4. Low Cloud Forecasting Techniques

(UKMO empirical forecasting techniques)

Caused by low level moisture and wind shear in the boundary layer:

- Responsible for the formation of St and Sc
- -Turbulent stratus
- -Nocturnal stratus
- -Stratocumulus

- Need to know the depth of the Mixing Layer (d)
- Identify a layer, ideally topped by an inversion
- In this example use the layer 1000 to 900 hPa

- In the absence of an inversion use the following empirical rule:
- $V_s \le 16$ kts then d = 200V_s
- V_s ≥ 16 kts then d = 3500 ft (night) or d = 4000 ft (day)

Where V_s = surface wind Speed and d = depth of mixing layer

- Mixing causes the ELR to become approximately equal to DALR in time
- The line should be altered such that there are equal areas either side of the original ELR

- Mixing also causes Hydrolapse = SHMR
- The line should be altered such that there are equal areas either side of the original Hydrolapse

- Where the two lines cross is the Mixing Condensation Level, i.e. the cloud base
- Note that surface temperature has risen and dew point fallen
- This is common when stratus forms at night

- Cloud may form between the MCL and the top of the Mixing Layer
- Resulting profile follows the SALR through the cloud

Nocturnal stratus

- 1) Calculate TfogSaunders fog technique
- 2) Determine top of surface mixing layer (h)
- h ≈ 75 x surface wind speed
- 3) Calculate Tst
- Saunders stratus technique

Saunders stratus formation technique

- 1200Z representative tephigram
- Use Saunders method to find the fog point, T_f
- Mark on top of surface mixing layer (h)
- Draw HMR to h
- Draw DALR to surface pressure
- Read off T_{st}

Nocturnal stratus

- 1) Calculate Tfog
- Saunders fog technique
- 2) Determine top of surface mixing layer (h)
- h ≈ 75 x surface wind speed
- 3) Calculate Tst
- Saunders stratus technique
- Alternative methods

- Temperature where stratus is already present
- The morning's stratus clearance temperature minus 1 or 2°C
- The sea temperature if stratus is likely to be advected in from the sea

Nocturnal stratus

- 1) Calculate TfogSaunders fog technique
- 2) Determine top of surface mixing layer (h) • $h \approx 75 \text{ x}$ surface wind speed
- 3) Calculate Tst
- Saunders stratus technique
- 4) Determine height of stratusHeight = (Tst-Tdew)x350

When will stratus clear?

Three mechanisms

- Insolation
- increased wind
- advection of drier air

Clearance by insolation

 Draw a DALR from the stratus top to the surface pressure

Clearance by increased wind

Increasing the wind speed will deepen the mixing layer ...

Met Office

Clearance by increased wind

 ... and can mix drier air from above into the cloudy layer which may disperse the stratus

Clearance by advection of drier air

- drier air from another source may clear the stratus
- use satellite pictures to observe rear edge of stratus
- Example follows.

Area of drier air spreads south west with time

LOW CLOUD FORECASTING QUIZ

1) What are the 2 main factors required for the formation of low cloud?

- 2) What is the relationship between the height of the base of stratus, the air temperature and the dewpoint?
- 3) What are the 3 primary ways of clearing stratus?
- 4) What 2 features on a tephigram can mark the top of a layer of cloud?

© Crown copyright 2004

LOW CLOUD FORECASTING QUIZ

- 1) What are the 2 main factors required for the formation of low cloud?
- ANS: Low level moisture and turbulence (wind shear)
- 2) What is the relationship between the height of the base of stratus, the air temperature and the dewpoint?
 ANS: H_{st} = (T_{St}-T_{dew})x350
- 3) What are the 3 primary ways of clearing stratus?ANS: Increasing wind; drier air; insolation
- 4) What 2 features on a tephigram can mark the top of a layer of cloud?
- ANS: Inversion; isothermal.

Satellite

© Crown copyright 2004