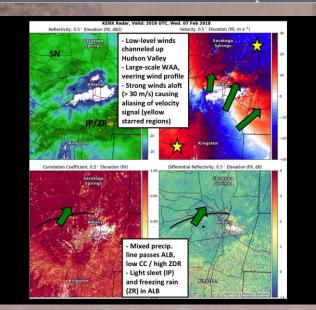
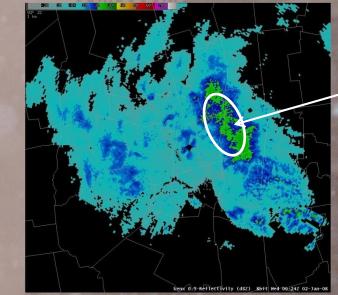

Winter Storms – Analysis, Prediction and Communication

Neil A. Stuart NOAA/NWS Albany, NY ATM362

High Impact winter storm events becoming more frequent – Just a few notable storms in the past 30 years


Many types of threats – Mesoscale Banding (UL), Mohawk/Hudson Convergence (UR), Mixed Precipitation (LL) and Upslope (LR)



NEXRAD LEVEL-III BASE REFLECTIVITY KENX - ALBANY, NY 02/14/2007 00:02:00 GMT LAT: 42/35/09 N LON: 74/03/50 W ELEV: 1907 FT MODE/VCP: B / 32

ELEV ANGLE: 0.50 ° MAX: 33 dBZ

Legend: dBZ (Category) + 28 (15) + 24 (14) + 20 (13) + 16 (12) + 12 (11) + 8 (10) + 4 (9) 0 (8) 0 (8) - 12 (5) - 16 (4) - 22 (3) - 24 (2) - 28 (1)

KALB

Predicting Winter Weather - It is as simple as:

Predicting Winter Weather - It is as simple as: ✓ Moisture

- How deep a layer?
- Where is its origin (Gulf, Atlantic, Great Lakes, Pacific)?
- Are moisture and forcing coincident?

Predicting Winter Weather - It is as simple as:
✓ Low level forcing
✓ Low level jet mechanical convergence
✓ Frontogenesis
✓ Isentropic lift
✓ Upward motion or subsidence

Predicting Winter Weather - It is as simple as: Upper level dynamics ✓ Vorticity/PVA **Upper jet dynamics (direct and indirect** \checkmark circulations) Upper convergence or divergence resulting in subsidence or upward motion

Predicting Winter Weather - It is as simple as: ✓ Local/Mesoscale processes Upslope/downslope proximate to terrain \checkmark Convergence/divergence due to terrain features Thermal/moisture profiles/gradients between the surface and boundary layer Lake Effect Snow bands

Predicting Winter Weather - It is as simple as:

Moisture

- ✓ How deep a layer?
- ✓ Where is its origin (Gulf, Atlantic, Great Lakes, Pacific)?
- Are moisture and forcing coincident?

✓ Low level forcing

- Low level jet mechanical convergence
- ✓ Frontogenesis
- Isentropic lift
- Upward motion or subsidence

✓ Upper level dynamics

- Vorticity/PVA
- Upper jet dynamics (direct and indirect circulations)
- Upper convergence or divergence resulting in subsidence or upward motion

Local/Mesoscale processes

- ✓ Upslope/downslope proximate to terrain
- ✓ Convergence/divergence due to terrain features
- ✓ Thermal/moisture profiles/gradients between the surface and boundary layer
- ✓ Lake Effect Snow bands

O.K. maybe not so simple!

Outline

Synoptic Analysis

- Conceptual Models Longwave patterns, Pattern recognition
- Data, Deterministic NWP Models, Ensembles, Anomalies

Mesoscale Analysis –

- Conceptual Models Banding, MHC, Upslope, Lake Effect
- Data, CAMs, CAM ensembles
 HRRR, HREF, 3Km NAM

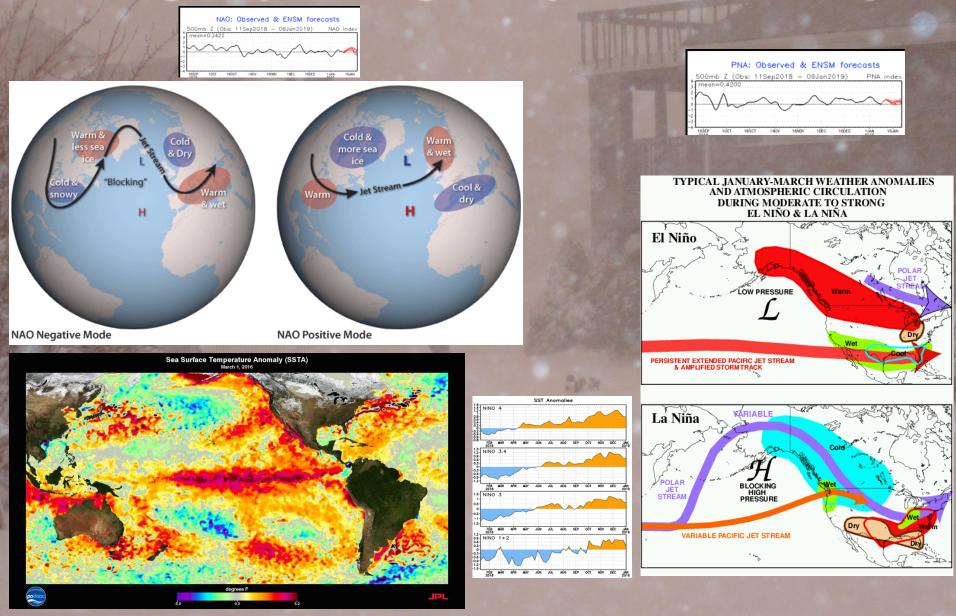
Real-time data trends

- Conceptual Models Sounding profiles for different precipitation types, Thermal profiles for SLR
- ✓ Radar, satellite, NY Mesonet, Upper air

Outline

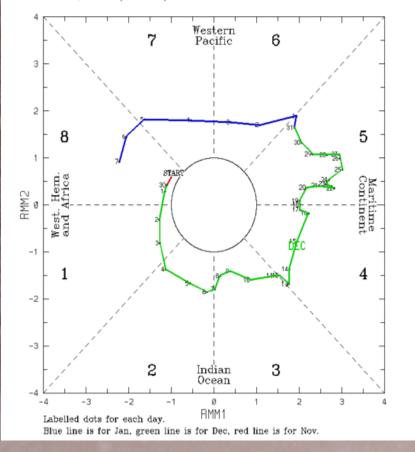
Synoptic Analysis

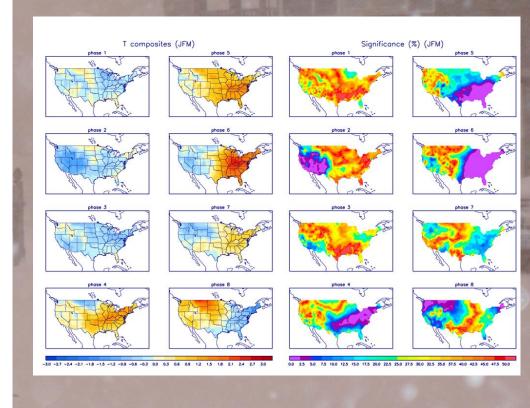
- Conceptual Models Longwave patterns, Pattern recognition
- Data, Deterministic NWP Models, Ensembles, Anomalies

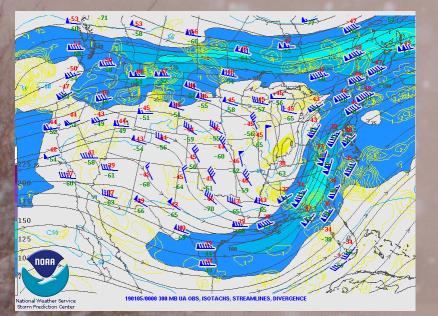

Mesoscale Analysis –

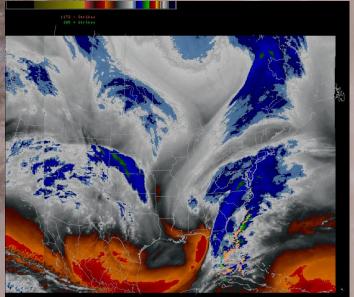
- Conceptual Models Banding, MHC, Upslope, Lake Effect
- Data, CAMs, CAM ensembles
 HRRR, HREF, 3Km NAM

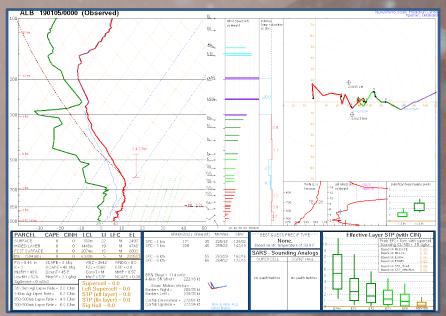
Real-time data trends

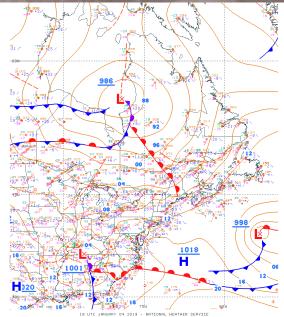

- Conceptual Models Sounding profiles for different precipitation types, Thermal profiles for SLR
- ✓ Radar, satellite, NY Mesonet, Upper air


Large scale pattern recognition – (Just a few examples below among many other large scale patterns/oscillations)

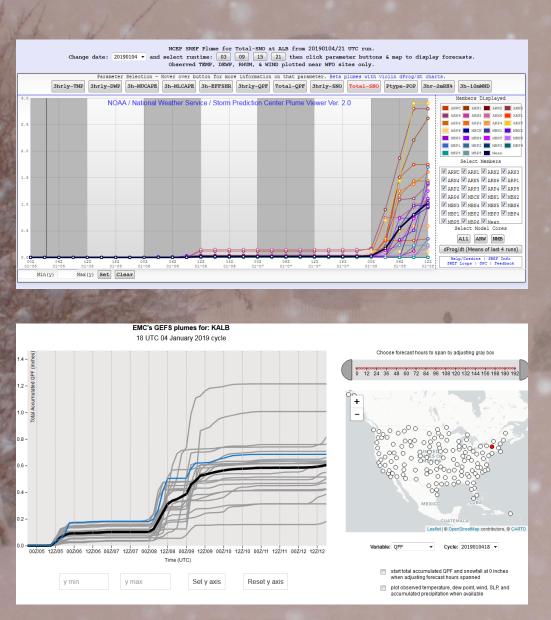

Madden Julian Oscillation and downstream effects – (Again just one large-scale circulation among many others)

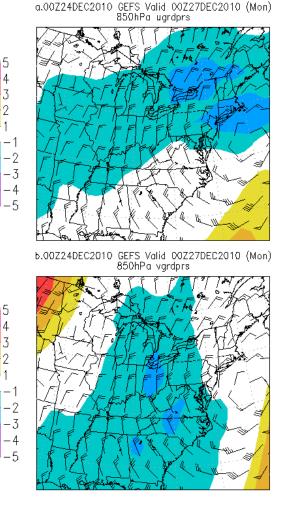

(RMM1,RMM2) phase space for 29-Nov-2018 to 7-Jan-2019




Data analysis – Current State of the Atmosphere

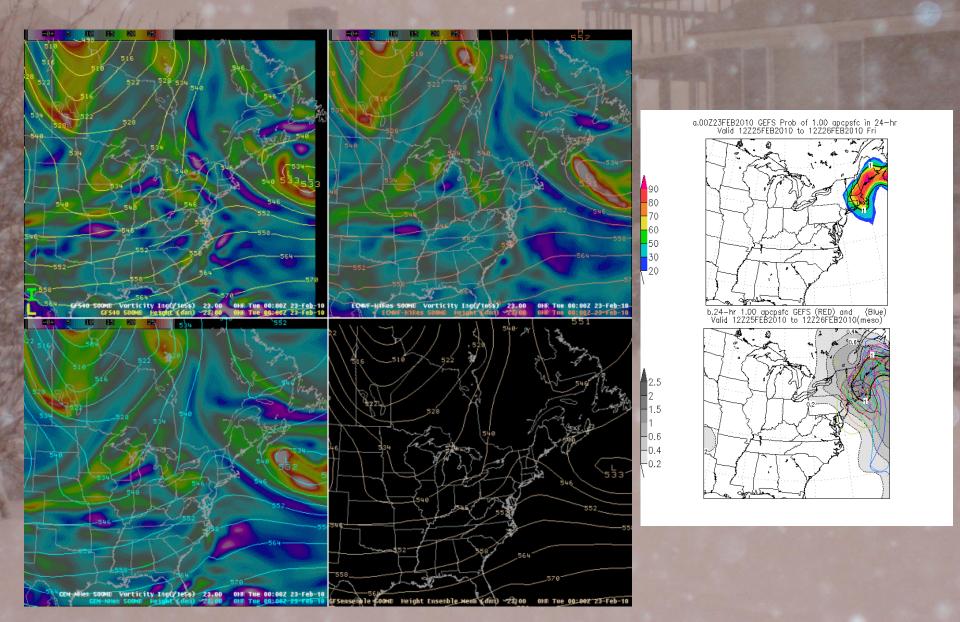
15 Minute Negative Lightning Plot Thu 01:00Z 13-Feb-14 15 Minute Positive Lightning Plot Thu 01:00Z 13-Feb-14 Water Vapor Satellite Thu 00:55Z 13-Feb-14





Situational Awareness Table

	Mode	l Rur	1:	1	Table Region:						PI	ot Re	gion: Ou	Output:									
	Jan 4,	2019	12Z	•	No	rthe	ast U	I.S.		•	No	rthea	st U.S. 👻 NA	NAEFS Return Interval View Table									
	W	orthe	ast I	II S	Tab	le	Jan 4	2019	127	7 Ru	n		AEFS Standardized Anomaly										
		0 11	ortiro	Z	Ι	U		WSP	•		<u>PW</u>		If you experienc NA	AEFS Percentile	ease proceed to the operational NCEP								
	0	Fri	12Z	1	<u>5</u>	5	<u>30</u>	<u>5</u>	2	<u>10</u>	5	2	version located NA	AEFS Return Interval	<u>×</u>								
	6	4th	18Z	1	2	<u>30</u>	<u>10</u>	<u>5</u>	2	<u>30</u>	<u>10</u>	<u>10</u>	How to navig	AEFS Probabilities									
	12	Sat	00Z	<u>1</u>	<u>5</u>	<u>10</u>	<u>5</u>	<u>5</u>	2	<u>5</u>	<u>5</u>	<u>5</u>	GE	EFS QPF M-Climate									
	18	5th	06Z	1	<u>5</u>	<u>10</u>	<u>30</u>	<u>2</u>	2	<u>5</u>	2	<u>5</u>	On the main tab GE	EFS M-Climate Anomaly	to a sub-table with data for each vertical level								
	24		12Z	2	<u>5</u>	<u>10</u>	<u>10</u>	<u>5</u>	2	<u>5</u>	2	<u>5</u>	Click a value (e.g., GE	EFS M-Climate Percentile	that time and field at all levels								
	30		18Z	2	<u>5</u>	<u>10</u>	<u>5</u>	<u>5</u>	2	<u>30</u>	1	<u>5</u>	On a sub-table: GE	EFS M-Climate Return Interval	image for that hour, field and level								
	36	Sun	00Z	2	1	<u>5</u>	<u>5</u>	<u>5</u>	2	<u>5</u>	1	2	Click a level (e.g., '500')') to loop images for that field	and level at all forecast hours								
	42	6th	06Z	2	1	<u>10</u>	<u>5</u>	1	2	<u>1</u>	<u>0-1</u>	<u>0-1</u>	For a different tabl	e. Select the desired Model	Run, Table/Plot Region, and Output Type from the								
	48		12Z	<u>1</u>	1	2	<u>30</u>	2	<u>0-1</u>	2	<u>0-1</u>	<u>0-1</u>		ve, and click View Table	run, rabien for region, and output type form the								
	54		18Z	5	2	<u>5</u>	<u>30</u>	5	<u>0-1</u>	<u>10</u>	<u>0-1</u>	<u>0-1</u>											
	60 60	Mon 7th	00Z	<u>10</u>	<u>5</u>	<u>5</u>	<u>30</u>	5	1	<u>5</u>	1	<u>0-1</u>			e consisting of 21 GEFS ensemble members and bers includes a control run and 20 initial condition								
	66 72		06Z 12Z	30	<u>10</u>	5	<u>30</u> 30	<u>2</u> 5	1	<u>30</u> 30	1	1			n at native resolutions of 55 and 66 km,								
	72 78		12Z	<u>30</u> 20	<u>30</u> <u>30</u>	<u>2</u> 1	<u>30</u>	<u>5</u>	<u>1</u> 0-1	<u>30</u>	<u>2</u> 2	<u>5</u> 5	respectively, the NAEF	FS is distributed on a 1x1-deg	ee grid.								
	84	Tue	10Z	10	<u>50</u>	<u> </u>	<u>30</u> 10	2	1	<u>30</u> 2	<u>∠</u>	<u>2</u> 1	NAEES Standardiz	ed Anomaly: How different	is the model forecast from the climatological								
	90	8th	002 06Z	5	<u>5</u>	1	<u>5</u>	<u>∠</u> 1	<u> </u>	<u>∠</u> 1	0-1	<u> </u>	mean? Compares the I	NAEFS ensemble mean forec	ast to a 3-week running mean and standard								
	96		12Z	2	1	<u> </u>	1	<u></u> <u>0-1</u>	<u></u> <u>0-1</u>	<u> </u>	0-1	0-1			st System Reanalysis. Standardized anomaly =								
										0-1		0-1	(NAEFS_forecast - CFSR_climatology_mean) / (CFSR_climatology_standard_deviation)										
	108	08 Wed 00Z 0-1 0-1 1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 NAEFS Percent												ile (Recommended): Where would the model forecast fall with respect to									
	114	9th	06Z	_	0-1	2	1	0-1	0-1	0-1		0-1			lues in the current NAEFS forecast are greater than period centered on the valid day. Forecasters are								
	120	1	12Z	0-1	<u>0-1</u>		1	0-1	<u>0-1</u>	<u>0-1</u>	0-1	0-1			licating that the ensemble is forecasting an event								
	126	1	18Z	0-1	<u>0-1</u>	1	2	<u>0-1</u>	<u>0-1</u>	<u>0-1</u>	<u>0-1</u>	<u>0-1</u>	that would fall outside t	the 1979-2009 climatology for	this time of year								
	132	Thu	00Z	<u>0-1</u>	<u>0-1</u>	1	2	<u>1</u>	<u>0-1</u>	<u>0-1</u>	<u>0-1</u>	<u>0-1</u>	NAEES Return Inte	erval: How often do these fo	recast values show up in the climatology?								
	138	10th	06Z	<u>0-1</u>	<u>0-1</u>	1	2	<u>0-1</u>	<u>0-1</u>	<u>0-1</u>	<u>0-1</u>	<u>0-1</u>	Specifically, how often	were the CFSR values (in a 3	week period centered on the valid time) more								
	144		12Z	<u>0-1</u>	<u>0-1</u>	1	2	<u>0-1</u>	<u>0-1</u>	<u>0-1</u>	<u>0-1</u>	<u>0-1</u>			e: a return interval of 5 on Feb 15th means that when values in the current forecast were met or								
	150		18Z		<u>0-1</u>	1	2	<u>0-1</u>	<u>0-1</u>	<u>0-1</u>		<u>0-1</u>			" for temperature means that none of the mid-								
	156	Fri	00Z	<u>0-1</u>	_	1	1	<u>0-1</u>	<u>0-1</u>	<u>0-1</u>		<u>0-1</u>		ere this warm between 1979 ar									
	162	11th	06Z	-	-	-	1	<u>0-1</u>	<u>0-1</u>	<u>0-1</u>		<u>0-1</u>	NAFES Probabilitie	es. How many of the ensemi	ble members produce "extreme" values? Indicates								
	168		12Z	_		-	<u>0-1</u>	<u>0-1</u>	<u>0-1</u>	<u>0-1</u>	<u>0-1</u>	<u>0-1</u>			gher or lower than any CFSR reanalysis (in a								
	174		18Z				<u>0-1</u>	<u>0-1</u>	<u>0-1</u>	<u>0-1</u>		<u>0-1</u>			ability of a min for MSLP on 00Z 15 Sept means								
	180 186	Sat 12th	00Z			-	<u>0-1</u>	0-1	<u>0-1</u>	<u>0-1</u>		<u>0-1</u>			lower than any 00Z, mid-September reanalysis. are rarely all-time highs or lows they're just								
	100		002 0-10-10-10-10-10-10-10-10-10-10-10-10-10									<u>0-1</u> 0-1											
	192		12Z 18Z	_	_		<u>0-1</u> 0-1	<u>0-1</u> 0-1	<u>0-1</u> 0-1	<u>0-1</u> 0-1		<u>0-1</u> 0-1	CEES Madel Clima	the line days this factored									
	204	Sun			_			0-1	<u>0-1</u>	<u>0-1</u>		0-1			compare to past forecasts? Same calculations as nsemble mean is compared to the GEFS reforecast								
	204	13th					0-1	0-1	<u>0-1</u>	0-1	-	0-1	climatology (1985-2012	2). The current forecast is place	ed in the context of reforecasts with the same lead								
	216			-	0-1	-		0-1	0-1	0-1		0-1			recast valid at 00Z on 15 Mar 2013 is compared to 5-2012.) For example, large M-Climate temperature								
	222				0-1			0-1	0-1	_	0-1	0-1			nean to already be this warm at this lead time. For								
	228	Mon	00Z		_			0-1	<u>0-1</u>	0-1	0-1	0-1			limatological window is used.								
and the local division of	LLV	handling	UUL	<u>v i</u>	<u>v i</u>	<u>v 1</u>		<u>v 1</u>		<u>v 1</u>	<u>v 1</u>	<u> </u>											


Ensemble based guidance, anomalies and run-to-run changes

Components: MODEL INIT TIME c00 002240EC p01 002240EC p02 002240EC p03 002240EC p04 007240EC p05 002240EC p06 002240EC p07 002240EC p08 002240EC p10 002240EC p11 002240EC p13 002240EC p14 002240EC p15 002240EC p16 002240EC p17 002240EC p18 002240EC p19 Ensemble 4DEC p10 Insemble 4DEC p20 Compone@40EC Weighting: MODEL WEIGHT (2 c00 4.761 p05 4.761 p05 4.761 p05 4.761 p06 4.761 p07 4.761 p08 4.761 p09 4.761 p10	Ensemble												
c00 002240EC p01 002240EC p03 002240EC p04 002240EC p05 002240EC p06 002240EC p07 002240EC p08 002240EC p10 002240EC p10 002240EC p11 002240EC p13 002240EC p14 002240EC p15 002240EC p16 002240EC p17 002240EC p18 002240EC p19 002240EC p18 002240EC p19 002240EC p18 002240EC p19 002240EC p10 002240EC p18 002240EC p19 002240EC p10 002240EC p10 002240EC p10 002240EC weighting: MODEL weighting: MODEL wolighting: MODE </td <td>Comp</td> <td>onents:</td>	Comp	onents:											
p01 002240EC p02 002240EC p04 002240EC p05 002240EC p06 002240EC p07 002240EC p08 002240EC p09 002240EC p10 002240EC p11 002240EC p13 002240EC p14 002240EC p15 002240EC p16 002240EC p17 002240EC p18 002240EC p19 Ensemble240EC p10 002240EC p11 002240EC p15 002240EC p16 002240EC p17 002240EC p18 002240EC p18 002240EC p19 00240EC p20 00240EC p11 4.761 p02 4.761 p03 4.761 p04 4.761 p05 4.761	MODEL	INIT TIME											
p02 002240EC p03 002240EC p04 002240EC p05 002240EC p06 002240EC p07 002240EC p08 002240EC p10 002240EC p10 002240EC p11 002240EC p12 002240EC p13 002240EC p14 002240EC p15 002240EC p16 002240EC p17 002240EC p18 002240EC p19 Ensemblesato p10 4.761 p01 4.761 p02 4.761 p03 4.761 p04 4.761 p05 4.761 p07 4.761 p08 4.761 p10 4.761 p11 4.761 p12 4.761 p13 4.761 p07 4.761 p07													
p03 002240EC p04 002240EC p05 002240EC p06 002240EC p07 002240EC p08 002240EC p09 002240EC p10 002240EC p11 002240EC p13 002240EC p14 002240EC p15 002240EC p16 002240EC p18 002240EC p18 002240EC p19 002240EC p18 002240EC p19 002240EC p19 002240EC p19 002240EC p10 002240EC p10 002240EC p10 002240EC p10 00240EC weighting: MODEL Weighting: MODEL wood 4.761 p05 4.761 p06 4.761 p07 4.761 p08 4.761 <													
p04 002240EC p05 002240EC p07 002240EC p08 002240EC p09 002240EC p10 002240EC p11 002240EC p13 002240EC p14 002240EC p15 002240EC p16 002240EC p17 002240EC p18 002240EC p18 002240EC p18 002240EC p18 002240EC p18 002240EC p19 002240EC p18 002240EC p18 002240EC p19 00240EC p10 00240EC p10 00240EC p10 00240EC p10 00240EC p10 4.761 p03 4.761 p04 4.761 p05 4.761 p07 4.761 p08 4.761													
p05 002240EC p06 002240EC p07 002240EC p09 002240EC p10 002240EC p10 002240EC p11 002240EC p12 002240EC p13 002240EC p14 002240EC p15 002240EC p16 002240EC p17 002240EC p18 002240EC p19 <ensemblesator< td=""> p10 p10 002240EC p19<ensemblesator< td=""> p10 weighting: Weighting: WobEL WEIGHT (2 000 4.761 p01 4.761 p05 4.761 p05 4.761 p06 4.761 p07 4.761 p08 4.761 p10 4.761 p11 4.761 p12 4.761 p13 4.761 p14 4.761</ensemblesator<></ensemblesator<>													
p06 007240EC p07 002240EC p09 002240EC p10 002240EC p11 002240EC p12 002240EC p13 002240EC p14 002240EC p15 002240EC p16 002240EC p18 002240EC p18 002240EC p19 Ensemble40EC Weighting: MODEL MODEL WEIGHT(2 000 4.761 p01 4.761 p05 4.761 p06 4.761 p07 4.761 p04 4.761 p10 4.761 p10 4.761 p10 4.761 p11 4.761 p13 4.761 p14 4.761 p15 4.761 p16 4.761 p17 4.761 p18 4.761 p19													
p07 002240EC p08 002240EC p10 002240EC p11 002240EC p13 002240EC p14 002240EC p15 002240EC p16 002240EC p17 002240EC p18 002240EC p18 002240EC p19 Ensemble 40EC p18 002240EC p19 Ensemble 40EC p10 NODEL Weighting: Weightig MODEL Weightig p01 4.761 p05 4.761 p05 4.761 p06 4.761 p07 4.761 p08 4.761 p10 4.761 p11 4.761 p13 4.761 p14 4.761 p15 4.761 p16 4.761 p17 4.761 p18 4.761 p19													
p08 007240EC p19 007240EC p11 007240EC p12 007240EC p13 007240EC p14 007240EC p15 007240EC p16 007240EC p17 007240EC p18 007240EC p17 007240EC p18 007240EC p19 007240EC p10 007240EC p10 007470EC p2©omponematoc weighting: MODEL WEighting: MODEL WEighting: MODEL VEIGHT (2 p03 4.761 p05 4.761 p06 4.761 p07 4.761 p08 4.761 p10 4.761 p11 4.761 p12 4.761 p13 4.761 p14 4.761 p15 4.761 p16 4.761 p													
p09 002240EC p10 002240EC p11 002240EC p12 002240EC p13 002240EC p14 002240EC p15 002240EC p16 002240EC p18 002240EC p19 Ensemble apc p20 omponentee weighting: MODEL WEIGHT(accord) p01 4.761 p02 4.761 p04 4.761 p05 4.761 p07 4.761 p08 4.761 p10 4.761 p11 4.761 p13 4.761 p14 4.761 p15 4.761 p16 4.761 p17 4.761 p18 4.761 p19 4.761													
p10 002240EC p11 002240EC p13 002240EC p14 002240EC p15 002240EC p16 002240EC p17 002240EC p18 002240EC p19 Ensemble4dec p19 Ensemble4dec p10 4.761 p01 4.761 p02 4.761 p04 4.761 p05 4.761 p07 4.761 p08 4.761 p09 4.761 p10 4.761 p11 4.761 p12 4.761 p13 4.761 p14 4.761 p15 4.761 p16 4.761 p17 4.761 p16 4.761 p17 4.761 p18 4.761													
p11 002240EC p12 002240EC p13 002240EC p15 002240EC p16 002240EC p17 002240EC p18 002240EC p19 Ensemble and p2Componeration Weighting: MODEL WEIGHT (% 000 4.761 p03 4.761 p05 4.761 p06 4.761 p08 4.761 p09 4.761 p05 4.761 p05 4.761 p06 4.761 p07 4.761 p10 4.761 p10 4.761 p10 4.761 p11 4.761 p15 4.761 p16 4.761 p17 4.761 p18 4.761 p19 4.761													
p12 002240EC p13 002240EC p15 002240EC p16 002240EC p17 002240EC p18 002240EC p19 Ensemble app p18 002240EC p19 Ensemble app p10 00240EC p19 Ensemble app p00 4.761 p01 4.761 p02 4.761 p04 4.761 p05 4.761 p07 4.761 p08 4.761 p10 4.761 p11 4.761 p12 4.761 p13 4.761 p14 4.761 p15 4.761 p16 4.761 p17 4.761 p18 4.761 p19 4.761													
p13 002240EC p14 002240EC p15 002240EC p16 002240EC p17 002240EC p18 002240EC p19 Ensemble40EC p19 Ensemble40EC weighting: 000 MODEL wEIGHT (2 000 4.761 p01 4.761 p03 4.761 p04 4.761 p05 4.761 p07 4.761 p08 4.761 p07 4.761 p08 4.761 p10 4.761 p10 4.761 p10 4.761 p10 4.761 p13 4.761 p14 4.761 p15 4.761 p16 4.761 p17 4.761 p18 4.761													
p14 002240EC p15 002240EC p16 002240EC p17 002240EC p19 Ensemble 40240EC p19 Ensemble 40240EC p2€ omponerators Weighting: MODEL WEIGHT (\$ 000 4.781 p01 4.781 p02 4.781 p05 4.781 p05 4.761 p05 4.761 p09 4.761 p10 4.761 p10 4.761 p11 4.761 p12 4.761 p15 4.761 p16 4.761 p16 4.761 p17 4.761 p18 4.761 p18 4.761 p19 4.761													
p16 002240EC p17 002240EC p18 002240EC p19 Ensemble 40EC p20 ampanes weighting: MODEL MODEL WEIGHT (2 000 4.761 p01 4.761 p03 4.761 p04 4.761 p05 4.761 p07 4.761 p08 4.761 p09 4.761 p10 4.761 p10 4.761 p10 4.761 p11 4.761 p12 4.761 p13 4.761 p14 4.761 p16 4.761 p17 4.761 p18 4.761													
p17 002240E0 p18 002240E0 p19 Ensemble aper weighting: WobeL weighting: MODEL weighting: MODEL weighting: 000 4.761 p01 4.761 p02 4.761 p05 4.761 p06 4.761 p07 4.761 p08 4.761 p09 4.761 p10 4.761 p11 4.761 p12 4.761 p13 4.761 p15 4.761 p16 4.761 p17 4.761 p18 4.761 p19 4.761	p15	00Z24DE0											
p18 O02240EC p19 Ensemble aper p19 Ensemble aper p20 omponerators Weighting: Weighting: MODEL WEIGHT (2 o00 4.761 p01 4.761 p03 4.761 p05 4.761 p06 4.761 p07 4.761 p08 4.761 p10 4.761 p12 4.761 p13 4.761 p15 4.761 p13 4.761 p16 4.761 p17 4.761 p18 4.761		00Z24DEC											
p19 Ensemble aper p2€ ampaneation weighting: MODEL weighting: MODEL weighting: p01 4.761 p02 4.761 p03 4.761 p04 4.761 p05 4.761 p06 4.761 p07 4.761 p08 4.761 p10 4.761 p10 4.761 p11 4.761 p12 4.761 p13 4.761 p14 4.761 p15 4.761 p16 4.761 p17 4.761 p18 4.761	p17												
P2Component Weighting: MODEL WEIGHT (% 000 4.761 p01 4.761 p02 4.761 p03 4.761 p04 4.761 p05 4.761 p06 4.761 p07 4.761 p08 4.761 p10 4.761 p10 4.761 p11 4.761 p12 4.761 p15 4.761 p15 4.761 p16 4.761 p17 4.761 p18 4.761	p18_	00Z24DEC											
Weighting: MODEL WEIGHT (2 c00 4.761 p01 4.761 p02 4.761 p03 4.761 p04 4.761 p05 4.761 p06 4.761 p07 4.761 p08 4.761 p09 4.761 p10 4.761 p10 4.761 p11 4.761 p12 4.761 p13 4.761 p15 4.761 p16 4.761 p17 4.761 p18 4.761													
MODEL WEIGHT (\$ 000 4.761 p01 4.761 p02 4.761 p03 4.761 p05 4.761 p05 4.761 p06 4.761 p07 4.761 p08 4.761 p09 4.761 p10 4.761 p10 4.761 p12 4.761 p13 4.761 p15 4.761 p16 4.761 p17 4.761 p18 4.761 p19 4.761													
000 4.761 p01 4.761 p02 4.761 p03 4.761 p04 4.761 p05 4.761 p06 4.761 p07 4.761 p08 4.761 p09 4.761 p10 4.761 p11 4.761 p12 4.761 p13 4.761 p14 4.761 p15 4.761 p16 4.761 p17 4.761 p18 4.761 p19 4.761	Weig	hting:											
p01 4.761 p02 4.761 p03 4.761 p04 4.761 p05 4.761 p07 4.761 p07 4.761 p07 4.761 p07 4.761 p09 4.761 p10 4.761 p11 4.761 p13 4.761 p14 4.761 p16 4.761 p17 4.761 p18 4.761 p19 4.761	MODEL	WEIGHT (7											
p02 4.761 p03 4.761 p04 4.761 p05 4.761 p06 4.761 p07 4.761 p08 4.761 p09 4.761 p10 4.761 p11 4.761 p12 4.761 p13 4.761 p14 4.761 p15 4.761 p16 4.761 p17 4.761 p18 4.761													
p03 4.761 p04 4.761 p05 4.761 p06 4.761 p07 4.761 p08 4.761 p09 4.761 p09 4.761 p10 4.761 p11 4.761 p13 4.761 p14 4.761 p15 4.761 p16 4.761 p17 4.761 p18 4.761 p19 4.761	p01	4.761											
p04 4.761 p05 4.761 p07 4.761 p08 4.761 p09 4.761 p09 4.761 p10 4.761 p11 4.761 p12 4.761 p13 4.761 p14 4.761 p16 4.761 p17 4.761 p18 4.761 p19 4.761													
p05 4.761 p06 4.761 p07 4.761 p09 4.761 p10 4.761 p11 4.761 p12 4.761 p13 4.761 p15 4.761 p16 4.761 p17 4.761 p18 4.761 p19 4.761													
p06 4.761 p07 4.761 p08 4.761 p09 4.761 p10 4.761 p11 4.761 p12 4.761 p13 4.761 p14 4.761 p15 4.761 p16 4.761 p17 4.761 p18 4.761 p19 4.761													
p07 4.761 p08 4.761 p10 4.761 p11 4.761 p12 4.761 p13 4.761 p14 4.761 p15 4.761 p16 4.761 p17 4.761 p18 4.761 p19 4.761													
p08 4.761 p09 4.761 p10 4.761 p11 4.761 p12 4.761 p13 4.761 p15 4.761 p16 4.761 p17 4.761 p18 4.761 p19 4.761													
p09 4.761 p10 4.761 p11 4.761 p12 4.761 p13 4.761 p14 4.761 p15 4.761 p16 4.761 p17 4.761 p18 4.761 p19 4.761													
p10 4.761 p11 4.761 p13 4.761 p14 4.761 p15 4.761 p16 4.761 p17 4.761 p18 4.761 p17 4.761 p17 4.761 p18 4.761 p19 4.761													
p11 4.761 p12 4.761 p13 4.761 p14 4.761 p15 4.761 p16 4.761 p17 4.761 p18 4.761 p19 4.761													
p12 4.761 p13 4.761 p14 4.761 p15 4.761 p16 4.761 p17 4.761 p18 4.761 p19 4.761													
p13 4.761 p14 4.761 p15 4.761 p16 4.761 p17 4.761 p18 4.761 p19 4.761													
p14 4.761 p15 4.761 p16 4.761 p17 4.761 p18 4.761 p19 4.761													
p15 4.761 p16 4.761 p17 4.761 p18 4.761 p19 4.761													
p16 4.761 p17 4.761 p18 4.761 p19 4.761													
p17 4.761 p18 4.761 p19 4.761													
p18 4.761 p19 4.761													
p19 4.761													

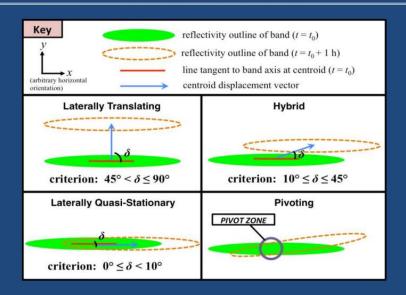
Comparing derived fields from deterministic models such as the GFS, ECMWF, CMC/GEM and GFSEnsemble mean

Outline

Synoptic Analysis

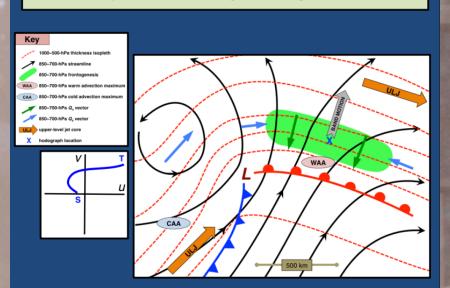
- Conceptual Models Longwave patterns, Pattern recognition
- Data, Deterministic NWP Models, Ensembles, Anomalies

Mesoscale Analysis –

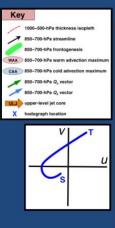

- Conceptual Models Banding, MHC, Upslope, Lake Effect
- Data, CAMs, CAM ensembles
 HRRR, HREF, 3Km NAM

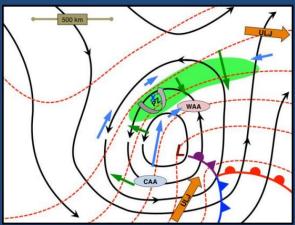
Real-time data trends

- Conceptual Models Sounding profiles for different precipitation types, Thermal profiles for SLR
- ✓ Radar, satellite, NY Mesonet, Upper air


Mesoscale snow band conceptual models (Ualbany CSTAR work from Dave Novak and James Kenyon)

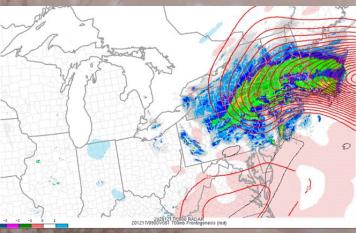
Snowband Motion Classification Scheme


Conceptual Model: Laterally Quasi-Stationary Snowbands



Conceptual Model: Laterally Translating Snowbands

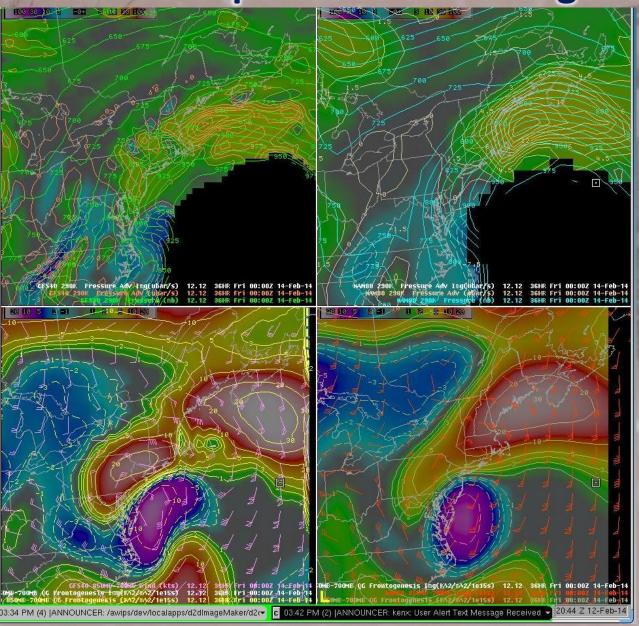
Conceptual Model: Pivoting Snowbands



Mesoscale snow band conceptual models – a word about the importance of frontogenesis/EPV

Storm Prediction Center Mesoanalyses:

650-500 hPa layer frontogenesis/EPV -


EDD

Analysis Data Source: Regional Observations

Must look at multiple levels and layers – layer where dendritic growth zone is important (coming up later)

Mesoscale snow band conceptual models – a word about the importance of frontogenesis/Isentropic lift

Isentropic lift at 290K

850-700 hPa QG frontogenesis and winds -Pettersen Frontogenesis very useful as well

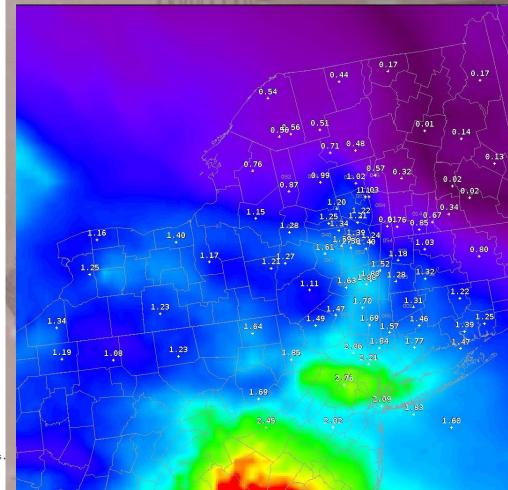
Upslope snows – Froude Number

925-850 mb Layer Average Wind/RH. Avg QPF over the _GreenBerkLitchHills.

Date	e Tir	ne		Wind	RH%	700	8501	r qpf	
	mm/dd								
Wed	01/09	06Z	0.13	2013	95	75	0	0.00	
	01/09								
Wed	01/09	12Z	0.51	2714	97	88	-3	0.12	
Wed	01/09	15Z	0.58	3125	96	90	-4	0.15	
Wed	01/09	18Z	0.95	3035	94	77	-5	0.08	
	01/09								
Thu	01/10	00Z	1.28	3034	93	72	-8	0.02	
	01/10								
Thu	01/10	06Z	0.99	3028	94	77	-9	0.01	
Thu	01/10	09Z	0.99	3127	93	85	-10	0.01	
	01/10								
Thu	01/10	15Z	1.06	3228	93	84	-12	0.02	
	01/10								
	01/10								
Fri	01/11	00Z	0.46	3133	87	69	-11	0.00	
Fri	01/11	03Z	0.41	3131	86	56	-12	0.00	
	01/11								
Fri	01/11	09Z	0.38	3132	81	35	-13	0.00	
Fri	01/11	12Z	0.36	3133	80	16	-13	0.00	
	01/11								
Fri	01/11	18Z	0.45	3128	55	4	-15	0.00	
Fri	01/11	21Z	0.55	3131	54	27	-16	0.00	
	01/12								
Sat	01/12	03Z	0.50	3132	54	22	-16	0.00	
Sat	01/12	06Z	0.48	3136	54	47	-14	0.00	
	01/12								
	01/12								
Sat	01/12	15Z	0.52	3030	60	47	-14	0.00	
Sat	01/12	18Z	0.51	3023	63	43	-14	0.00	

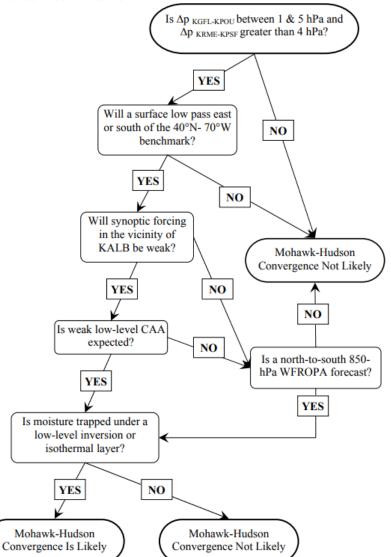
Run total areal avg QPF for the _GreenBerkLitchHills is: 0.57 inches.

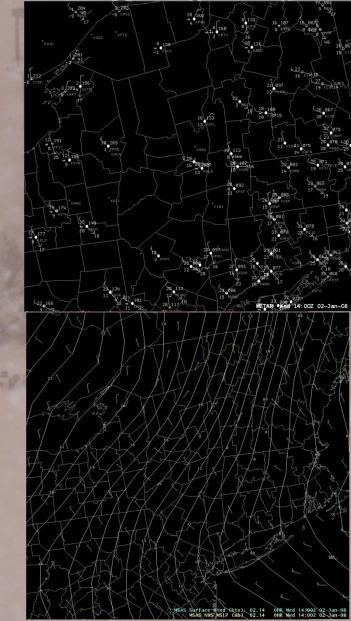
Froude Number (Frd#):

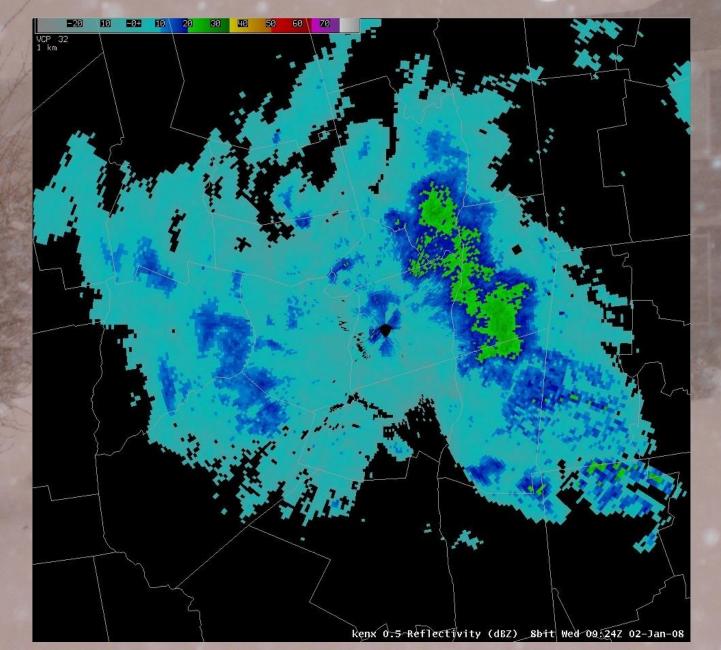

- Frd# < 0.5 Flow is subcritical and blocked. Upslope clouds/precip backed farther upwind of and up to mtn crest.
 - Gap winds possible.
- Frd# 0.5-1 Flow is subcritical/slow moving/blocked. Upslope clouds/precip falls immediately upwind of mtn crest. Gap winds possible.
- Frd# 1-2 Flow is critical.

With strong winds, Mountain waves/downslope winds possible. Precip falls close to mountain ridge crests and on lee side.

Froude > 2 Flow is supercritical/unblocked(rapid flow). Air flows freely over terrain. Persistent upslope snow not favored. Scattered snow showers and flurries.

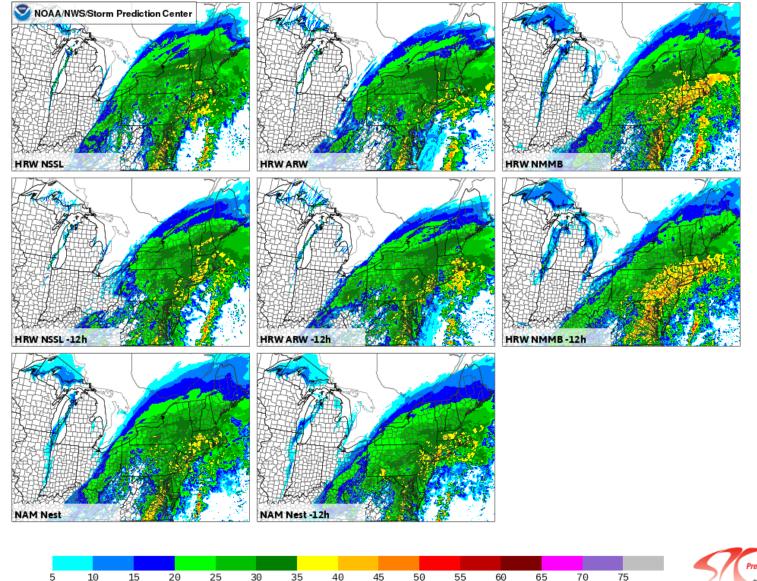

Relative Humidity (RH):


925-850 mb RH > 90% needed for upslope precipitation. with 700mb RH > 70% favors upslope snow. with 700mb RH > 90% greater amounts of W upslope snow possible.

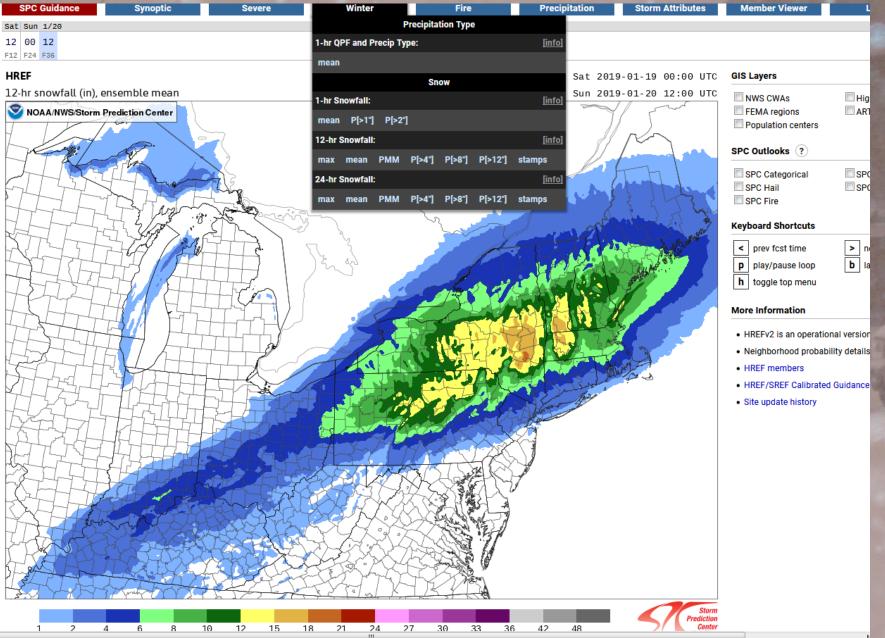

Mohawk Hudson Convergence (Ualbany CSTAR work by Mike Augustyniak)

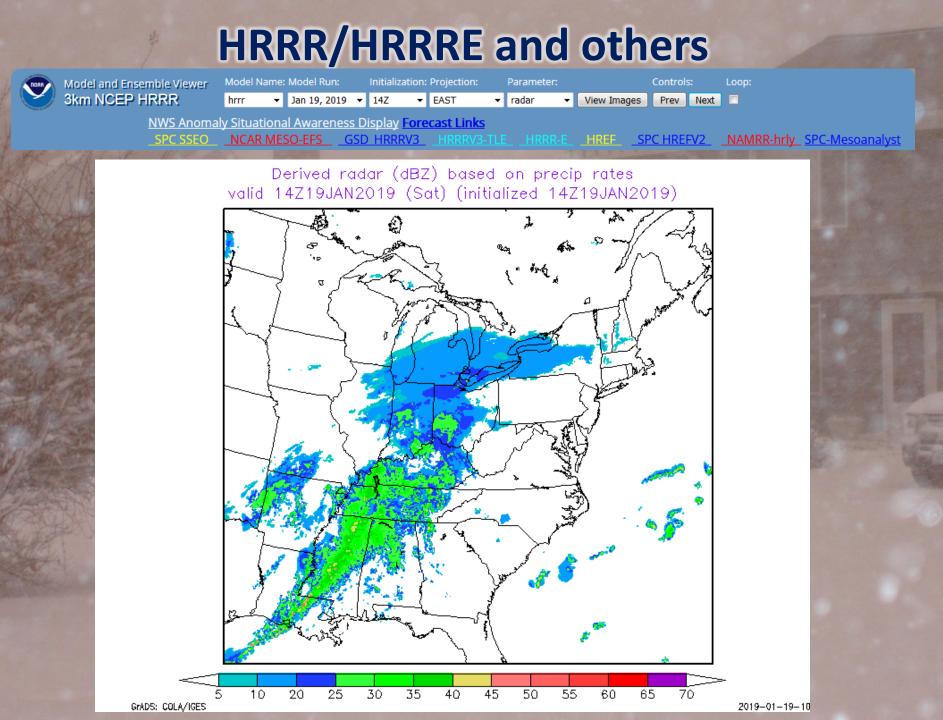
EAST WINDS AT KGFL (3KTS OR MORE) versus NORTH TO NORTHEAST WIND AT KALF (3 KTS OR MORE) SEEMS TO BE AN IMPORTANT FACTOR CONTRIBUTING TO MOHAWK HUDSON CONVERGENCE.

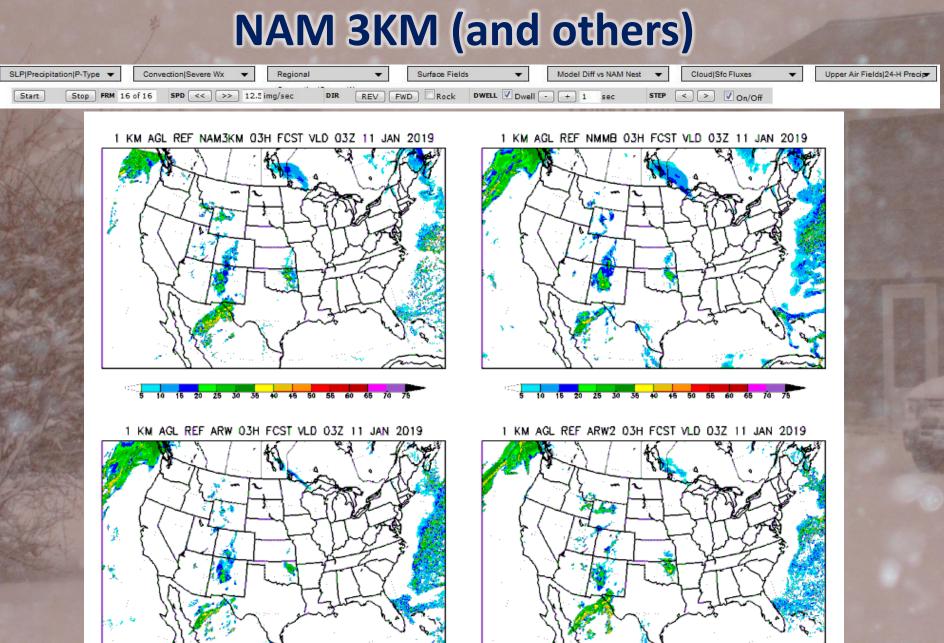
Mohawk Hudson Convergence


HREF individual member forecasts – HREF replaced SSEO and NCAR Ensemble

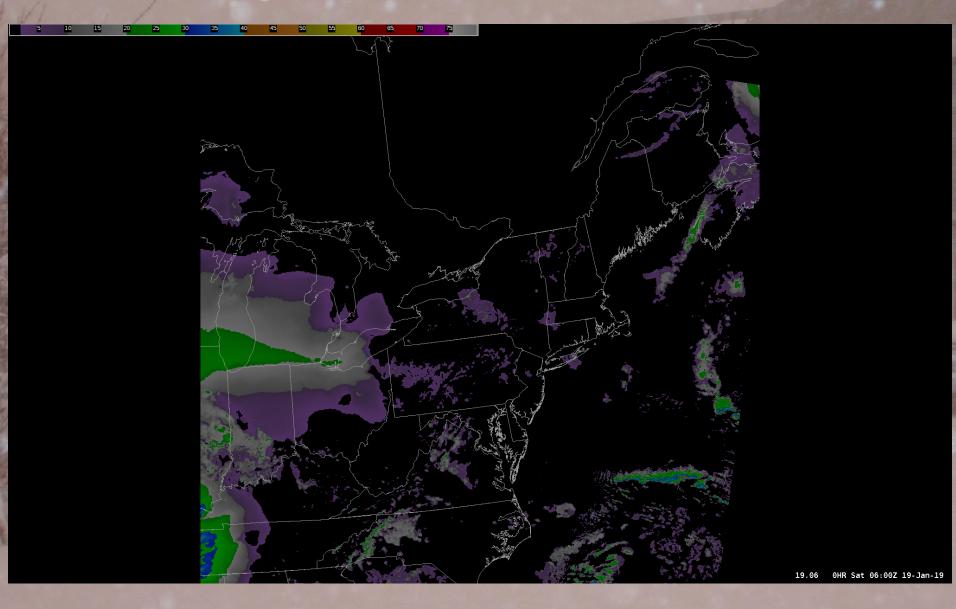
HREF

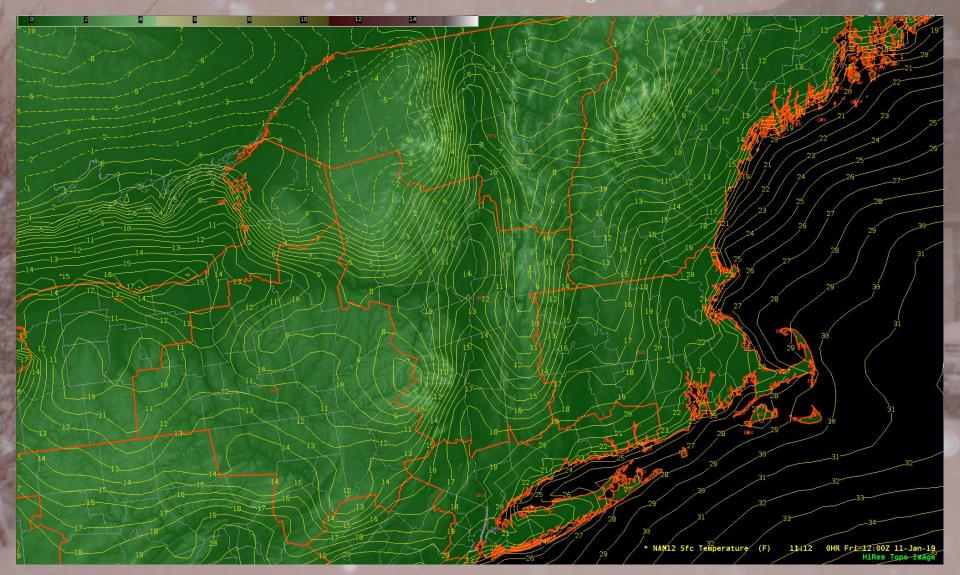

Composite reflectivity (dBZ), ensemble postage stamp


Run: Sat 2019-01-19 12:00 UTC Valid: Sun 2019-01-20 09:00 UTC


Center

HREF ensemble mean




5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Another way to look at the NAM 3KM in AWIPS D2D

Reflectivity forecasts

NAM 3KM 2 meter temperatures

Very terrain dependent

How do NAM 3KM 2 meter temperatures compare with MOS guidance?

Is the rest of the MOS forecast guidance consistent with what you analyzed in plan view?

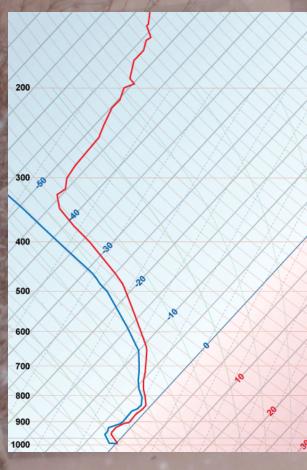
1»¿																																											
274			~ ~																			ï≫¿0	55																				
	00321 KWN0 030600														FOUS		RMNC	<u>ا م</u>	500c	10																							
MAVI								_														METN		Antess	/ 00	1000																	
KALI		GF5 M05 G01DANCE 2/03/2014 0000 010														17.14	wor			ANCT	-	21		201		00/	00.1	ure							- 1								
DT /	/FEB	5	5		/FE	зB	6						/FE	∆B	7					1		KALB		AP1	MOS) Gu	JIDP	ANCE		-	05/	201	14	000	00 T	UIC			_				, [
HR	12	15	18	21	00	03	06	09	12	15	18	21	00	03	06	09	12	15	18	00	06		FEB		۰. 				/FE		6						/FE		7			. /	. /
X/N					30				9				18				4			20		HR	06	09	12	15	18	21		03	06	09	12	15	18	21	00	03	06	09	12 :		00
TMP	23	26	28	28	25	22	18	13	9	12	16	16	14	11	9	8	7	14	18	15	8	X/N							27				9				23				11	2	26
DPT	17	19	20	19	16	13	8	3	0	1	3	4	3	1	-1	-1	-1	3	4	3	-2	TMP	27	26	24	25	25	24	23	21	16	12	9	16	21	22	19	16	15	14	14 🔅	24 2	20
CLD	OV	ov	ov	ov	ov	OV	ov	SC	SC	SC	CL	FW	BK	BK	ov	ov	BK	BK	FW	SC	CL	DPT	20	20	19	20	20	18	16	14	9	4	0	3	- 5	5	5	6	7	7	7	8	6
WDR	01	03	02	35	33	33	32	33	32	32	30	29	29	28	24	24	25	26	27	26	26	CLD	OV	ov	ov	ov	ov	ov	ov	ov	OV	ov	BK	CL	SC	SC	ov	ov	ov	OV /	ov (ov oc	vc
WSP	05	09	05	05	08	09	08	05	05	06	05	05	05	04	05	04	05	09	11	09	09	WDR	00	02	01	01	02	34	33	34	32	32	32	31	29	27	27	21	23	19	25 🔅	28 2	27
P06		1	100		84		7		0		4		2		0		0		5	0	0	WSP	00	03	04	05	07	08	13	07	05	04	02	05	07	07	03	04	04	04	05 (13 ()5
P12				1	100				7				6				3			8		P06			94		92		85		29		1		3		1		0		4	6	4
Q06			3		2		0		0		0		0		0		0		0	0	0	P12							92				33				4				4	1	13
Q12					4				0				0				0			0		Q06			2		3		3		0		0		0		0		0		0	0	0
T 06		1/	/ 2	1/	/ 9	0/	/ 0	0/	/ 8	0	/10	0/	/ 2	0/	/ 7	0/	/ 3	0/	/ 4	0/	/ 5	Q12			-		-		4		-		0		-		0		-		ō	-	0
T12						1/	/ 9			0	/10			0/	/12			0/	/ 5	0/	/14	T06		5/	/ 2	4/	/ 9	1/	/10	0/	1	0/	/ 0	1.	/ 3	17	12	1/	7	1/	5	1/1	(5 I
POZ	4	10	11	7	4	3	3	3	4	3	3	2	2	2	3	4	5	4	4	2	4	T12		Ξ,	-	5/	_	-,		1/	10	Ξ,	Ŭ	1/	/ 3	-,	-	1/	7	-/	2/	7	~ I
POS	96	90	89	93	96	98	98	97	96	97	97	97	98	97	97	96	95	96	96	95	96	SNW				5,				-1	10		6	-1	/ -			-1	1		6	1	
TYP	s	s	s	S	S	S	S	S	S	S	S	s	S	S	s	s	S	s	s	S	s	CIG	7	7	4	4		4	=	=	=	6				•	7	•	6	6	ě	6	7
SNW	-	-	-	-	-	-	-	-	6	-	-	-	-	-	-	-	0	-	-	-	-				7	7	2	7	2	5	5	0	0	0	0	0				0	2	2	4
CIG	3	٩	2	3	4	5	6	8	ĕ	8	8	8	8	8	8	8	ĕ	8	8	8	8	VIS			5	-2	_2	_2		- 5													
VIS	2	1	1	1	ŝ	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	OBV	N	N	BR	FG	BR	BR	BR	BR	Ν	Ν	N	N	N	N	N	N	N	Ν	Ν	Ν	N
OBV	FG	FC	BT	FC	BD	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	N	Ň	Ň	Ň	Ň	Ň																						
OBV	r G	rG	БГ	19	DR	IN	IN	IN	14	IN	IN	11	IN																														

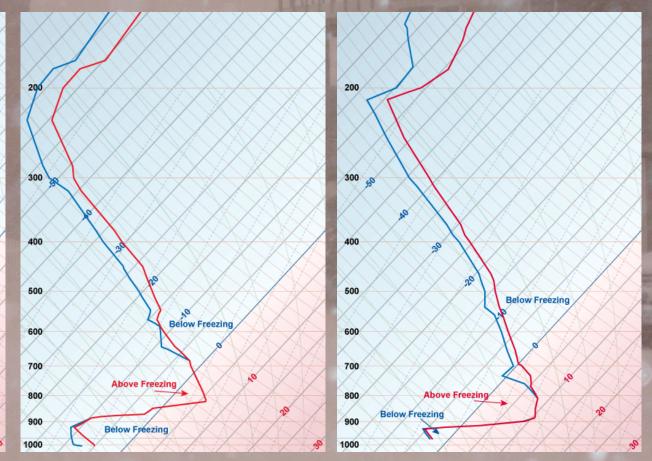
Compare all parameters offered in the MOS guidance, successive runs and for all locations within the forecast area (KGFL, KPOU, KPSF, KDDH etc.)

Once synoptic and mesoscale analyses are complete, it is all about local effects

Synoptic Analysis

- Conceptual Models Longwave patterns, Pattern recognition
- Data, Deterministic NWP Models, Ensembles, Anomalies


Mesoscale Analysis – Data, CAMs, CAM ensembles Conceptual Models – Banding, MHC, Upslope HRRR, HREF, 3Km NAM


Real-time data trends

 Conceptual Models – Sounding profiles for different precipitation types, Thermal profiles for SLR
 Radar, satellite, NY Mesonet, Upper air Real-time data helps fill in the gaps in time and space in the model initializations and near-term forecasts, accounting for what the models are missing

This is the process of determining what aspects of an upcoming weather event the models did not resolve that could contribute to forecast errors

The result will be adding value to the model forecasts and optimizing Impact Based Decision Support Services (IDSS) to the user community, especially in the near term Subtle differences in depths of layers have a big effect on precipitation type – model vertical resolutions vary, resulting in varying skill in predicting thermal/moisture layers

Snow sounding

Sleet sounding Freezing rain sounding

Note importance of looking at thermal profiles through a deep layer: Can't just rely on temperatures at mandatory levels like 850 hPa, you would miss an important warm layer

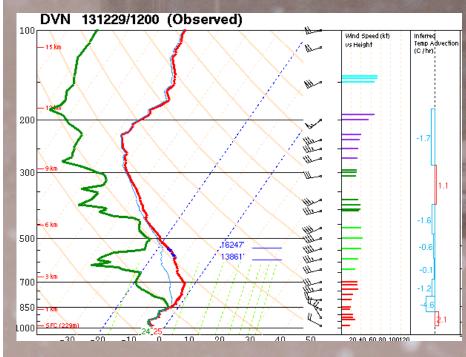
Subtle differences in depths of layers have a big effect on precipitation type – model vertical resolutions vary, resulting in varying skill in predicting thermal/moisture layers

Real Cases

Top-Down Reminder

Ice Producing Layer: -12C for likelihood of ice.

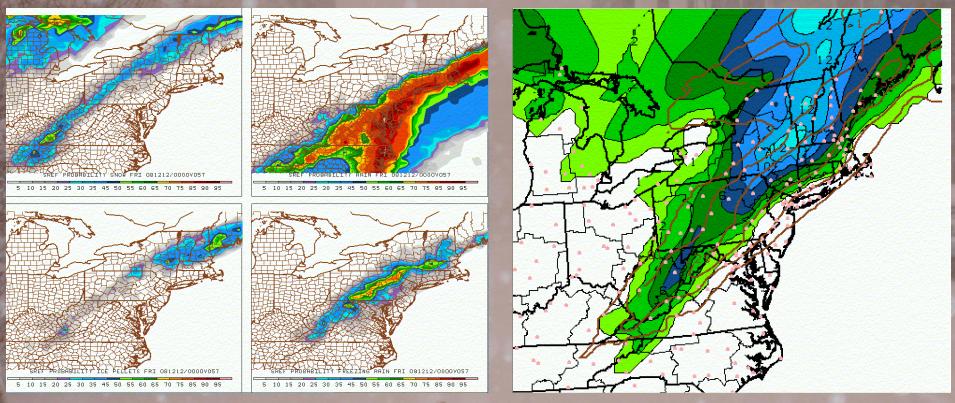
Warm Layer?


Warm Layer Maximum	Precipitation Type	Precipitation Type
Temperature	with ice introduced	ice introduced
< 10	Snow	Freezing Rain/Drizzle
1C to 3C	Mix (1C) to Sleet (3C)	Freezing Rain/Drizzle
> 30	Freezing Rain/Drizzle	Freezing Rain/Drizzle

Evaporation or Sublimation Layer?

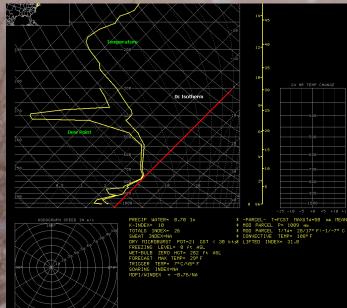
Surface:

- OC at surface or lower? 2"/4" soil temperature in 30s?
- Can FZRA turn to IP (trend to colder/deeper air)? SN? -12C?
- Tw >33F possibly rain (greater than 1000 ft)


Figure 1. From the VISIT session "Precipitation-Type Forecasting: The Top-Down Approach". A warm layer temperature below 1 degree C will produce snow if ice is introduced to the layer.

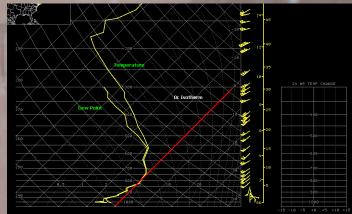
Freezing drizzle sounding

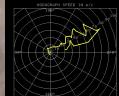
Subtle differences in depths of layers have a big effect on precipitation type – model vertical resolutions vary, resulting in varying skill in predicting thermal/moisture layers


11-12 December 2008 Ice Storm

SREF P-Type predictions

Weather Prediction Center Guidance


Monitoring thermal profiles during the 11-12 December 2008 ice storm



Note importance of looking at thermal profiles through a deep layer

Can't just rely on temperatures at mandatory levels like 850 hPa, you would miss an important warm layer

 UATER- 0.83 in
 -PARCEL - 1-SFCIL

 12
 INIT PARCEL - 1-SFCIL

 INDEX- 36
 INIT PARCEL - 1-SFCIL

 INDEX- 4
 INIT PARCEL - 1-SFCIL

 NDEX- 5
 INIT PARCEL - 1-SFCIL

 NDEX- 4
 INIT PARCEL - 1-SFCIL

 COUNCITUE TEMP CONVECTUE TEMP

 NGENDA
 PARCEL - 1-SFCIL

 AGUINO
 228 / 25 A.

 INIT PARCEL 7-1
 CONVECTUE TEMP

 AGUINO
 228 / 25 A.

 INIT PARCEL 7-1
 SFCIL

 AGUINO
 228 / 25 A.

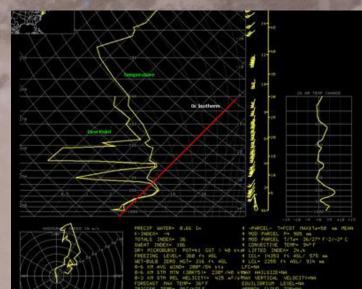
 INIT PARCEL 7-1
 SFCIL

 AGUINO
 228 / 25 A.

 INIT PARCEL 7-1
 SFCIL

 AGUINO
 228 / 25 A.

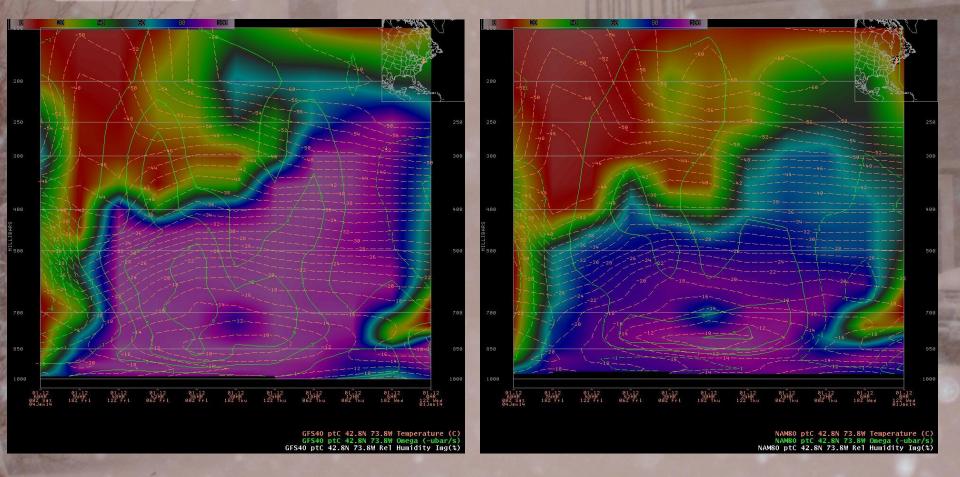
 INIT PARCEL 7-1
 SFCIL


 AGUINO
 228 / 25 A.

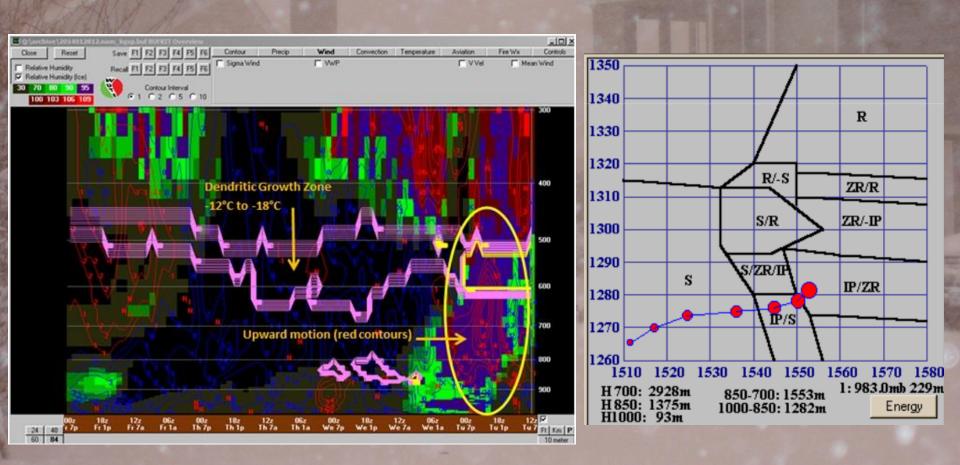
 INIT PARCEL 7-1
 SFCIL

 INIT PARCEL 7

THREADECE DF 1000 7.7 24 9 mk 1011 PAREEL 26 F 1011 PAREEL 26 F 1011 PAREEL 26 F 1011 PAREEL 26 F 1012 PAREEL 26



KALY Skewt Fri 00:00Z 12-De

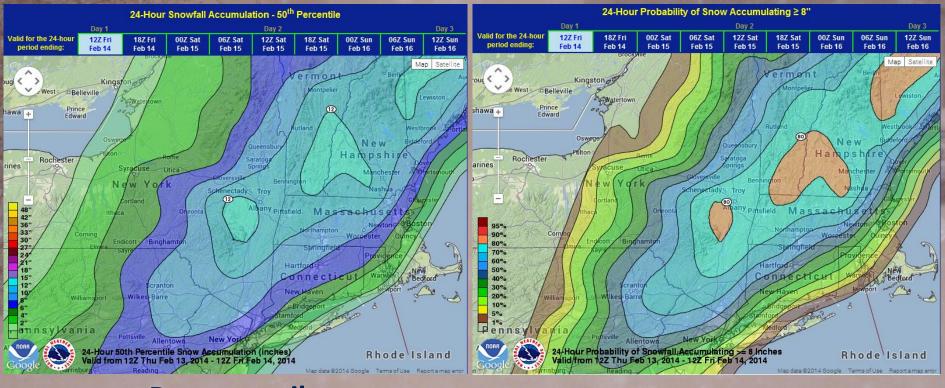


Snow to liquid ratios – above climatology when the core of maximum vertical motion extends through the -12C to -18C saturated layer

Maximum vertical motion through the dendritic growth zone in GFS but not NAM – which will be right?

Snow to liquid ratios – above climatology when the core of maximum vertical motion extends through the -12C to -18C saturated layer

BUFKIT output very effective for analyzing precip. type and vertical resolution of atmospheric parameters – Great for Lake Effect, too

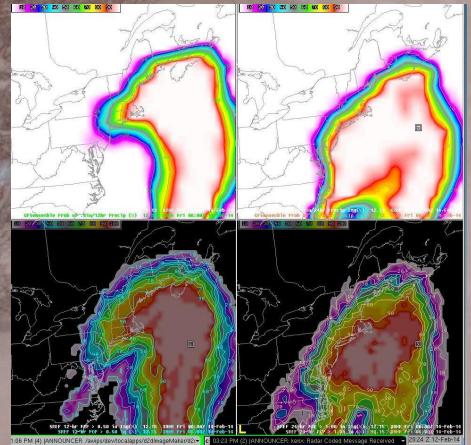

Probabilistic forecasts from the Weather Prediction Center

 \checkmark

 \checkmark

These are for snow but probabilities for freezing rain are also available

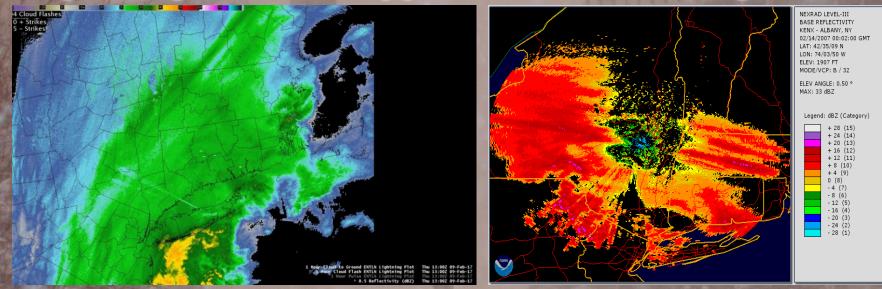
Numerical probabilities for precipitation amounts (WPC, GFSEnsemble, SREF, HREF etc.) can be a more objective method of determining confidence levels for Outlook (30%)/Watch(50%)/Warning(80%)/Advisory(80%)


amount

By percentile

Probabilistic forecasts from the NWP Model Ensemble Output

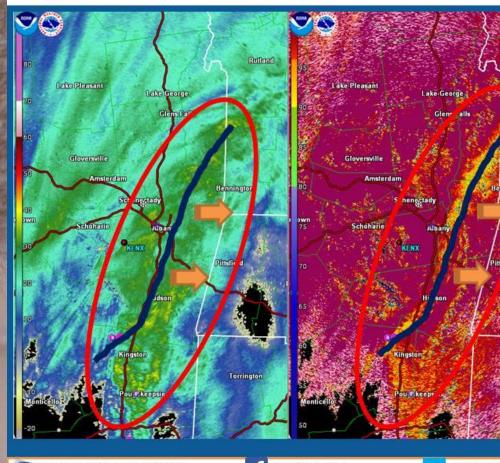
Numerical probabilities for precipitation amounts (WPC, GFSEnsemble, SREF etc.) can be a more objective method of determining confidence levels for Outlook (30%)/Watch(50%)/Warning(80%)/Advisory(80%)


Disagreements between ensembles often occurs but that is where experience and expertise help determine which guidance is resolving important storm features better

GFSEnsemble probability for 0.60" and 1.00" liquid equivalent

SREF probability for 0.50" and 1.00" liquid equivalent

Radar and lightning trends – near-term precipitation type and intensity



feb14snow.wmv

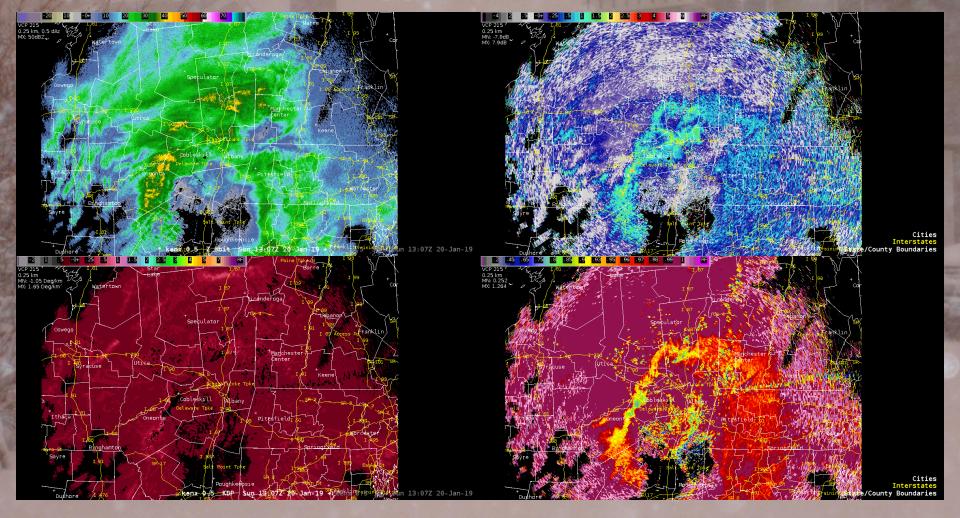
https://www.youtube.com/watch?v=_iCYTPeX NCQ

DUAL POL Radar data – near-term precipitation type and intensity

Dual-Pol Radar Imagery

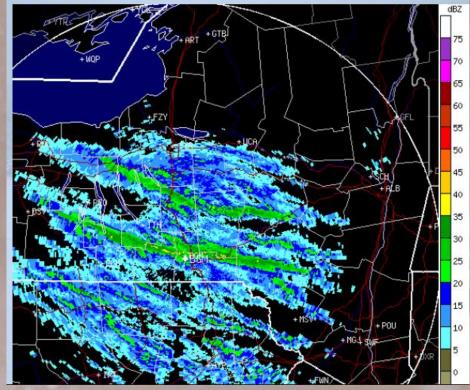
Transition zone from sleet and freezing rain to snow was translating eastward this morning. Our dual-pol radar nicely depicts this transition line as annotated on the adjacent images.

Traveling is not recommended!


www.weather.gov/albany

NWSAlbany

@NWSAlbany

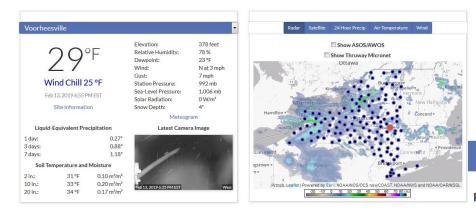

DUAL POL Radar data – near-term precipitation type and intensity

A quick note about Lake Effect – BUFKIT is the ideal tool to evaluate instability class, inversion heights and flow trajectories to predict band type, intensity and inland extent

Single Band Example

Multi Band Example

Important to be aware that bands can extend farther inland than the radar depicts due to the height of the radar beam


O.K., now back to our regular scheduled programming \rightarrow

Mesoscale observations and analyses

Your Current Weather and Forecast

MesoNow Data Profilers Snow Flux

esonet

Forecast Data from the National Weather Service powered by the New York State Mesonet

NYS Mesonet MesoNow Data Profilers Snow Flux

News Research About Sectors

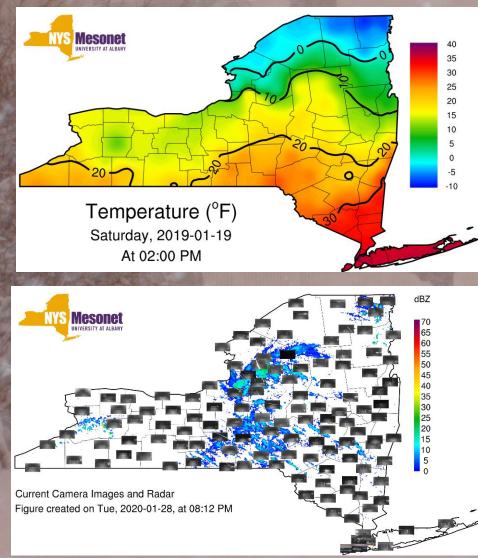

Profiler Data

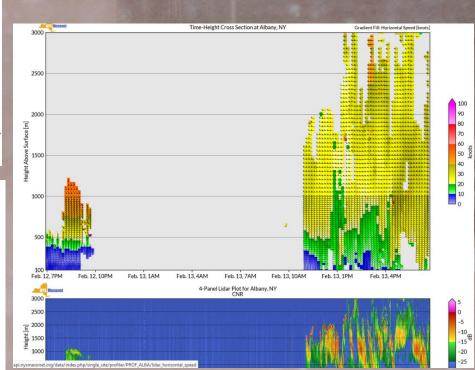
The New York State Mesonet operates a network of 17 profiler sites. Each profiler site is comprised of a scanning Doppler LiDAR, a microwave radiometer, and a sun photometer. All data are collected, quality-controlled, and archived in real-time every 5 minutes. Data dispixed here are provisional and may not always be available. Product development is ongoing, and this page will be updated as products are refined and as more profiler sites come online. For the time-series plots below, the most recent data available is on the right side of each plot.

Choose an instrument to scroll to that section.

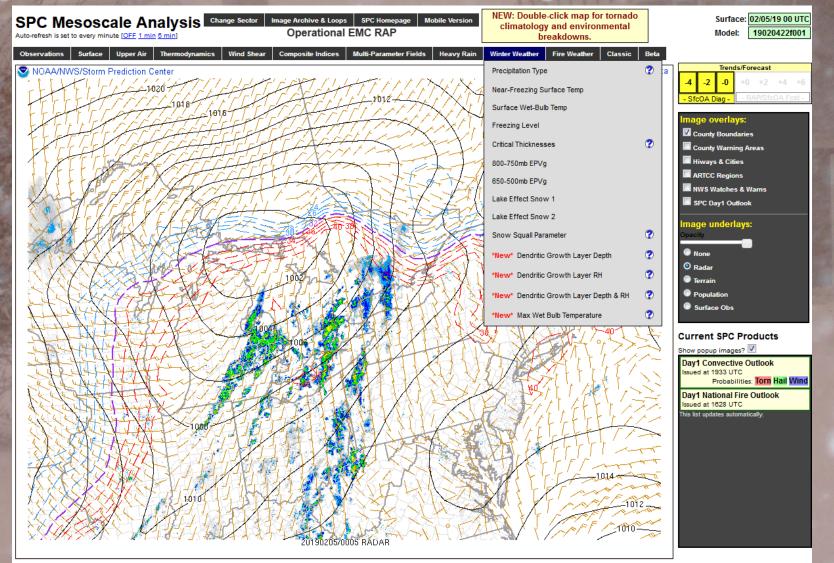
LIDAR Microwave Radiometer Sun Photometer

Site Information

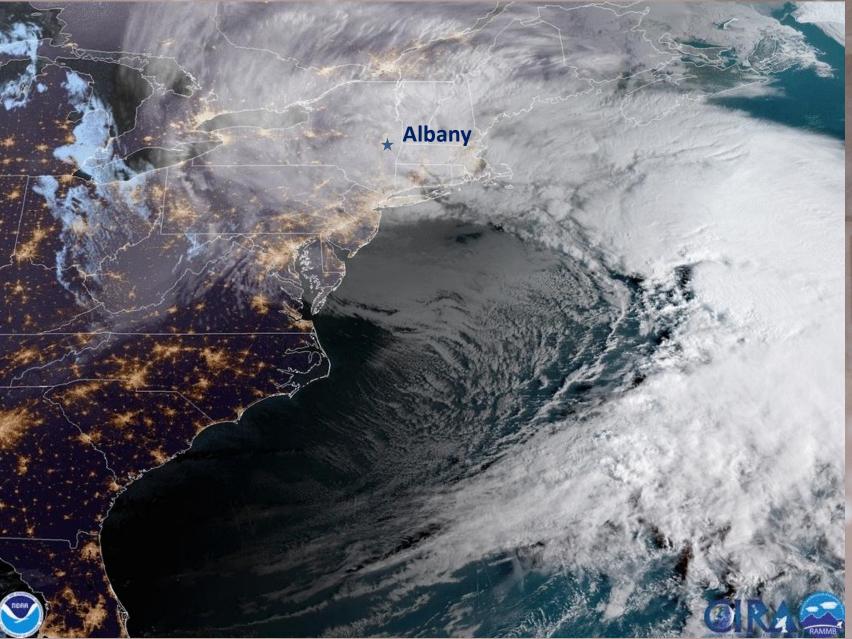

2

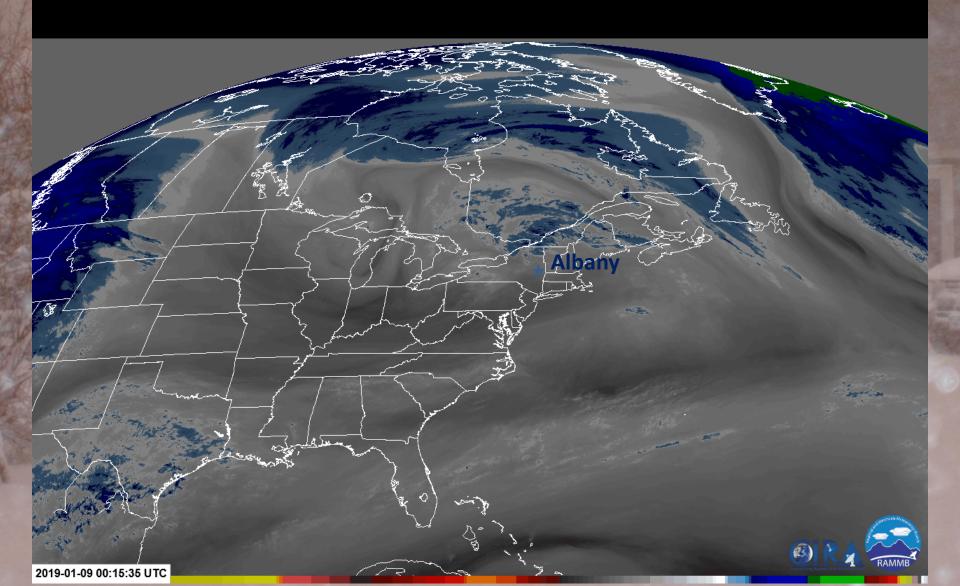

Skew-T

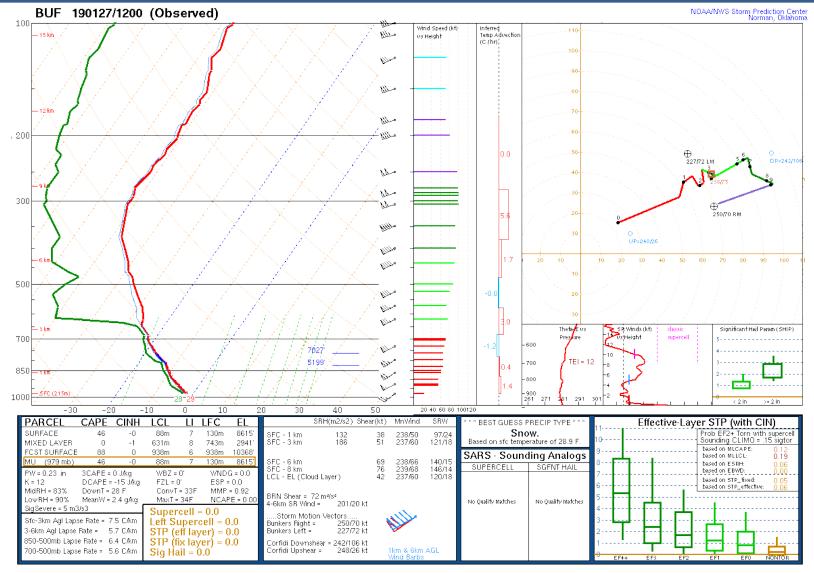
200


Q 24 hrs ago 21 hrs ago 18 hrs ago 15 hrs ago 12 hrs ago 9 hrs ago 6 hrs ago 3 hrs ago Now Feb 13, 2019 6:40 PM EST

Mesoscale observations and analyses (courtesy of Nicholas Bassill)

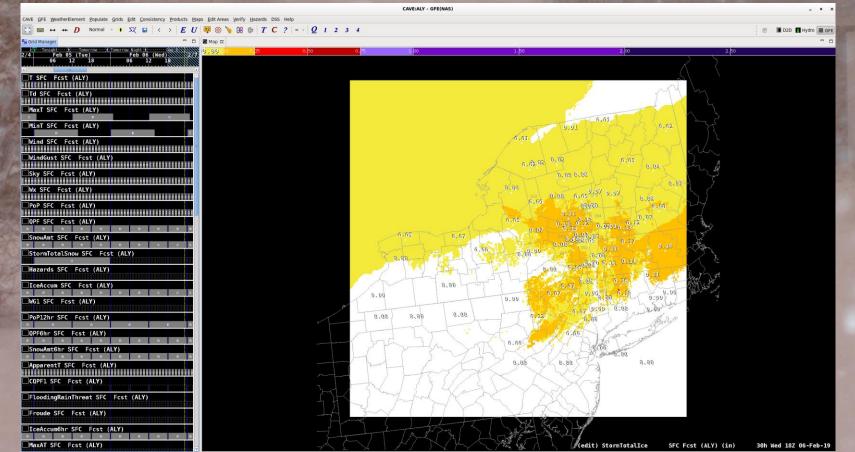



Mesoscale observations and analyses (Storm Prediction Center)


✓ Goes-16 satellite trends – CH2 Red Vis

✓ Goes-16 satellite trends – Ch8 Upper WV

A brief word about Snow Squall Warnings – treat like Severe Thunderstorm Warnings, increasing ability to predict since similar to thunderstorms



A brief word about Snow Squall Warnings – treat like Severe Thunderstorm Warnings, increasing ability to predict since similar to thunderstorms

SQ.W.0002 Time: 27 Jan 2019 1133 UTC

- O.K., time to issue the forecasts and briefings
 - ✓ Variety of population methods and smart tools in a Graphical Forecast Editor (GFE)
 - Oh, and we have to coordinate with neighboring offices
 - All this data and model analysis, populating grids, editing and coordination takes LOTS OF TIME
 - Delicate balance of what we choose to analyze, how to produce grids that we believe most accurately represents what we think will happen
 - We have to cut off the meteorology at some point and meet the deadlines to issue everything to partners and the user community

O.K., time to issue the forecasts and briefings –

- Variety of population methods and smart tools in GFE
- Coordinate with neighboring offices
- Data, model analysis, populating grids, editing and coordination = LOTS OF TIME
- Balance what we choose to analyze, how to produce grids that most accurately represents what we think will happen

Have to cut off the meteorology at some point - meet the deadlines to issue everything to partners and the user community

(02:21:31) **BGM BGM-Short Term Forecaster 2:** ALY/BUF... I think we are going to hold off and wait and see how the winds are doing around midnight. So far we only have a few locations that are gusting at wind advisory and the remaining sites are below. It will be a close call. I think I want to wait and let the 10PM shift handle if they want to extend the advisory or not. -kat

~

(02:21:48) **ALY ALY-Public Forecaster 1:** BUF/BTV...I did notice the strongest boundary layer winds do shift more into eastern and southern NY through the night so I understand letting your headlines expire. I see KSYR, KRME, KELM and KN23 gisting very high right now post wind shift and not showing any sings of diminishing. It may be more our and BGM's issue to consider. Thanks. Neil

(02:24:30) **ALY ALY-Public Forecaster 1:** BGM..I see KSYR, KRME, KELM and KN23 gusting very high right now post wind shift and not showing any sings of diminishing. We'll look at 10 PM observations and see if there are any trends for diminishing winds. Thanks. Neil

(02:32:42) **BGM BGM-Short Term Forecaster 2:** ALY... we see SYR at 16 G 20. We had a peak wind of 44 but that was at 114Z. I am not seeing where you are seeing that? -kat

(02:34:13) : BGM BGM-Short Term Forecaster 2 has left the room.

(02:37:47) **ALY ALY-Public Forecaster 1:** BGM...yes, saw peak wind at 0114Z but upstream in KELM/KITH at 0142-0152Z big gusts and KRME showing 37 Kt at 0130Z. That seems to be the nature of gusty winds, intervals, localized channelling, lots that models can't resolve well. Again, 10 PM observations will hopefully show good trends of diminishing winds. Thanks. Neil

(02:47:18) : WPC Surface Analysis 1 has entered the room.

(02:51:52) : WPC Lead/Day 1 QPF 1 has left the room.

(02:59:04) : ALY ALY-Public Forecaster 3 has left the room.

(03:02:36) **ALY ALY-Public Forecaster 1:** BGM...good to see winds diminishing a little even though you and KELM are still gusting well. Some mesonet obs also show some good gusts but on the downward trend. Will let wind advisory expire naturally at midnight. Thanks. Neil

(03:03:24) : WPC Lead/Day 1 QPF 1 has entered the room.

(03:04:41) **BGM BGM-Short Term Forecaster 1:** BUF/CTP/**ALY**/PHI/OKX - HRRR 925mb winds show 40+ kts across a large portion of our FA overnight. Currently gusting to 40 at KELM, and we are getting reports of power flashes near Binghamton. Anyone considering extending the wind advisory? dp/bgm

(03:04:55) : OKX Short Term Forecaster 2 has left the room.

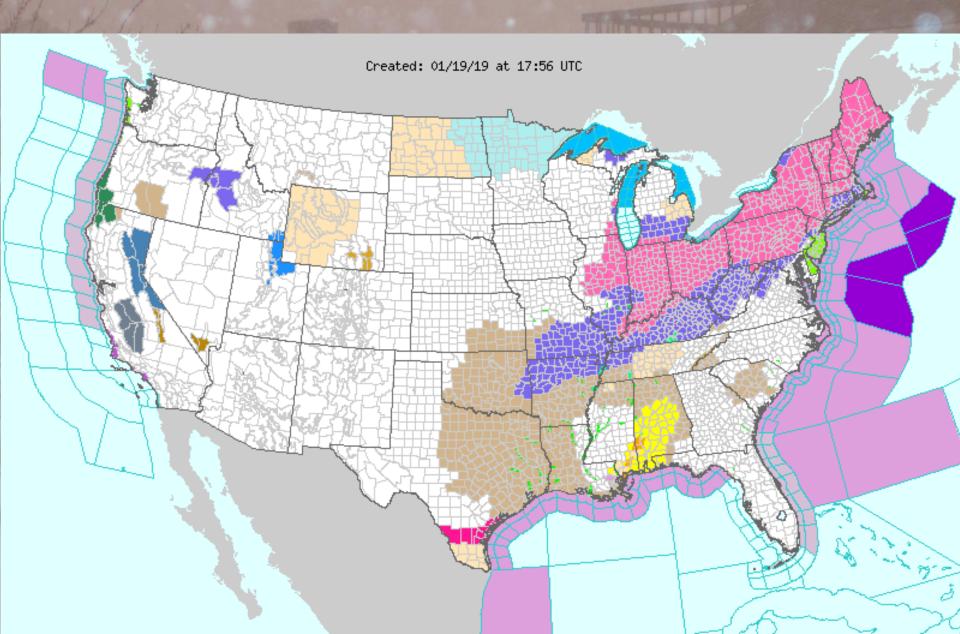
(03:05:12) : OKX Short Term Forecaster 1 has entered the room.

(03:08:45) : BGM BGM-Short Term Forecaster 2 has entered the room.

(03:08:56) : BUF BUF-Long Term Forecaster 1 has entered the room.

(03:11:13) : BGM BGM-Short Term Forecaster 3 has entered the room.

(03:11:18) **BGM BGM-Short Term Forecaster 1:** We will extend the wind advisory until 12z for the entire FA. Mid shift will cut areas overnight as needed.


(03:13:35) **OKX Short Term Forecaster 1:** BGM...we do not have an advisory right now and we have pretty strong inversion across our eastern areas. Maybe some gusts inland overnight, but right now going to hold off on issuing anything

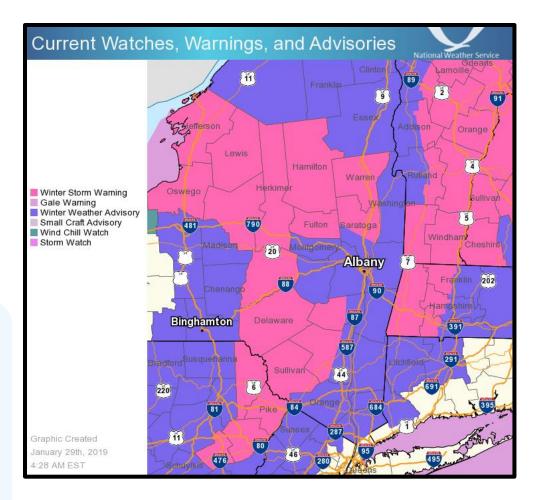
(03:14:09) **ALY ALY-Public Forecaster 1:** BGM...well, my northern areas will likely continue to diminish and it seems even the Mohawk Valley is showing signs of winds gusting just below advisory and usually channelling enhances winds down the Mohawk Valley. Now, the Schoharie Valley and the eastern Catskills may see some gusts but temperatures are cooler there and some inversions are limiting the mixing seen in mesonet observations. The strongest wind may actually stay along and west of the eastern Catskills based on the models as the low level wind core shifts more south than east. Keeping advisory up til midnight and decision to extend or not will depend on trends between now and midnight. Thanks. Neil

(03:15:04) : GYX Long Term Forecaster 1 has entered the room.

(03:20:01) **BGM BGM-Short Term Forecaster 1:** aly-okx-ctp-phi-buf: Looks like we'd be on an island if we extended. So after conferring with the incoming mid shift, we decided to allow the advisory to expire at 5z as planned. Will handle localized issues with an SPS. Thanks for the collaboration. dp/bgm

O.K., time to issue the forecasts and briefings

Specialized multi-slide briefings for Emergency Managers and other deep core partners – also uploaded to our NWS Albany NY web site – graphics based on GFE with text explanations


Winter Storm

Decision Support Briefing # 4 As of: 500 AM January 29, 2019

What Has Changed?

- ✓ Berkshires upgraded to a Winter Storm Warning
- Winter Weather Advisories now in effect for the Greater Capital Region, Taconics, mid Hudson Valley, Schoharie Valley, Helderbergs, eastern Mohawk Valley, Washington Co., and Litchfield County, CT

Specialized briefings for Emergency Managers and other deep core partners - Summary of multi slide graphical/text briefing to emphasize important points

Event Summary

Winter Storm Expected....

- ✓ Confidence is **HIGH** that this event will occur and **Moderate to High** on expected impacts
- Period of greatest impact for snow: This Morning daybreak Wednesday
- ✓ Wind Chill threat: Wednesday night Thursday morning & Thursday night Friday morning

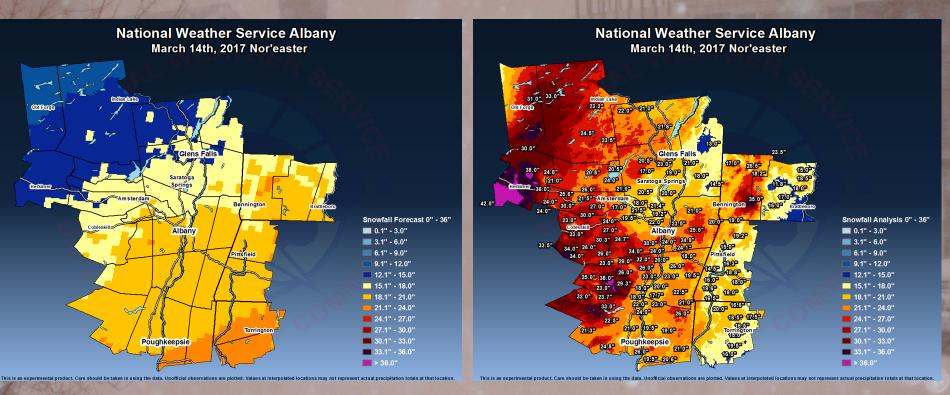
Snow will overspread the area from west to east this morning over eastern New York and this afternoon over western New England. Snow will be heavy at times tonight.

Berkshires upgraded to a Winter Storm Warning.

Winter Weather Advisories now in effect for the Greater Capital Region, Taconics, mid Hudson Valley, Schoharie Valley, Helderbergs, eastern Mohawk Valley, Washington Co., and Litchfield County, CT.

Frigid air will move into the region Wednesday night through Friday. Dangerous to life threatening wind chills are expected Wednesday night – Friday morning

O.K., the storm is over, now what?

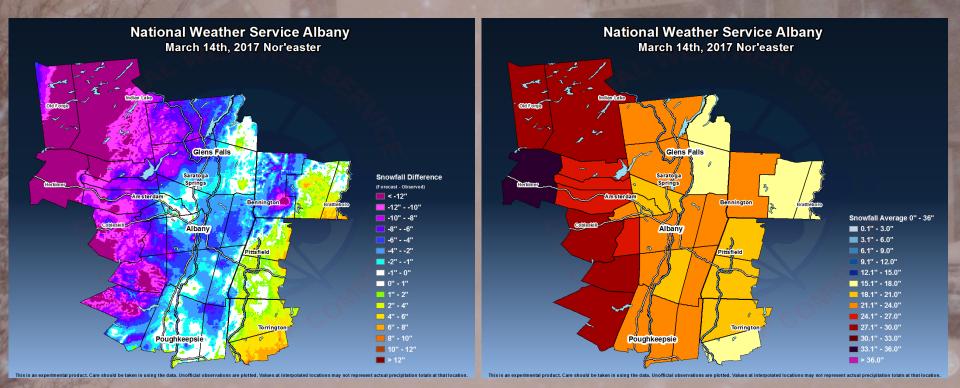

- Verification
 - Skill of models/ensembles
 - Skill of humans adding value to model/ensemble forecasts
- Many methods
 Graphics comparing forecasts to observed
 Statistics comparing various forecast parameters
 Receiving feedback from users, positive and negative
- Applying lessons learned to improve for the next storm

O.K., the storm is over, now what?

- ✓ Verification
 - ✓ Skill of models/ensembles
 - Skill of humans adding value to model/ensemble forecasts
 - Many methods
 Graphics comparing forecasts to observed
 Statistics comparing various forecast parameters
 Receiving feedback from users, positive and negative

Applying lessons learned to improve for the next storm

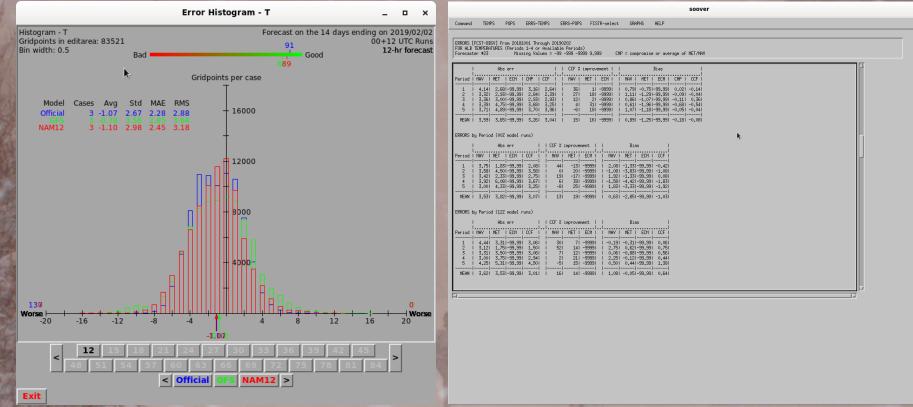
Verification methods Gazpacho: GIS-based plots and comparisons



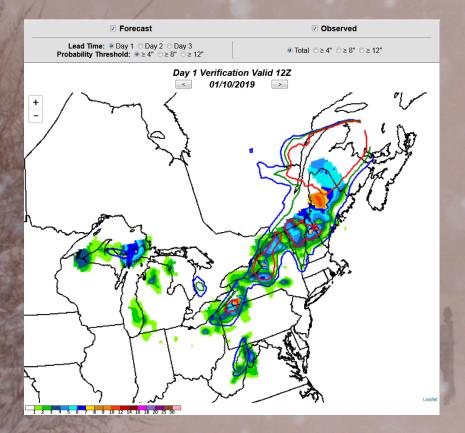
Gridded snow forecast

Observed snow

Gazpacho: Developed by Charles Gant of NWS Greenville-Spartanburg, SC and Joe Villani and Vasil Koleci of NWS Albany, NY


Verification methods Gazpacho: GIS-based plots and comparisons

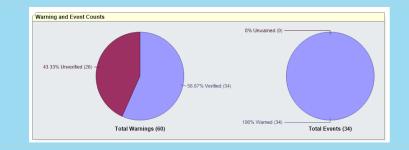
Snowfall difference – under forecasted in western areas and over forecasted in eastern areas


Verify by zone average

Verification methods

Various methods to verify temperatures and other parameters - Boiverify Various methods to verify temperatures and other parameters - LinuxSoover _ • ×


Verification methods



WPC probabilistic verification

Statistics Counts Lead Time Timing Error Warnings Events Scores Group (hr) (hr) NOT NOT Total Verif Total Warned POD FAR CSI 8 w/o Abs Avg Avg Verif Warned ALY 60 34 1.000 0.433 0.567 20.55 1.43 2.07 34

Summary Statistics

Statistics on POD, FAR, CSI and lead time from the NWS Verification web site

Applying lessons learned – User feedback

US National

Albany NY 🖸

@NW SAlbany

Home

About

Posts

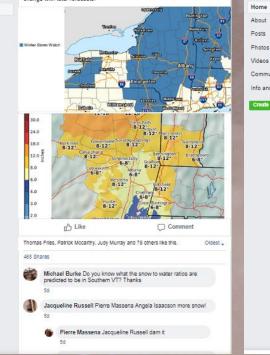
Photos

Videos

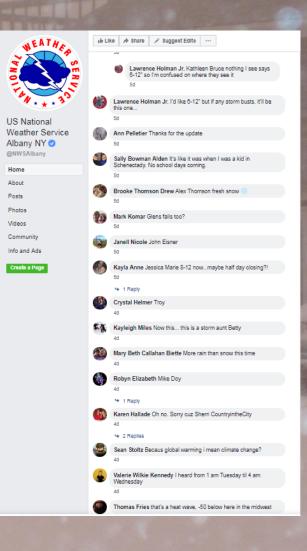
Community

Info and Ads

Greate a Page


Weather Service

📫 Like 🏾 🖈 Share 📝 Suggest Edite 🛛 …


US National Weather Service Albany NY added 2 new photos. January 28 at 2:27 AM - 🛛

THIS POST IS OUTDATED AS OF 915PM 1/28/19, please see newer posts for the latest information

Winter Storm Watches have been posted from 7 am TUE to 7 am WED for the southern Adirondacks, western and central Mohawk Valley, Lake George Saratoga Region, Schoharie Valley, Helderbergs and eastern Catskills. The Winter Storm Watch is in effect from 1 pm TUE to 7 am WED for the Greater Capital Region, the northern and central Taconics, Washington, western Columbia and eastern Greene Counties, southern VT, and the Berkshires of MA. The current potential snowfall projections are shown, that are subject to channe with latter forecasts.

Responses and feedback from social media users – Facebook and Twitter

Applying lessons learned – User feedback

Home NWSAlbany

Andrew Cuomo @NYGovCuomo 21 hours ago

I urge residents and local governments to prepare for possible ice jam flooding as warmer temperatures and precipitation move into the state on Monday. State agencies are monitoring potential ice jam formations and are deploying assets as needed. governor.ny.gov/news/governor-...

NYSDOT CapitalRegion @NYSDOTAlbany 21 hours ago

DOT Region 1 crew in action snowblowing on the Tug Hill Plateau earlier today. @NYSDOTAlbany is proud to assist our fellow New Yorkers and colleagues in responding to the major #lakeeffectsnow in Northern and Western New York. 🛠

Plenty of snow on the ground across #nywx #ytwx

Mentions NWSAlbany

JQ:

Oh, so the criteria are different in different counties? That makes sense since the populations are more used to certain to types of weather. Thank you for the info! #iloveweather

Hide Conversation

NWS Albany Winter Weather Advisory snow criteria for Dutchess county is 4 inches in 12 hours & Winter Storm Warning Criteria is 7 inches in 12 hours or 9 inches... Read More

Jessi @NWSAlbany I don't understand how 5d 🛛 Dutchess has no watches or warning, but every county around us does?

In reply to NWSAlbany

lessi @justus0502

Everywhere but Dutchess? So confusing

Hide Conversation

NWS Albany Portions of the region have been upgraded to Winter Storm Warnings while some areas remain within the Winter Storm Watch, Snow will begin Tuesday... Read More

Mv Tweets NWSAlbany

NWS @NWS 5 hours ago

Ever wonder how accurate #PunxsutawneyPhil's forecasts are? Investigate past forecasts with U.S. climate records.

381

ncei.noaa.gov/news/groundhog...

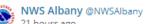
Show Media

C :

NWS Albany @NWSAlbany 8 hours ago

Another very cold morning, but temps this afternoon will be milder compared to recent days #518wx

Show Media


5d 🖡

NWS Albany @NWSAlbany 18 hours ago

Season-to-date snowfall in Albany, NY is 32.6 inches with 10.4" in November, 3.3" in December and 18.9" in January. See our graph below to see the snowfall distribution so far this winter compared to normal. #nvwx

Show Media

Responses and feedback from social media users – Facebook and Twitter

Applying lessons learned – Internal Quality Assurance Reports for significant events

8. Customer Feedback:

"I liked that the winter storm watch went out as early as it did for this event...from what I recall it went out Saturday afternoon – lots of lead time for a big event, even though at that time there was great uncertainty in storm track. But a good call there. And the change to blizzard warning for the event was appropriate which I think really helped in cementing the message that the traveling would be a nightmare throughout the region, which was really what we were trying to convince people to avoid...and I think that worked out well based on news reports showing a minimum of traffic accidents and issues through the duration of the storm.

The experimental snowfall projection graphics on the website were what really stood out to me... excellent. The March 14 storm was the first time I had looked at those products and the concept of offering the three scenarios of "Expect this much" "The most probable amount" and "This is possible" are very effective at telling the story, even for the very probability challenged public. I'm going to try to figure out a way to do something similar on air for next season...aithough for us they would be quite labor and time intensive to produce which will make it tricky. But it's definitely the way to go in the future."

"Overall good lead time with NWS communications, forecast was accurate and your graphics are very good as well. Thx."

"Thank you very much for your briefings which are incredibly heipful in our storm preparations. The only comment that I have is that there was not enough mention of the possible snow ratios in either the briefings or your daily forecast discussion. The consistency of the snow is very critical for the utility industry, so we would welcome as much information on snow ratios as possible in your future forecasts. Thank you."

"Thank you guys for keeping the area alerted and informed about the storm yesterday, I really appreciate the hard work you guys put in leading up to/during a system like this. I chased the storm out in the Berkshires yesterday afternoon, and I can honestly say that the conditions we experienced were nothing short of life threatening. On top of the extremely heavy snow, we experienced some outrageous winds near the town of Florida MA, with a wind gust of 74 mph. measured by our mobile weather station. Feel free to share my video on your page for educational purposes."

Many people on social media questioned the airport's total of 17.0", because it was the lowest total in the area. It's easy to see why people are critical of that report. But it does make sense given that it's one of the areas most susceptible to blowing in the Capital District. We double-checked the report with the observer, so I'm not sure what more can be done

8. Customer Feedback:

Thank you for providing these weather briefings. They are very helpful to the Department when we are preparing our storm responses. I have one question/request – earlier in the week, one of the NWS Offices (I believe it was Albany) included a Statewide map of expected snowfall in addition to the regional map that is normally provided. This Statewide map was incredibly useful to us because it allowed us to look at the entire picture. We still used the briefings from all of the other offices for specific details, but the single Statewide map gave us something to quickly reference as we conducted our pre-storm planning. Is there any way we can get a Statewide map in all of your briefings?

Kudos to NWS Albany for good weather sleuthing and for your caution that mixing could occur with the snowstorm (February 7 snow event) as suggested by multiple NAM runs in contrast to the colder GFS/ECMWF global solutions.

Ultimately – No forecast is perfect: life-long learning is the key! Remember: <u>Weather occurs in the atmosphere, not the models</u> – Any Questions?