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1. Introduction 

With a substantial portion of the 
world’s population influenced by 
climate variability, such as drought, 
flood, heat and cold waves, any 
capability to anticipate these 
fluctuations one or more seasons in 
advance would have measurable 
benefits for decision making in many 
sectors of society (Barnston et al. 
2005). From the early 1980s to late 
1990s, our ability to develop and 
improve coupled climate models 
have led to the ability to predict 
tropical climate variations with some 
success (Kang and Shukla 2006; 
Kirtman and Pirani 2009). Here, we 
examine the seasonal forecast 
performance of the National Centers 
for Environmental Prediction 
(NCEP) Coupled Forecast System 
(CFS) over the Tropics, and in 
particular, over the United States 
Affiliated Pacific Islands (USAPI).   

Seasonal prediction over the 
tropics, and to a certain degree over 
the extratropics, is essentially linked 
to the accurate prediction of tropical 
SST (Shukla 1998; Kumar and 
Hoerling 1998; Goddard et al. 2001). 
Due to their impact on global climate 
anomalies (Ropelewski and Halpert 
1987), predicting SST variations 
during the life cycle of El Niño–
Southern Oscillation (ENSO) has 
been the focus of coupled model 
development.  While efforts are 
underway to reduce model systematic 
errors, many Coupled General Circulation Models (CGCMs) have shown skill in capturing ENSO 
characteristics, paving ways for routine operational seasonal forecasts (Anderson et al. 2003; Saha et al. 
2006). Recent studies have evaluated ENSO skills by analyzing hindcasts produced by CGCMs (Jin et al. 

Fig. 1  Climatological precipitation (mm/day, shaded) and variance 
(mm2/day, contours) for four standard seasons, (a-d) Observations 
and (e-h) 0-month CFS forecast.  The boxed areas in (e) represent 
the regions where CFS ability in forecasting seasonal SST or 
precipitation anomalies are assessed. The area averaging used are: 
south west Indian Ocean (15oS-0o, 55o-75oE; SWIO); eastern 
equatorial Indian Ocean (10oS-0o, 90o-110oE; EEIO); northern 
Atlantic (20o-80oW, 10o-20oN) ; western north Pacific (5o-15oN, 
125o-155oE; WNP); south Pacific (10o-30oS, 160o-200oE; SP); 
Hawaii (15o-30oN, 140o-170oW; HI), and equatorial Pacific (10oS-
5oN, 170o-110oW; EPAC). Contours are drawn starting from 1 
mm2/day with an interval of 2 units. 
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2008; Luo et al. 2008; Stockdale et al. 
2011; Sooraj et al. 2011).  Despite 
success, the predictive skills of 
models are degraded during the 
ENSO onset and decay periods 
(Barnston et al. 1999). Recent 
research interests have also focused 
on twotypes of El Niño namely, 
western Pacific and cold tongue 
events (e.g., Kug et al. 2009). 

While it is recognized that ENSO 
influences global climate anomalies, 
sensitivity experiments with AGCMs 
suggest that SST variations over the 
southwest Indian Ocean (SWIO) also 
modulate the amplitude of ENSO-
induced circulation and precipitation 
anomalies over the tropical west 
Pacific (Watanabe and Jin 2003; 
Annamalai et al. 2005), and over the 
Pacific – North American (PNA) 
region (Annamalai et al. 2007). In 
summary, the expectation is that the 
combined effects of the tropical 
Pacific and Indian Oceans probably 
can further strengthen global climate 
anomalies.   

For the target regions over the 
USAPI (Fig. 1), the current 
operational seasonal precipitation 
prediction system is based on 
empirical methods in which SSTs 
provide the most reliable predictive 
information, and higher prediction skill is noticed during ENSO winters (He and Barnston 1996).  During 
non-ENSO and weak to moderate ENSO events too, USAPI experience significant seasonal rainfall 
anomalies.  In these circumstances, the precipitation forecast skill by empirical model is low, and the reasons 
may be manifold including: a) nonlinear relationship between ENSO SST and precipitation is not 
incorporated, b) details in the space-time evolution of SST during different flavors of ENSO are not properly 
accounted for, and c) SST anomalies other than ENSO may be responsible for rainfall variations. A prediction 
system based on a fully coupled dynamical model may overcome some of the above limitations. 

2. Hindcasts and skill measures 

Here, we analyze the output from CFS retrospective predictions (or alternatively referred to as hindcasts) 
that cover all 12 calendar months from 1981 to 2005. These hindcast runs, each of which is 9-month 
integration, are ensemble of 15 members starting from perturbed real-time oceanic and atmospheric initial 
conditions (ICs). Note that, for a 9-month integration, prediction at 6-month lead (L6) is the longest lead 
available for seasonal means while it is 8-month lead (L8) for prediction of monthly means. Variables 
examined in our analysis include SST, precipitation, and wind at 850 hPa. To infer the ocean Rossby waves in 
the tropical Indian Ocean (TIO), we also analyzed sea surface height (SSH). Hindcast anomalies are 
computed by removing the model climatology for each grid point, each initial month, and each lead time from 
the original ensemble hindcasts. Regarding verification of the real-time forecasts for the period 2006-09, we 

Fig. 2  (a) Anomaly correlation coefficient (ACC) of CFS ensemble 
mean forecasts of the monthly mean Nino3.4 SST over the period 
(1981-2005) as a function of initial condition month (x-axis) and 
lead months (y-axis). Nino3.4 is defined as the spatial mean SST 
over 5oS-5oN, 170o-120oW. (b) same as (a) but for persistence 
forecast. (c) same as (a) but for root mean square error (RMSE) for 
CFS ensemble forecast, and (d) same as (c) but for persistence 
forecast. (e) same as (a) but for CFS mean forecasts of the monthly 
mean precipitation anomalies over the equatorial Pacific (10oS-
5oN, 170oE-110oW). (f) same as (c) but for monthly mean 
precipitation anomalies over the equatorial Pacific. 
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examined 15-member ensemble members 
corresponding to the same ICs as in 
hindcasts. For the period 1981-2009, 
observed datasets used for verification 
include the CPC merged analysis of 
precipitation (CMAP) (Xie and Arkin 
1996), winds from the NCEP/DOE 
reanalysis (Kanamitsu et al. 2002), and 
the NOAA optimally interpolated SST 
analysis (Reynolds et al. 2002). SSH is 
taken from the Global ocean data 
assimilation system. For verification 
observed data are interpolated to CFS’ 
horizontal resolution (T62). 

The entire range of available 
hindcasts (0 to 6 month lead) for all the 
four standard seasons is verified. To infer 
the uncertainty measures associated with 
forecasts, the skills are assessed using 
deterministic [anomaly correlation 
coefficient (ACC), the ensemble spread 
and signal-to-noise ratio (S/N)], 
categorical [Heidke skill score (HSS)], 
and probabilistic [rank probability skill 
score (RPSS)] methods. For the target 
regions (Fig. 1), the distribution of 
ensemble members, ensemble mean, and 
observed anomalies are plotted for every 
year. These plots aid in understanding 
year-to-year variations in the spread and 
its association with predicted value, and 
if there is asymmetry in model’s 
predictive skill (positive vs negative 
values). More details are in Sooraj et al. 
(2011). 

3. Hindcast skills 

Figure 1 shows climatological precipitation (shaded) and variance (contours) for standard seasons from 
observations (left) and at 0-month lead hindcast from CFS (right).  Compared to observations, CFS captures 
the seasonal dependency in the position and intensity of the rainfall maximum and also regional variance 
maxima over the tropics with some systematic errors. Motivated by this, apart from examining SST skill, we 
also evaluate CFS’ ability in forecasting: (i) tropical and regional precipitation anomalies; (ii) different flavors 
of El Niño and their associated regional response; and (iii) teleconnection between the tropical Pacific and 
Indian Ocean (TIO). In terms of regional indices, skill is examined for precipitation (area outlined in solid 
lines in Fig. 1), and SST influenced by thermocline variations over the TIO (area outlined in dotted lines in 
Fig. 1). 

a. SST over the equatorial Pacific 

Figure 2 shows ACC (Fig. 2a) and RMSE (Fig. 2c) for Niño3.4 SST anomalies estimated for the entire 
period. Results are shown for all lead times (0-8 months), and for all ICs (January through December). The 
corresponding measures estimated for persistence as the forecast are shown in Figs. 2b and 2d. The inverse 
association between ACC and RMSE holds good, and ensemble mean offers higher skills than persistence.  

Table 1  Values of anomaly correlation coefficient (ACC) and 
signal to noise ratio (SN) estimated for regional SST time 
series for four standard seasons, and for 0-6 month lead 
forecast.
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For instance, for leads up to 6-7 months and 
hindcasts initialized during late spring 
through early fall (May through October), 
the ensemble mean ACC is > 0.8 with 
relatively small RMSE (0.3-0.4) but for 
persistence forecast the ACC drops below 
0.6 with higher RMSE (~0.7-0.8). This 
means that skill in forecasting the 
intensification and peak amplitude of ENSO 
is indeed high. However, for forecasts 
initialized during winter (November through 
January), skill in hindcasting the transition 
phase of ENSO is modest at best. 
Specifically, both methods share similar 
ACC and RMSE values in the first 3-5 
months (Figs. 2a-d), but they drop off 
rapidly during spring with a minimum in 
July. This decay in skill, often referred to as 
the spring predictability barrier, is common 
to most models (e.g., Jin and Kinter 2009), 
and the forecast performance of CFS over 
Niño3.4 region is comparable to the new 
ECMWF S3 system (Stockdale et al. 2011). 

ENSO prediction is further assessed in 
many different ways. First, the model’s 
relative skill in hindcasting individual El 
Niño and La Nina events (Fig. 3a) is 
assessed for the peak phase (December 
through February; DJF) at 0-month lead. 
This is necessitated because observations 
during the period 1982-2005 indicate unique 
feature that models need to forecast. They 
include: (i) two of the strongest El Niño of the 20th century (1982 and 1997) and (ii) persistent La Nina 
during 1998-2000 (thick red circles in Fig. 3a). It is encouraging that all the ensemble members (green circles) 
capture correctly the amplitude during 1982 and 1997, and the model’s ability in hindcasting these two events 
is remarkable even for leads up to 6 months (Sooraj et al. 2011). For the prolonged La Nina episode, however, 
the predicted amplitude is higher in conjunction with a larger ensemble spread. We also note that the model is 
able to correctly forecast near-normal conditions in many years. Second, we analyzed CFS’ skill in 
forecasting different flavors of El Niño (Fig. 3b). Observations indicate that SST maximum for cold tongue 
events is over the eastern Pacific or Niño3 region (5oS-5oN, 90oW-150oW), and that for warm pool events the 
maixmum lies over the west-central Pacific or Niño4 region (5oS-5oN, 160oE-150oW). Therefore, skills in 
hindcasting SST anomalies over Niño3 and Niño4 regions are examined. Owing to the role of wave-induced 
thermocline displacements influening SST through vertical advection even at 6-month lead time, the ACC 
remains high (0.9) for Niño3 region and other skill measures are as good as that over the Niño3.4 region, and 
hence, are not discussed further. Over the Niño4 region, local warming during boreal winter of 1990-91; 
1994-95; 2002-03 and 2004-05 are forecasted with a minimum spread (Fig. 3b).  An examination for the 
entire period (not shown) suggests that prediction of SST anomalies over both Nino3 and Nino4 regions are 
comparable to those over Nino3.4 for all short leads. In summary, CFS’ skill is higher for forecasting stronger 
and persisting El Niño events that are primarily due to thermocline displacements. When seasonally stratified, 
predicting winter and autumn seasonal SST anomalies have higher skill. However, forecasting weaker El 
Niño events is limited to 0-2 month leads. 

Fig. 3  (a-c) Temporal evolution of December through February 
average (DJF) SST anomalies (oC) hindcast by CFS at lead 
0-month. Ensemble mean (blue), all 15 individual members 
(green) and observations (red) are shown for three regions: 
(a) Nino3.4 (5oS-5oN, 190oE-120oW); (b) Niño4 (5oS-5oN, 
160oE-150oW); (c) same as (a) but for equatorial Pacific 
rainfall anomalies (mm/day) averaged over (10oS-5oN, 
170oE-110oW). 
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b. Precipitation along the equatorial 
Pacific 

The over-all skill measures for 
precipitation forecast along the equatorial 
Pacific (170oE-110oW; 10oS-5oN) are 
shown in Figs. 2e-f.  High values of ACC 
(> 0.7) with less RMSE are along the 
diagonal representing fall and winter 
seasons. Only for short lead times (0-2 
months), predicting spring and summer 
rainfall is skilful, and similar to SST, 
forecasting precipitation anomalies during 
ENSO phase transition is difficult. 
Encouraged by the skill in forecasting 
aspects of El Niño-related SST anomalies 
in individual years, we turn our attention to 
precipitation skill along the equatorial 
Pacific at 0-month lead for DJF season (Fig. 
3c). While the ensemble mean follows the 
observed, the spread is larger yielding a 
S/N of about 4.2, and this skill is 
considerably less than that for Niño3.4 SST 
(Table 1a). Other limitations include excess 
rainfall during the winter of 1997/98, and 
the failure in capturing above normal 
rainfall during the winter of 1986-87. In 
addition, during cold phases of 1983-84 
and 1998-99 (Fig. 3a), precipitation 
forecast is weaker than observed (Fig. 3c) 
despite predicting stronger SST anomalies 
compared to observations. SST anomalies 
translating into rainfall anomalies depends 
on physical parameterizations employed, 
particularly convective schemes. Further, SST-rainfall relationship is also not local, and rainfall anomalies 
can be influenced by circulation anomalies forced by rainfall at other locations. 

Finally, to depict coherency among variables responsible for ocean-atmosphere interactions, lagged 
correlations between DJF Niño3.4 SST and SST (contours), rainfall (shaded), and 850 hPa wind (vector) 
anomalies at lead 0 month and spanning the 24-month period (entire life-cycle of ENSO) are shown in Fig. 4b.  
Similar results from observations are also shown in Fig. 4a. In CFS, the onset, development, mature and 
decay stages of El Niño, as well as the development of cold SST and negative precipitation anomalies over 
the Maritime Continent (120oE-150oE) together with low-level divergence corresponding to anomalous 
Walker Circulation are in good agreement with observations. To the west of this center of divergence, easterly 
wind anomalies cover the entire equatorial Indian Ocean, and their influence on local ocean dynamics is 
explained next. 

c. Teleconnection to the TIO 

Figure 4c shows lagged correlations between DJF Niño3.4 time series and SSH (shaded) and SST 
(contours) averaged over (8oS-12oS) the TIO from observations, and the corresponding results from the 0-lead 
CFS forecast are shown in Fig. 4c. Starting from May-June of Year [0], upwelling- favourable winds off Java-
Sumatra coasts (Figs. 4a-b; 80oE-100oE) promote negative SSH values (i.e., shallow thermocline anomalies, 
Fig. 4d) and subsequent local SST cooling attains a maximum in fall (Figs. 4a-b). The wind-stress curl 

Table 2  As in Table 1 but for regional precipitation time series 
over the Pacific Islands.
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associated with the easterly wind anomalies 
forces downwelling oceanic Rossby waves, and 
the westward tilted structure in SSH and SST 
anomalies with respect to time (Figs. 4c-d) 
support that interpretation. These Rossby 
waves advect warm water and act to deepen the 
thermocline as they cross the ocean basin (Xie 
et al. 2002). The maximum perturbation to SSH 
(i.e., deepened thermocline) and SST are noted 
over SWIO during boreal spring of Year [+1]. 
The warm SST anomalies persist for about 10-
12 months primarily due to the presence of 
shallow-mean thermocline and passage of 
oceanic Rossby waves. In summary, CFS 
captures the teleconnection from the tropical 
Pacific to TIO, and also the essential 
mechanisms responsible for the anomalous 
conditions in the TIO. 

Encouraged by the above results, we 
examined skill scores over both SWIO (55oE-
75oE; 15oS-0o), and EEIO (90oE-110oE, 10oS-
0o). Observations indicate SST anomalies peak 
during spring of Year [+1] over SWIO and 
during boreal fall over EEIO, respectively. For 
SWIO, CFS hindcasts initialized from June-
July of Year [0] onwards depicts higher ACC 
and lower RMSE than persistence method but 
in contrast, over EEIO ensemble mean barely 
does better than persistence even at shorter 
leads (Sooraj et al. 2011). 

d. Precipitation over the USAPI 

Figure 5 shows rainfall forecast over west 
Pacific islands (125oE-165oE; 5oN-15oN).  The 
left (right) panels are results for 0-month (6-
month) lead-time for standard seasons of 
summer (Figs. 5a-b), fall (Figs. 5c-d), winter 
(Figs. 5e-f) and spring (Figs. 5g-h).  
Observations (red circles) indicate that during strong El Niño years (e.g., 1982-83; 1991-92; 1997-98), 
dryness (or below normal rainfall) persist from winter of Year [0] to summer of Year [+1]. Quite remarkably, 
CFS ensemble-mean forecast (blue circles) captures this drying tendency from 6-months lead time except for 
summer of Year [+1].  Barring the two strong El Niño events of 1982/83 and 1997/98, the spread among the 
ensemble members is large but the sign of the anomalies is well-captured. For 6-month lead forecast of JJA 
rainfall the predicted sign is wrong in many years. While correlations between rainfall anomalies over west 
Pacific and Nino3.4 SST anomalies is negative for most of the year, it is rather positive during July-August. 
Thus, the difficulty in capturing this seasonally-varying teleconnection may well be a factor in the low skill 
scores during summer. A possible interpretation is that large amplitude swings in precipitation occur during 
winter (Fig. 5e), and hence are more predictable. 

Fig. 6 shows the results for the south Pacific islands (160oE-200oE; 10oS-30oS), and the skill statistics is 
summarized in Table 2b. In this region too, largest anomalies in precipitation are observed during ENSO 
winters (Figs. 6e-f) but the dryness starts in summer of Year [0] and persists until the following spring. 

Fig. 4  (a) Lagged correlations of SST (contours), rainfall 
(shaded) and 850 hPa wind averaged in 3oS-3oN with 
winter (DJF) Nino3.4 SST index from observations. (b) 
same as (a) but from CFS ensemble mean 0-month lead 
forecast. Results are shown for a twoyear period 
representing the entire life-cycle of ENSO. (c) lagged 
correlations of SST (contours) and SSH (shaded) 
averaged in 8o-12oS with winter Nino3.4 SST index from 
observations. (d) same as (c) but from CFS ensemble 
mean 0-month lead forecast.  Positive (negative) SST 
values are shown as solid (dashed) contours with an 
interval 0.1. 
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Interestingly, CFS correctly 
captures both the phase and 
amplitude of the dryness at longer 
lead times. However, for any given 
season ACC and S/N do not exceed 
0.75 and 2.0, respectively. 
Compared to other seasons, 
forecasting rainfall anomalies 
during summer is less skilful 
(Table 2b) since ENSO 
teleconnection is weaker. 

Another region of interest is 
the Hawaiian Archipelago (170oW-
140oW; 15oN-30oN), and the 
precipitation forecasts are shown in 
Fig. 7 and the statistics are 
summarized in Table 2c. For the 
islands situated over the Northern 
Hemisphere, west Pacific and 
Hawaii, the dryness attains a 
maximum in winter of Year [0] and 
continues into the spring of Year 
[+1], and CFS has skill in 
forecasting them. However, the 
spread among the members is 
indeed large even during 1982-83 
and 1997-98 El Niño years (Fig. 7) 
resulting in a low S/N (Table 2c). 
From Figs. 5-7 it is encouraging to 
note that observed anomalies (red 
dots), generally lie within the 
envelope of possible model 
solutions (green dots), and there 
are few instances of outliers.  

4. Assessment of different aspects of forecasts 

Here, ACC is compared and contrasted with HSS and RPSS to assess different aspects associated with 
forecasts that also rely on the spread information inherent in the ensembles (Kumar 2009). Our working 
hypothesis is that forecasts assessment based on ACC alone are perhaps not sufficient enough in the context 
of decision-making. As before, we assess the scores for SST indices (Fig.8). The left panels are scatter 
diagrams between ACC and HSS, while the right panels are scatter plots between ACC and RPSS, 
respectively.  

CFS demonstrates highest confidence in predicting winter SST anomalies (open squares, Figs. 8a-b) over 
Niño3.4 region at all lead months with ACC upwards of 0.85.  High skill in deterministic forecasts as 
measured by ACC is also captured for categorical and probabilistic forecasts with high HSS (> 50%) and 
RPSS (> 40%). This is consistent with the results discussed earlier (Fig. 2). The confidence in predicting fall 
season is also high but limited to 0-4 month leads. Predicting spring and summer anomalies has limited 
confidence at 0-1 month leads, and for other leads, even if ACC lies around 0.8, RPSS drops off to very low 
values sometimes even negative, indicating possible issues related to the spread among the ensemble 
members that influence the probabilistic forecasts.  Therefore, forecasting the summer teleconnection features, 
e.g., ENSO-monsoon association will be limited in CFS. The inference is that results of Fig. 2a and Table 1a 

 Fig. 5  Seasonal rainfall (mm/day) forecast at 0-month (left) and 6-
month (right) lead time over tropical west north Pacific region for the 
period 1981-2005. Observations (red), ensemble-mean (blue) and all 
the 15 individual members (green) are shown. 
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are encouraging, but additional 
diagnostics are necessary to attest 
the errors associated with the 
forecast for any decision-making. 

For the SST indices over the 
TIO, the confidence in predicting 
the winter and spring variations 
over SWIO (Figs. 8c-d) are high at 
leads up to 5 months. Watanabe and 
Jin (2003) and Annamalai et al. 
(2005; 2007) noted that it is the 
winter and spring SST anomalies 
over SWIO that influence regional 
and global climate anomalies. In 
observations, summer and fall SST 
variations over SWIO are indeed 
small, and hence models have 
limited predictability. Confidence 
in predicting Indian Ocean Dipole 
Zonal Mode (IODZM) SST 
anomalies during fall is the least 
(Figs. 8e-f). 

The scatter plots over the 
USAPI are shown in Fig. 9. Over 
the west Pacific region, forecasting 
rainfall variations during winter is 
trustworthy for at least 0-3 months 
lead, followed by prediction for 
spring season at lead 0-1 months. 
For summer rainfall variations, 
while ACC is greater than 0.6 and 
HSS around 15-25%, negative 
RPSS indicates that the forecast is not better than climatology. The model’s forecast for fall rainfall anomalies 
is least skillful. A point to note here is that for the same value of ACC (~0.6) for 0-1 month lead forecast, 
RPSS is positive for spring but negative for summer indicating the seasonal dependency in the forecast errors. 
For the south Pacific region, predicting rainfall variations during winter and spring appear realistic for leads 
0-4 months. Here also forecasting summer precipitation anomalies are not reliable. For the Hawaiian region, 
at shorter leads (0-1 months) and for all seasons except fall, convergence of all the three scores suggests that 
different rainfall forecast information are skilful and probably useful. In summary, for regional precipitation 
forecast over USAPI, ACC values greater than 0.7 and correspondingly high HSS and RPSS values occur 
particularly for winter and spring seasons. 

5. Implications for dynamical seasonal prediction of precipitation 

Both observational (Ropelewski and Halpert 1987; 1989) and modeling (e.g., Shukla 1998; Su and Neelin 
2002) studies provide a guide to the expected climatic impacts of ENSO over the tropics. The fact that an 
accurate prediction of the tropical Pacific SST is a necessary condition for successful prediction of rainfall 
along the equatorial Pacific is supported by the present analysis. Based on the lagged association between TIO 
and tropical Pacific SST anomalies, past seasonal prediction studies have used statistical methods to predict 
TIO SST anomalies (e.g., Mason et al. 1999). However, recent studies also suggest that these ENSO-induced 
regional SST anomalies may possibly alter the strength of the circulation and rainfall anomalies elsewhere 

Fig. 6  Same as Fig. 5 but for the precipitation (mm/day) over south 
Pacific region.



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

 

200 

(Annamalai et al. 2005; 2007). The 
ability of CFS in representing the 
coupled processes in the TIO, 
particularly over SWIO during 
ENSO years, deserves further 
attention. 

Predictive skill of regional 
precipitation, however, is usually 
lower compared to SST and 
circulation (Kumar and Hoerling 
1998) because of the “noisy”, 
small-scale character, and complex 
physics of precipitation. Even 
averaged over a season substantial 
irregularities in the spatial pattern 
are likely, particularly over the 
Tropics where convective rainfall is 
most common (Gong et al. 2003). 
Even so, observational and 
modeling studies suggest that the 
large-scale circulation pattern 
responsible for the precipitation 
anomaly may be predictable several 
months in advance, particularly 
during ENSO events. An 
examination of spatial pattern of 
DJF SST and rainfall anomalies 
during all El Niño events indicate 
that CFS is capable of forecasting 
the “details”, in particular the 
observed negative rainfall 
anomalies over all the three USAPI 
regions during 1982/93 and 
1997/87, as well above normal 
rainfall over Hawaii during 1990-
91, and 2004-05 events (figure not shown). 

Till date, the operational seasonal forecasting of precipitation over the USAPI stations relies on empirical 
method in which precipitation measured at individual stations itself is treated as a predictor (He and Barnston 
1996). Their results based on the period 1955-94 suggest that at 1-month lead, ACC for predicting winter 
rainfall anomalies is ~ 0.4, 0.6, and 0.4 over south Pacific, west Pacific and Hawaiian regions, respectively 
(their Fig. 4).  The dynamical forecast system based on CFS, on the other hand, demonstrates much higher 
skill at longer lead times over the USAPI (Table 2) when area-averaged fields are examined. Dynamical 
models represent the major components of the climate system (ocean, land and atmosphere) and can 
incorporate linear and nonlinear interaction processes among the components, and are expected to provide 
better seasonal forecasts than statistical models. A word of caution is that output from CFS represents 
averages over a relatively coarse grid, and therefore statistics of precipitation in regions of steep orography 
can differ substantially from that of station data. Nevertheless, owing to the success of CFS in forecasting the 
timing and amplitude of ENSO-related SST and precipitation anomalies along the equatorial Pacific and the 
associated teleconnection over the TIO we speculate that CFS has useful skill in forecasting regional rainfall 
anomalies over the USAPI. However, identifying individual physical processes responsible is beyond the 
scope of the present study. Lyon and Mason (2009) noted that the correct prediction of winter rainfall 

Fig. 7  Same as Fig. 5 but for the precipitation (mm/day) the Hawaii 
region.
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anomalies during 1998 over 
southern Africa by some 
coupled models is probably 
not for the correct reasons. 
Our future study will examine 
the reasons for CFS 
performance over the USAPI. 

6. Summary 

The results presented here 
suggest the feasibility that a 
dynamical system based 
seasonal prediction of 
precipitation over the USAPI 
can be considered. It is 
necessary to continually 
assess the sources, and level 
of prediction skill as newer set 
of hindcasts based on 
improved models, and initial 
conditions obtained from 
more advanced data 
assimilation systems become 
available. For instance, one 
clear limitation in the 
hindcasts analyzed here is that 
for short-lead forecasts the 
initial conditions are from the 
old reanalysis system, a 
situation that would be 
rectified with the new CFS 
forecast model. In addition, in 
the updated CFS version the 
atmospheric model has a 
higher horizontal resolution 
(T126 compared to T62 in the current version), and may provide a better resolution necessary for precipitation 
prediction. In a future study, the physical processes that may be responsible for the performance of the model 
in predicting regional rainfall anomalies will also be examined. To attain station-level prediction of rainfall 
anomalies over the USAPI a downscaling system may need to be constructed. 

References 

Anderson, D.L.T, and Coauthors 2003: Comparison of the ECMWF seasonal forecast system 1 and 2, 
including relative performance for the 1997/8 El Niño. Tech.Memo. 404, ECMWF, Reading, UK, 93 pp. 

Annamalai, H., P. Liu, and S.P. Xie, 2005: Southwest Indian Ocean SST variability: Its local effect and 
remote influence on Asian monsoons. J. Climate, 18, 4150-4167. 

―, H. Okajima, and M. Watanable., 2007: Possible impact of the Indian Ocean SST on the Northern 
Hemisphere circulation during El Niño. J. Climate, 20, 3164-3189. 

Barnston, A. G., M. H. Glantz, and Y. He., 1999: Predictive skill of statistical and dynamical climate models 
in SST forecasts during the 1997—98 El Niño episode and the 1998 La Niña onset. Bull. Amer. Meteor. 
Soc., 80, 217–244. 

Fig. 8  Scatter diagram between ACC and HSS (left) and ACC and RPSS 
(right) for four standard seasons derived from CFS forecasts at 0-6 
month leads; (a-b) for Nino3.4 SST, (c-d) SWIO SST, (e-f) EEIO SST 
indices and (g-h) Atlantic SST indices.



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

 

202 

Barnston, A. G., A. Kumar, L. 
Goddard, and M. P. 
Hoerling, 2005: 
Improving seasonal 
prediction practices 
through attribution of 
climate variability. Bull. 
Amer. Meteor. Soc., 86, 
59–72. 

Goddard, L., S. J Mason, S. E. 
Zebiak, C. F. Ropelewski, 
R. Basher, and M. A. 
Cane, 2001: Current 
approaches to seasonal-
to-interannual climate 
predictions. Int. J. 
Climatol, 21, 1111-1152. 

Gong, X., A.G. Barnston, and 
M.N. Ward, 2003: The 
effect of spatial 
aggregation on the skill of 
seasonal precipitation 
forecasts. J. Climate, 16, 
3059-3071. 

He, Y., and A.G. Barnston, 
1996: Long-lead forecasts 
of seasonal precipitation 
in the tropical Pacific 
islands using CCA. J. 
Climate, 9, 2020-2035. 

Jin, E. K, and J.L. Kinter, 
2009: Characteristics of tropical Pacific SST predictability in coupled GCM forecasts using the NCEP 
CFS. Climate Dyn, 32, doi, 10.1007/s00382-008-0418-2 

Jin, E.K., and Coauthors 2008: Current status of ENSO prediction skill in coupled ocean-atmosphere models. 
Climate Dyn, 31, 647–664. 

Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J.J. Hnilo, M. Fiorino, and G.L. Potter, 2002: NCEP-
DOE AMIP-II Reanalysis (R-2), Bull. Amer. Met. Soc., 83, 1631-1643. 

Kang, I-S., and J. Shukla, 2006: Dynamical seasonal prediction and predictability of the monsoon. B. Wang 
(Ed), The Asian Monsoon. Springer, 586-612. 

Kirtman, B., and A. Pirani, 2009: The state of the Art of Seasonal Prediction: Outcomes and 
Recommendations from the First World Climate Research Program Workshop on Seasonal Prediction, 
Bull. Amer. Meteor. Soc., 90, 455-458. 

Kug, J.S., F.F. Jin, and S.I. An., 2009: Two types of El Niño events: cold tongue El Niño and warm pool El 
Niño. J. Climate, 22, 1499-1515. 

Kumar, A., and M. P. Hoerling, 1998: Annual cycle of Pacific–North American predictability associated with 
different phases of ENSO. J. Climate, 11, 3295–3308. 

―, 2009: Finite samples and uncertainty estimates for skill measures for seasonal prediction, Mon. Wea. Rev., 
137, 2622-2631. 

Fig. 9  Same as Fig. 8 but for regional precipitation indices; (a-b) west north 
Pacific, (c-d) south Pacific, and (e-f) Hawaii. 



ANNAMALAI ET AL. 
 

 

203

Luo, J.J., S. Masson, S.K. Behera, and T. Yamagata, 2008: Extended ENSO predictions using a fully coupled 
ocean-atmosphere model. J. Climate, 21, 84-93. 

Lyon, B., and S. Mason, 2009: The 1997/98 summer rainfall season in southern Africa.  Part II: Model 
simulations and coupled model forecasts. J. Climate, 22, 3802-3818. 

Mason S J, L Goddard, N E Graham, E Yulaeva, L Sun and P A Arkin, 1999: The IRI seasonal climate 
prediction system and the 1997/98 El Niño event, Bull. Amer. Meteor. Soc., 80, 1853-1873. 

Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes and W. Wang, 2002, An improved in situ and 
satellite SST analysis for climate. J. Climate, 15, 1609-1625. 

Ropelewski, C. F and M.S. Halpert, 1987: Global and regional scale precipitation associated with El 
Niño/Southern Oscillation, Mon. Wea. Rev., 115, 1606-1626. 

―, and ―, 1989: Precipitation pattern associated with the high index phase of the Southern Oscillation. J. 
Climate, 2, 268-284. 

Saha S., and Coauthors 2006: The NCEP climate forecast system. J. Climate, 19, 3483-3517. 
Shukla J., 1998: Predictability in the midst of chaos: A scientific basis for climate forecasting. Science, 282, 

728–731. 
Sooraj, K.P., H. Annamalai, A. Kumar and H. Wang, 2011: A comprehensive assessment of CFS seasonal 

forecasts over the Tropics. Weather and Forecasting, (in press). 
Stockdale, T.N., D.L. Anderson, M.A. Balmaseda, F.D. Reyes, L. Ferranti, K. Mogensen, T.N. Palmer, F. 

Molteni, and F. Vitart, 2011: ECMWF seasonal forecast system 3 and its prediction of sea surface 
temperature. Clim, Dyn., DOI 10.1007/s00382-010-0947-3. 

Su., H and J. D. Neelin., 2002: Teleconnection mechanism for tropical Pacific descent anomalies during El 
Niño, J. Atmos. Sci., 57, 3767-3781. 

Watanabe, M., and F. F. Jin 2003: A moist linear baroclinic model: Coupled dynamical convective response 
to El Niño, J Climate, 16, 1121-1139. 

Xie, P., and P. A. Arkin, 1996, Analysis of global monthly precipitation using gauge observations, satellite 
estimates and numerical model predictions. J Climate, 9, 840-858 

Xie S –P, Annamalai H, Schott F, McCreary JP Jr, 2002: Structure and mechanisms of South Indian Ocean 
climate variability. J Climate, 15, 864-87. 

 


