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ABSTRACT

An algorithm for extending one-dimensional, forward-in-time, upstream-biased, flux-form transport schemes
(e.g., the van Leer scheme and the piecewise parabolic method) to multidimensions is proposed. A method is
also proposed to extend the resulting Eulerian multidimensional flux-form scheme to arbitrarily long time steps.
Because of similarities to the semi-Lagrangian approach of extending time steps, the scheme is catled flux-form
semi-Lagrangian (FFSL). The FFSL scheme can be easily and efficiently implemented on the sphere. Idealized
tests as well as realistic three-dimensional global transport simulations using winds from data assimilation
systems are demonstrated. Stability is analyzed with a von Neuman approach as well as empirically on the 2D
Cartesian plane. The resulting algorithm is conservative and upstream biased. In addition, it contains monoto-
nicity constraints and conserves tracer correlations, therefore representing the physical characteristics of con-

stituent transport.

1. Introduction

Numerical modeling of advection is central to the
approximate solution of fluid dynamical equations in
many fields of science. Within atmospheric science, ad-
vection modeling is most closely associated with the
solution of the equations of motion as well as the so-
lution of the constituent continuity equation. As Kal-
man filter techniques are developed for model data as-
similation, numerical advection algorithms will be re-
quired to accurately model the propagation of the
statistical information that describes the error charac-
teristics of the assimilation process (e.g., Cohn 1993).

As reviewed in Rood (1987), there have been many
approaches to the solution of the advection equation in
many fields of physics. These approaches have usually
proceeded independently and many similar ideas have
evolved. A common underlying problem is the fact that
discrete numerical approaches inevitably introduce dif-
fusion (or synonymically, dissipation) and dispersion
into the approximate solution. The diffusion and dis-
persion errors can be viewed from either a mathemati-
cal or a physical point of view. From a physical point
of view, advection of a passive tracer is the simple
translation of a quantity. Therefore, dispersion, the
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propagation of different spatial scales at different phase
speeds, and diffusion are processes that are alien to the
process that is being modeled. As applied to the con-
stituent advection problem, these numerical artifacts
manifest themselves as nonphysical mixing by numer-
ical diffusion, nonphysical highs and lows in the con-
stituent field caused by dispersion, and nonphysical
tracer spectra caused by the trapping of tracer in non-
propagating small spatial scales.

Just as the errors in the discretization of the advec-
tion equation can be viewed from either a physical or
mathematical point of view, so can the derivation of
algorithms to solve the advection equation. Mathe-
matical approaches can be based on Taylor series ex-

‘pansions and the generation of discrete estimates of

derivatives (e.g., Haltiner and Williams 1980). Within
the field of gas dynamics, physical Eulerian approaches
were pioneered by van Leer (1974) and Boris and
Book (1973). These physical approaches are not con-
tent with simply assuring conservation. They also con-
strain the numerical solution to propagate information
from upstream points (i.e., upstream-biased) and to
create no new minima and maxima in the approximate
solution. To counter the unavoidable diffusion and dis-
persion errors, maintenance of these physical con-
straints often required seemingly arbitrary engineering
approaches of combining different solution methods
when there was a danger of creating a nonphysical
€error.

In Rood (1987) it was argued and concluded that a
straightforward approach, such as spatial fourth-order
finite differences with leapfrog time differences, pro-
vided a cost-effective numerical algorithm. It was felt
that many of the more sophisticated approaches pro-
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FIG. 1. Schematics of the C grid staggering of the time-averaged
winds (u*, v*) and the density fields (x and Q). The fluxes & and ¥
are defined at the west (east) and south (north) interfaces of the cell,
respectively.

vided only cosmetic improvement of the solution, but
at significant expense. Real applications to atmospheric
transport problems reveal that the conclusions of Rood
(1987) were, at least, naive, if not wrong.

The Rood (1987) conclusions had been based on
simulations of ozone and other tracers. Looking at both
zonal-mean fields, as well as the evolution of tracers
on latitude—longitude surfaces (e.g., Rood et al. 1991),
the different schemes seemed to have little impact on
the synoptic evolution. The rejection of the Rood
(1987) conclusion comes from two sources. The first
is the availability of very high quality aircraft tracer
observations and the fact that compact correlations are
observed between tracers. These correlations provide
fundamental information about atmospheric transport
and chemistry (Fahey et al. 1990; Plumb and Ko
1992), and a numerical model must be able to maintain
correlation information if it is to be useful in quanti-
tative studies. The second is the availability of winds
from data assimilation procedures that allow direct,
stringent comparisons between model simulations and
observations (Rood et al. 1989). The use of assimilated
data to perform transport experiments raises the level
of comparison to a point where errors in the advection
algorithm impact the ability to do science. The pursuit
to improve atmospheric chemistry and transport mod-
eling at NASA/Goddard Space Flight Center has led
to the use and rejection of the square-root scheme
(Schneider 1984 ), fourth-order finite differences with
filling (see Rood 1987), and spectral methods using
Forrester’s filter (see Rood et al. 1991) because they
did not credibly model the physics of advection and
mixing. In addition, we have used the highly accurate
scheme of Prather (1986), but its memory require-
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ments for multiple tracer models have limited our ap-
plications.

Allen et al. (1991, A91 hereafter) provided a de-
scription of a simple and fast van Leer scheme applied
to the atmospheric chemistry and transport problem.
The diffusion and dispersion errors in this scheme man-
ifest themselves as a significant spatially scale-depen-
dent diffusion. The current paper describes an algo-
rithm for creating multidimensional algorithms from
the one-dimensional (1D) finite-volume schemes.
These new algorithms have proven both more accurate
and computationally faster than the A91 scheme, which
has been used in several successful applications of the
Goddard chemistry transport model (e.g., Douglass et
al. 1993; Rood et al. 1993). Geophysical applications
of the current scheme can be found in Douglass et al.
(1996).

The development of the proposed algorithm will
build on our generalization of 1D finite-volume
schemes to multidimensions combined with an efficient
algorithm to reduce the stringent time-step stability re-
quirements, which is particularly important for the ap-
plication in the spherical geometry. For the scheme to
meet the physical constraints of tracer advection, we
will require our algorithm to

1) conserve mass without a posteriori restoration,

2) compute fluxes based on the subgrid distribution
in the upwind direction,

3) generate no new maxima or minima,

4) preserve tracer correlations,

5) be computationally efficient in spherical geom-
etry.

In addition we will pay special attention to the problem
of consistency between the tracer continuity equation
and the underlying equation of continuity of the air.
For example, chemistry transport models often use
winds from a general circulation model or a meteoro-
logical model-assimilated dataset. This separation of
the dynamical model and the off-line chemistry trans-
port model could be viewed as process or time splitting
in a generalized way (see McRae et al. 1982). When
splitting techniques are used to solve a numerical prob-
lem as a series of successive partial steps, inconsistency
often arises. This may be revealed by numerical insta-
bilities that occur because, for instance, numerical
terms in one equation are not properly balanced by
terms in another equation. In the case of the chemistry
transport model, the horizontal and vertical compo-
nents of the winds satisfy the discrete form of the con-
tinuity equation in the wind-producing model. In gen-
eral the winds will not be consistent with the discrete
form of the tracer continuity equation. This inconsis-
tency has been found to be deleterious, especially for
long integrations or where direct, quantitative compar-
ison with observations is required. In A91, the vertical
velocity was recalculated using the tracer continuity
equation. This yielded a scheme that would maintain a
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FIG. 2. Shape preserving translation of the distribution
by the uniform flow U. .

constant tracer as a constant without producing spuri-
ous fluxes or local conservation violations. However,
the scheme also yielded nonphysical vertical velocity
at the ground. While these did not impact the strato-
spheric ozone experiments, such an error in vertical
velocity for tropospheric applications is unacceptable.

The algorithm for extending 1D schemes to multi-
dimensions will be developed symbolically without
specifying a particular 1D algorithm. This will allow
flexibility to choose 1D schemes that provide the char-
acteristics and accuracy needed for a particular prob-
lem. The 1D schemes chosen for implementation of the
multidimensional algorithm will be 1D finite-volume
schemes of the van Leer—type (van Leer 1974, 1977,
1979; Colella and Woodward 1984 ). The work follows
directly from that of A91 and Lin et al. (1994, hereafter
L94). To model the transport near poles more effi-
ciently and accurately, we will seek an integration
method analogous to the semi-Lagrangian approach
that allows the use of time steps longer than those al-
lowed in the explicit 1D Eulerian schemes. A disad-
vantage of the conventional semi-Lagrangian approach
(see Staniforth and C6té 1991 for a review ) is that mass
conservation without a posteriori restoration or modi-
fication to the interpolation procedure is not assured
(Priestley 1993). We will overcome this problem by
formulating the semi-Lagrangian extension of the
scheme in flux form, which ensures local and global
mass conservation. A

The algorithm to be developed in section 2 to extend
the 1D finite-volume schemes to multidimensions has
some features in common with other algorithms in the
literature (e.g., Colella 1990; LeVeque 1993). We be-
lieve that the combination of physical attributes, flexi-
bility, and computational efficiency is unique. The ex-
tension to long time steps is developed in section 3.
The resulting algorithm is validated by a von Neumann
stability analysis in appendices A and B and in a series
of idealized experiments as well as in some geophysical
applications in section 4. Concluding remarks are given
in section 5.
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2. Extension to multidimensions

In this section we present an algorithm to extend 1D
forward-in-time advection schemes to multidimen-
sions. This algorithm is independent of the particular
numerics of the 1D scheme, but we will focus on finite-
volume schemes of the van Leer—type (van Leer 1977,
1979; Colella and Woodward 1984; L94) in our appli-
cations. We shall restrict our attention to two space
dimensions, x and y, which will be referred to as the
east—west and north—south direction, respectively.
Generalization to 3D is straightforward. The advective
form of the conservation law for a conservative scalar
is

@-FV-Vq:O,

>y (2.1)

where g represents a ‘‘mixing ratio—like’’ quantity, and
V = (u, v) is the two-dimensional vector wind. The
conservation law in flux form is

omq

o1 + V- (mqV) =0,

(2.2)

where 7 could be the density of a nonhydrostatic sys-
tem, the surface pressure of a sigma-coordinate hydro-
static system, or the depth of the fluid of a shallow
water system. The conservation law for 7 in flux form
can be obtained by setting g = 1 in (2.2)

@ + V- (nV) =0.

5 (2.3)

Note that the quantities that should be conserved are 7
and 7q, not g. Numerical discretization of (2.1) will
not, in general, conserve mg. On the other hand, con-
servation of wq is almost automatic if the flux-form
conservation law (2.2) is discretized. ’
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FIG. 3. The mass conservation law in the discretized 1D Lagrangian
space. Winds defined at the mid—time level are used to compute the
displacements (D,_,,;) of the cell interfaces.
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FiG. 4. The transport of a rectangular wave in a 50-cell periodic domain by (a) center differencing scheme (CD4, upper
left panel), (b) semi-Lagrangian scheme based on the cubic interpolation (SL3, upper right panel), (c) modified monotonic
PPM (FFSL-3, lower left panel), and (d) modified positive definite PPM (FFSL-5, lower right panel). Courant number is

0.5. Dashed line is the analytic solution.

Operator splitting is often used to extend 1D
schemes to higher dimensions. Splitting is the process
of replacing a complex problem by a series of more
simple subproblems and often introduces errors, that
can in the worse cases lead to the failure in multidi-
mensional applications. In applications where the flow
is nonhydrostatic and highly compressible, it has not
been found necessary to eliminate the splitting error to
have a successful simulation (e.g., Woodward and Co-
lella 1984; Carpenter et al. 1990; Colella 1990). But
for large-scale geophysical applications in which the
flow is hydrostatic and nearly incompressible, model-
ing experience suggests that the splitting error must be
explicitly considered. To extend 1D schemes to mul-
tidimensions, and to maintain the required attributes as
defined in the introduction, the following are postulated
as rules in the algorithm development:

(I) Conmservation: The total constituent mass (glob-
al integral of wq) must be exactly conserved in the dis-
cretized form.

(II) Consistency: For a spatially uniform q field, the
discretized form of (2.2) must degenerate to (i) the
discretized form of (2.3) for a general flow field, or
(i1) the discretized incompressibility condition V-V

= 0 when the flow is incompressible. Fulfillment of the
this condition is sufficient to guarantee that a spatially
uniform ¢ field will remain uniform regardless of the
compressibility (or divergence) of the flow.

(IIT) Stability: The CFL linear stability condition
should be the same as for a directional split scheme;
that is, :

max(C*, C*) < 1, (2.4)

instead of the following more stringent condition
(2.5)

where C* = uAt/Ax and C” = vAt/ Ay are the Courant
numbers in the east—west and north—south directions,
respectively. The stability condition (2.4) must be sat-
isfied for the generalization to long time steps (see sec-
tion 3) to work.

Cr+C =1,

It is not a trivial matter to satisfy all three conditions
simultaneously. An operator-split flux-form scheme
can easily satisfy conditions I and III, but not II. An
advective-form scheme will not, in general, satisfy con-
dition I but will trivially meet condition II. The obvious
consequence of violating condition II is that an initially
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FIG. 5. As in Fig. 4 but for the Gaussian distribution.

constant mixing ratio field will not remain constant, and
that adding a constant background value to a nonuni-
“form distribution will affect the quality of the results.
A less obvious and rarely discussed consequence of not
satisfying II is that linear correlation between constit-
uents will be lost even when the 1D scheme is perfectly
linear (more discussions to be followed in this section
and in section 4).

To develop the multidimensional algorithm with-
out explicitly specifying the details of the 1D
scheme, define F and G as the 1D operators repre-
senting ‘‘increments’’ (or updates) for one time
step At to the constituent density field Q (=mg) due
to the flux-form transport from the east—west (x)
direction and north—south (y) direction, respec-
tively. Adopting the following standard difference
notation 6, :

Ao Ao
50S=S<0+—2—> —S<0—7>, (2.6)

F and G can be written as
F(u*, At, Ax; Q") = —6,[X(u*, At, Ax; Q)]
2.7)

Gv*, At, Ay; 0") = —6,[Y(v¥*, Ar, Ay; 0],
(2.8)

where X and ¥, the time-averaged fluxes of Q in the
east—west and north—south direction, respectively, are
defined as

t+ At
X(u*, At, Ax; Q") = Z—f uQdt — HOT (2.9)
XV

L
L

where (u*, v¥) are the time-averaged winds, and HOT
represents the higher-order error terms. Other symbols
and notations are standard. The very essence of 1D finite-
volume schemes is to use a properly defined time-aver-
aged (or time-centered) wind, u* (or v¥), and the cell-
averaged field at time-level n, Q", to approximate the
“‘time-averaged’” fluxes [the integrals in (2.9) and
(2.10)] across the boundaries of the grid cell to predict
the cell-averaged Q field at time level (n + 1), Q"*!. As
illustrated in Fig. 1, the winds and the Q field are stag-
gered as in the C grid (see Mesinger and Arakawa 1976
for the definition of grids A—E). For convenience, we
will omit, in the rest of this section, the dependence of
the F' and G operators on (u*, v*), Az, and Ax or Ay.
For simplicity, we assume in the following analysis that
the flow is nondivergent and m = constant (Q and g are
therefore interchangable); that is, F' and G are required
to satisfy the following condition when Q = «, an arbi-
trary constant.

1+ At
Y(v*, At, Ay; Q" f vQdt — HOT, (2.10)



SEPTEMBER 1996 LIN AND ROOD 2051
SL3
FFSL-3 FFSL-5
FiG. 6. As in Fig. 4 but for the wave-2 distribution.
Su* Sk *=Q0"+ F(Q" 2.14
F(a) + G(a) = —aAt( v )=0. (2.11) Q7 =0"+ F(Q) (2.14)
Ax Ay Q¥ = 0" + G(QY). (2.15)
Equation (2.11) is simply a 2D finite-difference rep-  Substituting (2.14) into (2.15) we obtain
resentation of the divergence of the velocity field being N R u n .
equal to zero. In addition, F and G are required to sat- Q™ = Q"+ F(Q") + G(Q") + GF(Q"), (2.16)

isfy the following relations
H(Q+a)=H(Q)+ H(a) (2.12)
H(aQ) = aH(Q), (2.13)

where H represents a generic 1D flux-form increment
operator (F or G). Equation (2.12) and (2.13) are the
minimum conditions that must be met in order to pre-
serve linear constituent correlations (see section 4c).
Although the monotonic van Leer—type schemes as
well as the piecewise parabolic method (PPM, Colella
and Woodward 1984) are nonlinear, they all meet
(2.11), (2.12), and (2.13). Positive definite schemes
that correct only negative undershoots (e.g., the posi-
tive definite van Leer—type scheme in .94 ) are almost
certainly to violate (2.12) and consequently will not,
in general, preserve tracer correlations.

Using sequential splitting to advance the Q field one
time step from time " to ¢**', where "' = " + At,
first the F operator is applied in the x direction, fol-
lowed by operating on the result of the x-advection with
the y-advection operator G:

where GF(Q") is an abbreviation for G[F(Q")]. Here
Q?* is the predicted value at time (n + 1). In deriving
(2.16) we have assumed that G satisfies the following
operation:

G[Q" + F(Q")] = G(Q") + GF(Q"), (2.17)

which is exact unless a constraint of some sort (such
as a positive definite or monotonicity constraint) is ap-
plied to render the operator G nonlinear. The conse-
quences of this assumption will be addressed in sec-
tion 4b.

The second and the third terms on the right-hand side
(rhs) of (2.16) are the convergence of the orthogonal
fluxes in the x and y direction, respectively, as if they
were computed independently. The last term on the rhs
of (2.16), which is introduced by the sequential split-
ting process, is critical to the stability of the scheme
(Leith 1965; see also the stability analyses in appendix
A). It has the appearance of a cross-derivative term and
can be interpreted as the convergence of a secondary
(oblique) flux that occurs because of the fact that the
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FIG. 7. As in Fig. 4 but for the irregular signal as in Smolarkiewicz and Grabowski (1990).

physical transport can neither be perfectly modeled by
the independent applications of two orthogonal F(Q)
and G(Q) operators nor can it be perfectly modeled by
the sequential process (F followed by G) even when F'
and G taken individually are exact. This term will be
identified as the splitting term, and it should vanish
under the assumption that V-V = 0 and @ = a:

a=a+ [F(a) + G(a)] + GF(a). (2.18)

Using (2.11), the two terms inside the square brackets
vanish, and the error term, ‘‘GF(a),”’ can be written as

—alAtu*\ a8, (vFu*)
Ax h AxAy

GF(a)=G< . (2.19)

The above form is a center-differenced approximation
because the exact form of the operator G has not yet
been specified for a nonuniform Q field. It is clear that
this term does not vanish for a deformational flow field
(ie., 6,u* + 0).

If rather than performing the x advection followed
by the y advection, the order were reversed, we obtain
an equally valid scheme

0 =Q"+ F(Q") + G(Q") + FG(Q"),
and the splitting (error) term can be written as

—altbu*\ A5 (u*5,v*)
Ay a AxAy

(2.20)

FG(a)=F< , (2.21)

TaBLE 1. Specifics of the multidimensional FFSL schemes on the sphere. Here C* is the Courant number in the east—west direction.
All inner operators are first-order accurate. ’

Zonal operator (F)

Meridional operator
Zonal operator (F) G)

(when C* > 1)

(Eulerian)

Scheme (when C* < 1)
FFSL-1 first-order upwind
FFSL-2 monotonic van Leer
FFSL-3 monotonic PPM
FFSL-4 semimonotonic PPM
FFSL-5 positive-definite PPM

first-order upwind

monotonic van Leer
monotonic van Leer
monotonic van Leer
monotonic van Leer

first-order upwind
monotonic van Leer
monotonic PPM
semimonotonic PPM
positive-definite PPM
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TaBLE 2. Error statistics of six different transport schemes in the 1D 50-cell periodic domain
for the rectangular wave after one revolution. Notations follow Rasch (1994).

Scheme Courant number Min Max L, L, L
CD4 0.5 -0.2078 0.1961 0.4649 0.3116 0.5300
SL3 0.5 —-0.0511 0.06273 0.2632 0.2583 0.3825
FFSL-2 0.5 0. —0.0094 0.1818 0.2181 0.344
FFSL.-3 0.5 0. —0.0018 0.1439 0.1955 0.3181
FFSL-4 0.5 0. 0.0276 0.1525 0.1965 0.3549
FFSL-5 0.5 0. 0.03135 0.1459 0.1934 0.3462

which is antisymmetric (operator-wise) to (2.19).
Both (2.16) and (2.20) are only first-order accurate due
to the existence of the directional bias and the splitting
error. Second-order accuracy can be obtained by a sym-
metric sequence of the operator splitting method
(Strang 1968). A symmetric scheme can be readily
obtained by averaging the two antisymmetric schemes
(2.16) and (2.20); that is,

Q* =3(Q” + Q™) = Q" + F(Q")
+ G(Q") + % [GF(Q") + FG(Q™)]. (2.22)

Due to the elimination of the directional bias, (2.22) is
expected to be more accurate than either (2.16) or
(2.20), but it is also more expensive. [Given a fully
second-order-accurate 1D scheme, second-order accu-
racy can be achieved by an alternating directional split-
ting procedure, but it does not eliminate entirely the
directional bias.] To reduce total operation counts,
(2.22) can be rewritten as

0% =0+ F[Q" +§G(Q">]
+ G[Q" + %F(Q")] . (2.23)

Upon inspection, we see that all three schemes [Eq.
(2.16), (2.20), and (2.23)] satisfy conditions I and III.
(Stability of an asymmetric scheme is analyzed in ap-
pendix A). Condition II is more difficult to meet. Un-
der the assumption that V-V = 0 and Q = «, there
should be no change in 0%, Q”*, or Q* the predicted
value at time (n + 1). All three algorithms, however,

predict a change proportional to the splitting term. To
eliminate this error while satisfying conditions (I) and
(III), we replace the inner operator F and G with their
corresponding advective form operator f and g, re-
spectively, to obtain

Q=0+ F[Q" +28F, Ar; Q")]
+ G[Q" + %f(u;k, At: Q")] . (2.24)

where

ukr =u*, (2.25)
are the winds at the cell center used by the inner ad-
vective operators. The overbars represent the following
averaging operation (cf. 2.6):

— 1 Ao Ao
S =§|:S<0+T)+S<U—7>:|. (2.26)

Similar to their flux-form counterpart f and g, which
also represent ‘‘increments’’ to the density field Q,
approximate “‘— A }¥(90Q/0x)”’ and ‘“‘—Awn¥(8Q/
dy)’’, respectively. Since outer operators are in the
original flux form, condition I is still satisfied. The con-
tributions from the advective form operators (the cross
terms) vanish in the special case of a spatially uniform
Q field. Condition 1II is thus satisfied. The advantage of
maintaining the derivation in symbolic form allows the
choice of building blocks (i.e., 1D inner and outer op-
erators ) that address conditions I-III, and hence, meet-
ing the requirements outlined in the introduction.

TABLE 3. As in Table 2 but for the Gaussian distribution.

Scheme Courant number Min Max L, L, Lo

CD4 0.5 —0.0352 0.0524 0.2735 0.2303 0.2089
SL3 0.5 —0.0185 —0.1342 0.1552 0.1291 0.1342
FFSL-2 0.5 0. —0.1962 0.1628 0.1580 0.1962
FFSL-3 0.5 0. —-0.1532 0.1214 0.1183 0.1532
FFSL-4 0.5 0. —0.0839 0.0563 0.0574 0.0839
FFSL-5 0.5 0. —0.0839 0.0562 0.0574 0.0839




MONTHLY WEATHER REVIEW

2054 VOLUME 124
TABLE 4. As in Table 2 but for the wave-2 distribution.

Scheme Courant number Min Max L, L, L.

CD4 0.5 9.51E-3 —3.36E-3 6.30E—-2 S71E-2 4.96E-2
SL3 0.5 4.63E-3 —4.59E-3 5.90E-3 5.35E-3 4.65E-3
FFSL-2 0.5 3.56E—-2 —3.20E-2 2.53E-2 2.68E—2 3.58E-2
FFSL-3 0.5 2.62E-2 —2.24E-2 1.81E-2 1.91E-2 2.63E—-2
FFSL-4 0.5 2.62E—-2 —7.54E-3 1.24E-2 1.42E-2 2.63E—-2
FFSL-5 . 0.5 1.05E—2 v —7.50E-3 5.76E-3 6.31E-3 1.06E-2

For the more general case that w # constant, (2.24)
can be modified and written in terms of the mixing
ratio g

n+1

q =

1
{W"q" + F[q" + Eg(q")}

,n_n+l

1
+ G[q" + Ef(q")]} . (227

Note that F and G have been redefined in (2.27) so that
the operand is now g instead of Q (the w factor has
been absorbed into the definition F and G by using
properly defined mass fluxes in place of the velocities;
see section 4c for the off-line transport case in which
7 is not a constant).

Since the cross terms are of higher order in time, it
is sufficient to use the first-order upwind differencing
for the two inner operators fand g to achieve an overall
second-order accuracy. In the extension to long time
steps (see next section) it will be necessary to use an
unconditionally stable scheme for these two advective
form operators. An example of constructing a second-
order accurate 2D Eulerian scheme using (2.24) is
given in appendix A where the stability of the scheme
is analyzed. A more general example will be given in
section 3.

Many methods have been developed in the past to
reduce or eliminate the splitting error (e.g., Petschek
and Libersky 1975; Dukowicz and Ramshaw 1979;
Smolarkiewicz 1982 and 1984; Bell et al. 1988; Colella
1990; Ekebjarg and Justesen 1991; Bott 1993; Le-
Veque 1993). Although some of these methods are
similar in spirit to the method just described, they are
scheme specific. LeVeque (1993) derived a multidi-
mensional scheme for the incompressible flow using

the wave-propagation approach. If the van Leer
schemes are chosen, our algorithm is then similar to
LeVeque’s method 4 (as described in his table labeled
“‘algorithm 4.1°"). There are two subtle differences.
First, in computing the first-order upwind contribution
from the transverse direction, velocities at cell edges
are used in LeVeque’s scheme instead of the cell-av-
eraged velocities in our algorithm [see (2.25)]. Sec-
ond, in (2.24) the contribution from the advective op-
erator in the transverse direction will be added to Q"
and then subjected to the constraint associated with the
1D orthogonal flux operator ( F or G), which is not the
case in LeVeque’s algorithm. For constant wind and if
the unlimited van Leer scheme is chosen as the 1D flux-
form operator, LeVeque’s scheme and the scheme
based on Eq. (2.24) (see appendix A) are in fact iden-
tical to the corner transport upwind algorithm devel-
oped by Colella (1990), which is derived from a very
different perspective. The comparison with all other
similar schemes as different choices are made for the
1D operators and velocity fields is beyond the scope of
this paper. This paper proposed a general forward-in-
time algorithm, defined symbolically by (2.24) or
(2.27), with the flexibility to choose the advective and
flux-form operators independently, and hence, to ad-
dress the physical requirements of the advection
problem.

3. Extension to large time steps

A disadvantage of explicit Eulerian schemes is that
they have strict stability limitations, requiring the Cour-
ant number (C* = uAt/Ax) to be less than a specific
scheme-dependent constant (usually C* < 1). Since
the stability requirement depends on the grid spacing,
as higher-resolution grids are used the time step must

TABLE 5. As in Table 2 but for the irregular signal (Smolarkiewicz and Grabowski 1990).

Scheme Courant number Min Max L, L, L.

CD4 0.5 0.1307 0.1469 0.0861 0.1034 0.1726
SL3 0.5 0.2634 —0.1195 0.0623 0.0797 0.1755
FFSL-2 0.5 0.3582 -0.2139 0.0640 0.0847 0.1726
FFSL-3 0.5 0.2733 —0.1603 0.0480 0.0675 0.1452
FFSL-4 0.5 0.2680 —-0.0576 0.0439 0.0654 0.1354
FFSL-5 0.5 0.1569 —0.0574 0.0344 0.0557 0.1327
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FiG. 8. The initial cone-shape density distribution.

also be reduced. Similarly, on equal angle spherical
grids the convergence of meridians at the pole increases
the cost of the scheme tremendously. Therefore, if a
technique can be developed such that the stability is
grid independent, then the time step can be chosen
based on the physics and chemistry of the problem.
This can yield a substantial economic savings which
has been a major motivation for the development of
semi-Lagrangian techniques for numerical weather pre-
diction models (e.g., Bates and McDonald 1982; Wil-
liamson and Rasch 1989; Staniforth and C6té 1991).
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While the development presented below has some dif-
ferences from the traditional semi-Lagrangian ap-
proach, the scheme does retain a Lagrangian (trajec-
tory) character that is independent of time step. Thus,
in the sense of meteorological terminology, the scheme
is termed ‘‘flux-form semi-Lagrangian’’ (FFSL).

The extension to large time steps presented here is
similar to approaches used by LeVeque (1985),
Roache (1992), and Leonard (1994) for 1D Eulerian
flux-form schemes. These authors do not present a gen-
eralization to multidimensions. Rancic (1992) devel-

F1G. 9. The solution after 1508 time steps (the maximum Courant number is 2.5)
using the PPM-based 2D FFSL scheme.
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FiG. 10. The solution after 377 time steps (the maximum Courant number is 10)
using the PPM-based 2D FFSL scheme.

oped a 2D semi-Lagrangian extension of the PPM
based on a conservative remapping algorithm. As dis-
cussed in Laprise and Plante (1995), the 2D remapping
algorithm does not, in general, preserve a constant
tracer distribution due to the convergence/divergence
induced by the cell deformation. This problem seems
to be analogous to the error induced by operator split-

ting and does not appear to be important in compress-
" ible fluid models as suggested by the bubble convection
test case in Laprise and Plante (1995). The FFSL
scheme described here also bears some conceptual sim-
ilarity to the ‘‘noninterpolating semi-Lagrangian
scheme’’” (Ritchie 1986) and the semi-Lagrangian
scheme of Smolarkiewicz and Pudykiewicz (1992).
However, their methods are based on the advective
form of the continuous equation, which does not guar-
antee mass conservation. Other novel approaches to in-
crease the time step include the work of Brenier (1984 )
and Smolarkiewicz and Rasch (1991).

Consider the 1D advection problem with constant
velocity as shown in Fig. 2. Assume that the tracer
distribution is known continuously, and that the 1D
space has been divided into uniformly spaced grid cells
of width Ax. The velocity moves the field from left to
right, and the advective process should simply translate
the distribution while perserving its shape. The amount
of material that is in the grid box bounded by x;_,,, and
X;+1,2 18 updated by difference of flux into and out of
the box [as in Eq. (2.7) or (2.8)]. For the constant
velocity case the tracer distribution is simply translated
by the distance uAt = D, and the spatial translation is
the same for both grid points x,_,,, and x;.,,. Here D
is not limited for any physical reason to-be less
than Ax.

In the case that uAr = KAx, where K is an integer,
then the advection is simply the translation of the entire
distribution K grid boxes to the right, which can be
treated exactly by many Eulerian transport schemes
(see Rood 1987). Therefore, a strategy for extending
schemes to long time steps is to use an integer trans-
lation for K grid boxes followed by a fractional trans-
lation, ¢ = mod(C*, K) (i.e., a shift operation, followed
by an Eulerian advection calculation).

To develop the particular characteristics of the al-
gorithm consider Fig. 3. On the abscissa is the spatial
dimension x, divided into equal intervals of Ax. On
the ordinate is time at steps n, n + 1/, and n + 1 (n
+ 1/2 is not an actual step). We want to calculate the
averaged density distribution at time » + 1 between
grid points x;_;,, and x;;,,, based only on the distribu-
tion at time r. The velocity is left to right, but it is no
longer required to be constant in space or in time. The
heavy line A’A that ends at the point (i + 1/, n + 1)
is the trajectory from the previous time n. A similar
trajectory B'B is shown for the point (i — 1/2, n + 1).
At time n + 1, where the solution is being sought, the
distance between B and A is Ax. Since the velocity is
not required to be constant, the width of the cell be-
tween the two trajectories at time n, the distance be-
tween B’ and A’, is not Ax and will be labeled Ax’.
We will model the spatial displacement from point A’
to A, as D, equal to the ‘‘average velocity’’ along
the trajectory u?//7 multiplied by the time increment
At. A similar average velocity is used for the trajectory
B'B. The exact form of the average velocity will be
defined below.

The problem posed in Fig. 3 focuses on the question,
what spatial increment upstream at time n contains the



SEPTEMBER 1996

100

g0l - Lo Lo Lo S

O A
701
601
501

401

301
204 - ..... ..... ,,,,, AAAAA ,,,,,

o

00" T0 20 30 40 S 6 70 8 S0 100

FIG. 11. As in Fig. 9 but the contour plot is shown. Initial distri-
bution (dashed contours) is superimposed. Contour interval is 10%
of the initial peak value. Zero contour is omitted.

mass that will be in the spatial cell of Ax size at time
n + 1?7 Since, in the absence of sources and sinks, the
mass is conserved between the trajectories (the shaded
area in Fig. 3), if this question can be answered, mass
will be conserved at time n + 1. Similarly, since the
fluid is a continuous medium, as the same question is
posed for all the grid points there will be a continuous
mapping of the tracer at time »n to time n + 1.

The problem in Fig. 3 should be contrasted with the
usual semi-Lagrangian scheme that focuses on the grid
point at i, n + 1 and asks the question, what point
upstream arrives here? As is well known, the answer
to this question does not a priori conserve mass. The
problem in Fig. 3 can also be contrasted to normal Eu-
lerian forward-in-time schemes, which approach the
problem by mapping the field at time »n (with the reg-
ular spatial interval Ax) to a generally irregular spacing
Ax’ (due to flow deformation) at time n + 1, followed
by an remapping back to the required regular interval.

For an arbitrarily long time step in the x direction
the Courant number at point i — 1/ can be written as

Cisip = Kiip + iz, (3.1)

where K;_,,, is the integer part of C7_,,», and ¢;_,,,, the
fractional Courant number, is given by

Cioiz = mod(Ciy 0, Kimy2). (3.2)

The advection can then be broken down into an integer
and fractional flux. Using the fractional Courant num-
ber c¢;_1,,, the fractional flux can be computed by prac-
tically any Eulerian upstream flux-form scheme that
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utilizes the cell-averaged values to construct a subgrid
distribution.

Denoting the cell-averaged density between x;_,
and x;,,,, at future time (n + 1) as Q7*!, the 1D trans-
port problem is

Q' =0+ Fi =0/ —(6X).  (33)

Where F is now the ‘‘semi-Lagrangian’’ extension of

the flux-form operator [see (2.7)] and X, the ‘‘time-

averaged’’ flux (see 2.9) at the left edge of the cell, 1s

decomposed as

Xi—12 = (integer flux);_,,» + (fractional flux),_,,.
(3.4)

The integer fluxes are computed exactly by

(Ki-112

2 Oy, Kiip=1
k=1

(integer flux);_,,, = ﬁ 0, Kiyp=0

—Kicip2

2 Qtr'l—l-Hn

\ k=t

Kioip=—1

(3.5)

To remain compliant with (2.11) [in order to meet
condition II set forth in section 2], the ‘‘averaged ve-
locity’’ along trajectory used to compute the displace-
ment D;_,,, = u;_,,At of the cell interfaces is approx-

FiG. 12. Polar stereographic projection of the cosine bell (Rasch
1994) transported over the North Pole (from the bottom to the top of
the figure) by the FFSL-5 scheme. Contour interval is 0.1 (zero con-
tour is omitted). See Rasch (1994) for the analytic wind fields and
initial condition.
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FIG 13. Latitude—longitude projection of the cosine bell after one complete revolution by the FFSL-5
scheme. Exact solution (dashed contours) is superimposed. Contour interval is 0.1.

imated by the velocity given at x = x;_;,, and at time
(n +.1/7). Strictly speaking, the displacements (and
hence the trajectories) of the cell interfaces computed
this way are only first-order accurate. But they are used
only in the computation of the fluxes, and their cell-
- centered differences [as computed in Eq. (3.3) for up-
dating Q] are second-order accurate.

One criterion for the stability of the 1D scheme is
that the trajectories of the left and right interfaces of a
cell do not cross each other (i.e., the cell does not col-
lapse during one time step) is simply

ulrF AL+ Ax = ultF At
or
Atu™+1?
—-—Z—;_ < 1. (3.6)

Equation (3.6) is, in fact, the condition that the defor-
mational Courant number (or the Lipschitz number, see
Smolarkiewicz and Pudykiewicz 1992) be less than
unity. It can also be interpreted as the smoothness con-
dition on the wind field u. This condition is much less
restrictive than the normal Courant number limitation.

As in the restricted Courant number case described
in section 2, the extension of the large Courant num-
ber case to 2D is achieved through the use of (2.24)
or (2.27). The ability to make the long-time step ex-
tension to multidimensions relies on the flexibility of
the scheme to use a different underlying 1D advec-
tion scheme for the inner operators, f and g [see
(2.24)], than is used for the outer flux-form operator.
To illustrate the development explicitly, specific in-
ner (f and g) and outer operators (F and G) will be
chosen. Stability requires that the 1D advective inner
operator f (or g) be unconditionally stable for non-
deformational flows. Practically any 1D version of
the usual advective-form semi-Lagrangian scheme

can be chosen. For efficiency, one should choose a
low-order 1D advective-form semi-Lagrangian scheme
(e.g., the first-order scheme based on the linear inter-
polation, see Bates and McDonald 1982). The advan-
tage of using the first-order scheme for the inner op-
erator is that it is both linear and monotonic, a unique
combination. The trajectory calculation for the inner
operator (f) uses the cell-averaged velocity as defined
in (2.25)

unH/Z = (M7+11//22 + uf‘L‘/zz (3.7

The 1D projection of the ‘‘departure point’” x% is then
computed as

Xk o= xP — At (3.8)

The values from two nearest grid cells to x} at time n
are then used in the linear interpolation procedure to
obtain the advective update.

Following directly from (2.24) and (3.3) the 2D
FFSL scheme ( for an incompressible flow ) in symbolic
form is

Q"= 0" - a{x[Q" + %g(Q")]}

- @{y[Q" + %f(Q")]} - (39)

We demonstrate here the construction of a 2D FFSL
scheme using (3.9). Focusing only on the second term
on the rhs of (3.9), to update Q} to Q7"", the contri-
bution from the first-order advective- form operator gat
(i, j) can be written as .

g =(Q% — 09 + ey (Q- — Q1), (3.10)
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FiG. 14. As in Fig. 13 but for the FFSL-3 scheme.
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where where
At cr o Bl
CZ’ = :’Z_A—_y (V12 + Vijr112), =102 Ax

the Courant number at (i, j) in the y direction;

¢y = C; — INT(C}), the fractional Courant number

at (i, j) in the y direction;
J=j—INT(C}), and J*=J—SIGN(l, C}).

To complete the construction of the second term on

the rhs of (3.9), we choose the second-order van Leer

scheme as the outer flux-form operator. Defining QF as
the input tracer density field to X; that is,

Q5 = 05 + 3 8,(0")

= [(Q + @) + ey [(Qix — QN1 (3.11)

N -

the flux X across the left interface of the cell (i, j) is

then computed as

Xi—12; = (integer flux);,_,,,; + (fractional flux),_,y;,
(3.12)

where the fractional flux as computed by the van Leer

scheme [cf. Eq. (1) in L94] is

AQf

(fractional flux), |, = cf_l,zj{ij + >

X [SIGN(1, C?—llzj) - C?—l/zj]} , (3.13)

the Courant number at <i - % 2 ) )

I=1INT(G — Cioizp)s

1
AQ‘Z’ = 2 (Q§+1j - Qé;—lj),

Mi—1/2j = INT(Cf—lnj),

X —_ X —
Ci-112; = Ci—1/2j Mi—lizj,

. A
the fractional Courant number at <z — 3 ]) .

A monotonicity constraint, if desired, can be applied to
AQ7; using, for example, Eq. (5) in L94. Integer fluxes
are computed by (3.5). The last term on the rhs of (3.9)
can be similarly obtained. The above discretized form
is written with its implementation on a vector process-
ing computer in mind. Except for the computation of
the integer fluxes, there will be no ‘‘IF’’ statement in-
volved. The stability of the above scheme is analyzed
in appendix B. It is shown that the scheme is uncon-
ditionally stable for nondeformational flows. The size
of the time step will be limited by (3.6) for deforma-
tional flow. The above 2D scheme is second-order ac-
curate. More accurate results can be achieved by using,
for example, PPM for computing the fractional fluxes
(3.13).

4. Numerical examples

For the implementation of the symbolic algorithm
(2.24) the 1D monotonic van Leer—type scheme and
the modified PPM are chosen as the basic building
blocks of the multidimensional FFSL transport scheme.
It is assumed that readers are familiar with both
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TABLE 6. Error statistics for the ‘‘cosine bell test’” (Rasch 1994) for Rasch’s schemes and the FFSL schemes. Timings for the FFSL
schemes are performed on the CRAY C-90. Meridional Courant number is 0.5. See Rasch (1994) for the definition of the error measures.

Scheme Resolution Time steps Min Max L, L, L CPU (s)
FG2.8 128 X 64 256 —0.0411 —0.152 0.327 0.209 0.169 N/A
RG2.8 128 X 64 256 —-0.0271 -0.150 0.289 0.176 0.164 N/A
RG2.8M 128 X 64 256 0 —-0.210 0.181 0.158 0.196 N/A
RGl1.4 256 X 128 512 —1.36E-2 -0.026 0.0647 0.0395 0.032 N/A
FFSL-1 128 X 64 256 0 -0.770 1.255 0.772 0.770 0.56
FFSL-2 128 X 64 256 —2.035E—4 —-0.174 0.126 0.117 0.174 0.72
FFSL-3 128 X 64 256 —9.385E—4 -0.124 0.078 0.079 0.124 1.22
FFSL-4 128 X 64 256 —1.204E-3 —0.053 0.048 0.041 0.053 1.15
FFSL-5 128 X 64 256 -1.300E—-3 —0.053 0.047 0.041 0.053 1.23
FFSL-3 256 X 128 512 —5.82E—-4 0.040 0.020 0.020 0.040 9.8

schemes (see Carpenter et al. 1990 for a brief review
of the PPM). In L94, the reference mismatch (or slope
as conventionally defined) for the van Leer scheme is
computed by a second-order difference of the cell-
mean density [see Eq. (2) in L94 and (3.13) in the
previous section]. It is verified numerically that sharper
gradients can be maintained if the second-order mis-
match is replaced by the following fourth-order differ-
ence one (see also Colella and Glaz 1985)

AQ = = (8820 — 6,.0). 4.1
The mismatch can then be monotonized with constraint
(5)in L94. It is verified that PPM using this monotonized
fourth-order mismatch instead of the original second-or-
der one [Eq. (1.7) in Colella and Woodward 1984 ] gives
better overall accuracy. Before applying the modified van
Leer scheme and the modified PPM to multidimensions,
it is informative to evaluate them in a simple 1D setting.
Carpenter et al. (1990) has compared various schemes
including a basic van Leer scheme, Smolarkiewicz’s pos-
itive definite scheme (Smolarkiewicz 1983), and the
original PPM in both 1D and 2D (using operator split-
ting ). Although the van Leer scheme and PPM appear to
perform very well in general, there is significant ‘‘clip-
ping’’ of the peaks due to the strict monotonicity con-
straint (see their Figs. 6—9). To lessen this clipping ef-
fect, we propose the following two alternative constraints
to be used by the PPM (alternative constraints for the van
Leer—type schemes are given in 1.94): 1) the semimon-
otonic constraint, and 2) the positive definite constraint.
The full monotonicity constraint as described in Colella
and Woodward (1984 ) eliminates both undershoots and
overshoots. The semimonotonic constraint eliminates un-
dershoots but not overshoots, and the positive definite
constraint prevents only the generation of negative values
{see appendix C for details).

a. 1D comparisons

Figures 4—7 examine some standard 1D, 50-cell, pe-
riodic domain advection problems with constant wind.
These problems clearly illustrate diffusion and disper-

sion errors. We will compare two FFSL schemes, one
using the modified monotonic PPM (FFSL-3, hereaf-
ter) and the other using positive definite PPM (FFSL-
5, hereafter) with the fourth-order center differencing
scheme (CD4 hereafter) and a standard nonconserva-
tive semi-Lagrangian advection scheme based on the
cubic interpolation (e.g., Bates and McDonald 1982,
SL3 hereafter). Four distinctly different initial condi-
tions are chosen. All schemes except CD4 are stable
for arbitrary Courant number C. Since CD4 is unstable
for C > 0.73, comparisons will be made at C = 0.5,
which gives the most damped results for the van Leer—
type scheme as analyzed in appendix A. Figure 4
shows the results after one revolution (100 time steps)
for a rectangular wave. Figures 5, 6, and 7 show the
results after one revolution for a Gaussian distribution,
a wave-2 distribution, and an irregular signal (same as
in Smolarkiewicz and Grabowski 1990), respectively.
Visually, SL3 is the most diffusive, and CD4 is the
most dispersive.

Error measures computed the same way as in Rasch
(1994) following Williamson et al. (1992) are given
in Tables 2—5. CD4 has the largest errors by nearly all
measures. Also tabulated are results for the monotonic
van Leer scheme (FFSL-2, hereafter) and the semi-
monotonic PPM (FFSL-4, hereafter). The accuracy of
the second-order FFSL-2 scheme is comparable to SL3,
and is significantly better than CD4 (for all tests).
PPM-based schemes (FFSL-3, FFSL-4, and FFSL-5)
are more accurate than SL3 except for the wave-2 test
in which SL3 is marginally better than all FFSL
schemes. All FFSL schemes maintain positivity of the
original distribution and conserve mass exactly. Both
semimonotonic and positive definite PPM maintain
peaks better than the fully monotonic PPM, but at the
risk of producing overshoots (see, e.g., Fig. 4).

b. 2D transport experiments
We will first demonstrate the stability and accuracy

of the 2D FFSL scheme on the x—y plane with large
Courant numbers. We will then turn our focus to the
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FiG. 15. Orthographic projection (0°-90°N) of the simulated total
ozone (in Dobson units) at 1200 UTC 31 January 1989. Local max-
imum and minimum are printed. Contour interval is 40 (DU) and the
bold contour is 480 (DU). The clear area is the ‘‘minihole.””

implementation strategy on the sphere using a regular
latitude—longitude grid.

The rotating cone experiment widely used in the lit-
erature (e.g., Smolarkiewicz 1983, 1984; Prather 1986;
Smolarkiewicz and Grabowski 1990; Smolarkiewicz
and Grell 1992) will be performed here to demonstrate
the scheme on the 2D x—y plane. The initial condition
(see Fig. 8) is a cone with unit height. The boundary
condition for the advective field is doubly periodic, and
there are 100 X 100 cells in the physical domain. We
will examine the results after six revolutions. The mod-
ified PPM with monotonicity constraint is used as the
outer flux-form operator in both spatial directions. The
ID version of the second-order semi-Lagrangian
scheme (based on the quadratic interpolation; see, e.g.,
Bates and McDonald 1982) is chosen as the inner ad-
vective-form operator to match the higher-order accu-
racy of the PPM. All trajectory calculations are for-
mally first-order accurate, as discussed previously. The
resulting 2D scheme will not be strictly monotonic
(i.e., over- and undershoots are possible) because only
the 1D constraint is applied to the outer operator and
there is no constraint of any sort applied to the inner
second-order advective operator. Figures 9 and 10
show the results with maximum Courant number equal
to 2.5 (1508 steps) and 10 (377 steps), respectively.
[Courant numbers computed the same way as in Smo-
larkiewicz and Grell (1992).] Figure 11 shows the con-
tour plot of the experiment with 1508 steps (as in Fig.
9). Mass is exactly conserved, and adding a large con-
stant background value to the advected field does not
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change the final results. [ The 2D scheme satisfies con-
ditions (2.12) and (2.13)]. It is seen that the results
are not overly sensitive to the size of the time step, and
they compare very well against results in the literature
when all factors (mass conservation, accuracy, speed,
and memory requirement ) are taken into consideration.

For the transport on the sphere, the so-called pole—
Courant number problem is most severe in longitudinal
(east—west) direction. To alleviate this problem and to
maximize computational efficiency, we need only to
apply the FFSL scheme in the east—west direction and
use its faster purely Eulerian counterpart for the merid-
ional (north—south) transport. Since the meridional
transport is purely Eulerian, the same polar cap treat-
ment in .94 can be used. The time step is therefore
limited only by the meridional Courant number, that is,
C” < 1. To take advantage of the converging meridian
at high latitudes, one can compute the fractional fluxes
in the east—west direction using the faster but slightly
more diffusive van Leer scheme if the integer fluxes
[as defined by (3.5)] are nonzero (i.e., when C* > 1)
and use the less diffusive PPM-based schemes else-
where. This time-saving modeling strategy also makes
the effective zonal resolution more latitude indepen-
dent. We have found this to be a very efficient com-
bination that does not noticeably degrade the overall
accuracy, as compared to the transport by PPM based
schemes exclusively.

Rasch (1994) developed a 2D forward-in-time up-
wind-biased flux-form scheme that can be extended to
the “‘reduced spherical grid”” (RG). We repeat here his
“‘cosine bell test’” using various FFSL schemes (see
Table 1 for specifics) on the regular (equi-angular) lat-
itude—longitude grid. For the inner advective operator,
all FFSL schemes use the 1D first-order semi-Lagrang-
ian scheme described in section 3. The solid-body ro-
tating cross-pole flow changes rapidly near the poles
due to the use of the regular spherical grid. Operator-
split flux-form schemes would exhibit some degree of
deformational error. It is, thus, a very stringent test of
the scheme’s compliance to the three conditions set
forth in section 2. For the sake of direct comparison,
we used the same time step as Rasch (1994). Figure
12 shows the transport of the cosine bell structure using
the FFSL-5 scheme (based on positive definite PPM)
before, at, and after the North Pole. There is no defor-
mational error as the structure approached and passed
the pole, which is a significant improvement over the
operator split version of the purely Eulerian van Leer
scheme in A91 and 194 (see, e.g., Fig. 4 in A91).
Figures 13 and 14 show the cosine bell after one rev-
olution for the FFSL-5 and FFSL-3 schemes, respec-
tively. Table 6 provides a detailed comparison between
various FFSL schemes and Rasch’s published results
(copied from Rasch’s Table 2). For convenience,
pointwise values, instead of the cell-mean values, are
used for the initialization and validation. The suffix M
in RG2.8M indicates that a Zalesak-type (Zalesak
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EPV (10N — 90N GEOS-DAS) 860131 250mb

FiG. 16. Polar stereographic projection (10°--90°N) of the-250-mb Ertel potential vorticity
(EPV) at 1200 UTC 31 January 1986. Upper panel: the ‘‘analysis’’ constructed directly from
GEOS-DAS output. Lower panel: the simulation by the FFSL-3 scheme starting from 0000
UTC 1 January 1986.
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1979) multidimensional monotonicity constraint has
been applied to Rasch’s schemes. It is seen that all
FFSL schemes except the first-order upwind scheme-
based FFSL-1 scheme are more accurate than Rasch’s
scheme, with or without constraint, on the reduced grid
or the regular full grid (FG). The FFSL-3 and the
FFSL-5 are roughly a factor of 2 and 4 more accurate
than the RG2.8M, respectively. The FFSL-1 scheme is
too diffusive to be useful. It is included in Table 6 for
timing comparison. All FFSL schemes are vectorized
on the CRAY C-90. It is seen that the FFSL-2 scheme
is only 1.3 times slower than FFSL-1. PPM based
FFSL-3, FFSL-4, and FFSL-5 schemes are about 2.2
times slower than the FFSL-1 scheme. It is seen that
PPM-based schemes are considerably more accurate
for a modest increase in CPU time.

The application of the 1D monotonicity constraint
invalidated the assumption we made in the derivation
of (2.24) or (2.27). The multidimensional FFSL
schemes are, therefore, not strictly monotonic, even
though the 1D operators are monotonic. We have found
that if the cross-derivatives of the initial condition are
continuous {smooth) then this is not a problem. For the
cosine bell structure, which has discontinuities in the
first derivative around its circular base, all the FFSL
schemes except the first-order FFSL-1 produced some
tiny negative values. Reducing the time step by 50%
nearly reduced the negative undershoots to machine
round-off. If a strict monotonic requirement becomes
necessary, then a Zalesak-type multidimensional con-
straint to the FFSL schemes can be applied.

¢. Global 3D transport simulations

In a global general circulation or chemistry transport
models, the large-scale motions are quasi-horizontal
and nearly incompressible. The vertical velocity, as di-
agnosed from the hydrostatic continuity equation, is
more than an order of magnitude smaller than the hor-
izontal velocity. The vertical transport can, therefore,
be decoupled from the horizontal transport and com-
puted independently (in the sense that the cross-deriv-
ative terms associated with the vertical advection are
ignored). Denoting H as the 1D operator for the ver-
tical transport (similar to F and G defined in section
2), the scheme for the 3D transport can be written as
[cf. (2.27)]

n+1

1
q =7T.n+1

1
{ﬂ”q" + F[q” + Eg(q")]
+ G[q" + %f(q")] + H(q”)} . (42)

It is understood that in computing the mass conver-
gence terms (F and G) the time centered (or time av-
eraged) winds (u*, v*) and surface pressure (7*) de-
fined at time (n + 1/2) are to be used. To verify ‘‘con-
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EPV at (0, 52) 250mb

BJAN 114N 184N 214N 26JAN
1986

FiG. 17. Time series of the 250-mb EPV near London. Solid line:
simulation. Dashed line: the ‘‘analysis.”’ Values are plotted every
12 h.

sistency’’ (condition II), the equation for 7, the surface
pressure, can be obtained by setting ¢ = 1 in (4.2) and
integrating from the top to the bottom of the vertical o
domain to obtain

Tbottom
7r"“=7r"+f [F(1) + G(1)]do

Otop

NW"—AIZ[

S u* . 8% v*
Ax Ay Teo
(4.3)

where 2 [ ]Ao, represents the summation over the
whole vertical (¢ coordinate) domain. In reaching
(4.3), a straightforward average of = to the cell inter-
faces is used to compute the horizontal mass fluxes
(7% u*, TE p*). Equation (4.3) is simply a second-
order center-differenced scheme for updating the sur-
face pressure 7 on the C grid (see Fig. 1), which is the
differencing scheme used in the Goddard Earth Ob-
serving System General Circulation Model and Data
Assimilation System (GEOS-GCM and GEOS-DAS;
see Schubert et al. 1993; Takacs et al. 1994). No spe-
cial modification to the 7 equation is therefore needed
to meet condition II.

Because of the quantitative use of tracer correlations
(Fahey et al. 1990; Plumb and Ko 1992), a requirement
of the scheme as outlined in the introduction is to con-
serve tracer correlations. We present here the proof that
the 3D scheme (4.2) based on a 1D monotonic van
Leer—type scheme, which is nonlinear, maintains exact
linear constituent correlations in a pressure coordinate
system (i.e., 7 = const) in which the mixing ratio and
density fields of a constituent are equivalent. The
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equivalent condition to (2.11) in the 3D pressure-co-
ordinate system is

F(a) + G(a) + H(a) = 0. (4.4)

Suppose the mixing ratios of two chemistry species p
and ¢q are linearly correlated at time n as

q" =ap" + [, (4.5)

where @ and f are two arbitrary constants. We will
show that after one time step the linear relationship
between p and q is still preserved; that is, ¢"*' = ap™*!
+ (3. The transport scheme (4.2) for ¢ in the pressure
coordinate system is simply

n n 1 n
9" =q +F[q +58(q )]

+ G[qn + %f(q")} + H(g". (4.6)

All monotonic van Leer—type 1D schemes discussed
in L94 satisfy condition (2.12) and (2.13), which can
be readily verified by inspecting (1a)~(1c), (2), and
(5¢) in L94. Substituting (4.5) into (4.6) and utilizing
(2.12), (2.13), and (4.4), we have

q" = a{p" + F[lf + %g(p")}
+ G[p" + §f<p">} + ’?(P")} +

=ap™' + .

We have built a global 3D chemistry transport model
based on (4.2). We repeated the same ozone transport
experiment in A91 using the FFSL-3 scheme (see Ta-
ble 5) in the horizontal with 4° X 5° (latitude—longi-
tude) resolution and semimonotonic PPM in the ver-
tical direction. The time step is 30 min. No negative
ozone mixing ratios are ever produced during the in-
tegration period (more than one month), and the results
are comparable to A91’s result using a basic Eulerian
van Leer scheme with the higher 2° X 2.5° resolution
(cf. Fig. 15 to Fig. 6 in A91). As a final demonstration
of the accuracy and efficiency of the 3D FFSL schemes
on the sphere, we consider the global transport of the
Ertel potential vorticity (EPV) as a passive tracer.
EPV, which has a very high vertical gradient, is chosen
to test the effects of ignoring the cross terms associated
with vertical advection. Winds and the surface pressure
needed for the transport calculation are taken from the
5-yr reanalysis with the GEOS-DAS. Initial condition
(at 0000 UTC 1 January 1986) for the transport is first
constructed on pressure surfaces and linearly interpo-
lated onto the transport model’s o surfaces. Figure 16
shows the ‘‘analyzed’” 250-mb EPV field (upper
panel) at 1200 UTC 31 January 1986 as constructed
directly from the GEOS-DAS’s output data and the cor-
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responding simulation (lower panel) with the essen- -
tially monotonic FFSL-3 scheme (2° X 2.5° horizontal

resolution with 20 vertical o levels, 15-min time step).

The simulation captures practically all large-scale fea-

tures of the ‘‘analysis.”” Figure 17 shows the time series

of the 250-mb EPV at the closest grid point to London

(52°N, 0°). The correlation between the ‘‘analysis’

and the simulation is very high, and it does not dete-

riorate with time. We did not use the less diffusive

FFSL-4 (semimonotonic PPM) or the FFSL-5 (posi-

tive definite PPM) because EPV is not a positive def-

inite scalar. The simulation took about 23 s CPU time
(on a single processor CRAY C-90) per model day.

We also experimented with an algorithm that included
the cross terms in the vertical direction. It is found that
the result is essentially identical to the one just pre-
sented without the associated vertical cross terms. This
indicates that the simplification we took in deriving
(4.2) is fundamentally sound under the hydrostatic as-
sumption.

5. Concluding remarks

We have presented an algorithm for extending 1D
flux-form transport schemes to multidimensions and
large time steps. We have termed the scheme flux-form
semi-Lagrangian (FFSL). The scheme is conservative
and upstream-biased, and also has a monotonicity op-
tion. Two more subtle constraints are explicitly consid-
ered in the development. The “‘consistency’’ condition
ensures that for constituent applications the numerical
form of the constituent continuity equations becomes
the same as the underlying continuity equation of the
background fluid flow when the mixing ratio is con-
stant. This seemingly trivial constraint is often not
maintained in off-line tracer transport models and can
cause spurious fluxes in the constituent field, which
corrupts the ability to perform quantitative analysis.
The second constraint is the ability of the nonlinear
advection algorithm to preserve linear tracer correla-
tions. High-quality tracer observations explicitly show
compact correlation of transport dominated constitu-
ents (Fahey et al. 1990; Plumb and Ko 1992). Chem-
ical sources and sinks can violate the correlation rela-
tionship. Hence, if a chemistry transport model is going
to be used to study chemical mechanisms, the advection
algorithm must be able to maintain the correlation re-
lationship.

The multidimensional algorithm, which is derived
from an operator-split perspective that explicitly con-
siders the fluxes associated with the cross terms, allows
the application of 1D monotonic van Leer—type
schemes in multidimension. The splitting error in mul-
tidimensions is addressed by first symmetrizing the
cross-derivative terms and then by enforcing an invari-
ant condition of the advective form of the conservation
law that a constant mixing ratio—like field should re-
main constant. The extension to long time steps can be
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viewed as an integer shift of the distribution followed
by a normal application of the Eulerian scheme. Due
to the pole singularity, the multidimensional scheme
would not be efficient in the spherical geometry with-
out the semi-Lagrangian approach to eliminate the time
step constraint. On the other hand, the full benefit of
the conservative FFSL approach would not be realized
without the multidimensional technique (the maximum
allowable time step would be greatly reduced without
the correct cross terms).

We have chosen the van Leer scheme and PPM as
the building blocks of the multidimensional FFSL
scheme due to their demonstrated accuracy and effi-
ciency in 1D. PPM is a high-order extension of the van
Leer scheme. It is often regarded as very expensive in
the meteorology literature. Since a Riemann solver
(see, e.g., Carpenter et al. 1990) is not involved for the
constituent transport problem, our implementation of
the 1D PPM (with first-order backward trajectory of
the cell interface, see Fig. 3) to the multidimensional
FFSL algorithm is computationally efficient, as dem-
onstrated by the numerical example in sections 4b
and 4c.

We recommend the use of the semimonotonic or the
positive-definite constraint (for PPM) for low-resolu-
tion simulations or when there is explicit ‘‘subgrid-
scale turbulence parameterization.”” For chemical con-
stituents or water vapor transport in a general circula-
tion model with moderate resolution, we recommend
using the monotonic PPM in the horizontal and either
semimonotonic or positive-definite PPM in the vertical
direction. However, the monotonic constraint should
always be used when preservation of the linear corre-
lation is desired.

Our focus in this paper is on the tracer advection
problem in the spherical geometry. A PPM-based
multidimensional FFSL shallow-water model has
been developed and presented in the fourth CHAMMP
workshop for the numerical solution of PDE’s in
spherical geometry (Chicago, Illinois, 2426 August
1994). A 3D plug-compatible ‘‘dynamical core’’ for
the GEOS-GCM (Takacs et al. 1994) has also been
developed and is currently under testing.
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APPENDIX A
Stability of the 2D Eulerian Flux-Form Schemes

The stability of the multidimensional flux-form
scheme (2.24) can be analyzed by a von Neumann-
type Fourier analysis (e.g., Haltiner and Williams
1980). It is not feasible to carry out such an analysis
with a nonlinear scheme. We will choose the second-
order van Leer scheme without a limiter as the 1D flux-
form outer operator F (and G) and the first-order up-
wind scheme (the donor-cell scheme) as the 1D ad-
vective-form inner operator g (and f). It is convenient
in the analysis to assume that U, V, and 7 are positive
constants. Under such an assumption, the flow is non-
deformational and nondivergent. Here Q (density) and
g (mixing ratio) are, therefore, interchangeable. For a
constant Courant number (C* = UAt/Ax), the uncon-
strained (i.e., linear) van Leer scheme in the x direction
can be written in the following finite-difference form

n+l

qi " =qj + Fy(q"), (A1)

where

n 1 X
Fi(q") = C"[w:tu —ap -7 -

X(qiv1; — 95— qi + C]?—zj)] . (A2)

\

0754 -

054 - - --

N-S Courant Number

0.25

0.25 05 0.75 1 1.25 1.5
E-W Courant Number
FiG. Al. The maximum amplification factor for the 2D Eulerian

scheme (with linear second-order van Leer scheme as 1D outer op-
erators). Contour interval is 0.1. The first contour is 1.
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. E-W Courant Number

FiG. A2. As in Fig. Al but for the minimum amplification factor.
Contour interval is 0.1.

The first-order upwind scheme (the donor-cell scheme)
for the. advective operator in the y direction is
simply

n+l

g5 (A.3)

=qy + 8;(q"),
where
(A4)

gi(q") = C’(qj-1 — qi)-

The second term on the right-hand side of (2.24)
is obtained by replacing ¢” in (A.2) with ¢¢, where
& — N 1 n
9" = q; + 5 8:(q")
1 n
=qj + 5 C(gi-1 — g3)- (AS)

The remaining (last) term on the right-hand side of
(2.24) can be easily obtained by the symmetric prop-

erty of the scheme. Under the above assumption of -

constant winds, it turns out that this linear Eulerian
upwind-biased scheme is the same as Colella’s sec-
ond-order corner transport upwind algorithm (Co-
lella 1990) when no monotonicity constraint (lim-
iter) is enforced. To aid in comparison with its
semi-Lagrangian counterpart to be presented later,
we provide here the complex amplification factor A
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1.5

1.251
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N-S Courant Number

d
o

0.251

0.25 0.5 0.75 1 1.25 1.5
E-W Courant Number

FiG. A3. The minimum amplification factor of the symmetric
scheme (2.24) minus that of the asymmetric scheme (2.16).

resulting from the von Neumann stability analysis as
a function of the nondimensionalized east—west (k)
and north—south (/) wavenumbers:

N-S Courant Number

1.25 1.5

0.;15 1
E-W Courant Number

0.25 0.5

FiG. A4. The maximum amplification factor of the linear van Leer
scheme in 2D without cross terms. Contour interval is 0.05. The first
contour is 1.05.
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A=1-c(- e"k)[l ~la-ema- e—w)]
X [1 -0 - e-i’)] —C(1—e ™

X [1 — (1 -0 - e‘z”)]

X [1 —%C"(l - e‘”‘)] . (A6)

where i = y—1. The directional symmetry of (A.6) is
clear. The maximum and minimum magnitudes of A are
solved numerically and are plotted in Figs. Al and A2,
respectively. The scheme is stable in the region described
by (2.4). The minimum amplification factor provides a
measure of the numerical diffusion of the particular
scheme. The scheme is most damped when C* = C¥
= 0.5. It is informative to study the stabilizing effect of
the cross terms and the effect of an asymmetric cross term
as it appears in scheme (2.16) or (2.20). The amplifi-
cation factor for scheme (2.24) without the cross terms
(i.e., without the contribution from the inner advective
operators ) is

Ax=1-C(1—-e™)

X [1 —i(l — (1 —e‘z”‘)] —C(1—e

X [1 —%(1 — (1 - e‘z”)], (A7)

and the amplification factor for the asymmetric scheme
(2.16) is

A¥*=1-C(1-e™

X [1 —1(1-cn —e-sz)]
—c —e‘”)[l —s(1-cna —e—zf')]

X [1—=C*(1 —e ™].
It is found that the stable region of the asymmetric scheme
(2.16) or (2.20) is the same as the symmetric scheme
(2.24), as expected. But the amplification/damping fac-
tor as given by (A.8) is not symmetric to the line C*
= C”. Directional biases can therefore appear in a nu-
merical simulation. Figure A3 shows the differences of
the minimum amplification factor between the symmetric
and the asymmetric schemes. Overall, the asymmetric
scheme appears to be more damped (diffusive) than the
recommended symmetric scheme.

The maximum amplification factor of the scheme with-
out the cross terms is plotted in Fig. A4. Although the
amplification rate is very close to one in the region where
C* + € = 1, it is greater than one in the entire domain

(A.8)

LIN AND

N-S Courant Number

et s
;@@@0006005

E—W Couront Number

Fic. A5. The minimum amplification factor of the 2D flux-form
semi-Lagrangian scheme (with linear second-order van Leer scheme
as 1D outer operators for computing the fractional fluxes). Contour
interval is 0.1. The first contour is 0.1. The amplification factor is
exactly one for integer Courant numbers.

except in the degenerate case: C* = 0 or C* = 0. The
scheme is, therefore, formally unstable. In 2D, the stability
characteristics of the ‘‘linear’” van Leer scheme without
the cross terms appears to be very similar to that of the
Lax—Wendroff (see Leith 1965). It should be noted that
the donor-cell scheme is stable [in the region described
by (2.5)] without the cross terms, as can be easily proved
by dropping the second-order terms in the above analysis.
The unidirectional second- (or higher) order terms are
thus responsible for the destabilization. The monotonic
(nonlinear) van Leer scheme locally reduces to the donor-
cell scheme when overshoots/undershoots are to appear.
Therefore, it is possible that the nonlinear van Leer scheme
will be stable without the cross terms. Unfortunately, the
von Neumann stability analysis is not applicable when
monotonicity constraint is enforced. We have tested the
3D global (hydrostatic) chemistry transport model (de-
scribed in section 4¢) with the cross terms omitted in all
three directions and found that a stable integration can be
maintained by halving the size of the time step, but the
results appear to be more diffusive without the cross
terms. One possible explanation is that in regions where
unrealistic amplification of the field due to linear insta-
bility (induced by the unidirectional higher order terms)
is about to appear the field becomes locally unsmooth and
consequently the second-order nonlinear scheme locally
reduces to the first-order but stable donor-cell scheme due
to the presence of the monotonicity constraint.
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APPENDIX B

Stability of the 2D Flux-Form
Semi-Lagrangian Scheme

The stability of the 2D semi-Lagrangian extension of
the multidimensional flux-form scheme (3.9) can be sim-

1-{1-
_{1_

A:

where i = V-1, C* = AtU/Ax, M = INT(CY), ¢,
= C* — M, the fractional Courant number in the x
direction, C* = AtV/Ay, N = INT(C?), and ¢, = C”?
— N, the fractional Courant number in the y direction.

Note that (B.1) reduces to the Eulerian case (A.6)
when M = N = 0. It is found that the magnitude of A
is no greater than unity for all wavenumbers (between
0.and 27) and for all Courant numbers searched nu-
merically (between O and 10). The scheme is hereby
regarded as unconditionally stable for the nondefor-
mational flow case analyzed here. In a more general
deformational flow field, the stability should be limited
by (3.6). Figure A5 shows the minimum value of | A|
(the damping factor). Although we were not able to
show it analytically, the damping factor seems to be
only a function of the two fractional Courant numbers.
This behavior is meaningful because the shift operation
that defines the integer translation is exact, and the sta-
bility characteristics of the fractional flux should be
~ valid between each integer interval. This is exhibited
by the morphology of Fig. AS.

APPENDIX C
Alternative Constraints for PPM

The two alternative constraints proposed in section
4 as well as a simplified monotonicity constraint for
PPM will be described here. We will use similar no-
tations as in Colella and Woodward (1984, CW here-
after). The simplified monotonicity constraint requires
fewer floating point operations, but it is otherwise func-
tionally equivalent to that of CW [their Eq. (1.10)].
Denoting A, a,, ag, and ae as the mean value, left edge
value, right edge value, and the ‘‘curvature’’ of the
first-guess parabola [computed by (1.5) and (1.6) in
CW], over- and undershoots can be eliminated by the
following Fortran-like procedure:
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ilarly analyzed. To enable the von Neumann analysis, the
Courant numbers in the x and y directions are again as-
sumed to be positive definite constants and no monotonic-
ity constraint shall be applied to the flux-form van Leer
operators [see Eq. (3.13)]. Under these assumptions, the
complex amplification factor A for scheme (3.9) is

oMk ¢ gmiMK(] — e—"k)[1 - i(l — e - e‘z”‘)] } % {1+e™M1=c(l—-e™])

e + ¢ em™(1 — e'”)[l — 2 (=)l - e”Z“)]}% (1+ e ™1 - (1~ e )]}, (B.1)

IF AAnme =0 THEN
AL+ A, Ar<A, As<0

ELSEIF a¢ba < —(6a)? THEN
As<3(a,—A), Artar—As, AL a
ELSEIF a¢ba > (6a)> THEN
A< 3(ag —A), A< ag— As, Ar“ g
ENDIF,

where éa = ag — ar,, A Ao the monotonized “‘slope’’
[determined by Eq. (1.8) in CW or Eq. (5) in L94],
and A;, Ag, and Ag are the final left edge value, right
edge value, and the curvature, respectively, of the mo-
notonized parabola.

If only undershoots are to be eliminated, the *‘semi-
monotonic’’ constraint is enforced by the following
procedure:

IF |éa| < —as THEN
IF A < MIN(ag, a;) THEN
AL <A, Ap<A, A¢< O
ELSE
IF ag > a; THEN
As < 3(a, —~ A),
ELSE
Ag < 3(ag —
ENDIF
ENDIF
ENDIF.

Ar<ap — As, AL aL

A), A < ar—As, Ar+cag

If only negative undershoots are to be eliminated,
the “‘positive definite’’ constraint is enforced by the
following procedure:
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IF |éa| < —as, THEN
IF A, <0 THEN
IF A < MIN(ag, a,) THEN
AL <A, AR« A, Ag<0

ELSE
IF ar > a, THEN
Ag<3(a,— A), Ap<a— As,
A, ap
ELSE
Ag<=3(ag — A), A < ag— A,
Ap < ag
ENDIF

ENDIF

ENDIF
ENDIF,

where A, = A + (as/12)[1 + 3(8a/as)?] the mini-
mum vatue of the first-guess parabolic distribution.
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