change must be assessed in the context of longer time records covering 
mid-century warming to fully understand the current processes and significance of what is currently 
considered to be the “new Arctic” system. 
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1.  Introduction 

 Midlatitdue weather extremes are highly correlated to the variations of Arctic and tropical circulations. 
High-amplitude fluctuations of the jet streams result in heat exchange between the Arctic and midlatitude 
regions, creating a feedback mechanism between subseasonal Arctic warming and stagnation of midlatitude 
atmospheric waves. In a companion study (Wang et al. 2017), we show a rapid tropospheric warming (RTW) 
process as illustrated in Fig. 1 during the 2015-2016 winter, depicted by the polar cap height (PCH) variation 
and Arctic Oscillation (AO). The RTW case from late December to early January induces negative AO but 
does not feature any stratospheric warming or precursor, hence distinguishing it from the sudden stratospheric 
warming (SSW) case that subsequently occurs during March and April. The documented increase in the 
frequency of RTW has been linked to increased weather extremes (Fig. 2; Wang et al. 2017).  Previous 
research links subseasonal Arctic warming events to tropical convective activities in the Pacific region 
(Jahnson and Feldstein 2010; Lee et al. 2011). Further evidence presented in this study suggests that this 
tropical link to increased RTW cases has strengthened in recent decades. 
2. Data and methods 

Daily reanalysis data of the National 
Centers for Environmental Prediction 
(NCEP)/Department of Energy Reanalysis II 
(R2) is used for atmospheric circulation 
analysis. For boundary heat forcing of sea 
surface temperature (SST), we utilize monthly 
anomalies of the NOAA Extended 
Reconstructed Sea Surface Temperature 
version 5 (ERSSTv5). Arctic rapid 
tropospheric warming (RTW) events are 
defined following Wang et al. (2017). This is 
when the polar cap height variation has a 
persistently positive anomaly (i.e. the 
geopotential height anomaly is larger than 1.5 
standard deviation) in the troposphere, and the 
stratosphere remains negative to neutral.  
Based on this definition, 31 RTW events are 
identified from 1979 to 2015 winter 
(November-March) and are consequently 
synthesized into a composite.  The composite 
of RTW events is created using the transition 
of RTW events evenly divided into 7 phases, 
from the highest status of AO (Phase 1) to the 
lowest status of AO (Phase 7).  Phases 2-6 are 
defined as the transit phases.  A more detailed 

Fig. 1  (a) Daily Arctic Oscillation index from 1 November 
to 30 April with 5 day moving average; the shaded 
period indicates the rapid tropospheric warming (RTW) 
case. (b) Time-height cross section of daily polar cap 
height (PCH) over Arctic region (north of 65°N) with 5 
day moving average using NCEP reanalysis 2 data. 
(Wang et al., 2017; Fig. 1a, b) 
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description of these methods is found in 
Wang et al. (2017). 

3. Analysis results 

To examine the circulation changes 
associated with the increase in RTW cases in 
the past decade, we show the average 250-
hPa velocity potential (VP250) in the transit 
phases of RTW cases in two eras.  First, the 
earlier era is from 1979 to 1987 with 12 
RTW cases, and the recent era is from 1998 
to 2015 with 19 RTW cases (Figs. 3a and 3b). 
The results reveal deep convections (upper-
troposphere divergence) in the Pacific in both 
eras. However, the difference between the 
two reveals an eastward shift of the deep 
convection to the eastern Pacific as shown in 
Fig. 3c.  A similar difference is seen in the 
linear trend of VP250 in winter since 1979 
(Fig. 3d). 

The changes in deep convection of RTW 
events lead to the next analysis of 
investigating the decadal variations of the 
wintertime VP250 which is shown in Fig. 4. 
The variations reveal an increase in 
divergence anomaly (Fig. 4a) in the eastern 
tropical Pacific in the last two decades.  The 
central Pacific region also exhibits a 
divergent anomaly during the same period. 
This change is further elucidated by the 
variance of wintertime VP250 (Fig. 4b), 
which shows higher VP250 variances in the 
central and eastern tropical Pacific in the 
recent era.  Moreover, Fig. 4c shows the 
frequency anomalies of the strong VP250 
divergence (VP250 is less than -1.5 standard 
deviation) in winter.  The results echo the 
changes of mean value and variance that the 
tropical Pacific in the recent era has more 
active convections than the early era. 

Lee et al. (2011) indicates that the 
intraseasonal tropical convective 
precipitation can affect the Arctic warming. 
To examine how the increase in the tropical 
deep convection is relevant to the increased 
frequency of RTW in the recent era, we 
further conduct the wave activity flux (WAF) 
(Takaya and Nakamura 2001) analysis on the 
composite of RTW cases in the early era (12 
cases) and recent era (19 cases) to depict the 
change  of  tropical  deep-convection  forcing  

Fig. 2  The case frequencies of RTW (blue) and SSW (light 
green) cases plotted at every 9 years during the 
November–March period. (Wang et al. 2017; Fig. 4a) 

Fig. 3  (a) The 12 cases composite of the averaged 250-hPa 
velocity potential (VP250) during the RTW transit phases 
from 1979 to 1997. (b) the same as (a), but for the 19 cases 
from 1998 to 2016. (c) the difference between recent two 
decades (b) and previous two decades (a) of the composite 
of RTW VP250. (d) The linear trend of VP250 in winter 
after 1979. 



LIN AND WANG 
 

 

99 

and its impact pathway, which is shown in Fig. 5.  In the recent era, the 300-hPa WAF (Fig. 5b) reveals a 
northeastward wave train generated from the Eastern Pacific.  This wave train forms a high-pressure anomaly 
in the southwest U.S., a low-pressure anomaly in the eastern U.S., and a high-pressure anomaly in the 

Fig. 4  The 9-year average of (a) wintertime (November-March) 250-hPa velocity potential (VP250) anomaly, 
(b) wintertime VP250 variance anomaly, and (c) the frequency of VP250 anomaly that is less than -1.5 
standard deviation in winter. 

Fig. 5  The 300-hPa wave activity flux (WAF) and 
streamfunction anomaly (ST) of the RTW phases 4 and 
7 in (a) 12 RTW cases averaged from 1979 to 1997 and 
(b) 19 RTW cases averaged from 1998 to 2016. (c) The 
schematic of the seven phases of the rapid tropospheric 
warming (RTW) cycle (an example of 2015-16 RTW 
event). 
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northern Atlantic from phase 4, where AO is shifting from positive to negative (Fig. 5c).  This feature is not 
discernable in the early era (Fig. 5a).  This wave train combines with the Pacific Northern American (PNA) 
teleconnection pattern from the central Pacific to induce high-amplitude wavy jet streams and cause high-
pressure (warming) anomalies in Alaska and the Greenland regions.  

Fig. 6  The composite analysis of 132 stronger convection (250-hPa velocity potential anomaly < -1.5 standard 
deviation) days in the eastern tropical Pacific (240°E-285°E, 10°S-20°N) from 1979 to 2015 winter in (a) 
250-hPa velocity potential and (b) 300-hPa wave activity flux and streamfunction. 

To further evaluate the impact of deep convection in the eastern tropical Pacific, we construct the 
composite of upper-troposphere VP and WAF when the VP250 anomaly index is less than -1.5 standard 
deviation (Fig. 6).  The result shows a similar PNA teleconnection pattern and a wave train over the U.S., 
which is consistent with previous modeling studies (Hoskins and Ambrizzi 1981; Branstator 2014). 

4. Conclusion 

The upshot of these analyses is the following.  The recent increase in the frequency of subseasonal Arctic 
rapid tropospheric warming events is associated with the increase in variations of tropical deep convection in 
the central and eastern tropical Pacific.  The active tropical convection induces higher chances of 
teleconnection patterns to influence the midlatitude and the Arctic circulations, resulting in more weather 
extremes and more RTW events in the boreal winter.  Moreover, the impact pathway from the eastern tropical 
Pacific to the U.S. and to the Northern Atlantic becomes more important to influence northern hemisphere 
circulations because of the increase in the frequency of the deep convections in the eastern tropical Pacific in 
recent decades. 

Further studies will be focused on the combined influences of the deep convections in different areas of 
Pacific to have better prediction of Arctic tropospheric warming case and extreme weather event and be 
focused on investigating the mechanisms of inducing more deep convection in the eastern tropical Pacific in 
recent decade. 
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1.  Introduction 

 There is increasing evidence that the Madden Julian Oscillation (MJO), the leading mode of intraseasonal 
variability in the tropics, may be a source of predictability for the extratropical Northern Hemisphere (NH) 
atmospheric circulation during the boreal winter. Several studies have linked variability in the MJO to the 
leading modes of Northern Hemisphere (NH) atmospheric variability including the North Atlantic Oscillation 
(NAO; Cassou 2008) and the Arctic Oscillation (AO; L’Heureux and Higgins 2008). Of particular interest is 
the extent to which the extratropical stratospheric circulation has a modulating influence on these MJO-AO 
teleconnections, which, in turn, influence temperature and precipitation over North America. This study 
examines the observed boreal winter relationships between the MJO and the AO during different phases of 
the stratospheric polar vortex and then evaluates how well these relationships are captured in subseasonal to 
seasonal prediction models.  

2. Data and methods 

The analysis focuses on the extended boreal winter (November- March) for the period 1979-2016. Daily 
MJO indices, obtained from the Bureau of Meteorology (BOM), are based off the method of Wheeler and 
Hendon (2004). MJO events are identified using the primary requirement that the amplitude of the leading 
two Real-time Multivariate MJO (RMM) series [(RMM12+RMM22)1/2] exceeds 1. The daily AO index is 
obtained from the NOAA/CPC website (http://www.cpc.ncep.noaa.gov/products/precip/CWlink/ 
daily_ao_index/ao.shtml) and is calculated by projecting the ERA-Interim (Dee et al. 2011) daily z1000 
anomalies onto the leading Empirical Orthogonal Function (EOF) of monthly z1000 anomalies over the region 
20°N-90°N. The stratospheric polar vortex (SPV) is calculated the same way but for z050 height anomalies. 

Reforecast data are used from prediction models that are part of the World Weather Research Program 
(WWRP)/ World Climate Research Program (WCRP) Subseasonal to Seasonal (S2S) Project database (Vitart 
et al. 2017). The analysis uses models from BOM, ECMWF, and NCEP. The simulated AO index is 
calculated for each model by projecting the leading EOF of observed z1000 height anomalies onto the 
simulated z1000 height anomalies for each forecast lead. Doing so ensures that the models are all showing how 
the same pattern evolves in time. The same method is used to calculate the SPV using z050 height anomalies. 
The simulated RMM indices are calculated using the method outlined in Vitart (2017) and are obtained from 
the S2S website (http://s2sprediction.net/). 

3.  Relationships between the MJO, AO and the SPV 

Figure 1 shows the observed frequency of the AO events as a function of MJO phase.  When the 
considering all states of the SPV (top left), the AO strongly favors the positive sign in MJO phases 2-5 and 
the negative sign in phases 7-8, consistent with L’Heureux and Higgins (2008).  However, when the SPV is 
anomalously strong, (SPV>0.5, top right), the AO favors the positive polarity regardless of MJO phase. 
Conversely, the AO remains negative for all MJO phases when the SPV is anomalously weak (SPV<-0.5, 
bottom right). In the absence of strongly positive or negative polar vortex anomalies (i.e., neutral conditions, 
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bottom left), the same relationships emerge as when all phases of the SPV are considered. These results 
suggest that the overall MJO-AO relationship in Fig. 1 primarily reflects a tropospheric link. 

Figure 2 shows similar analysis using the three aforementioned S2S models and focuses on the MJO-AO 
relationship when all states of the SPV are considered. Note that the models each have distinct combinations 
of forecast periods and forecast frequencies, sampling different subsets of the observational period. 
Consequently, the models results are compared to observations that have been subsampled to match each 
those forecast periods/frequencies. The discussion highlights the relationships at MJO phases 4 and 7, which 
have been shown to be linked to the positive and negative phases of the AO, respectively. 

Relative to the observations, ECMWF overestimates the fraction of positive AO days during phase 4 of 
the MJO. However, during phase 7, ECMWF is able to capture the high occurrence of negative AO days. The 
opposite is true in the NCEP S2S model in which the positive AO relationship with phase 4 of the MJO is 
well-simulated, but the negative AO relationship with phase 7 is overestimated. The best representation of the 
observations is evident in the BOM with the positive AO relationship slightly overestimated and the negative 
relationship in Phase 7 well-captured. Because these MJO-AO relationships in Fig. 2 are analyzed at lead 0, it 
is expected that these relationships would be well-captured in the models. While the anomaly correlations of 
the simulated winter AO demonstrate high skill at lead 0 (r>0.95; not shown), the anomaly correlations of the 
MJO amplitude are considerably lower (r<0.8; not shown), which may have an impact on the ability to 
capture MJO-AO relationships. 

Fig. 1  Fraction of MJO days (as a function of phase) when the November-March AO is in the (grey bars) 
positive or (black bars) negative phase and the SPV is (top left) any amplitude, (top right) anomalously 
strong, (bottom right) anomalously weak, and (bottom left) neutral. 
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4.  Future work 

The results of this analysis suggest that models have difficulty reproducing the boreal winter MJO-AO 
relationships. Because the tropospheric MJO-AO relationship is poorly captured in some of the models, the 
evaluation of the modulating effect of the stratosphere in the models could be further complicated. A possible 
explanation is that the inability to capture the MJO-AO relationship might be related to the MJO, which are 
not as well reproduced in the models as the AO. Future work will further examine how the representation of 
the MJO in the models influences the overall MJO-AO relationship. This analysis will also be extended to the 
other models in the S2S database. 
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1.  Introduction 

 Arctic sea ice decline is a well-documented topic with many studies outlining the September minimum as 
decreasing by more than 10% per decade since satellite observations began in 1979. Within the past few 
decades, the rate of decline has been shown to be increasing significantly due to both thinning ice and longer 
melt seasons. When it comes to prediction of the Arctic sea ice extent (SIE), there is potential for skillful 
predictions mainly attributed to individual modeling system’s ability to predict the long-term trend (Sigmond 
et al. 2013; Wang et al. 2013; Chevallier et al. 2013; Holland et al. 2011; etc.). 

SIE prediction skill has been assessed by a variety of dynamical, statistical, and heuristic models. For 
other variables, it has been shown that predictions using the ensemble means from different models tend to 
outperform any individual system (Merryfield et al. 2013; Stroeve et al. 2014).   The North American Multi-
Model Ensemble (NMME) takes advantage of the multi-model approach by utilizing a multi-agency team to 
collect and organize global model data on a somewhat uniform spatial and temporal scale. This study seeks to 
expand on previous multi-platform studies by utilizing output from five NMME models to determine the skill 
in predicting Arctic SIE based on the long term trend and year-to-year (Y2Y) variability. 

2. Data 

There are 5 models that currently provide sea ice predictions to the NMME archive.  Each hindcast 
simulation is initialized and allowed to run for either 12 months (CanCM3, CanCM4, FLORB-01, and 
CCSM4) or 9 months (CFSv2).  To maintain consistency for all models and in creating an NMME average, 
all of the models are evaluated during the 1982-2011 time period, which represents the time when all 5 
models have results and for a 9 month forecast extent. Observations derived from NASA Bootstrap version of 
the National Snow Ice Data Center and NASA GSFC sea ice concentration data are utilized in order to 
calculate the skill metrics. 

3. Summary of results 

Figure 1 shows the model bias for (a) total SIE and (b) Y2Y SIE. Overall, the NMME predictions of total 
SIE have less error than the individual predictions.  In contrast, the Y2Y difference evaluates SIE prediction 
irrespective of the long-term trend. For all individual models and the NMME, the Y2Y differences show a 
generally positive bias, meaning that from one year to the next, the models tend to predict more SIE than 
observed. While the Y2Y values are not providing information on the long-term trend, this result implies the 
models are not capturing the magnitude of the loss of SIE from one year to the next. The NMME Y2Y bias 
shows improvement over CanCM3, CanCM4, and CCSM4, with CFSv2 and FLORB-01 having overall the 
best Y2Y prediction. 

To further quantify prediction skill, Figure 1 also shows the anomaly correlation coefficient (ACC) values 
for the (c) total SIE and (d) Y2Y SIE. One primary feature across all models is the smaller ACC in Y2Y 
variability compared to the prediction of total SIE. For both total and Y2Y SIE, the NMME predictions result 
in generally higher ACC compared to the individual. The higher ACC with NMME is evident for predictions 
of Y2Y variability, especially for lead times greater than 3 months.  The NMME also noticeably improves 
upon CanCM3, CanCM4, and CCSM4 for predictions of total SIE. Overall, relative to the skill of individual 
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models, the NMME offers the most bias reduction for predictions of total SIE, and the correlations are highest 
for the prediction of Y2Y SIE. 

3.  NMME SIE time series 

Figure 2 compares the total and Y2Y SIE observational data (red) to the range of ensemble means (blue) 
and all members (grey) from NMME for 1982-2010. All forecast lead times are shown leading up to the 
March or September target month.  The biases seen in Figure 1 are also reflected within this analysis, except 
now it is easier to view the evolution of the model forecasts as the SIE changes over time. For predictions of 
March total SIE, the observations largely fall within the spread of the NMME.  The observations also largely 
lie within the spread of predictions for March Y2Y SIE.  However, for the Y2Y SIE predictions, the variance 
of the individual members is clearly larger than the observed variability across the NMME.   

In contrast to March, predictions for September total SIE show that there are periods of time when the 
observations clearly lie outside of the spread of the model predictions.   This is particularly true in the years 
following the large sea ice melt in 2007, when the NMME underestimated the degree of sea ice loss.  Only 
during the recent period did the spread of forecasts from these models contain the observed September SIE.  

Fig. 1  Model bias (model minus observations) including the NMME for (a) Total SIE [106 km2], (b) the 
Y2Y SIE [106 km2], (c) Total ACC, and (d) Y2Y ACC.  
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As for the March total SIE, 
the NMME predictions of 
September SIE appears to 
encompass the observed 
variability more often than 
any individual model. For the 
September Y2Y SIE, the 
observations largely lie within 
the spread of the model 
forecasts with the exception 
of the more extreme Y2Y 
years.  But even in those 
instances, it appears the 
variance of the Y2Y 
individual members largely 
captures the variance of the 
observational data.  

Both the total and Y2Y 
time series in Figure 2 are 
smoothed using a 10-year 
running mean and presented 
versus model ACC and 
RMSE values. These 
scatterplots (Figure 3) show 
the skill for the 9 forecast lead 
times with respect to the total 
or Y2Y SIE. The associated 
10-year period is indicated by 
the color shading, with reds 
(blues) indicating later 
(earlier) periods.  Over these 
running 10-year periods, the 
ACC values in both 
September and March do not 
show any clear tendency over 
time. The RMSE tells a 
different story especially 
during September when the 
RMSE values are 
considerably larger during the 
more recent decades than the 
ones prior. The RMSE for 
Y2Y SIE does not show the 
same temporal trend, with the 
larger errors inclusive of 
decades with the largest Y2Y 
departures shown in Figure 2.  
Because Y2Y changes are 
independent of the longer-term trends, this suggests that errors in the prediction of the total SIE are increasing 
over time because the NMME is not adequately capturing the trend or variability in recent years. In contrast, 
March does not show the same clear trend  over  time,  and in general,   the  amplitude  of  RMSE  for  both  
total  and  Y2Y  SIE  is smaller  in March compared  to September,  likely  due to smaller  trends and year-to-  

Fig. 2  Time series for NMME SIE in March (top two panels) and September 
(bottom two panels) for total (upper) and Y2Y (lower) SIE with 
observations (red line), the range of ensemble means at all lead times 
(blue shading), and individual ensemble members (grey lines). 
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Fig. 3  Scatterplots of September (top two panels) and March (bottom two panels) root-mean-square 
error (RMSE; upper) and ACC (lower) versus total SIE (left) and Y2Y (right) with years indicated 
by the colors.  

March Y2Y ACC 
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year variability during a month when the SIE is typically maximized.  
4. Discussion 

The NMME approach provides the most gain over individual models through decreased bias for 
predictions of total SIE and increased correlations of Y2Y SIE variability. There is a tendency for all models 
and the NMME to over-predict Y2Y SIE from one year to the next.  The struggle of the models to predict the 
following year SIE change, along with the increasingly larger errors for September SIE predictions in recent 
decades, suggest that prediction of the trend remains a fundamental challenge for most coupled modeling 
systems.  Regardless, it is clear that the average of multiple models generally exceeds the skill of any one 
modeling system, so the NMME demonstrates value for the prediction of Arctic SIE. 
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1.  Introduction 

 Recently, National Oceanic and Atmospheric Administration has initiated activities to improve skill of 
forecasts in weeks 3-4 time-range to extend weather forecast capability beyond the conventional range of 10-
15 days. While Arctic sea ice forecast at seasonal time scales has received considerable attention (Bushuk et 
al. 2017), very limited work has been done on shorter time scales. In this study, a fully coupled atmosphere-
ocean model is used to evaluate forecast skill of weekly mean sea ice from week 1 to week 6 for Arctic 
regions using the NCEP’s Climate Forecast System version 2 (CFSv2). This is the first effort to diagnose and 
assess multi-week Arctic sea ice prediction skill from a coupled atmosphere-ocean model. 

2.  The forecast model, data and processing method 

The retrospective forecast data analyzed in this study is from the fully coupled CFSv2 model (Saha et al., 
2014). Raw forecast data include output from four 45-day forecast runs from 0000, 0600, 1200, 1800 UTC 
each day. This study focuses on the analysis of 
weekly-mean anomalies from CFSv2 for 0-
week to 5-week lead. For each forecast starting 
day, the following steps are taken to produce 
weekly average of ensemble mean forecast: (1) 
forecast runs from latest three days were used 
to form a lagged ensemble of 12 runs; (2) daily 
average of 12-run ensemble mean is computed 
for 42 target days; (3) non-overlapping 7-day 
weekly average is calculated from daily 
ensemble mean for 0-week lead (day 1 to day 7 
average) to 5-week lead (day 36-day 42 
average). The forecast data of ensemble-mean 
weekly average is then rearranged according to 
lead time and target (or verification) week. 

For the assessment of the CFSv2 
performance, the sea ice concentration (SIC) 
data from National Snow and Ice Data Center 
(NSIDC) (Cavalieri et al., 1996; Fetterer et al., 
2002) during 2000–2015 is used. To facilitate 
the calculation, and for a consistent comparison, 
the corresponding observational data are re-
arranged following the CFSv2 forecast 
structure to form the weekly average of SIC for 
each target verification week starting from each 
calendar day between 2000–2015 both for 
NASA Team and NASA Bootstrap algorithms. 

Fig. 1  (a) Total variance of Arctic SIC for 4 target months of 
(a) March, (b) June, (c) September and (d) December 
during 2000–2015, obtained from NSIDC observations. 
The black lines represent the 15% concentration contour 
in the NSIDC observations, which is usually used to 
define the sea ice edge. 
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The average of SIC using NASA Team and 
NASA Bootstrap algorithms is then calculated 
and used for verification.  

For both forecast and observation, a 16-
year (2000–2015) average of 7-day mean SIC 
is calculated for each starting date from Jan 1st 
to Dec 31st (d=1–365); for forecast, calculation 
is done for each lead time (L0-L5). The 
climatology for each starting date (d) is defined 
as the 31-day (d-15 to d+15) running mean of 
the resulting 16-year average and is denoted as 
Fc (d, L) for the forecast and Oc (d) for the 
observation.  

Three types of anomalies are calculated: 
total anomaly, interannual anomaly, and 
submonthly anomaly. The total anomaly is 
calculated as the deviation of total weekly-
mean values of SIC from the climatology. The 
interannual anomaly is defined as the monthly 
mean of the total anomaly. The submonthly 
anomaly is the deviation of the total anomaly 
from the interannual anomaly. The interannual anomaly is further divided into two components, the trend 
interannual anomaly and detrended interannual anomaly. 

3.  Results 

Figure 1 shows the spatial pattern of total 
weekly anomaly variance of NSIDC Arctic SIC 
anomaly for 4 target months (March, June, 
September and December) during 2000–2015. 
Large variance is generally located near the sea 
ice edge indicated by the 15% SIC black 
contours. The Arctic SIC shows relatively high 
variability in different Arctic regions during 
different months: Bering Sea and Sea of 
Okhotsk during March; Chukchi, Kara and 
Barents Seas during June, Beaufort, East 
Siberian and Laptev seas during September; 
Barents Sea during December.  

For a quantitative comparison, Table 1 lists 
the contributions of different components, 
including the trend interannual, detrended 
interannual, and submonthly variability, to the 
observed total SIC variance averaged over 
Arctic regions (50oN-90oN) for 4 target months 
(March, June, September and December). As 
shown in Table 1, the Arctic SIC shows the 
largest (smallest) variability in September 
(December). The total SIC variability is 
dominated by detrended interannual variability, 
which accounts for more than 60% of the total 
variance. The contribution of submonthly 

Table 1  Total variance and its components (including trend, 
detrended interannual and submonthly variability) for 4 
target months (March, June, September and December).  
Values are area-weighted averages from 50oN-90oN. 

Fig. 2  Anomaly Correlation Coefficient (ACC) between 
CFSv2 forecast and observations for total SIC anomalies 
at L3 for 4 target months of (a) March, (b) June, (c) 
September and (d) December.  
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anomalies accounts for about 20% of the total variance in March/June, 12.5% in September and 29.4% in 
December. Submonthly variance is 2-3 time as strong as the trend variance for March, June and December 
except for September in which submonthly variance is weaker than the trend variance.  

Multi-week sea ice prediction skill for pan Arctic as well as individual Arctic regions is analyzed.  CFSv2 
captures general features of the Arctic sea ice variability, with the largest bias in marginal ice zone region. 

Figure 2 shows the spatial Anomaly Correlation Coefficient (ACC) of total and interannual SIC 
anomalies between CFSv2 week-4 forecast and observations. The CFSv2 shows good skill at L3. The Arctic 
Ocean shows the highest prediction skill during September, particularly in the regions of Chukchi Sea, 
Beaufort Sea and East Siberian Sea where the ACC is above 0.6. The results demonstrate the multi-week 
prediction skill is dominated by the prediction of interannual variability although predictions of both 
interannual and submonthly anomalies contribute to the prediction skill. 

The utility of a forecast greatly depends on the geographic characteristics of the forecast skill. Regional 
SIC forecast skill is especially important to the stakeholders. The ACC decreases with lead time and is region 
and season dependent. The ACC is relatively high for Kara and Barents Sea for all seasons. During March, 
the ACC is higher in Bering Sea, Sea of Okhotsk/Japan and Gulf of St. Lawrence. During June, the ACC is 
higher in Greenland Sea and Hudson Bay. During September, the ACC is higher in Greenland Sea, Arctic 
Ocean and Canadian Archipelago. During December, higher prediction skill is found in Bering Sea, Hudson 
Bay and Sea of Okhotsk/Japan. 

Spatial and seasonal variations of the 
forecast ACC (anomaly correlation coefficient) 
skill show that the sea ice at a specific location 
is most predictable when this location is near 
the marginal zone having large sea ice variance 
(Figs. 1 and 2). This means that for each 
location there exist months for which the 
prediction skill is higher than the adjacent 
months. The skill in the month of maximum 
ACC (MMA) represents the best performance 
of the forecast system. Distribution of the 
maximum ACC skill among the months of 
melt season (April to September) at L3 is 
plotted in Fig. 3a with corresponding month 
when the maximum ACC skill is realized is 
shown in Fig. 3b with values 4-9 for April-
September. Overall, the maximum ACC during 
the melt season progressively moves from 
south to north (Fig. 3b) with the mean sea ice 
concentration in the MMA increasing with 
latitude (Fig. 3c). The spatial distribution of 
maximum ACC shows a relationship with the 
distribution of the variance (Fig. 3d), that is, 
areas of larger variance corresponds to larger 
values of ACC. Taking 0.5 as a useful level of 
ACC for skillful prediction, predictability of 
weekly mean sea ice concentration near 
marginal zones is about 5-6 weeks. Prediction 
skill for Northern Hemisphere sea ice extent 
(SIE) is above 0.6 for the entire 6 target weeks 
and is strongly affected by interannual 
variability. 

Fig. 3  Statistics for melt season (April to September) for 3-
week lead time (L3).  (a) Maximum monthly mean 
anomaly correlation coefficient (ACC) from April to 
September, (b) Month of maximum monthly mean ACC 
(MMA), (c) NSIDC SIC mean for MMA, and (d) 
NSIDC SIC variance for MMA. 
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4.  Summary and discussion 

This study examines Arctic sea ice weekly-mean variability and multi-week prediction skill in the CFSv2. 
While many studies on seasonal sea ice predictions have been published, this study appears to be the first 
effort to analyze sea ice prediction skill at multi-week lead time using a dynamical forecast system. The 
assessment in this study is based on the output from the operational NCEP CFSv2, whose configuration is not 
optimal and the seasonal sea ice prediction can be improved with an improved initial sea ice thickness 
(Collow et al., 2015). In addition, while we have analyzed the contributions of sea ice variations and their 
prediction from trend interannual, detrended interannual, and submonthly variabilities, it will be useful to 
determine how these variations are contained in the initial conditions and how the memory of the components 
(e.g. sea ice, ocean, and atmosphere) of the forecast system affect the subsequent sea ice evolution. 
Understanding the impact of the initialization of each component will also provide guidance as to where the 
critical effort in improving the initialization of the forecast system should be made. 
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1.  Introduction 

The subseasonal prediction of warm season drought in North America remains a great challenge. The 
prediction skill of North American drought during warm season, the drought development in particular, in 
current operational drought forecast system is rather limited. This study attempts to explore potential sources 
of predictability for subseasonal development of warm season drought over North America by focusing on the 
role of leading modes of subseasonal atmospheric circulation variability. These leading modes are often 
present in the form of stationary Rossby waves, and have been shown to be crucial in the development of 
many recent short-term warm season climate extremes over North America (Schubert et al. 2011). 

2.  The physical processes by which stationary Rossby waves lead to subseasonal drought development 

The physical processes through which stationary Rossby waves affect drought development over North 
America was investigated by performing a case study of the 20 May – 15 June 1988 stationary Rossby wave 
event (Wang et al. 2017). During this event (Fig. 1), severe dry conditions developed quickly over central 
North America upon the arrival of stationary Rossby waves, leading to the severe 1988 North American 
drought. Using the NASA GEOS-5 Atmospheric General Circulation Model (AGCM) and a data assimilation  

Fig. 1  Evolution of (a) MERRA daily 250-hPa meridional wind (m s-1) averaged between 40ºN-60ºN west 
of 0º and 50ºN-70ºN east of 0º, with a 10-day running mean smoother applied, (b) MERRA daily surface 
temperature anomalies (K), (c) MERRA-Land daily precipitation anomalies (mm day-1), and (d) 
MERRA-Land daily surface soil wetness anomalies (%), averaged between 30ºN-50ºN west of 10ºW, 
between 35ºN-55ºN for 10ºW-45ºE, and between 50ºN-70ºN east of 45ºE, with a 5-day running mean 
smoother applied, during the period 1 May – 31 July 1998. 
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technology called “replay”1, we designed a series of AGCM hindcast experiments to isolate the contributions 
to this event from: (i) the atmosphere and land initial conditions in late May 1988, (ii) the observed stationary 
wave sources over the western Pacific, (iii) the correct model simulation of mean jet stream over the North 
Pacific, and (iv) soil moisture feedback over North America.  

The results show the crucial importance of the strong mean jet stream over the North Pacific for guiding 
and constraining wave energy propagation path and speed and thereby providing a potential source of 
predictability.  For the 20 May – 15 June 1988 stationary Rossby  wave  event  investigated  here  (Fig. 2), the  

                                                 
1 In the replay approach, the model atmosphere is constrained either fully or in part using existing reanalysis data; any 
subset of variables in any region of the world can be used. 

Fig. 2 Evolution of daily 250-hPa meridional wind component (m s-1) 
averaged between 30ºN-60ºN with a 10-day running mean smoother 
applied in (a) MERRA, (b) the ensemble mean of the GEOS-5 
AGCM hindcast initialized using MERRA atmospheric and land 
conditions at 21z, 20 May 1988, (c) same as (b) but for the AGCM 
hindcast that uses MERRA atmospheric conditions at 21z, 20 May of 
years 1980-2009 to initialize the atmosphere of its anomaly ensemble, 
(d) the ensemble mean of the GEOS-5 AGCM regional replay over 
eastern Asia and the western Pacific (90ºE-140ºE, 0º-70ºN) initialized 
using MERRA atmospheric and land conditions at 21z, 20 May, 
1988, (e) same as (d) but initialized using MERRA atmospheric and 
land conditions at 21z, 2 May of years 1980-2009, (f) same as (e) but 
have land feedback disabled, and (g) same as (e) but replay only 
zonal and meridional wind fields. The black contours in (b)-(g) 
indicate the -6 m s-1 and 6 m s-1 contours of MERRA in (a). 

(a) (b) (c) 

(d) (e) (f) 

(g) 
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Fig. 3  Mean model bias in precipitation (mm/day), surface air temperature (K) and zonal wind at 250mb 
(m/s) in the GEOS-5 free-running AGCM (left panels) and the GEOS-5 AGCM that has mean bias 
corrected (right panels), during JJA. The AMIP simulations over 1980-2014 are used to obtain the 
AGCM climatology. MERRA2 is used for model validation. 

free-running model hindcast skill (Fig. 2b) is limited to only about one week, beyond which the hindcasted 
waves show westward retrograde displacement instead of remaining quasi-stationary as in the observations 
(Fig. 2a), due to the considerably weaker mean model jet over the North Pacific than the observed (Fig. 3 
bottom left panel). With the mostly corrected (through regional replay of all basic model variables to MERRA 
over East Asia and western Pacific) North Pacific mean jet (Fig. 2d, 2e), our results show that convective 
anomalies over the western Pacific do produce a predilection for sustained upper-level high anomalies over 
central North America about one to two weeks later. Such high anomalies subsequently lead to strong local 
precipitation deficits, soil dryness and surface warming, and thereby to severe drought conditions there (not 
shown). When the north Pacific mean jet bias is only partially corrected (through regional replay of only 
zonal and meridional winds to MERRA over East Asia and western Pacific) (Fig. 2g), the waves show slower 
eastward energy propagation across the north Pacific, and the subsequent circulation anomalies over North 
America not only show a rather weak magnitude but also are in the wrong locations. The soil moisture 
feedback is found to be unimportant during the event.  

Since it usually takes about two weeks for the wave energy to propagate across the North Pacific to reach 
North America, these waves can potentially serve as a source of subseasonal forecast skill in these 
downstream locations. To access this skill, however, it would be critically important for a forecast model to 
correctly simulate the mean Northern Hemisphere (NH) jet streams, not only their location and shape but also 
their magnitude, in order to allow the correct simulation of wave propagation (path and speed) across the 
northern oceans. The forecast model also needs to be able to predict sources of the stationary Rossby waves. 

3.  NASA GEOS-5 model bias correction 

The standard GEOS-5 AGCM, like many other current models, provides weak and disoriented NH jet 
streams, and displays considerable biases in tropical convection and surface temperature (Fig. 3, left panels). 
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These biases limit the use of free-running GEOS-5 GCM for simulation and prediction of stationary Rossby 
waves and their effect over North America. In order to correct the GEOS-5 AGCM bias, we have applied 6-
hourly climatological (1980-2015) Incremental Analysis Updates (IAU) tendencies from MERRA-2 to model 
basic state variables in a free-running GEOS-5 AGCM. By doing so, we are able to successfully (though 
artificially) correct much of the model bias. Substantial improvements are seen in model simulation of mean 
climate (Fig. 3) as well as weather and climate variability across many time scales. 

Using a similar IAU-based approach, we have recently developed a bias-corrected NASA GEOS-5 
coupled forecast system. Here a coupled replay was first performed, in which the model atmosphere is 
constrained to be close to MERRA-2 while letting the model ocean freely evolve. The mean atmospheric bias 
in the GEOS-5 coupled model was then corrected by applying the 6-hourly climatological IAU corrections 
from the coupled replay (1980-2014). The bias correction approach has been shown to successfully remove 
much of the coupled model bias in SST, precipitation and large-scale atmospheric circulation. 

4. Model prediction of stationary Rossby waves and the impact of model bias 

Using the standard GEOS-5 AGCM and the mean bias corrected GEOS-5 AGCM, we have performed 
two suites of comprehensive daily hindcasts for warm seasons of 18 years (1988, 1998, 2000-2015). A 
comparison of these two suites of hindcasts over North America shows that the bias correction leads to 
considerable skill improvement for the prediction of atmospheric circulation and surface air temperature but 
only marginal improvement for precipitation (Fig. 4). An examination of individual drought events, such as 
the 2012 Great Plains flash drought, shows that the bias correction can improve the forecast skill by up to 9 

Fig. 4  Left panel: the first rotated complex EOF (12%) of MERRA-2 daily 250mb meridional wind 
(V250mb) in the NH during warm season; second panel from left: composites of MERRA-2 surface air 
temperature anomalies when the first rotated PC is above one standard deviation; third panel from left:  
same as the second left panel but for NCEP CPC precipitation composites. Right panels: the forecasting 
skills of V250mb (top), surface air temperature (middle) and precipitation (bottom) as a function of lead 
days in standard GEOS-5 AGCM (blue line), the bias corrected GEOS-5 AGCM (red line), and their 
differences (black line).  
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days (not shown). Currently, the impact of the bias correction in the GEOS-5 coupled forecast system on the 
subseasonal prediction of warm season drought over North America is under investigation. 

5. Summary 

This study investigates the physical processes by which stationary Rossby waves lead to subseasonal 
development of drought conditions over North America. It is found that stationary Rossby waves can serve as 
a potential source of predictability for subseasonal development of North American droughts. In order to 
properly represent the effect of stationary Rossby waves and exploit this source of predictability, a forecast 
model needs to be able to predict the source of the waves, and provides a correct simulation of the NH jet 
streams (location, shape, magnitude). Since the NASA GEOS-5 model, like many other current models, 
display considerable bias during boreal summer, an objective approach has been developed to correct much of 
the model bias, which subsequently improves the prediction skill of the stationary Rossby waves and their 
impact over North America. 
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Analysis, Prediction, and Projections (MAPP) program (NA14OAR4310221). 
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1.  Introduction 

 Droughts are one of the world’s most widespread climatic disasters having significant adverse impacts on 
every water-dependent sector and the economy. There is now higher confidence that extreme drought risk has 
been changing across the globe and will increase in the future with climate change. However, global extreme 
drought characteristics and their connections to regional as well as large scale climate have not been fully 
explored. In this study, considering extreme drought magnitudes and timing in every land region of the globe 
over the past several decades, we try to address the following research questions:  1- How have the annual 
extreme drought magnitudes changed across the globe?  2- What is the spatial distribution of extreme 
droughts in each continent?  3- Are there any joint dependencies between extreme droughts across the globe? 
Our preliminary analyses suggest that many parts of the world have experienced similar patterns in terms of 
extreme droughts.  

2.  Methodology and data 

We implemented Palmer Drought Severity Index (PDSI) dataset from 1950 to 2014, as a popular drought 
indicator to diagnose its extreme characteristics. This index not only integrates precipitation and temperature 
but is also highly correlated with soil moisture content (Dai et al. 2004). PDSI has been successfully applied 
to quantify the severity of droughts across different climates (Wells et al. 2004). It ranges from about -10 (dry) 
to +10 (wet) with values below -3 representing severe to extreme drought. Gridded monthly self-calibrated 
PDSI, at 2.5-degree resolution, provided by NOAA/OAR/ESRL Physical Sciences Division (PSD) 
(http://www.esrl.noaa.gov/psd/), Boulder, Colorado, is used here. 

Extracting relevant information hidden in the complex spatial–temporal drought data set is complicated. 
To identify spatial patterns, most famous statistical methods are based on the concept of intra- and intercluster 
variances (like the k-means algorithm) (Bernard et al. 2013). In terms of drought, clustering of extreme 
drought has been lacking. In order to cluster the extreme drought, we used PAM Algorithm along with F-
madogram (Bernard et al. 2013). F-madogram measures the pairwise dependence between variable time 
series and can be used as distance matrix in the PAM clustering algorithm. The approach we used here, 
combines the PAM algorithm with the F-madogram and creates a simple clustering algorithm for maxima. 
This method generates clusters around the representative grid cells (medoids). In order to use this approach, 
we consider the minimum annual PDSI of each grid cell. 

3.  Results 

Figure 1 (a) shows the significant trend of monthly PDSI data from 1950 to 2014. The slopes were 
computed based on the seasonal Kendall Trend Test considering the Serial Dependence. Approximately, 
longitudinally and latitudinally, we see that grids with negative slope outnumber the positive ones, which 
means in general, drought has become more severe during the last several decades.  The African continent, 
eastern China, eastern Australia, western Canada, parts of Russia and Brazil have experienced more severe 
droughts.   The US, western part of Australia and west of China, got generally less severe.   Dipole patterns in 
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Australia and China are remarkable.  One of the important features of this graph is that Africa has experienced 
more severe droughts through time during the last several decades. Using these maps, we will see that many 
of the continental clusters are categorized in the same location based on these trends. The slope distribution of 

Fig. 1  (a) Trends (Sen’s Slope) of Monthly PDSI from 1950 to 2014  (95% significance),  and (b) slope 
distribution of monthly PDSI from 1950-2014 in four regions of the globe. 
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monthly and minimum annual PDSI in both latitude and longitude directions are shown in Figure 1 (b). It 
shows the slope distribution acquired from the previous step in 4 regions of the world. In general, the number 
of grids with negative slope outnumbers the positive ones.  

Figure 2 represents the result of clustering for 6 continents. The number of clusters was defined based on 
the Silhouette Coefficient (SC) (Rousseeuw 1987). The medoids -that are the representative of each cluster- 
are shown by a pink diamond in each cluster and the PDSI trend of each cluster is shown under each 
continent’s map. The trends of medoids are highlighted by a thick black color.  In North America, the best 
number of clusters was found as 5.  Clusters 2, 4 and 5 cover US and Mexico.  Based on the trends of the 
medoids, it is clear that they are a good representative of each cluster. Interestingly South America is divided 

Fig. 2  The clusters of the annual extreme droughts over a) North America, b) Africa, c) South America, d) 
Asia, e) Oceania, and f) Europe from 1950 to 2014. In each map, medoids are shown by pink diamonds. 
The graphs depict the time series of PDSI for each cluster. The time series of the medoids are 
highlighted. 
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into just two clusters in north and south and Europe and Africa are divided into 3 and 4 clusters respectively.  
In Asia, we found 6 clusters. Among all the continents, Asia contains the noisiest clusters, especially in the 
south (for example see the Cluster 3). This issue has been reflected in the time series of the medoids too. 
Based on Koppen climate classifications, there are many types of climatic regions in Asia and this might be 
one of the explanations of these noisy clusters. Unlike Asia, Oceania is very well classified. Australia is 
covered with 4 clusters; however, the cluster number 6 is a little noisy. New Zeeland and South Eastern Asian 
countries are all in one cluster.  

Figure 3 presents the Spearman correlation between the medoids of all the clusters. The significant 
correlations are highlighted. The largest positive correlation belongs to cluster 3 of Asia and cluster 1 of 
Africa (0.58) and the largest negative correlation can be seen between cluster 3 of Oceania and cluster 6 of 
Asia (-0.5).  In addition to these intercontinental correlations, there are significant correlations between 
clusters of each continent. For example, clusters 1 and 2 in Africa positively and clusters 1 and 3 in Europe 
negatively are correlated. The next step of this study will be examining the association between these clusters 
and climatic patterns such as sea surface temperature (SST). It should be noted that many problems are 
associated with some degrees of uncertainty, in these situations, the decision maker tries to find a solution that 
performs relatively well across uncertainties (Najafi et al. 2018; Afshar and Najafi 2014; Najafi and Afshar 
2013; Armal et al. 2018). In the future, we will recognize and consider the uncertainties associated with the 
clustering as well as uncertainties between clusters and explanatory factors such as SST. 
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1.  Introduction 

 Drought and pluvial events have large socio-economic impact in the U.S. and around the world. In order 
to increase resilience to these events, it is necessary to understand how these dry and wet periods will change 
in the future. Much prior work has focused on drought, and results show increasing drought frequency and 
intensity, especially in subtropical regions (e.g. Cook et al., 2014, Touma et al. 2015, Dai and Zhao 2016, 
Hunt 2011). However, there has been much less focus on how extended wet periods, or pluvial events will 
change in the future and how these changes relate to the overall precipitation trends. While we expect the 
most intense rain events to increase (e.g. O’Gorman and Schneider 2009), it is not known if this will be true 
for pluvial events, like the May 2015 heavy rainfall event in Oklahoma and Texas. Although there are 
numerous definitions of droughts, this study uses a meteorological definition that only considers precipitation. 
This study will determine how future precipitation trends manifest in terms of frequency, severity, and 
duration of both droughts and pluvials. 
2.  Data and methodology 

Observations of precipitation from two monthly datasets are used; Climate Research Unit (CRU) TS 
v3.23 precipitation at 0.5° resolution from 1901-2014 and Global Precipitation Climatology Center (GPCC) 
v7 precipitation at 1° resolution from 1901-2015. Historical and future projection (scenario Representative 
Concentration Pathway (RCP) 8.5) experiments are used from 24 Coupled Model Intercomparison Project 
Phase 5 (CMIP5) models (Taylor et al. 2012). Changes in future characteristics are established using 
differences between 2080-2100 RCP8.5 output and 1980-2000 historical output. All model data are regridded 
bilinearly to a common 2° horizontal resolution to facilitate comparison between the models and create a 
multi-model mean. 

To identify meteorological drought and pluvial events, the 6-month standardized precipitation index (SPI) 
is calculated for the observations and model output (McKee et al., 1993). SPI is calculated at each grid point, 
for the duration of the observations and the model output (1900-2100), and drought and pluvial events are 
defined based on two categories: moderate (±1) and severe (±2). An event is identified when the SPI exceeds 
the threshold, and the duration of the event is the number of months that the threshold is exceeded.  As the 6-
month SPI is used, the thresholds only need to be exceeded for 1-month to be identified as an event. The 
average SPI during an event is used as a measure of the event intensity. 

3.  Results 

3.1  Climatology and trends 

Since 1901, both observational datasets show a wetting trend (in precipitation and SPI) across most of 
North America, with the exception of the Southwest. The multi-model mean of the CMIP5 historical model 
simulations also show a similar pattern, with a drying to wetting gradient from the southwest to northeast, as 
shown in numerous prior studies. In the future, the models are in good agreement that this trend will continue 
in the future. However, a northwest to southeast swath across the US has less agreement on the sign of the 
trend in the transition zone from wetting to drying. However, the variability of SPI (and precipitation) shows 
a very different signal. Using the 9-year running standard deviation of SPI, the two observational datasets do 
not agree as well, especially across Canada. A trend of increasing variability in precipitation is evident in 
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much of the western and northeastern U.S. Historical CMIP5 model simulations show almost no trend in this 
variability, but in the future, almost all models show a strong trend of increasing variability across the entirety 
of North (and Central) America. This increase in variability suggests more frequent drought and pluvial 
events will occur in the future. 

3.2  Future changes  

The multi-model mean changes in drought and pluvial event characteristics are shown in Fig. 1 and Fig. 2, 
respectively. In all cases, the changes are larger in moderate events in comparison to severe events. The 
spatial pattern of the change in number of drought events matches well with the precipitation trends in 
moderate and severe drought cases. In moderate events, droughts are projected to increase in length by 
approximately 1 month in the southwest U.S. and over 3 months in parts of the Caribbean. Interestingly, the 
intensity of droughts is projected to increase across the whole North and Central America, irrespective of 
whether the precipitation is increasing or decreasing. Drought intensities increase up to approximately 0.2 SPI 
in moderate and severe drought events. 

Similar results are seen in the cases of projected changes to pluvial events. Moderate and severe pluvial 
events are projected to increase across much of North America, especially in the north and east. As for 
drought events, the average intensity of pluvials is projected to increase for moderate and severe events across 
North America. Hence, both wet and dry events will become more intense in the future across North America. 

When comparing the drought and pluvial event characteristics with precipitation trends, it is evident that 
there are some locations where “opposite” projections are occurring. For example, precipitation is projected to 
increase but drought frequency, duration, and/or intensity are also increasing. To investigate the locations 
where this is occurring, Fig. 3 highlights regions where drought and pluvial characteristics are in the opposite 
direction to the precipitation trend in the multi-model mean CMIP5 simulations. For the number of events, the 

Fig. 1  Multi-model mean change in drought event characteristics (number (left column), duration (middle 
column), and intensity (right column)) between 2080-2100 and 1980-2000. Top row for severe (SPI<-2) 
and bottom for moderate (SPI<-1) drought events. 
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signal is across the central U.S. in the region between increasing and decreasing precipitation trends where the 
model agreement on the sign of the trend is smaller. This is also the case for the duration of events, although 
there is some area expansion, especially in the severe category. The most spatially extensive signal is for the 
intensity of events. These results suggest that even in regions where precipitation is projected to increase (the 
north and east U.S.), severe (and moderate to some extent) drought events are projected to increase in 
duration and intensity (and vice versa with pluvial events in the southwest U.S. and Central America. This has 
important implications for planning and resilience to events.    

4. Summary 

Precipitation trends alone do not give information about future drought and pluvial characteristics that are 
important for planning and impacts. Comparing two observational datasets of precipitation with simulations 
from the CMIP5 suite of experiments, good agreement is seen in precipitation trends in the historical period 
but there is less agreement (between the two observational datasets themselves and the models) in the 
variability. In the future, the variability in the 6-month SPI is projected to increase across the whole North 
America, suggesting that the characteristics of drought and pluvial events will be changing. As expected from 
prior studies, generally, wet regions are getting wetter with more frequent, longer lasting, stronger pluvials 
(and vice versa for drought events). Uniquely, this study also investigates when wet and dry events occur in 
regions where the precipitation trend is of the opposite sign. Especially for severe droughts/pluvials we see 
wetting areas with more, longer, and stronger droughts (and vice versa). There is still a need to understand the 
drivers, spatial variability and predictability of these events across North and Central America. 
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Long-term Variation of US Land Surface Hydrological Extremes  
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1.  Introduction 

Drought and flood are two opposite land surface hydrological extremes.  They are frequent natural 
disasters and can happen anywhere. It is those severe land surface hydrological extremes that cover a large-
scale space and last long term periods can bring devastating disasters to the human society and major 
disruption to earth’s ecosystems. Therefore, one may ask questions like: Do our current land surface 
monitoring and modeling systems have the capability to reproduce those land surface hydrological extremes 
that have occurred in the past multi-decades? What are the main reasons for the major land surface 
hydrological extremes in the US? Hence, to better understand the attributions of those major land surface 
hydrological extremes and eventually to accurately predict them are important for science and protecting 
human society.    

2.  Methodology 

Soil moisture responds to precipitation accumulation like a low-pass filter and is a significant physical 
variable for land surface monitoring and studies. A newly generated long-term (from 1895 to present) land 
surface hydrological dataset by the CPC leaky bucket land surface hydrological model (Huang et al. 1996), 

Fig. 1  EOF analysis for simulated soil moisture for period 1895 to 2017. 
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which was forced with the improved National Centers for Environmental Information (NCEI) monthly 
observed precipitation and 2m surface air temperature (well quality controlled) over the 344 US climate 
divisions (Vose et al. 2014), was used to study land surface hydrological extremes and their variations in the 
US for the past 120 plus years. 

The leaky bucket land surface hydrological model used here can be described as following: 

dw/dt  = P - E - R - G         (1) 

where w is total soil moisture, P observed precipitation, E evaporation, R runoff, and G loss to ground due to 
gravity impact.  

There were some concerns (McRoberts et al. 2011) that the variance of the early time data produced (i.e. 
1895 - 1930) may be too low and would be “different” from the data collected in late time. Our analysis (Fig. 
1 and Fig. 2) shows that the data in the early period appears quite “normal” and the major features are quite 
similar to those in the late period. There is no surprising found in both the observed (precipitation and 2 meter 
temperature) data (not shown) and simulated data. 

Comparing to observed precipitation and 2 meter temperature EOF analyses (not shown), the simulated 
soil moisture data has less noisy with lower frequency variations. By definition, land surface soil moisture or 
soil water is a direct indicator for agricultural drought, i.e. soil water deficiency. Based on the equation (1), it 
is the right side P-E-R-G (recharge or discharge) dictates the direction of drought intensification or drought 
improvement, not just P only. This will be addressed again in latter part of this study.  
3.  Long-term variations 

The preliminary results (Figs. 2, 4, 5, 7) show that the major land surface hydrological extremes occurring 
in the past 12 decades were well captured by simulation in terms of severity, duration, and spatial distribution,  

Fig. 2  Decadal simulated land surface soil moisture anomaly variation from decade of 1900s (top left panel) 
to 2010s (bottom right panel). 
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Fig. 4  Time series of areas (%) covered by wet (green) and dry (red) extremes in period of 1895 to 2017. 

Fig. 3 Land surface soil moisture anomalies (solid line, unit: mm) and soil water recharge/discharge 
(green/red shaded area, unit: mm/mon) for period of 1895-2017. 
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Fig. 5 Spatial distribution of the 
selected major droughts and 
floods. 

such as the decade-long major droughts (dust bowl era) in the 1930s in large parts of the US, multi-year 
severe droughts in the 1950s in the US (including the southern Great Plain), and big floods in the middle and 
northern Great Plains in 1993. 

Compared to the EOF analyses of observed precipitation, observed 2 meter temperature, simulated 
evaporation, and runoff etc. (not shown), the variation of land surface soil moisture (Fig. 1) is largely driven 
by observed precipitation, but modulated clearly by other factors mentioned above. In order to explore this 
further, the equation (1) can be written as:  

W (t+dt)  = W (t) + ∫(P - E - R - G) dt       (2) 

where W (t+dt) is soil moisture at time t+dt, W (t) is soil moisture at initial time t, and ∫(P - E - R - G) dt is 
the integration of land surface water budget during dt period and can be viewed as land surface soil water 
recharge or discharge. 

It is true that all kinds of droughts originate from a deficiency of precipitation or meteorological drought. 
However, precipitation is not the only factor to dictate the direction of land surface soil moisture (agricultural 
drought) variations. For example, even if it has rainfall somewhere, its soil moisture could decrease further if 
its evaporation is larger than the incoming precipitation.  Figure 3 clearly shows that land surface soil 
moisture exactly goes up or down with the variation of recharge (green shaded areas) or discharge (red shaded 
areas). Land surface water storage change or soil moisture tendency W (t+dt) – W (t) is totally determined by 
land surface soil water recharge or discharge ∫ (P - E - R - G) dt, as it should be.  

Therefore, the above results indicate that in order to predict either agricultural drought to intensify or 
improve more accurately, we need to predict land surface soil water recharge or discharge∫(P - E - R - G) dt  
more accurately.  

4.  Dry/wet extremes in past 120+ years 

There are many definitions for the hydrological extremes and different definitions focus on different 
aspects based on users. To some extent, some of them are somewhat arbitrary. The main interesting here is for 
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those severe land surface hydrological extremes which cover a large-scale spatial area and last long-term 
periods. These kind of extremes usually can bring devastating disasters to the human society and major 
disruption to earth’s ecosystems. Here, a simple and objective definition for the percentage area covered by 
hydrological extremes is introduced as: 

Extreme Area (%)  = 100 × (extreme grids) / (Total grids)  

      = 100 × (∑(X - µ)/sd) / (Total Grids)    (3) 

where ∑ (X - µ)/sd represents the total number of grids that the normalized soil moisture anomalies exceed 
certain thresholds, such as 1.9, 1.5, 1.2, 0.8 and o.5, which mimic categories of the US official drought 
severity classification: D4, D3, D2, D1 and D0 (also see Fig. 7). 

Figure 4 depicts time series of the 
simulated US wet/dry hydrological 
extremes for past 123 years. Many major 
drought and flood events are well 
captured, such as the famous 1930s dust 
bowl era, severe droughts in 1950s, and 
extreme floods in 1941, 1983 and 1993. 
The results also reveal that these major 
land surface hydrological extremes tend 
to cluster together and have relatively 
large-scale spatial patterns (Fig. 5). 
These large-scale patterns should be 
impacted by large-scale circulation 
anomalies and theoretically more 
predictable. It will be a nightmare for 
forecast if major droughts are small scale 
and spread everywhere.  

To further understand the 
attributions of those major land surface 
hydrological extremes, the Extended 
Reconstructed Sea Surface Temperature 
(ERSST) dataset (Huang et al. 2014) 
was used to explore the origins of those major land surface hydrological extremes over the US for past 120 
plus years. The results indicate that wet and dry extremes in the US tend to linearly relate to tropical SST 
anomalies (Fig. 6), with wet extremes more favoring positive SST anomalies in previous months, and dry 
extremes more favoring negative SST anomalies in previous months, especially for warm (growing) season. 

Lastly, the time series of the drought percent areas over the continental US from the official US Drought 
Monitor (http://droughtmonitor.unl.edu/Data/Timeseries.aspx) was used as observation or ground truth to 
validate the simple and objective hydrological extreme area (%) index introduced in above. 

The official US drought monitor started operation in 1999 and it provides a weekly map of the US 
drought conditions by multi-government agencies and universities. It is based on climatic, hydrologic, soil 
condition measurements and reports from various resources. Figure 7 depicts that the simple drought area 
index introduced here can reproduce major features of the official US drought index fairly well. The results 
also show the spatial distributions of corresponding droughts from the two methods are matched quite well 
(not shown). 

Fig. 6 Temporal correlation of monthly US wet/dry extremes area 
index to previous 5 month global SST anomalies. 

5.  Conclusion 

The preliminary results show that there are significant decadal spatial-temporal variations of land surface 
hydrological extremes over the US, with clear long-term trend: warm trend over the western US and wet trend 
over the northeastern US. 
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%
 

Fig. 7  Time series of areas (%) covered by classified (D0 to D4, related yellow to dark red) droughts from 
the official US drought monitor (upper panel) and CPC Leaky Bucket model (lower panel) for period of 
2000 to 2017. 

Land surface wet/dry extremes over the US linearly response to the previous month(s) tropical cold/warm 
sea surface temperature anomalies, which provide a good predictor for forecasters.  Usually, the major land 
surface hydrological extremes tend to cluster together with relatively large spatial scale and therefore they 
should potentially be more predictable from forecast point of view. 

The results also show that land surface soil moisture variation exactly follows the variation of land 
surface water budget term. Therefore, in order to predict the variation of (agricultural) drought more 
accurately it needs to predict not only precipitation, but also every other component of the land surface water 
budget more accurately. 

The simple and objective hydrological extreme area (%) index introduced in this study can very well 
reproduce the results from relatively complicated and somewhat subjective official US drought area index.         
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Improving CPC’s Handling of Long-term Temperature Trends  
Stephen Baxter 

Climate Prediction Center, NCEP/NWS/NOAA, College Park, MD 

1.  Introduction 

It is well documented that CPC’s seasonal temperature forecast skill derives largely from long-term 
warming trends over the United States (e.g. Peng et al. 2012). Most recently this was explored in a 
presentation at the 41st Climate Diagnostics and Prediction Workshop (Baxter 2017), wherein it was shown 
that CPC’s deterministic seasonal forecast skill from 1995 to the present is not as good as a categorically 
warm forecast (a forecast where every grid cell is depicted as favoring temperatures in the upper tercile). 
Given this research result, it is imperative that CPC incorporate long-term trends as rigorously as possible and 
in a way that isolates long-term climatic changes from interannual and decadal variability. Indeed, analysis of 
climate variability on subseasonal to seasonal time scales is where CPC is uniquely adept.  

Forecasting seasonal and 
subseasonal variability explicitly is 
where known skill is unclear. For 
example, the long-term Heidke skill 
score when above-normal is the 
favored forecast temperature category 
is near +30. However, the same skill 
score when below-normal is forecast 
falls all the way to +5. This, along with 
inspection of reliability diagrams, 
reveals a systemic cold bias in the 
official forecasts. To be sure this is 
counterintuitive considering that CPC 
outlooks do forecast above-normal 
temperatures more than the other two 
categories. It would be ideal to separate 
interannual and even decadal 
variability from long-term trends in 
order to better understand, and 
potentially improve, forecast skill 
related to various phenomena. 

Two common forecast tools used 
to incorporate long-term trends are the 
linear trend and optimal climate 
normals (OCN). The latter is defined 
here as the running 15-year average temperature anomaly, which varies as a function of target season. OCN, 
as the name implies, generates forecast skill simply from the fact the base climatology used operationally (an 
aging 30-year fixed period) is inadequate, if one considers the point of a climatology to be providing your 
first-guess expectation at seasonal climate. The usefulness of an OCN forecast disappears if the base 
climatology is the OCN averaging period. Linear trends do not suffer from that shortcoming, but do suffer 
from the fact that variability other than long-term trends can easily be aliased into it, a characteristic shared by 
OCN as well. An alternative technique is introduced here, where the leading principal component of spatio-

Fig. 1  Top: Correlations of the 1st PC with ERSSTv4 data from 
1950-2015. Contour interval is 0.1 with the zero contour 
omitted. Bottom: 1st PC is plotted from 1950-2015. A clear 
positive trend is notable. 
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temporal seasonal SST variability 
during the 20th century is used as the 
trend time series. This approach 
grounds the treatment of long-term 
trends in an important physical field 
within the context of other interannual 
and decadal variability. 

2.  Methods 

Linear trends, OCN, and 
regressions of the 1st PC of SST 
variability are used in reconstruction of 
seasonal temperature anomalies from 
1965-2015. Temperature data is from 
the GHCN+CAMS dataset. The trend 
principal component is derived using 
rotated, extended EOF analysis of 
three-month, non-overlapping seasonal 
SST anomalies (Hadley SST data) 
from 1900-2015, following Guan and 
Nigam (2008). The domain of the 
analysis is 20oS-90oN, 0-360o. The 
nonstationary trend is the leading 
principal component, explaining 15.2% 
of the variance. North Atlantic decadal 
variability emerges as the 5th principal 
component; this plays some role in the 
low-frequency component of North 
American temperature anomalies. 

Trends are calculated using least 
squares regression over the 1950-2015 
period, and are used to reconstruct the 
seasonal temperature anomalies from 
1965-2015. The PC reconstructions use 
a one year lag regression between the 
principal component and the target 
season. Regression analysis is 
performed over the 1950-2015 period, 
and anomalies are reconstructed for the 
1965-2015 period. OCN is the average 
temperature anomaly over the previous 15 years for a given meteorological season, starting in 1965.  

3.  Results 

Figure 1 shows correlations of the 1st PC with ERSSTv4 data over the 1950-2015 period, along with the 
associated time series. A clear but nonstationary trend is evident. Importantly, this trend is temporally 
independent of other canonical SST variability, including ENSO. Figure 2 is the same except for the 5th PC 
comprising Atlantic decadal variability, usually identified as the Atlantic Multidecadal Oscillation (AMO). 
While only the most recent 65 years are plotted in the time series, the decadal tendency is obvious. 

For the sake of brevity, only meteorological winter is discussed here, though the analysis is complete for 
all four meteorological seasons with essentially the same results. Figure 3 shows the anomaly correlation 
between the OCN forecast anomalies and the observed anomalies over the 1965-2015 period. Positive 

Fig. 2  Same as Fig. 1, but for the 5th PC comprising decadal 
variability associated with the AMO. 

Fig. 3 Correlations between the OCN-based temperature 
reconstructions and observed temperature anomalies from 
1965-2015 for northern winter. Contour/shading interval is 0.1 
with the zero contour omitted. 
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correlations exist across northern 
North America including parts of the 
northern CONUS, while correlations 
are weak over much of the central and 
eastern CONUS. Anomaly correlations 
are notably high over much of 
Southwest, where temperature trends 
are known to be prominent. Figure 4 
shows the same but for the linear trend 
reconstructions. Importantly, this is a 
largely data dependent reconstruction, 
so this should not be taken as forecast 
skill. The spatial structure is nearly 
identical to OCN, though the 
magnitude of the correlations is 
generally higher. The SST PC 
reconstruction (Fig. 5) contains nearly 
identical spatial structure as well, with 
magnitudes that are fairly close to 
those associated with the linear trend. 
Figures 6 and 7 show the difference in 
anomaly correlations between the 
analysis using the SST PC and OCN 
and linear trends, respectively. Here it 
is clear that the SST PC is better than 
the OCN reconstruction, but somewhat 
worse than the linear trend. The 
addition of the 5th PC (AMO) to the 
regression and reconstruction analysis 
eliminates all or most of that gap (Fig. 
8).  

Because of the similarity between 
long-term trends and the 1st PC in time, 
their similar correlation footprints are 
unsurprising. However, the SST-rooted 
analysis has the advantage of being 
able to discriminate between long-term 
trends and decadal variability, and 
does not risk any obvious ENSO 
aliasing. OCN by its nature does not 
actually yield predictive information 
about a nonstationary climate. This 
becomes obvious when one considers 
that the next year ought to be warmer 
than the previous 15 years when only 
considering secular climate warming.  

4.  Conclusions 

A time series corresponding to long-term trends is desirable especially when it is derived in the context of 
interannual and decadal variability. The use of SST in this regard is preferred given its usefulness as a slowly-
varying boundary condition in seasonal climate prediction. Other physical fields could be explored in similar 
analyses, but the SST-rooted analysis is well-documented and physically robust. 

Fig. 4  Same as Fig. 3, but for reconstructions using the linear trend. 

Fig. 5  Same as Fig. 3, but for reconstructions using the 1st PC of 
spatio-temporal SST variability. 

 Fig. 6  The difference between Fig. 5 and Fig. 3. Contour/shading 
interval is 0.05 with the zero contour omitted. 
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Linear removal of the 1st PC from 
statistical and dynamical forecast 
guidance can isolate interannual and 
decadal variability from long-term 
trends. In this way we can better 
attribute both observed and forecast 
climate anomalies. In light of this 
pilot analysis, next steps include an 
independent hindcast experiment and 
the extension to overlapping 3-month 
seasons. From that point forecasts of 
trend-based anomalies and associated 
probabilities can be made and used in 
the seasonal forecast process. 
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1.  Introduction 

 The relationship between drought and loss of crops and livestock has long been known as an 
environmental challenge confronting agricultural production in many parts of Africa. Despite the great 
advancement of climate science in understanding and dealing with climate change and its impacts on the 
agricultural sector at the international and regional levels, awareness and the concern for the problem at local 
levels, especially among the rural farmers in Africa remains crucial. Most of the crops farming in Africa is 
rain-fed (Lobell et al. 2011; Ayanlade et al. 2017). Changing rainfall patterns will greatly affect both crop and 
livestock farming. In Nigeria for example, drought is not only main cause of crop loss but also leads to death 
of livestock in many parts of the country (Abaje et al. 2014; Tambo and Abdoulaye 2013). Thus, this study 
aims at examining the drought characteristics in two agro-climatic zones: Rainforest and Guinea savannah of 
Nigeria and assess the level of awareness and sensitivities of local farmers’ to climate variability and change. 
The paper focuses on assessing the frequency and probability of prolonged dry spells over the period between 
1984 and 2014, and the major coping strategies of smallholder farmers in both Rainforest and Guinea 
savannah agro-climatic zones of Nigeria. The study further identifies factors determining farmers’ preference 
for selected adaptation strategies.  
2.  Methodology 

The study area was divided into two 
agro-climatic zones: Rainforest and Guinea 
savannah agro-climatic zones of Nigeria. 
The Guinea savannah experiences 
precipitation of about 900-1200 mm per 
annum and the wet season lasts for 6 - 8 
months, but much more in rainforest zone 
(Fig. 1).  The climatic data were sourced 
from the archives of the Nigerian 
Meteorological Agency, Oshodi, Lagos over 
the period of 1984 to 2014. Qual-Quant 
research methods were used in this study.   
The data used were from four selected 
weather observatories stations; Iseyin, Shaki, 
Ibadan, and Osogbo. From this dataset, annual average rainfall and number of the rainy days were computed 
using RAINBOW software, which is designed to carry out hydro-meteorological frequency analyses and to 
test the homogeneity of climatic data. Questionnaires and focused group discussions were used to collect data 
on rural farmers’ perception about the impacts of drought and their adaptation strategies used to cope during 
and after the extreme weather events. The study sites for household survey comprises of selected farming 
communities in southwestern Nigeria.  The first segment of the household survey was conducted in the 
months of October and November of 2015, while the second segment was conducted in the months of May 
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Fig. 1  Rainfall patterns in the study area. 



AYANLADE ET AL. 
 

 

141 

and June 2016. A total of 350 farmers belonged to the age group of 35-75 years were selected, using a 
multistage sampling method.  

Drought characteristics were assessed using seasonal rainfall fluctuations and coefficient of variance (CV). 
The coefficient of variance statistics was calculated for rainfall amount (RA) and a number of rainy days (RD) 
with their T-test statistics were carried out to assess the significance of variation. Besides, the probability and 
the frequency of dry-spell occurrence, during the growing seasons, were estimated by considering the number 
of rainy days in the growing months. Any day with rainfall less than 0.3 mm was counted as a dry day. 

The CV is measured as the relative variability of the rainfall amount and number of rainy days 
per month. It was calculated as the ratio of the standard deviation to the mean (average) for both RA 
and RD as in Equation 1, 

𝐶𝐶𝐶𝐶 =  𝛿𝛿𝑅𝑅𝑅𝑅/𝑅𝑅𝑅𝑅

𝜇𝜇𝑅𝑅𝑅𝑅/𝑅𝑅𝑅𝑅
∗ 100%        (1) 

where CV is the ratio of the standard deviation δ_(RA/RD)  to the mean μ_(RA/RD) for both rainfall 
amount and number of rainy days. The probability and the frequency of dry spells, during the 
growing seasons were estimated. The probability that consecutive dry days would occur were 
established by considering the number of the days in the month and the total possible number of 
days in the growing seasons.  Information about the coping strategies adopted by farmers and 
farmers’ perception of drought was gathered through questionnaires and focus group discussions in 
the farming communities.  
3. Results 

The probabilities that dry spells exceed 3, 5, 10, and 15 consecutive days are much higher in the Guinea 
Savanna than in Rainforest zone (Fig. 2). Generally, the probabilities values of dry spells exceed the selected 
consecutive days are generally lower in rainforest agro-climatic zone compared to Guinea savanna agro-
climatic zone. The results show a high probability that dry spells exceed 3 and 5 consecutive days during both 
growing seasons. In all stations, the probability that dry spells exceed 25 consecutive days is very low in all 

Fig. 2  Probability of dry-spell exceeding 3, 5, 20, 15 and 25 consecutive days in growing seasons. 
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the stations with 0.37≤ p ≤ 0.52 (Fig. 2). These results denote that rainfall is much more reliable from the 
months of May till July in early growing season (EGS) but September in late growing season (LGS) for 
cropping.  

Rainfall is much more reliable from the month of May until July with the coefficient of variance for rainy 
days less than 0.30, but less reliable in the months of March, August and October with CV-RD > 0.30, though 
CV-RD appears higher in the month of August for all the stations (Fig. 3). It is apparent that farmers’ 
perceptions of drought fundamentally mirror climatic patterns from historical weather data.  The results of the 
household survey show that farmers’ perception of drought and extreme climate events mirror meteorological 
analysis. The majority of the farmers perceived that “rainfall onset, duration, and cessation have not been 
normal in the recent years” and they claim that “prolonged dry spell during growing seasons are now frequent 
in recent years”. These sensitivities by farmers therefore, confirm the results from meteorological trend 
presented in the sections above. Though, the length of farming experiences has a significant relationship with 
farmers’ perceptions of climate change adaptation strategies. Besides, many herders observed that “cattle 
health is now poor and the milk obtained from their cattle has reduced greatly, compared to several earlier 
centuries”. In general, the “Fulani” pastoralists complained mostly about “the reduction of grazing grass and 
water for their cattle, though they move their cattle around for pasture”.  
4.  Summary and conclusions 

This study examined drought characteristics during growing seasons in two agro-climatic zones of 
Nigeria and farmers perceptions of impacts and adaptation strategies. Most farmers had observed some 
prolonged dry spells within the months of March, April, and August, which affect their planting dates. This 
condition is worsened by marginally available financial resources and know-how for designing and 
implementing effective adaptation measures. In all the study sites, the farmers stated that “the planting dates 
were re-scheduled to the most suitable and favorable times for the crops to be planted”. For instance, some 
crops are planted at the onset of rainfall, but in situations when rainfall is delayed, the planting date of the 
crop would be shifted to the time when the rain starts. It is apparent that farmers’ perceptions of drought 
fundamentally mirror climatic patterns from historical weather data. However, farmers have adopted different 
strategies to cope with recurrent drought events in the study area. These strategies only partially compensated 
for the fact that agriculture would almost certainly have been better if the climate had kept constant. The 
facilities and equipment for adaptation should be provided at a subsidized price by the government, and that 
efforts should be made to develop crop varieties that can cope with the current conditions of climate change in 
Nigeria. 

Fig. 3  Coefficient of variation in rainy days (CV-RD) during growing seasons. 
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1.  Introduction 

 In this study, we investigated a framework to predict drought probabilistically based on the precipitation 
forecast from Northern American Multi-model Ensemble (NMME). The total sixty ensemble members are 
selected from six NMME participated models for the study of meteorological drought forecast.  The NMME 
precipitation forecasts are downscaled to the 0.5 degree CONUS grid and bias corrected with the Bias 
Corrected Spatial Disaggregation (BCSD) method. Then, the meteorological drought forecast based on the 
standardized precipitation index SPI6 (six months accumulation) are computed and converted to the 
corresponding drought categories. The grand mean (GM) index is tested to summarize the mean state of 
drought from the all NMME members.  The probabilistic information for each drought category is measured 
by the concurrence at each ensemble member.  The accumulated probabilities for drought categories are 
evaluated against observed drought events during 1982-2010 period. The results show the meteorological 
drought forecasts based on the NMME display robust skills over the climatological forecast at lead one to 
three months, indicated by both the Spearman rank correlation (Rho) and Rank Probability Skill Score 
(RPSS). 

2. Challenges 

Frequent occurrences of drought in US had major societal, economical, and environmental impacts. Large 
differences exist in current operational drought forecasts by dynamical models, such as seen in NMME 
forecasts (Kirtman et al. 2014). The different forecasts may be able to identify a drought event, but the 
uncertainties are too large to classify the drought into a particular drought categroy Dx (x=0-4) (Mo 2008). 
And also, current forecast does not estimate the uncertainty thus not giving risk managers or decision makers 
the best or worst scenario information. 

3.  Data and methods 

We selected six representive models, i.e. CanCM3 model, CanCM4 model, GFDL_FLOR model, NASA 
GEOS5 model, NOAA CFSv2 model and NCAR CCSM4 model, from the NMME historical archives.  For 
each model we selected only 10 ensemble members which are closest to the forecast initial time (day 01 at 
each month).  The hindcasts were run for every month from 1982 to 2010 (total 29 years), and the real-time 
forecasts from 2011 till recently. 

The precipitation (P) forecast for lead 1-6 months are firstly downscaled to 0.5 degree CONUS grid. The 
downscaled P forecasts are then bias corrected by the BCSD method (Yoon et al. 2012) with leave-one-out 
cross-validation, which guarantees the target year is removed from the training pool to avoid the overfitting 
problem. 

Six month accumulated standardized precipitation index (SPI6), as the forecast for meteorological 
drought with lead 1-6 months, are computed, using the corrected P forecast and the CPC unified P 
observations.  The SPI6 forecasts from 60 ensemble members are then transferred from the normal 
distribution to the uniform distribution (percentile).  Based on Table 1, the percentiles could be converted to 
the drought category Dx (x=0 to 4) defined by U.S. Drought Monitor. 
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Table 1  The table used to convert drought conditions to corresponding drought categories. 

Category Drought cond. SPI (SRI) Percentile 

D0 Anomaly Dry -0.5 to -0.8 30% tile 

D1 Moderate -0.8 to -1.2 20% tile 

D2 Severe  -1.3 to -1.5 10% tile 

D3 Extreme -1.6 to -1.9 5% tile 

D4 Exceptional -2 or less 2% tile 

The sixty drought forecasts based on the percentile (uniform distribution) are averaged to the grand mean 
(GM) for the drought category Dx forecast. This percentile-mean method will reduce the “mean error” due to 
uneven distribution of SPI at “the long tail of normal distribution”, in particular for the extreme events, such 
as droughts.  However, due to the offset effect (cancel out) of the arithmetic mean, the GM index will serious 
underestimated the drought intensity (Mo and Lettenmaier 2014). We remapped the grand mean index again 

Fig. 1 The Spearman rank correlation (rho) for the Grand Mean (GM) of drought index forecast with 
observation for January 01, April 01, July 01 and October 01 initial time (from top to bottom) during 
1982-2010. The left, central and right columns are for the lead one, two and three months forecast, 
respectively. 



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

 

146 

to the uniform distribution based on the 29 year historical values. 

The probabilistic information for each drought category Dx is measured by counting the concurrence of 
all sixty ensemble member.  The accumulated probabilities for drought categories Dx are then evaluated 
against observed drought events during 1982-2010. 

4. Results 

Observed drought events are defined by the SPI6 based on the observed rainfall from CPC unified 
Precipitation analyses.  The rank correlation (Spearman Rho) is used to assess the GM index and Rank 
Probability Skill Score (RPSS) for the probabilistic forecast. 

In general, the grand mean index has higher skill than individual member (figure not show). The skill of 
drought forecast is regional and seasonal dependent (Fig. 1). For the most regions, the rank correlation 
coefficients are high at lead 1-3 month, and gradually become insignificant after four months lead. The 
forecasts are skillful in the regimes where the initial condition dominates. Compared to the climatological 
forecast, the probabilistic forecasts display robust skills (Fig. 2). The skills could persist to the lead three 
months forecast at most US regions, but fading quickly after lead four months. The forecast skills are relative 
lower in spring and summer, compared with winter and fall seasons. The NMME tends to over-forecast 
droughts with large false alarm rate (figure not show). 

Fig. 2  The same as Fig. 1 but for the RPSS over the climatological forecast. 
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1.  Introduction 

 The National Oceanic and Atmospheric Administration (NOAA) is increasing its efforts to improve a 
numerical weather guidance for the sub-seasonal timescale. The National Centers for Environmental 
Prediction (NCEP) Climate Forecast System Version 2 (CFSv2; Saha et al. 2014) provides operational global 
numerical guidance at sub-seasonal and seasonal scales. Extending the NCEP Global Ensemble Forecast 
System (GEFS) to 35 lead days, however, enhances NCEP’s subseasonal prediction capability since the 
GEFS has higher model resolution, a more frequent model upgrade cycle, improved stochastic physics 
perturbations and a larger ensemble size than the CFSv2. 

In this study, four GEFS experiments (or configurations) are performed to help quantify the impacts of 
improved stochastic physics, boundary SST forcing and new scale-aware convective parameterization on sub-
seasonal forecast skill for 500 hPa geopotential height and the Madden-Julian Oscillation (MJO). Furthermore, 
the impact of reforecast-based statistical post-processing on the sub-seasonal forecast skill of 2-m temperature 
is examined. 

2. Methodology 

In this study, the GEFS integration is extended from 16 days to 35 days. For days 0-8 and 8-35, the GEFS 
has a spectral resolution of TL574 (approximately 34 km) and TL384 (approximately 52 km), respectively, 
with 64 hybrid vertical levels. The operational version of GEFS has 20 perturbation members and 1 control 
member. The initial perturbations are selected from the operational hybrid Global Data Assimilation System 
(GDAS) 80-member Ensemble Kalman Filter (EnKF; Whitaker et al. 2008, Wang et al. 2013). 

Of all four GEFS 35-day experiments, the control experiment (CTL) uses the same configuration as the 
operational GEFS (Zhou et al. 2017) except it is extended from 16 days to 35 days. The Stochastic Total 
Tendency Perturbation (STTP; Hou et al. 2008) scheme is used to represent the model uncertainty. The SST 
forcing in this experiment is initialized with the Real Time Global (RTG) SST analysis and damps to an 
analysis climatology at a 90-d e-folding rate (Zhu et al. 2017). 

The second experiment replaces the STTP with the Stochastic Kinetic Energy Backscatter (SKEB; Shutts 
2005), Stochastically Perturbed Parameterization Tendencies (SPPT; Buizza et al. 1999) and Stochastic 
Perturbed Humidity (SHUM; Tompkins and Berner 2008) schemes, collectively known as SPs, while keeping 
the boundary SST forcing unchanged. The third experiment uses SPs and replaces the operational 
configuration of the SST forcing with a bias corrected CFSv2 predictive SST, which considers the day-to-day 
evolving state of the SST with respect to lead time (Zhu et al. 2017). This particular kind of SST forcing is 
known as a “two-tiered SST”. The first tier means the output is from a coupled model forecast while the 
second tier means that SST is prescribed to an uncoupled model. The fourth experiment uses SPs, updated 
SST and replaces the operational convection scheme with a new scale-aware convection scheme (Han et al. 
2017).  In addition to the experiments using an uncoupled forecast system, the current stage of the fully 
coupled CFSv2 is also compared to these four GEFS experiments. The CFSv2 consists of 4 members, but 12 
lagged members are added so that the ensemble size is more consistent with GEFS. 
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These four experiments are 
each initialized every 5 days 
from May 1st, 2014 to May 26th, 
2016. MJO is also evaluated 
from these four experiments 
using the traditional real-time 
multivariate (RMM) MJO index 
(WH index; Wheeler and 
Hendon 2004; Gottschalack et al. 
2010). The MJO skill is 
calculated using the bivariate 
anomaly correlation between the 
forecast and analysis RMM1 and 
RMM2 (Lin et al. 2008; Li et al. 
2018).  

Near-surface variables such 
as 2-m temperature are 
challenging to forecast on 
subseasonal scales, since 
enhancing stochastic physics, 
SST and convection has minimal 
effect on improving the 
performance (Zhu et al. 2018). 
Therefore, 2-m temperature 
needs to undergo statistical post-
processing (Guan et al. 2018). In 
this study, 11-member 2-m temperature reforecast data with the same configuration as the fourth experiment 
from 2011 to 2015 is used to calibrate 2016. The reforecasts within this period are initialized once per week 
with the Global Data Assimilation System (GDAS). A climatological mean forecast error calculated from this 
reforecast dataset is used to calibrate 2-m temperature (Guan et al. 2018). A 31-day window is used and 
centered on each day being considered to calculate the reforecast climatology (Guan et al. 2015; 2018). 

3.  Results 

3.1  500 hPa height forecast skill 

Anomaly correlation is used to measure the 
potential skill of the 500 hPa geopotential height. 
For lead week 2 over the northern hemisphere, 
combining SPPT, SKEB and SHUM 
demonstrate an increase in the potential skill 
(Fig. 1). Updating the bias-corrected SST and 
the scale-aware convection scheme further 
enhances the anomaly correlation. Furthermore, 
all four GEFS experiments perform better than 
the CFSv2 over the northern hemisphere. 
Therefore, improving the representation of the 
the stochastic physics, SST and convection in 
GEFS outperforms the current stage of CFSv2.  
3.2  MJO forecast skill 

MJO is the dominant mode in sub-seasonal variability in tropics. As such, the performance of the MJO in 
the forecast system is evaluated. The MJO skill over the 2-year period shows that SPs outperforms STTP 

Fig. 1  Pattern Anomaly Correlation (PAC) for Northern Hemisphere 500 
hPa geopotential height for lead (a) week 2 and (b) weeks 3&4. CTL 
is black, SPs is red, SPs+CFSBC is green, SPs+CFSBC+CNV is blue 
and CFSv2 is brown with period average PAC scores for each 
configuration (numbers in the bottom of each plot with different 
color). 

Fig. 2  MJO forecast skill as a function of lead time for the 
period of May 1st, 2014 to May 26th, 2016. 
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(CTL; Fig. 2). The CTL and SPs remain to have a skillful MJO forecast for 12.5 lead days and 16.8 lead days, 
respectively (AC≧50%). Adding a bias-corrected SST to SPs reaches a skill around 19 days.  When 
combining SPs, the bias-corrected SST and the scale-aware convection, the MJO skill of SPs+CFSBC+CNV 
(21.5 days) exceeds the MJO skill of CFSv2 (19 days). 

3.3 2-m temperature calibration 

Calibrating the 2-m temperature using the reforecast bias method shows substantial improvement over all 
domains (land only) for the week 3-4 lead time (Fig. 3). The North America (land only) RMS error and RPSS 
(Ranked Probabilistic Skill Scores) benefit the most from the calibration. These improvements in 2-m 
temperature demonstrate the importance of using reforecast information for calibration. 

4. Summary 

The NCEP GEFS has been extended from 16 to 35 days to predict sub-seasonal timescales. It has been 
found that improving the stochastic physics perturbations, using a predictive SST and a scale-aware 
convection scheme substantially improves the extra-tropics forecast and MJO skill for the sub-seasonal scales, 
without degradation of weather forecast. The GEFS has also outperformed the CFSv2 in the extratropical and 
MJO skill.  

Although updating the model configuration improves 500 hPa height and MJO prediction, surface 
variables such as 2-m temperature require statistical postprocessing in order to be significantly improved. In 
this study, reforecast information is used to calibrate 2-m temperature. The fourth configuration generally has 
the best performance, and therefore is used for the extended GEFS forecast configuration with 18 years 
hindcast to support the SubX project. It has been found that using the GEFS reforecast information for bias 
correction has greatly improved the 2-m temperature, which demonstrates the high value of using reforecast 
information for calibration. 
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1.  Introduction 

CPC currently issues probabilistic temperature and precipitation forecasts for 3-month overlapping 
seasons for the upcoming 13 seasons. Seasonal snowfall forecasts are not explicitly issued, though CPC’s 
website contains seasonal snowfall composites based on the phase of ENSO for overlapping 3-month seasons. 
Seasonal snowfall accumulation is an important variable over much of the CONUS; in the western U.S. 
snowfall is closely monitored due to its hydrological importance as well as impacts on winter tourism. Farther 
east there is interest in the broader impact of seasonal snowfall on economic productivity and related issues. A 
seasonal snowfall outlook by CPC could 
satisfy forecast needs for stakeholders 
ranging from water managers and 
agricultural interests to industry and the 
general public. A recently published data 
set (Kluver et al. 2016) provides gridded 
daily snowfall accumulation data from 
1900 to 2009. Using the data from 1950-
2009, we investigate whether seasonal 
snowfall accumulation might be 
predictable over the U.S.   

2.  Methods 

Kluver et al. (2016) details a new 
gridded daily snowfall data set. We use 
this data at 1o x 1o resolution for the 
extended cold season spanning from 
October through April. (The analysis 
presented here was repeated using the 
peak winter months of December-
February with little change in the results.) 
The October-April seasonal snowfall 
data is subject to a square-root correction 
to bring it closer to a normal distribution 
prior to analysis. For temperature and 
precipitation data we use the 
GHCN+CAMS data set and the gridded 
CPC precipitation reconstruction data set, 
respectively, each at the same 1o x 1o 
resolution. Sea surface temperature (SST) 
data is taken from the ERSSTv4 data set 
at 2o x 2o resolution. 

Prediction of the seasonal snowfall 
can be approached in two ways: using 
snowfall explicitly as the predictand in 

Fig. 1  Snowfall climatology (Oct-Apr) over North America from 
the winter of 1950-51 to 2008-09. Contour and shading interval 
is 12 inches, starting at 12 inches. 

Fig. 2  Ratio of the mean to standard deviation (Oct-Apr) in the 
square-root adjusted data. Contour and shading interval is 2, 
starting at 2. Areas where this ratio is less than 2 are masked 
out in subsequent figures. 
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an empirical (or dynamical) forecast tool 
or statistically specifying seasonal 
snowfall using the forecast seasonal 
temperature and precipitation fields. 
Ultimately, a combination of these 
approaches might be pursued. In the case 
of the former, trends and ENSO are two 
predictors that we can use to explicitly 
predict seasonal snowfall. For trends we 
use a linear least-squares fit, and for 
ENSO we use a Niño 3.4 index 
calculated from the ERSST data over the 
1950-2009 period. For seasonal 
specification, we use the temperature 
and precipitation data at seasonal 
resolution to construct point-by-point 
correlation maps related seasonal 
snowfall to temperature and precipitation, 
respectively.  

Finally, EOF analysis of the North 
American seasonal snowfall anomalies is 
performed. The goal here is to see if the 
leading patterns of seasonal snowfall 
variability are related to known climate 
drivers. This will be assessed by 
regression the leading principal 
components onto time-lagged SST 
anomaly fields.  

3.  Results 

Figure 1 shows the October-April 
climatology. The extended cold season 
mean snowfall values look very 
reasonable across North America from 
the gridded data set. Across parts of the 
West Coast and southern tier of the 
CONUS, the climatology is small. Using 
the square-root adjusted data, the ratio of 
the mean to the standard deviation is 
plotted (Fig. 2). A threshold of 2 is used 
here to identify areas where there is 
enough seasonal snowfall relative to the 
variance to yield a well-behaved 
distribution. In subsequent figures this 
value is used as mask to eliminate areas 
where seasonal snowfall forecasts may 
be ill-posed. This threshold, however, 
may be changed based on stakeholder 
feedback. 

ENSO relationships (shown in Fig. 3) 
are strongest in the western U.S., with El 

 Fig. 5  The grid-by-grid correlation between Oct-Apr seasonal 
snowfall and temperature (1950-2008). Contour/shading 
interval is 0.2 with the zero contour omitted. 

Fig. 3  Linear correlation coefficient between Niño 3.4 (calculated 
from the ERSSTv4 dataset) and seasonal snowfall (1950-2008). 
Contour/shading interval is 0.1 with the zero line omitted. 

Fig. 4  Linear trend of seasonal snowfall in inches per decade 
(1950-2008). Contour/shading interval is 1 in/dec with the zero 
line omitted. 
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Niño (La Niña) associated with below-
normal (above-normal) over the interior 
Northwest and above-normal (below-
normal) snowfall over the southern High 
Plains. A smaller but expected 
relationship is also found in the Great 
Lakes region, where Niño 3.4 is 
negatively correlated with seasonal 
snowfall. Somewhat unexpectedly, the 
relationship over the Mid-Atlantic and 
coastal Northeast is weak in this linear 
framework. Long-term, linear trends are 
notable across North America (Fig. 4). 
Negative trends are strongest over parts 
of the mountainous West, and to less 
extent parts of the Mid-Atlantic and 
Northeast. Positive trends are seen over 
much of norther tier of the continent, likely associated with increased moisture availability as a result of long-
term changes in the winter climate.  

The temperature and precipitation correlations are quite robust, especially over the CONUS. Positive 
(negative) correlations exist across much of the CONUS between precipitation (temperature) and snowfall 
(Figs. 5 and 6). Here is it important to note that in some regions, especially the High Plains, seasonal 
temperature and precipitation are quite highly correlated, so these cannot be thought of as independent 
predictors. Nonetheless, a wetter seasonal climate is one in which there are more opportunities for snowfall 
accumulation; this is especially intuitive in relatively cold climates. Colder-than-average seasonal 
temperatures can be thought to increase the ratio of frozen to liquid precipitation by lowering the average 

Fig. 6  Same as Fig. 5, except for precipitation. 

Fig. 7  Linear correlations between the leading principal components and seasonal snowfall anomalies. 
Contour/shading interval is 0.1 starting at +/- 0.2. 

Fig. 8  Time series of three leading principal components of seasonal snowfall variability. PCs 1, 2, and 3 most 
closely represent trend, ENSO, and decadal variability, respectively. 
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freezing level in the overlying atmospheric column. To be sure, a portion of this relationship between 
temperature and snowfall is based on snow cover feedbacks affecting the local radiative balance. This 
underscores the importance of incorporating upper-level height analysis at some point; this will allow for a 
clearer understanding of cause and effect between seasonal temperature, precipitation, and snowfall.  

The EOF analysis reveals coherent patterns with associated time series that are consistent with known 
patterns of interannual to decadal variability (Figs. 7 and 8). The first three principal components are 
associated with long-term trends, ENSO, and decadal variability, respectively. These relationships are 
confirmed by regressing these time series onto the time-lagged seasonal SST anomalies (not shown here). 
Interestingly, PC 3 peaks in the late 1970s, a break point often seen in climate analysis from which time the 
modern period of climate warming has continued.  

4.  Conclusions 

Seasonal forecasts of snowfall accumulation are likely feasible based on the state of ENSO and long-term 
trends, statistical specification based on forecast temperature and precipitation, or both. The leading principal 
components of seasonal snowfall anomalies are associated with known, coherent patterns of SST variability, 
suggesting predictability similar to temperature and precipitation, at least in some regions. Next steps include 
an independent hindcast experiment to approximate prediction skill using empirical methods informed by 
these results, followed by assessment of dynamical model seasonal snowfall forecasts. 
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ABSTRACT 

 The NCEP Global Forecast System (GFS) has a longstanding problem of severe cold bias in the 2-m air 
temperature forecasts over land in the late afternoon and nighttime during most seasons. This study examines 
the performance of the NCEP GFS surface layer parameterization scheme for strongly stable conditions over 
land in which turbulence is weak or even disappears because of high near-surface atmospheric stability. Cases 
of both deep snowpack and snow-free conditions are investigated with a series of five GFS experiments. The 
control run (CTL) uses the current GFS operational version. EXP1 tests the impact of using both the updated 
momentum roughness length z0M and constant Czil = 0.8 treatments. EXP2 applies only the updated z0M 
treatment, EXP3 applies only the change to a constant Czil = 0.8 and EXP4 applies only the Monin–Obukhov  
stability parameter constraint. Finally, EXP5 is performed with all three changes. The results show that 
decoupling and excessive near-surface cooling may appear in the late afternoon and nighttime, manifesting as 
a severe cold bias of the 2-m surface air temperature that persists for several hours or more (Fig.1). 
Concurrently, due to negligible downward heat transport from the atmosphere to the land, a warm temperature 
bias develops at the first model level. We test changes to the stable surface layer scheme that include 
introduction of a stability 
parameter constraint that prevents 
the land-atmosphere system from 
fully decoupling and modification 
to the roughness-length formulation. 
GFS sensitivity runs with these two 
changes demonstrate the ability of 
the proposed surface-layer changes 
to reduce the excessive near-
surface cooling in forecasts of 2-m 
surface air temperature. The 
proposed changes prevent both the 
collapse of turbulence in the stable 
surface layer over land and the 
possibility of numerical instability 
resulting from thermal decoupling 
between the atmosphere and the 
surface. We also execute and 
evaluate daily GFS 7-day test 
forecasts with the proposed 
changes spanning a one-month 
period in winter. Our assessment 
reveals that the systematic 
deficiencies and substantial errors 
in GFS near-surface 2-m air 

Fig. 1  Hourly time series of 2-m air temperature (K) at Utica, NY for 
observations (blue), CTL (black), EXP1 (green), EXP2 (orange), 
EXP3 (purple), EXP4 (light blue) and EXP5 (red), during the 72-
hour period of 00 UTC on 16 February to 00 UTC on 19 February, 
2015. 
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temperature forecasts are considerably reduced, along with a notable reduction of temperature errors 
throughout the lower atmosphere and improvement of forecast skill scores for light and medium precipitation 
amounts.  

The second version of the NCEP Climate Forecast System (CFSv2) made operational at NCEP in March 
2011 employs the same land surface model and surface layer scheme, and similarly,  has severe cold biases of 
2-m air temperature, typically occurring in the late afternoon and nighttime over land or sea ice.  The 
proposed approach of proper treatment of surface layer parameterization under very stable conditions in this 
study is under testing in the CFSv2. Reduction of model forecast errors thus improvement of the subseasonal 
to seasonal climate service are anticipated. 

This work has been published in Monthly Weather Review in 2017. 
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ABSTRACT 

 Surface water supplies in most areas of western North America are derived principally from snowmelt 
runoff from high elevation watersheds. We document the changing relationship over the past half-century 
between snowpack, total precipitation, and snowmelt runoff in one such watershed, the Upper Rio Grande 
basin (Fig. 1).  Snowpack is significantly declining in this watershed, while streamflow out of the basin is also 
declining but proportionately much less. We diagnose these changes in terms of runoff ratios of 
streamflow/snowpack or streamflow/precipitation, as well as the runoff sensitivity d(streamflow)/ 
d(snowpack).  We find that changes to runoff sensitivity are broadly in agreement with expectations from 
global climate change models, but the runoff ratio based on precipitation has not changed as much due to the 
increasing importance of spring season precipitation during the snow ablation season. These hydrologic 
changes have immediate practical consequences for seasonal streamflow forecasting, because the signal/noise 
ratio for such forecasts is declining rapidly as the direct correlation between snowpack (the principal source of 
seasonal prediction skill) and subsequent streamflow becomes smaller as snowpack declines.  

Fig. 1  Runoff ratios of streamflow/snowpack (left column) and streamflow/winter precipitation (right 
column) at the Del Norte gage for 1958-1986 (top row) and 1987-2015 (bottom row).  In later epoch, 
much worse linear fit (streamflow depends less directly on snow water equivalent (SWE) or 
precipitation (P)) and shallower regression slope (reduced sensitivity of streamflow to SWE or P) are 
found due to warmer temperatures, less snow, and more variable post-snow precipitation. 

This work has been published in Journal of the American Water Resources Association in 2018.  
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1.  Introduction 

 The accuracy of the sea surface temperature (SST) in the numerical models is crucial in the simulation of 
the Madden-Julian Oscillation (MJO) (Wang et al. 2015). One of major factors that impact the SST 
simulation in the numerical models is the vertical oceanic resolution near the surface. Studies of observations 
with high vertical resolution have demonstrated that the equatorial Indian Ocean is highly stratified by a 
strong vertical temperature gradient within the top 10 meters during a MJO field campaign in 2011-2012 
winter (Ge et al. 2017). However, most of contemporary global coupled atmospheric-ocean models (CGCMs) 
have a vertical resolution of 10-m near the surface, and cannot well capture the detailed structure of vertical 
temperature profiles (Bernie et al. 2005), which is a possible reason for the degradation in the simulation and 
prediction of MJO. 

In this study, a pair of numerical experiments is carried out using an oceanic general circulation model to 
investigate the influence of high vertical resolution near the surface on SST simulation. Statistical differences 
in SST mean state and variability due to vertical resolution in long simulations will be analyzed. The spatial 
and seasonal variations of these differences will also be diagnosed. The model performance during a 
particular MJO event is also validated with observations.  
2.  Model and experiments 

The global Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model version 5 (MOM5, 
Griffies 2012) is used in this study. The horizontal resolution is fixed at 0.5º in the zonal direction but uneven 
in the meridional direction: 0.25º between 10ºS and 10ºN, then gradually increasing from 0.25º to 0.5º 
between 10º and 30º in both hemisphere and staying at 0.5º poleward of 30ºS and 30ºN. The vertical 
resolution has two 
configurations in the upper 
ocean: one having 10-m vertical 
resolution for the upper 220 
meters is called MOM5 10M 
version and the other having 1-m 
vertical resolution in the top 10 
m depth is referred as MOM5 
1M version. The two 
configurations represent the 
commonly used setting and a 
high vertical resolution setting in 
ocean models, respectively. 
Other details about model 
physics are described in Griffies 
(2012). The temperature of the 
top layer at 5m in the MOM5 
10M and 0.5m in the MOM5 1M 

Fig. 1  Differences in climatological simulated SSTs between MOM5 1M 
and 10M runs in four seasons. (a) MAM, (b) JJA, (c) SON, (d) DJF. 
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is considered as simulated SST as 
commonly defined in OGCMs. 

A pair of MOM5 10M and 1M 
experiments is integrated from January 
1st, 2006 to December 31st, 2016 with 
the initial fields taking from CFSR 
oceanic states. The atmospheric forcing 
fields that drive the MOM5 include 
downward longwave and shortwave 
radiation, 10m zonal and meridional 
winds, surface momentum fluxes and 
pressure, and 2m temperature and 
specific humidity. Ge et al. (2017) 
compared the hourly atmospheric 
forcing fields from the Climate 
Forecast System Reanalysis (CFSR, 
Saha 2010), the Modern-Era 
Retrospective analysis for Research 
and Applications, version 2 (MERRA2, 
Gelaro et al. 2017), and the average 
fields of the two reanalyses (i.e. the 
hybrid) with observations and their 
impacts on the simulated SST during a 
field campaign with strong MJO events 
during 2011 winter. They found that 
the averaged shortwave radiation of the 
CFSR and MERRA2 reanalyses had 
better agreement with observations 
than that from individual reanalysis 
and simulated SSTs driven by the 
hybrid dataset had less systematic bias 
compared to that forced by individual 
reanalysis. Therefore, the hourly 
average atmospheric forcing fields of 
the CFSR and MERRA2 reanalyses are 
used to drive MOM5 10M and 1M 
models in this study. 

3.  Results 

3.1 Difference in SST variability 
between MOM5 1M and 10M runs 

The simulated SST variability in 
climatological, intraseasonal, and 
diurnal time scales is analyzed and 
compared between MOM5 10M and 
1M runs over the tropical ocean. The 
results below are based on 10-year 
model outputs from Jan. 01 2007 – Dec. 
31, 2016 after one-year spin up.  

Fig. 4  Hourly SST evolution at (1.5ºN, 90ºE) in a MJO event from 
Nov. 14, 2007 to Feb. 21, 2008 in RAMA observations (black), 
MOM5 1M (red) and 10M runs (blue). 

Fig. 2 Differences in the standard deviation of simulated SST 
intraseasonal variations between MOM5 1M and 10M runs in 
four seasons. (a) MAM, (b) JJA, (c) SON, (d) DJF. 

Fig. 3  Differences in the diurnal ranges of simulated SST between 
MOM5 1M and 10M runs in four seasons. (a) MAM, (b) JJA, (c) 
SON, (d) DJF. 
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 MOM5 1M run produces 
similar SST mean states as 
MOM 10 run does in the 
western tropical Pacific in the all 
four seasons, but warmer SST 
mean states in the tropical 
Indian, Atlantic and the eastern 
Pacific Oceans in  the all four 
seasons as shown in Fig.1. 

Figure 2 illustrates the 
difference in standard deviation 
of SST intraseasonal variability 
between MOM5 1M and 10M 
runs in four seasons. Overall, 
MOM5 1M run has stronger 
intraseasonal variation than the 
10M run does in nearly the entire tropical ocean during all four seasons expect for some area in Indian Ocean 
and southern Pacific ocean during summer and northern Western Pacific Ocean during winter. 

The differences in diurnal range of SST during the four seasons between MOM5 1M and 10M runs are 
represented in Fig. 3. MOM5 1M run has larger diurnal cycle than the 10M run does in entire tropical ocean 
in all four seasons. The largest difference occurs at equator and subtropics, especially in spring and winter. 

3.2 Comparison between MOM5 runs and observations 

Comparisons between model simulation and the 
Research Moored Array for African-Asian-Australian 
Monsoon Analysis and Prediction (RAMA, McPhaden 
et al. 2009) observations are done at a particular 
location in the equatorial Indian Ocean during a MJO 
event from Nov. 2007 to Feb. 2008. SST temporal 
evolutions of RAMA observation and MOM5 runs at 
that location during the MJO event are plotted in Fig. 4. 
MOM5 1M run exhibits stronger diurnal cycle than the 
10M run does, and is closer to the observation. 

The vertical temperature profiles of the observation 
and MOM5 results at that location (Fig. 5) also 
confirmed the phenomena in Fig. 4. The MOM5 1M 
run better represents sharp vertical temperature 
gradient near the surface and strong diurnal cycle in the 
observations than the 10M run does during the 2007 
MJO event.  

If separating the warming and cooling phases of the 
MJO event, the MOM5 1M run shows larger 
differences at the surface layer between the warming 
and cooling phases of the 2007 MJO event than the 
10M run does as shown in Fig.6. 

All the above results indicate the simulation of 
MOM5 1M run, which has high vertical resolution in 
the upper ocean, has stronger intraseasonal and diurnal 
cycle than that of the MOM5 10M run does in the 
tropical Indian Ocean, and is also closer to the observations. 

Fig. 5 Average diurnal cycle of vertical temperature profile in the upper 
ocean at (1.5ºN, 90ºE) during the MJO event in 2007 winter from 
observation (left),  MOM5 1M run (middle), and MOM5 10M run 
(right). 

Fig. 6 Average diurnal cycle of vertical temperature 
profile in the upper ocean at (1.5ºN, 90ºE) 
during warming and cooling phases of the MJO 
event in 2007 winter from MOM5 1M run 
(upper left and right) and 10M run (lower left 
and right). 
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4.  Discussion and conclusion 

This study investigates the impact of high vertical resolution in the upper ocean in an oceanic model on 
the SST simulation. The comparison between the model simulations from an OGCM with high vertical 
resolution (1m) and those from the same OGCM with commonly used vertical resolution (10m) in the upper 
ocean is conducted. The model simulations are also validated with observations. The results suggest that the 
intraseasonal and diurnal variability of SST may be underestimated in the most CGCM with vertical 
resolution of 10m near the surface and this underestimation of SST simulation would affect the similation of 
MJO. Therefore, high vertical resolution near the surface, such as the configuration of MOM5 1M run, is 
needed in SST simulation in order to potentially improve the simulation of MJO. 
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1.  Introduction 

 The Climate Prediction Center (CPC) has been issuing probabilistic, two-class forecasts of 2-meter 
temperature (T2m) and precipitation (P) for the weeks 3-4 period (days 15-28) since September 2015, 
effectively closing the gap between forecasts of the extended range (days 8-14) and monthly periods. The 
week 3-4 period has been typically thought to be one of low forecast skill, due to insufficient time for 
boundary conditions (e.g. soil moisture, sea surface temperatures) to take hold on a forecast, while dynamical 
guidance further suffers from substantial growth of initialization errors. 

While dynamical model guidance will always play a substantial role in forecasting, statistical methods 
can potentially exploit signals from the initial climatic state that can uniquely inform subseasonal forecasters.  
For example, Riddle et al. (2013) and Baxter et al. (2014) revealed impacts of the Madden-Julian Oscillation 
(MJO) through subseasonal timescales on the circulation and T2m of North America.  Johnson et al. (2014) 
used a compositing method (detailed in next section) to support that non-linear combined influences of MJO, 
long-term trend, and the El Niño-Southern Oscillation (ENSO) could often produce skillful week 3-4 
wintertime U.S. T2m forecasts.  This work seeks to quantify how the methods of statistical guidance leveraging 
lagged relationships with the observed initial climatic state have performed in real-time relative to dynamical 
model guidance during week 3-4. This statistical guidance can also serve as a benchmark for dynamical 
model guidance, in order to better inform subsequent model development. 

2.  Data and methodology 

Training and cross-validation data for T2m (Janowiak et al. 1999) and P (Xie et al. 2010) are taken over 
running 3-month periods between 1982-2013 to evaluate typical lagged responses for the week 3-4 period.  
ENSO information is represented by the CPC Oceanic Niño Index (3-month running mean Niño 3.4 region 
SST anomaly) while the daily CPC Real-time Multivariate MJO (RMM; Wheeler and Hendon 2004) index 
characterizes the MJO state. 

The first methodology to investigate Week 3-4 predictability of T2m and P is the so-called “phase model” 
(PM) of Johnson et al. (2014), which closely follows traditional non-linear compositing methods.  Mean and 
variance shifts are quantified based upon the historical week 3-4 distributions of T2m and P for subsets of 
ENSO (El Niño, Neutral, or La Niña following typical conventions), and the MJO (one for each conventional 
phase and another when the MJO exhibits an amplitude < 1), with an additional mean shift associated with 
decadal trends taken in a linear sense.  A Gaussian probability density function (PDF) is assumed for the 
forecast distribution, with a fourth root transform utilized to increase normality for P, where the summed 
means (ENSO, MJO, and trend) and variances (ENSO and MJO) are used to develop the forecast PDF.  The 
forecast PDF can then be compared to the climatological median values, yielding a 2-class empirical forecast. 
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While the former method yields differences in the 
forecast state, it remains imperfect as it results in possible 
undesirable forecast discontinuities when transitioning 
between climatic states (e.g. MJO phases 4, 5, or a weak 
MJO) while also failing to account for potential influences 
from the amplitude of the background climate state on T2m 
and P.  These shortcomings can be addressed through a 
multiple linear regression (MLR) framework, with 
predictands of T2m and P and standardized predictors of:  
RMM1 and RMM2 for MJO, the OISSTv2 (Reynolds et al. 
2007) 2-week mean Niño 3.4 anomaly from OISSTv2 for 
ENSO, and a daily index for linear long-term trend.  The 
regression relationship is used to determine the mean shifts in 
the lagged (forecast) T2m and P distributions based on the 
initial climatic state, while the climatological variance, 
adjusted by √1 − 𝑟𝑟2  from cross-validation to account for 
overconfidence, to yield a Gaussian forecast PDF.  As with 
the PM, the resulting distribution is evaluated with respect to 
climatology to yield a probabilistic forecast. 

Skill evaluations utilize the Heidke Skill Score (HSS), 
which is the difference of the number of correct forecasts and 
number of forecasts to be expected to be randomly correct (50% in a two-class forecast), divided by the 
difference of the total number of forecasts and number of forecasts expected to be randomly correct.  The 
HSS can range over ±100, with a score of 0 indicating no improvement relative to random chance while 
positive values indicate added value.  Cross-validation is performed using a leave-one-year out methodology 
of leaving out one year of data and training the respective forecast model, and thereafter averaging across the 
full sample. The PM has been shown to be skillful previously, with skill coming from each of its predictors 
(e.g. Johnson et al. 2014), while the cross-validated HSS values for the MLR using various combinations of 
predictors during boreal winter and summer are shown in Fig. 1 and reveal a similar result. 

Fig. 1  Cross-validated HSS of the MLR for 
T2m over the U.S. using individual and 
varied predictor combinations compared 
to the full scheme for DJF (blue) and JJA 
(red). 

Fig. 2  Real-time HSS averaged across the U.S. for dynamical and statistical guidance in use at CPC and the 
official outlooks. Note for official CPC outlooks all grid cells are used to quantify HSS, as the other 
guidance does not have the benefits of being able to forecast equal chances when confidence is poor. 
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3.  Real-time performance 

Skill metrics are presented in Fig. 2 for the PM and MLR statistical guidance along with bias-corrected 
dynamical model ensemble guidance from several sources (CFSv2, ECMWF, and JMA) and official CPC 
outlooks for the “real-time” period since CPC began issuing Week 3-4 outlooks. Each of the aforementioned 
guidance sources has been available to forecasters in real-time throughout this period. Results are further 
broken down into the first year (September 2015-August 2016) and second year (September 2016-August 
2017) of service.  Figure 2 reveals that all T2m forecasts are skillful, with the exception of the PM. The MLR is 
shown to be highly competitive with dynamical models for T2m forecasts, while the PM has performed 
relatively poorly. The poor performance of the PM in real-time for T2m outlooks is largely attributed to it 
underrepresenting decadal trends in its forecasts relative to the MLR and other guidance, with this guidance 
forecasting below-normal probabilities more often than the other tools. This is also supported in subsequent 
results for the PM with P where it performs better given the apparent lesser importance of such trends in P. 
With the exception of the PM, spatial coverage of positive HSS values is widespread across the lower-48 
states and Alaska for each of the guidance methods (not shown).  

While P forecasts generally exhibit marginal skill overall, both statistical models outperform dynamical 
models in P forecasts during the real-time period. The MLR notably outperforms all other guidance for P, but 
the PM also outperforms each of the dynamical models. In a spatial sense, skillful forecasts for P are clustered 
across the West and northern tier among dynamical model guidance, while statistical guidance exhibits the 
broadest coverage of skillful forecasts with its best performance across the West and South (not shown). 

Fig. 3  Real-time correlation of forecast probabilities from dynamical model guidance with the MLR. 
Domain average values are in the title, along with the explained variance in parentheses. 



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

 

170 

4.  Synergy between empirical and dynamical guidance 

Given the apparent similarities among performance between dynamical model guidance and the MLR, it 
is reasonable to inquire as to what degree of overlap exists between these forecaster tools. This serves to 
portray regions where model guidance may be well-representing the empirical relationships from the modes 
utilized as predictors in the MLR, or highlighting regions where improvement in the representation of these 
modes would be best served for subsequent model development. To quantify the degree of overlap between 
the tools, correlations of forecast probabilities between the MLR and each of the three dynamical models is 
quantified on a grid-level scale in Fig. 3. Forecasts of T2m exhibit widespread correlations ≥ 0.5, with some 
areas > 0.7. This suggests that for this limited sample much of the forecast variance among dynamical model 
guidance is attributed to their proper representation of ENSO, MJO, and long-term trend. Among individual 
models, the JMA possesses the largest T2m correlations with the MLR, likely due to it having a substantial 
trend component that is manifest in its repeated forecasts of above-normal temperatures (not shown). High 
correlations for T2m in Alaska among all models are similarly attributed the importance of trends and their 
respective representation. High co-variability of dynamical model guidance for T2m with the MLR across the 
northern tier of the lower-48 states is likely tied to the ENSO footprint here, while anticorrelated values in the 
Midwest and Ohio could be tied to poor mid-latitude responses to the MJO among dynamical models. 

Compared to T2m, P forecasts are even more highly correlated among dynamical model guidance and the 
MLR, and over a more extensive portion of the country. P forecasts from the MLR generally explain more 
variance in dynamical model guidance across the West, Northern Plains through Great Lakes, and across the 
southern tier of the lower-48 states – each a typical “hot spot” for ENSO teleconnectivity. MJO impacts on 
atmospheric river activity are also likely to contribute to increased correlations in P forecasts between the 
MLR and dynamical guidance across the West coast and southern Alaska. The greatest P variance explained 
by the MLR is typically across the Southwest, where substantial drying trends have been noted in the past 30 
years (not shown).  
5.  Exploratory predictors for empirical guidance 

While the MLR already exhibits substantial skill in a real-time setting, other potential modes of large-
scale variability could be applied as possible predictors to further improve model skill while aiding in 
diagnosis of model performance. One such mode is explored here, defined as the 30-day running mean of 

 Fig. 4  Cross-validated U.S. average HSS across all ENSO phases stratified by forecast month and MJO 
phase for the 3-predictor MLR (left column), change in HSS from inclusion of the CPC AO index 
(center column), and percentage of U.S. grid points that exceed 95% significance in the 4-predictor MLR 
versus the 3-predictor model based on the F-statistic. 
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CPC’s arctic oscillation (AO) index.  Figure 4 shows 
the impact of the AO’s inclusion on the original 3-
preidctor MLR for both T2m and P. Inclusion of the AO 
as a predictor during cross-validation shows substantial 
improvement in HSS values for T2m, particularly during 
boreal summer through early winter. These AO impacts 
on T2m are generally widespread and appear to be robust 
when compared with expected values from the F-
statistic. Limited impacts are exhibited of the AO on P 
in terms of averaged HSS or improved spatial coverage 
of positive HSS values. 

An example of where the AO predictor is adding 
value to the 3-predictor MLR is shown in Fig. 5, with 
the percentage of variance explained by MJO phases 6 
and 7 during DJF and NDJ respective shown for the 4-
predictor model. Much of the added impacts appear to 
come across the eastern U.S. and Alaska, as to be 
expected from the centers of action in the loading 
pattern for this mode being situated over the Aleutians 
and Azores. Given that the 3-predictor MLR is already 
competitive or superior to dynamical model guidance in 
the limited real-time sample this suggests including 
empirical AO impacts in the statistical model may 
further bolster its performance. Figure 5 also suggests 
that with the MLR forecasts being generally 
anticorrelated across the eastern U.S. with the 
dynamical model guidance (Fig. 3), this discrepancy 
could be tied to the statistical framework lacking 
information regarding the state of the AO that could be 
easily rectified in this manner. 
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1.  Introduction 

The Belg rainfall contributes significantly to 
economic activities in Ethiopia, but is also 
characterized by high temporal and spatial 
variability.  This study identified synoptic and 
subseasonal features that lead to rainfall deficits and 
surpluses during Ethiopian Belg season (February – 
May; Bekele-Biratu et al. 2018). In particular, the 
theory of tropical plume formation (Knippertz 2007) 
seems to hold true for Belg as tropical-extratropical 
interactions play a major role in modulating rainfall 
during this time of the year. This work also 
complements earlier studies on seasonal variability 
of Ethiopian rainfall by Habtemichael and Pedgley 
(1974), Camberlin and Philippon (2002), and Diro 
et al. (2011). 

2.  Data and methods 

Daily rainfall data from 117 stations of the 
National Meteorological Service of Ethiopia is used 
to define dry (lower tercile) and wet Belg (upper 
tercile) in 1980-2010 period. The NCEP/CDAS data 
is used to construct composites of circulation 
anomalies. 

3.  Results and summary 

A tripole structure in a trough/ridge pattern in 
the region between the Northeast Atlantic Ocean 
and Red Sea regions is a dominant feature that is 
associated with Belg rainfall variability in Ethiopia. 
We have identified two modes of this tripole 
structure. In general, rainfall deficits (surpluses) in 
the Belg season are associated with the anticyclone-
cyclone-anticyclone (cyclone-anticyclone-cyclone) 
modes. The ingredients summarized below 
contribute to rainfall deficits over Ethiopia during 
the Belg season due to reduced tropical-extratropical 
interactions: (1) the presence of an anomalous mid- 
to upper-level warm anticyclone over the Red Sea; 
(2) the absence of a poleward moisture flux and moisture convergence across the Horn of Africa; (3) the 
limitation of the southward extension of the mid-to-upper-level extratropical cyclonic trough; (4) upper-level 

Fig. 1  (a) - (d) Composites of daily average 500-hPa 
circulation anomalies for dry events: shaded 
temperature anomalies (k); contours are 
geopotential height anomalies (gpm) and vectors 
are wind anomalies (m s-1), significant at the 95% 
confidence level (student’s t-test). (e) - (h), same as 
(a) - (d) except for wet events. 
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negative PV anomaly north of Ethiopia; and (5) the 
prevalence of upper-level convergence across the 
Horn of Africa. Moreover, the presence of an 
anticyclonic anomaly across the Red Sea region and 
the neighboring areas of the Arabian Peninsula 
keeps the ITCZ south of its normal position during 
dry Belg events (Fig. 1a-1d). 

In contrast, factors that contribute to the 
enhancement of tropical-extratropical interactions 
and moisture surpluses during the Belg season 
include: (1) the presence of anomalous mid-to 
upper-level cold cyclonic trough over the Red Sea; 
(2) the presence of a northward moisture flux that 
extends deep into the Horn of Africa and the 
prevalence of horizontal moisture convergence over 
Ethiopia; (3) a southward penetration of mid- to 
upper-level extratropical cyclonic trough in the Red 
Sea region; (4) the presence of an area of anomalous 
upper-level positive PV anomaly cut-off north of 
Ethiopia; and (5) an elongated area of anomalous 
upper-level divergence across the Horn of Africa 
(Fig. 1e - 1h)). 

Correlation and composite analyses suggest a 
possible link between phases of the NAO and 
rainfall surpluses or deficits during the Belg season. 
Belg rainfall tends to be below (above) average over 
many parts of Eastern and southern Ethiopia during 
the positive (negative) phase of NAO events (Fig. 2). 

The tripole pattern also plays a role in 
connecting NAO with circulation anomalies in the 
Red Sea region such that NAO induces an amplified 
(suppressed) Azores High in Northeast Atlantic 
(Diro et al. 2011) resulting in enhanced (weakened) 
Arabian High via the tripole modes.  However, the 
regional circulation patterns and NAO belong to 
different scales of motion, and may not always 
interact with each other constructively. 
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anomaly (mm day-1) for NAO positive events, 
significant at the 95% confidence level (student’s t-
test). (e) - (h), same as (a) - (d) except for NAO 
negative events. 
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ABSTRACT 

 This study examines the feasibility of developing a seasonal forecast tool based on the North American 
Multi-Model Ensemble seasonal system (NMME) for different probability thresholds.  The probabilistic 
seasonal forecast skill from the NMME (Kirtman et al. 2014) for seasonal anomaly precipitation (PREC) and 
2 meter temperature (TEMP), including spatial maps and time series of skill over the Contiguous US 
(CONUS), and its seasonality, are first assessed. Next, the impact of the threshold probability used to define 
the regions of forecasts with Equal Chance (EC) on (a) forecast skills and (b) corresponding spatial coverage 
of region with non Equal Chance (nonEC) forecasts are examined.  The skill assessment is based on three 
category probabilities (above, near, and below normal) for the NMME 0-month-lead seasonal forecast in 
JFM1995-DJF2016. The verification precipitation data is from the CMAP monthly precipitation analysis (Xie 
and Arkin 1997) and the land surface temperature from the GHCN-CAMS monthly analysis (Fan and van den 
Dool 2008). The climatology time period is 1982-2010. The skill measures include the Heide Skill Score 
(HSS) and the Ranked Probability Skill Score (RPSS). 

The results show that relative high forecast skills are located over the southwest US. The areas with high 
(low) skills of HSS are consistent with high (low) skills of RPSS (Fig. 1). In general, most high skills are 
related to ENSO episodes. The PREC shows higher skills in spring and fall seasons, while the TEMP shows 
higher skills in summer season. For both PREC and TEMP, the nonEC forecast HSS increases as the 

Fig. 1  Spatial maps of HSS (left panels) and RPSS (right panels) in all seasons in 1995-2016 for PREC 
(upper panels) and TEMP (lower panels). Skills are based on all forecasts. 
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Fig. 2  HSS averaged over the CONUS for all forecasts and nonEC forecasts with different probability 
threshold used to define the nonEC forecasts (upper panels), and the corresponding coverage of the 
nonEC forecasts (lower panels). The left and right columns are for PREC and TEMP, respectively. 

probability threshold cutoff value increases, while the areal coverage goes down (Fig. 2). Increasing 
probability threshold cutoff is equivalent to higher confidence in forecasts, higher signal-to-noise ratio, larger 
shift in the PDF from climatology, and therefore, should equate to higher skill. 

Acknowledgments. Thanks to Dr. Emily Becker for providing the NMME seasonal probabilistic forecast 
data. 
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1.  Introduction 

 NOAA’s operational seasonal outlooks rely upon forecasts from the North American Multi-Model 
Ensemble (NMME; Kirtman et al. 2014).  While the NMME remains a state-of-the-art tool for seasonal 
forecasting, recent research suggests that the NMME does not consistently reproduce the observed 
relationship between the El Nino/Southern Oscillation (ENSO) and temperature over North America (Chen et 
al. 2017).  As an example, Fig. 1 shows the 1-month lead forecast December–January (DJF) ENSO-
temperature teleconnection pattern from the NMME (1b–i) compared to the observed pattern (1a).  Several of 
the NMME member models fail to represent the observed teleconnection pattern over the NMME hindcast 
period (1982–2010).  For example, the CMC2, GFDL, GFDL-FLOR, and NASA models suggest a negative 
correlation (-0.6 < r < -0.2) between ENSO and temperature over portions of the Midwestern United States 
where the observed correlation is positive (0.2 < r < 0.6).  

Given the short duration of the 
NMME hindcast period and the observed 
variability in both ENSO events and 
remote responses to ENSO events during 
this period, it is difficult to evaluate the 
skill of model teleconnection patterns.  
Regardless, recent results support the 
notion that such discrepancies contribute 
to reduced forecast skill (Chen et al. 2017).  
Prior work has applied Bayesian post-
processing to general circulation model 
(GCM) output to both calibrate GCM 
forecasts and correct for model 
misrepresentation of relevant 
teleconnections (Schepen et al. 2014, 
2016).  Here we test this Bayesian post-
processing method – known as Calibration, 
Bridging, and Merging (CBaM) – using 
the NMME hindcast dataset with the 
ultimate goal of improving forecast skill 
over regions where the NMME 
misrepresents the ENSO teleconnection. 

2. Data and methods 

The CBaM method for post-processing dynamical model forecasts employs Bayesian joint probability 
(BJP)  modeling  (Wang et al. 2009).  Using  NMME  reforecasts  and  observed  SST, 2-m  temperature,  and 

Fig. 1  Correlation between DJF Nino3.4 SST anomalies and 2-
m temperature over North America for the NMME hindcast 
period 1982-2010,  a) observation, b)-h) 1-month lead 
forecast by ensemble members, and i) by NMME. 
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precipitation data from the Optimum Interpolation SST (OISST), Global Historical Climatology Network+ 
Climate Anomaly Monitoring System (GHCN+CAMS), and Climate Prediction Center Merged Analysis of 
Precipitation (CMAP) datasets, respectively, we develop two types of Bayesian joint probability models: one 
to model the relationship between NMME-reforecast temperature (precipitation) and observed temperature 
(precipitation) at each grid point, and another to model the relationship between NMME-reforecast Niño3.4 
anomalies and observed temperature or precipitation at each grid point.  We refer to the former as a 
calibration model and the latter as a bridging model.  Bivariate normal distributions are at the core of a 
Bayesian joint probability model.  Prior to Bayesian joint probability model development, data 
transformations are applied to the temperature and precipitation data to ensure that they conform to a bivariate 
normal distribution.  Markov Chain Monte Carlo sampling is employed to obtain a numerical sample of the 
posterior distribution of the bivariate normal parameters (mean and covariance).  For each calibration 
(bridging) model, we sample 1000 bivariate normal parameters from which we derive an ensemble of 1000 
calibrated (bridged) forecasts. 

Fig. 2  Brier skill scores from fully merged CBaM post-proccessed NMME probabilistic forecasts of below 
normal temperature (2a–d) and precipitation (2e–h) over the NMME hindcast period. 

Fig. 3  Difference maps depicting the difference between bridged and calibrated Brier skill scores for 
probabilistic forecasts of below normal temperature (3a–d) and precipitation (3e–h) over the NMME 
hindcast period.  Warm shading represents areas for which bridging yielded higher Brier skill scores than 
calibration. 
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We develop separate bridging and calibration models for each NMME member model of grid point, initial 
time, and lead; and apply leave-one-year-out cross validation to test the method over the hindcast period.  The 
final step in the CBaM method is to merge the bridged and calibrated forecasts using Bayesian model 
averaging.  The resulting merged forecast represents the weighted mean of the calibrated and bridged 
forecasts. 

Finally, we assess probabilistic forecast skill using Brier skill scores and reliability diagrams.  For brevity, 
we only present results for probabilistic forecasts of below normal temperature and precipitation. 

3.  Results 

As expected, we find that the fully merged temperature forecasts yield higher Brier skill scores than the 
fully merged precipitation forecasts (Fig. 2).  We additionally find that the calibrated forecasts on average 
perform better than the bridged forecasts, particularly for temperature (Fig. 3).  However, bridging improves 
DJF temperature forecasts for some regions and seasons.  In particular, bridging marginally increases skill 
over parts of the Midwestern and Northern United States – approximately the same regions where the NMME 
misrepresents the ENSO-temperature teleconnection pattern. 

We apply a bootstrap significance test to determine whether bridging significantly enhances 1-month lead 
forecast skill of DJF 2-m temperature beyond what skill is achieved through calibration (Fig. 4).   Bridging 
statistically significantly (α= 5%) improves 1-month lead forecast skill over calibration for approximately 10% 
of North American CMC2 and NASA grids.  The degree to which bridging enhances skill varies by NMME 
member model, season, and lead (not shown).  Improvement from bridging is largely confined to winter 
months, although we find that bridging significantly enhances forecast skill for a small subset (~5%) of grids 
for CMC1 forecasts of JJA temperature.  Overall, these results suggest that bridging is likely a more useful 
tool for post-processing individual model ensembles rather than multi-model ensembles.  Bridging improves 
forecast skill relative to calibration for fewer than 3% of NMME grids over the hindcast period.  Finally, we 
find that the fully merged CBaM forecasts are more statistically reliable than the raw NMME forecasts (Fig. 
5), particularly for higher predicted probabilities.  Both calibration and bridging yield statistically reliable 
forecasts, although calibration tends to achieve better reliability in the higher predicted probability bins (not 
shown). 

Fig. 4  Shading indicates Brier skill scores associated with 1-month lead merged CBaM forecasts of below 
normal DJF 2-m temperature for each of the NMME member models and the multi-model mean.  
Hatching denotes grid cells for which bridging statistically significantly improves forecast skill, where 
statistical significance is determined using a bootstrap method. 
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While these results suggest that 
the CBaM tool may improve real-
time NMME forecast skill, some 
caveats should be noted.  As noted 
previously, we develop bridging 
models using a relatively short, 29-
year data set.  Given this, a small 
number of extreme ENSO events 
most strongly influences the 
statistical relationships.  
Additionally, we develop separate 
bridging and calibration models at 
each grid point and therefore do not 
take into account spatial 
correlations among grid points.  
Future iterations of the tool should 
account for such spatial 
autocorrelation, possibly using 
hierarchical Bayesian modeling.  
Finally, it remains to be determined 
how well BJP calibration and 
bridging models developed from 
hindcast data will perform using a 
truly statistically independent real-
time forecast.  We are currently 
testing the method to post-process 
real-time NMME seasonal forecasts 
of temperature and precipitation to 
determine its utility as an 
operational forecast tool.  The 
experimental probabilistic real-time 
CBaM forecasts can be found at http://www.cpc.ncep.noaa.gov/products/people/dcollins/cbam/. 
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Fig. 5  Reliability diagrams comparing the statistical reliability of 1-
month lead raw (black) versus CBaM (orange) forecasts of 2-m 
temperature. The CBaM results refer to the fully merged multi-
model (NMME) forecast.  The raw forecast refers to the multi-
model mean forecast, without any bias-correction applied.  The 
horizontal axis denotes the predicted probability while the vertical 
axis denotes the observed relative frequency.  The light gray 
dashed line corresponds to a perfectly reliable forecast.  The size of 
the plotted circles is proportional to the number of forecast 
probabilities that fall into a given predicted probability bin. 
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ABSTRACT 

Lately, researchers in University of Washington, USA and University of Edinburgh found that the pools 
underneath the glacier, Thwaites, are draining out at an unprecedented rate and emptying themselves (Fig. 1). 
This unstoppably melting of the glacier into the ocean is mainly because of warmer seawater lapping at its 
underside. Thwaites is 4000m thick and is considered key to making projections of global sea level rise. Prof. 
Peter Clark, Oregon State University (OSU), attributed that the Glacier retreat was due to rising levels of 
carbon dioxide and other greenhouse gases (GHG), as opposed to other types of forces. If this continues, then 
the most of glaciers would disappear in the next few centuries and the glaciers loss in future will contributing 
to rising sea levels.  

Hence,  the present investigation aims to find out the correlation between the rise of GHG level and the  
sea-level rise vis-à-vis climate variability and can these be controlled through chemical processes, e.g. 
creating the Temperature Absorption Sinks (TAS) to control sea-level rise and unstoppably melting of the 
glaciers into the ocean mainly because of warmer seawater lapping at its underside and Carbon Absorption 
Sinks (CAS), GHG Detoxifiers to check the rising levels of carbon dioxide and other GHG by developing  the 
Sea-Level Variability Predicting Models (SLVPM). 

Next, an attempt would be made through SLVPM to study the correlation of regional sea-level variability 
mechanism, sub-mesoscale dynamics, climate variability and its impact on sea-level rise. 

Regional variability of the sub-mesoscale dynamics study includes to examine satellite imageries with 
emphasis on the large scale kinematic and thermodynamic behavior of selected mesoscale convective systems, 
e.g. intense cloud clusters depressions and thunderstorms, to study vertical structure of these system. The 
values of characteristics, e.g. lifetime, distribution, trajectories, size and three dimensional structure, i.e., 
vertical extent of these systems, would be computed.  

Next, the kinematic features of the mesoscale 
convective systems would be correlated with sea-level 
variability on time and space scales, at the local, regional 
and global levels through the extracted sea surface 
temperature (SSTs) over the grid box, attributing the 
regional change to natural and anthropogenic radiative 
forcing agents and to bring out a few optimum values of 
these to develop (SLVPM) 

It would be endeavor to check the melting of glaciers 
and rise of sea level through Magnetic Refrigeration 
Techniques (MRT), Magnetic Reactors and harnessing of 
lunar energy to reduce the temperature at the glaciers and 
that of sea surface through chemical processes by making 
use of the correlation of physico-chemical characteristics 
of catalysts and climate variability as well as through the 

Fig. 1  The Thwaites Glacier part of the West 
Antarctica Ice Sheet is undergoing accelerated 
melt along with a number of other glaciers that 
could see sea levels rise by between 10 and 13 
feet.  (Graham 2017; photo credit: NASA) 
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developed Sea-Level Variability Predicting Models (SLVPM). 
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