National Weather Service Product Description Document (PDD) Experimental Surf Forecast Matrix at select NWS Eastern Region Weather Forecast Offices June 2022

Part I – Mission Connection

a. Product Description:

Rip currents are one of the main weather-related causes of fatalities along the East Coast. In recent years, there has been tremendous effort by the NWS to increase awareness and provide vital forecast information to help mitigate this hazard. The Surf Zone Forecast (SRF) product issued by coastal and Great Lakes Weather Forecast Offices (WFOs) contains a full two-day forecast, with only one forecast value provided for each day per coastal county. That forecast is based on the maximum threat expected during the day. However, the current SRF does not describe the timing or expected duration of the threat, nor does it provide detailed extended outlooks of beach threats at specific beaches. With recent improvements in wave modeling and rip current forecasting, including the Nearshore Wave Prediction System (NWPS) probabilistic rip current model, there is increased ability to add detail to the current SRF forecast method.

The Experimental Surf Forecast Matrix will provide a 6-day forecast, broken into 3-hourly and 6-hourly increments, and include similar forecast parameters as the operational SRF product, with an individual matrix for popular beaches in the Wilmington, NC and Wakefield, VA County Warning Areas.

b. Purpose and Intended Use:

The Experimental Surf Forecast Matrix is designed to supplement the official SRF forecast product by providing additional details to our partners and the public. The matrix will provide lifeguard/beach services and emergency managers with important information on the timing and location of hazardous surf conditions to enhance public safety decision making processes and to meet their recent demands. The product is intended for planning purposes and should not be substituted for the official SRF.

c. Audience:

The Experimental Surf Forecast Matrix is targeted towards a wide range of users, from the general public to beach community officials and NWS core partners.

d. Presentation Format:

The Experimental Surf Forecast Matrix will be in a text format on both forecast offices' webpages. The top of the webpage will include a statement emphasizing that this product is *experimental* and for *planning* purposes only, and to refer to the official SRF product for the current beach forecast. The webpage will also include information on how to interpret NWPS rip current probabilities. The product will be issued in tandem with the primary SRF product issuance times, consistent with local policies. An example of the Experimental Surf Forecast Matrix can be seen in Part II Section A below.

e. Feedback Method:

Feedback on this experiment will be solicited from the public and emergency management partners throughout the 2022 beach season. If feedback is positive, we will consider expanding this experimental product to additional forecast offices in the 2023 season. The link to the feedback survey is available here:

https://www.surveymonkey.com/r/ExpSurfForecastMatrixforER 2022

If you have questions or comments, please contact:

Mark Willis
Meteorologist in Charge
NWS Wilmington, NC
mark.willis@noaa.gov
910-762-4289

Chris Birchfield
Marine, Tropical and Tsunami Program Manager
NWS Eastern Region Headquarters
Bohemia, NY
chris.birchfield@noaa.gov

Part II - Technical

a. Format and Science Basis:

The Experimental Surf Forecast Matrix is currently modeled after similar NWS matrix text products, including the Point Forecast Matrix (PFM) and Fire Weather Point Forecast Matrix (PFW). The new experimental matrix will be structured into 3-hourly increments to best represent trends during the initial forecast period, then 6-hourly segments for the extended outlook. The matrix will include the official Rip Risk forecasted in the SRF product, as well as Rip Probability values from the NWPS model to highlight variations and timing of the Rip Risk for the entire forecast period. The other variables within the matrix will be taken from forecast grids already being produced at the local forecast offices.

Below is a list of the available Surf Forecast Matrix variables (*Please note, Dominant Period, Longshore Currents* and *Waterspout Risk* are optional forecast elements):

Rip Current Risk: Official rip current risk for the day as forecasted in the SRF product

Rip Probability: % chance of a hazardous rip current occurring as predicted by the NWPS rip current model

Surf Height (ft): Height of breaking waves in the surf zone in feet

Dom Period (s): Dominant wave period in the local wave spectrum

Chance Precip: % chance of precipitation

TSTM Potential: Potential for thunderstorm at location, associated with lightning risk to beachgoers (None, Low Moderate, High)

Low, Moderate, High)

<u>Cloud Cover</u>: Category of cloud coverage (Clr/Clear, Mclr/Mostly Clear, Pcld/Partly Cloudy, Mcld/Mostly Cloudy, Ovc/Overcast)

Temperature: Air temperature in degrees Fahrenheit

Heat Index: Heat index in degrees Fahrenheit; Only shown if value is above 85°F

Wind (mph): Sustained wind direction and speed at the surface in mph

Wind Gust: Wind gust in mph; Only shown if wind gust is 5+ mph greater than sustained wind speed

<u>Longshore</u>: Forecasted strength of longshore current in the surf zone, which runs parallel to shore (None, Weak, Moderate, Strong)

Waterspout Risk: Potential for a non-convective waterspout to form near the coast (None, Low, Moderate, High)

Below is an example of the Experimental Surf Forecast Matrix from NWS Wilmington, NC:

Surf City T	opsail Isl	and 1	Wright	sville B	each	Maso	nboro I	sland	Caro	lina Be	ach	Kure B	each	Bald I	Head Is	land	Oak Island
Holden Beach	Ocean	ı Isle Be	ach	Sunse	t Beach	Ch	erry Gr	ove	North	Myrtle I	Beach	Myr	le Bead	h S	urfside	Beach	Murrells Inle
itchfield Beach Par		vleys Isl	and	Debordieu Be		ach	ach										
								C 0		N 10							
							Su	ri C	ity,	NC							
Date		Thu	05/2	27				Fr:	i 05/2	28							
EDT 3hrly		08	11	14	17	20	23	02	05	08	11	14	17	20			
Rip Currer	nt Risk	Mod								Mod							
Rip Probab		28	39	70	69	23	22	56	70	31	33	73	84	43			
Surf Height (ft)			2	2	2	3	3	2	2	2	2	3	3	3			
Dom Period (s)		9	9	9	9	9	9	9	9	8	8	7	5	5			
Chance Precip		0	10	10	10	0	0	0	0	0	10	10	10	20			
TSTM Potential		None	None	None	None	None	None	None	None	None	None	None	None	Low			
Cloud Cover					Mclr			Clr	Clr	Clr			Mclr				
Temperature		74	80	80	78	77	75	74	73	75	80	79	78	77			
Heat Index				-							-						
Wind (mph)		W 135	W 14	5 14	5 139	W 129	SW 139	SW 149	SW 139	SW 129	SW 16	5 21	5 209	SW 20			
Wind Gust	*	252									21	26	25				
Longshore		Mod	Mod	Mod	Mod	Mod	Mod	Mod	Mod	Mod			Strngs	Strng			
Waterspout		Low	Low	Low	Low	Low	Low	Low	Low	Low		_	Low	_			
water spour	. 112311	LOW	2011	Low	LOW	2011	LOW	Low	LOW	2011	Lon	LOW	2011	LOW			
Date		Sat 05/29		29		Sun 05/30		30	Mon 05/3		81		Tue	Tue 06/01			
EDT 6hrly		92	08	14	20	92	08	14	20	02	08	14	20	02	08	14	
Rip Probab	bility	61	71	72	55	35	58	42	57	27	65	23	43	12	29	7	
Surf Height (ft)		3	3	3	3	2	2	2	2	2	2	2	2	2	2	1	
Dom Period (s)		5	6	6	6	6	6	6	6	6	6	5	5	5	7	8	
Chance Pre	ecip	20	50	50	60	60	50	50	30	30	20	20	20	20	20	20	
TSTM Poter	ntial	Low	Mod		High			Mod	Mod	Mod	Low	Low	Low	Low		Low	
Cloud Cove	er	Pcld	Pcld	Pcld	Mcld	Mcld	Mcld	Mcld	Mcld	Mcld	Pcld	Pcld	Pcld	Pcld	Pcld	Pcld	
Temperature		76	77	83	77	70	67	73	68	63	63	75	71	66	67	77	
Heat Index	X			87													
Wind (mph))	SW 185	W 159	5W 159	5W 12	W 8	N 7	N 7	N 13	N 10	N 10	NE 8	E 9	E 6	E 7	SE 9	
Wind Gust			21	22								13				14	
Longshore		Strngs	trngs	Strng	Mod	Weak	None	None	Mod	Mod	Mod	Weak	Weak	None	Weak	None	
Waterspout	t Risk	Low	Low	Low													

b. Product Availability:

The Experimental Surf Forecast Matrix will be available on both NWS offices' webpages, accessible from www.weather.gov/ilm/surfmatrices and www.weather.gov/akq/surfmatrices respectively. The matrix will be issued/updated at the same time as the official local SRF product, with times based on local policies.

c. Additional Information: N/A