WINTER AVIATION HAZARDS

Andy McNeel and Roland Nuñez Houston Center Weather Service Unit

WINTER SEASON ICING

Structural Icing

Definition: an accumulation of ice on aircraft structures in flight.

Photo credit: NASA

Types of Ice

Rime:

- Rough, milky white appearance
- Follows contour of surface

Clear (or glaze):

- Smooth
- Air pockets result in lumpy, translucent appearance

Mixed:

• Combination of rime and clear ice.

Bird's Eye and Profile of Winter Storm

Fronts and low pressure areas are the biggest ice producers.

Snow

Temperature remains below freezing throughout the column.

 Precipitation stays frozen from cloud to ground.

Sleet/Ice Pellets

Shallow layer of warmer air above freezing temperatures at the surface.

 Snow melts partially in warm layer aloft, then refreezes at or near the surface.

Freezing Rain/Drizzle

- Deeper warm layer aloft above a shallow freezing layer at the surface.
- Snow melts into rain within warm layer.
- Rain doesn't freeze until it reaches the surface (or an object on the surface...like a plane!)

Impacts from Freezing Rain and Drizzle

- Roughens large surface areas.
- Distorts airfoil shapes.
- Makes flight extremely dangerous or impossible in a few minutes.
- May develop aloft.

Avoiding Ice Areas

Fly the shortest route through the front.

CLEAR AIR TURBULENCE

Turbulence Near Jet Stream/Streaks

 A "jet streak" is a maximum in velocity within a jet stream.

The jet stream, essentially a ribbon or stream of fastmoving air, creates turbulent eddies within the slowermoving air surrounding it, much like the eddies along the banks of a creek or stream.

• Turbulence is likely near jet streams and streaks, especially beneath them.

Mountain Wave Turbulence

 Strong prevailing winds blowing orthogonal to higher elevations in a stable atmosphere will create waves in the "river" of air aloft.

 These atmospheric waves move up and down vertically in the lee of the topography, resulting in turbulence.

• Clouds form in rows along the ridgeline of the waves as the ascending air reaches the dewpoint at the peak of the wave, forming clouds.

• These standing wave clouds are easy to spot on satellite imagery.

Mountain Wave Turbulence

- Two favored areas for turbulence:
 - Lower turbulent zone/rotor layer
 - Tropopause layer
- Effects can extend well beyond 100 miles of the topographical barrier.
- ZHU examples:
 - Davis Mountains
 - Serranias del Burro Range

Tropopause Height -Lower Turbulent Zone Terrain 10 15 20 ٥ 5 Horizontal Distance (n.m.)

Figure 5-1 Cross-Section of a Mountain Wave.

Example: December 19, 2011

Effects of Clear Air Turbulence

- Loss/gain of altitude.
- Potential for aircraft stall.
- Aircraft damage.
- Injuries to passengers and crewmembers.

Thank you for your time.

Let us know if you have any questions.