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1. Introduction 

Due to the improvements in data assimilation techniques, computing resources, and numerical models 
such as representing large-scale climate teleconnections, forecasting seasonal climate by using coupled 
atmosphere-ocean-land general circulation models (CGCMs) has been an emerging area since mid-1990s. 
Now the major operational weather and climate forecast centers around the world are producing real-time 
seasonal climate predictions with CGCMs up to nine months. The progress in dynamical seasonal forecasts 
provides potential opportunity to predict hydrologic variables (e.g., streamflow, soil moisture) at long lead 
times, which is important for agriculture and water resources management, drought and flood detection and 
mitigation. In this context, seasonal hydrologic forecast plays an important role in transitioning the scientific 
advances from the climate research community to the end users of society (Yuan et al. 2011b).   

Recently, NCEP has updated its operational seasonal forecast system with a new CGCM, the second 
version of CFS (CFSv2), where a number of new physical packages for cloud-aerosol-radiation, land surface, 
ocean and sea ice processes, as well as a new atmosphere-ocean-land data assimilation system have been 
incorporated (Saha et al. 2010, 2011). Therefore, it is necessary to conduct comprehensive seasonal 
hydrologic reforecasts, and to investigate whether or how much of the improvement from climate forecast 
models can propagate into the land surface hydrologic forecast. Here, we summarize a deterministic 
assessment and probabilistic evaluation of CFSv2 by comparing with CFSv1 and European seasonal forecast 
models, and the CFSv2-based seasonal hydrologic forecast results. Full documentations are available in Yuan 
et al. (2011a, 2011b). 

2. Data and method 

To have a first look at CFSv2 in a hydrologic forecast perspective, we used the data as follows: 1) the 28-
year (1982-2009) ensemble retrospective forecast data set from CFSv2 with 24 members at T126 resolution 
(Saha et al. 2011), and the nine-month reforecast for CFSv1 with 15 members at T62 resolution covering the 
same period 1982-2009 (Saha et al. 2006); 2) the EUROSIP (European Operational Seasonal to Interannual 
Prediction) model (ECMWF, Météo France (MF), and UK Met Office (UKMO)) reforecasts at 2.5°×2.5° 
resolution from 1960-2005 (Weisheimer et al. 2009); and 3) surface air temperature at 0.5° from the Climate 
Research Unit (CRU) TS3.1 dataset for the period 1901-2009 (Mitchell and Jones 2005), and precipitation at 
0.5° from the Climate Prediction Center (CPC) Unified Gauge-Based Analysis for 1979-2009 (Chen et al. 
2008).   

We downscaled the precipitation and temperature hindcasts from CFSv1 and CFSv2 to 1/8 degree over 
CONUS by using the Bayesian method described in Luo et al. (2007) and Luo and Wood (2008).  The 
downscaled precipitation and temperature fields are used as inputs to the VIC model (in water balance mode) 
to provide 6-month, 20-member ensemble hydrologic reforecasts starting on the 1st of February, May, August 
and November of each year during 1982-2008, with initial conditions from a 62-year (1949-2010) offline 
simulation driven by merged data from 31-year (1949-1979) University of Washington dataset (Maurer et al. 
2002) and 31-year (1980-2010) dataset from the North-American Land Data Assimilation System Project 
Phase 2 (NLDAS-2; Xia et al. 2011).   

3. Results 

Figure 1 illustrates the geographic distributions of the month-1 predictive skill in terms of correlation for 
surface air temperature forecasts over land grids for CFSv1, CFSv2, ECMWF, MF, UKMO and a multi-
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model forecast (Yuan et al. 2011a). As compared with CFSv1, CFSv2 shows overall improvement, especially 
in the cold season. Wang et al. (2010) identified the cold bias of CFSv1 over northern hemisphere mid-high 
latitudes in the real-time seasonal forecast during the warm season, while the CFSv2 reduced the bias for the 
August forecast by 53%, averaged over the globe, and the reduction was more pronounced over the high 
latitudes in Eurasia (not shown). As compared with the ENSEMBLES EUROSIP models, CFSv2 has similar 
performance to ECMWF, where the former has higher skill over North America in November, while the latter 
has higher skill over northern Africa in February. The equally-weighted multi-model combines the advantages 
of individual models, and presents generally improved predictability. However, neither the multi-model nor 
the individual models in this study have significant predictability over western Russia in May and August, 
which is an issue that needs further investigation. On average, the global mean (excluding Antarctica) 
correlations of surface air temperature for the four months are as follows: CFSv1, 0.38; CFSv2, 0.52; 
ECMWF, 0.51; MF, 0.39; UKMO, 0.44; and the multi-model, 0.54. Note that the global mean correlation for 
multi-model in November is slightly smaller than the CFSv2, which may result partly from the low skill of 
MF and UKMO (Figure 1).  

 

Fig. 1  Month-1 predictive skill of monthly surface air temperature forecasts over land grids in February, 
May, August and November during 1982-2005. The multi-model is the average among CFSv2, 
ECMWF, MF and UKMO. Non-white colors represent significant correlation at 0.05 levels. The 
numbers are the global mean correlations (Yuan et al. 2011a). 
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Figure 2 presents the percentage of 
the positive RPSS for monthly surface air 
temperature and precipitation anomaly 
over the global land area (excluding 
Antarctic). For the surface air temperature 
anomaly, the CFSv2 has a higher 
percentage of forecasts with skill beyond 
climatology than the other models. Even 
out to two months, more than 54% of the 
forecasts from the CFSv2 produce useful 
predictions. For the precipitation anomaly, 
the performance of the CFSv2 is 
comparable to the ECMWF, and both are 
much better than the other models. 
Similarly to the deterministic evaluation, 
the skill of probabilistic forecasts for 
precipitation for each individual model 
and the multi-model drops greatly beyond 
one month. 

Figure 3 shows the correlation 
between NLDAS-2 observation and 
downscaled month-1 precipitation 
forecasts at 1/8 degree over conterminous 
U.S. in February, May, August and 
November during 1982-2008 (Yuan et al. 
2011b). The patterns are similar to the 
original CFSv1 and CFSv2 forecast 
results at 2.5 degree (Yuan et al. 2011a), 
where CFSv2 is generally better than 
CFSv1 especially in cold seasons. For 
instance, there are obvious improvements 
over Pacific Northwest, New Mexico-
Oklahoma-Texas region and eastern coast 
for the forecasts in February and 
November (Figure 3a,d). In May, CFSv2 
has higher skill than CFSv1 over 
southwestern U.S., Ohio basin and 
Montana, but has lower skill over the 
southeast (Figure 3b). In the summer time, 
both CFSv1 and CFSv2 have limited skill, 
so the CFSv2 has negligible improvement 
(Figure 3c). On average, CFSv2 increases 
percentage of grid cells with significant 
predictive skill (>0.38) from CFSv1 by 
61%, 45%, 14% and 60% for the four 
months, respectively. 

Before using the downscaled forecast 
forcing to provide seasonal hydrologic 
forecast, a 62-year (1949-2010) offline 
simulation was performed to generate 
initial condition and reference data for 

Fig. 2  Percentage of positive Ranked Probability Skill Score 
(RPSS) for monthly surface air temperature and precipitation 
anomaly over the global land area during 1982-2005 (Yuan 
et al. 2011a). 

Fig. 3 Correlation between NLDAS-2 observation and Bayesian 
downscaled CFSv1 and CFSv2 month-1 precipitation forecasts 
at 1/8 degree over conterminous U.S. in February, May, August 
and November during 1982-2008. The numbers are percentages 
of grid cells with significant predictive skill (Yuan et al.
2011b). 
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validation (e.g., soil moisture, 
runoff), and test the capability of 
VIC model in capturing the 
streamflow interannual variations 
given observed forcing. To match 
the reforecast period, we calculated 
the Nash-Sutcliffe efficiency 
coefficients for monthly streamflow 
of offline VIC simulations at 416 
U.S. Geological Survey (USGS) 
gauges during 1982-2008. Figure 4 
presents locations of the gauges and 
their corresponding efficiency 
coefficients (Yuan et al. 2011b). 
Most of the gauges used in this 
study are in eastern U.S., and the 
highest coefficients are mainly over 
Ohio basin, Northeast and lower 
Mississippi. Among the 416 gauges, 
there are 315 (75%) and 130 (31%) 
gauges with coefficients larger than 
0.3 and 0.7, respectively. Figure 5 
shows interannual variations of 
streamflow from simulation and 
observation at four selected gauges 
with drainage areas ranging from 
1027 to 20300 square miles (Yuan 
et al. 2011b). Consistent with high 
Nash-Sutcliffe coefficients, the VIC 
model captured seasonal fluctuation 
of streamflow quite well at the four 
gauges during 1982-2008, even 
though we started the model from 
1949. Given the limited long-term 
in situ soil moisture observations 
over CONUS and the hypothesis 
that well-calibrated hydrologic 
model could provide reasonable soil 
moisture, we used the offline 
simulated soil moisture as a 
reference data to validate the 
hydrologic forecast. 

Figure 6 shows the Relative 
Operating Characteristic (ROC) 
diagram for low and high flow 
forecasts (Yuan et al. 2011b). The 
results were calculated for 130 gauges with NS coefficients large than 0.7 (Figure 4). All forecasts were more 
skillful than random forecast in the first three months. Low flow forecasts were a little better than high flow 
forecasts in the first month, regardless if the method is ESP or the dynamical climate model; however, their 
differences diminished beyond month-1. CFSv1 had no advantage in distinguishing low flows over ESP in the 
first month due to the strong impact on the forecast from initial condition. As the effect of initial conditions 
decreased and climate model still maintaining some skill, CFSv1 outperformed ESP in the second month; 

Fig. 4  Efficiency coefficients of monthly streamflow from offline VIC 
simulations at 416 USGS gauges during 1982-2008 (Yuan et al.
2011b). 

Fig. 5  Interannual variations of VIC offline simulated monthly 
streamflow compared with USGS observation at four selected 
gauges (Yuan et al. 2011b). 
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while their performance became 
similar again because of the skill 
decrease in the climate model (Figure 
6). With improved skill, CFSv2 was 
consistently better than ESP in the 
first three months, and increased the 
area under ROC curve by 4-7%. For 
high flows, the climate forecast 
model-based approach only limited 
skill beyond ESP in the first month 
(Figure 6). The moderate advantage 
manifested the importance of initial 
hydrologic conditions in identifying 
low and high flows, and the need of 
improvement for climate forecasting 
beyond month-1. 

To investigate the performance 
for drought severity and duration 
forecasts, Severity-Area-Duration 
(SAD) plots were shown in Figure 7 
for 3-month duration (Yuan et al. 
2011b). Severity (S) is defined as S = 
(1-ΣP/t)*100%, where ΣP is the 
summary of monthly percentile of 
soil moisture over t months. Given 
that we were validating drought 
forecast, the SAD plot was a little 
different from its traditional way 
(Andreadis et al. 2005). We defined 
the drought grid cells based on the 
offline simulation results, no matter 
whether they were under drought or 
not in the forecasts.   Therefore,  the  
severity  was  used  to  quantify  the  
difference  between  the models’ 
forecasted droughts and the offline 
simulation conditioning on drought 
area. The offline simulated severity 
values were around 0.9 (Figure 7), 
which was similar to previous studies 
for 3-month drought duration 
(Andreadis et al., 2005). Except for 
1988, central U.S. drought forecasts had very low skill (Figure 7b) due to the underestimated drought area. 
CFSv1 and CFSv2 provided more accurate severity values than ESP (Figure 7a,c-d), indicating the added 
values from climate forecast besides initial conditions. Unlike monthly drought area analysis where the 
forecast could produce larger drought areas than the offline simulation, the SAD plot demonstrated that the 
forecasted severity values were generally lower than offline simulation due to the under-prediction of drought 
areas and/or intensities. For the 1988 drought, all three forecast approaches under-predicted severity 
compared to the offline simulation by about 40%. Averaged over the other three droughts, ESP 
underestimated the severity by 31%, CFSv1 by 24%, and CFSv2 by 15%. 

 

Fig. 6  Relative Operating Characteristic (ROC) diagram for low and 
high flow forecasts averaged at 130 gauges in the first three 
months (Yuan et al. 2011b).

Fig. 7  Severity-Area-Duration (SAD) plots for 3-month duration. 
The 3-month drought grid cells are identified from offline 
simulation (Yuan et al. 2011b). 
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4. Conclusion 

We provided a first look at the capability of the NCEP’s latest operational seasonal forecast model CFSv2 
by comparing its hindcast forecast skill with the CFSv1, ENSEMBLES EUROSIP models. CFSv2 shows 
significant skill enhancement for land surface air temperature and precipitation from CFSv1 for month-1 
forecasts, and has comparable result to ECMWF, where the former and the latter have slightly higher skill in 
temperature and precipitation respectively (Yuan et al. 2011a). 

CFSv1 and CFSv2-based seasonal hydrologic forecasts were generally more skillful than ESP in the first 
three months, and CFSv2 increased the skillful forecast percentage from CFSv1 by 10% on average. The 
climate model-based approach could outperform ESP out to three months in identifying low flow, but not for 
high flow beyond one month. CFSv2 had better discrimination than CFSv1 for the month-1 streamflow 
forecast. The offline simulated soil moisture was used to validate short-term drought forecasts. The SAD plots 
for 3-month duration illustrated the underestimation of drought severity, but the CFSv2 had the least error 
(Yuan et al. 2011b). 
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