River Watch

Part 1 – Introduction and background
Part 2 - Aerial photographs illustrating various ice conditions
Part 3 - River PIREP format and terminology
Part 4 - Tips on taking aerial photographs of river ice

http://aprfc.arh.noaa.gov/rivwatch.php
RIVER WATCH PROGRAM

• Purpose of program is to assist the NWS in providing accurate forecasts, warnings, and river navigation information

• A voluntary program asking pilots and other individuals to report observed river conditions

• Requesting observations that can be obtained without deviation from the normal route or flight level

• Standard method of reporting is to submit pilot report to FAA’s Flight Service Stations by radio

• Other reporting options are phone, emailing report and/or digital photos, and filling out a web form
BACKGROUND

- National Weather Service (NWS) monitors ice breakup conditions throughout Alaska to assess flood threats and navigational hazards.
- Other monitoring capabilities leave large voids in the knowledge of river and lake ice conditions...
 - A monitoring program conducted in conjunction with Alaska Division of Homeland Security and Emergency Management in chartered aircraft is only done in specific locations when flood threat is high.
 - Observers in villages along rivers provide a ground based view only in front of their village.
 - Satellite images provide some broad information on larger rivers, but lack the resolution to fully understand the ice conditions.
- Supplemental aerial observations from aircraft flying at lower altitudes have significantly enhanced the spatial and temporal coverage of information on ice characteristics.
The first year of the program targeted Fairbanks FSS, air taxi operators, and private pilots.

The 2006 program expanded into southwest and southcentral Alaska.

The 2007 program continued to expand its coverage statewide.
Spring 2009 breakup along the Yukon and Kuskokwim River resulted in the most destructive flooding in many decades. Communities made preparations to deal with high water and major flooding based on NWS Warnings which were issued in part due to observational information gathered from PIREPs during River Watch flights.
2013 and 2014 saw a slight decline in PIREPs
The progress of breakup is displayed on the web graphically along with text reports and selected recent photos. Pilot reports are used to provide more accurate information on this map.

Observations of ice conditions on these or any Alaska rivers and lakes are needed.
FEEDBACK - SEARCH REPORTS ON WEB

http://aprfc.arh.noaa.gov/php/rivnotes/searchnotes.php

Anyone can search our river notes database for pilot or other reports of river ice conditions by river, location, or view all reports or only PIREPs.
Submit an ice condition report

- Fill out web form
- Submit an email ice report or digital photo

Additional information about the program and tools to download are available at the following:

Program background:

- Frequently Asked Questions about River Watch Program
- View River Watch Program Presentation

Training materials:

- Download River Watch Program Presentation
- Download River Watch Program Overview Presentation
- Text Description of River Breakup
- Maps with River Miles
- Download River Ice Remarks Checklist...MS Word
- Download River Ice Remarks Checklist...Adobe pdf
- Download Pilot Report Format and River Ice Remarks Checklist...Adobe pdf
- Download Guide to River Ice in normal page sequence format...Adobe pdf
- Download Guide to River Ice in two-sided booklet printing format...Adobe pdf

Results:

- View Breakup Map
- Search Observations
- View Watches and Warnings
- View Breakup Text Summary

Email us about this program:

- Submit a comment or question about the program
CONTACT INFORMATION

River Forecast Center (ANC) – Scott Lindsey
scott.lindsey@noaa.gov 907-266-5152

Service Hydrologist (FAI) – Ed Plumb
edward.plumb@noaa.gov 907-458-3714

Aviation Focal Point (ANC) – Becky Perry
becky.perry@noaa.gov 907-266-5162

http://aprfc.arh.noaa.gov/rivwatch.php
Part 2 - Aerial photographs illustrating various ice conditions

• Breakup process varies somewhat with river size and with latitude in Alaska
• Great variability is common in ice conditions… the objective in the river PIREP is to report the predominant condition or use qualifiers (ocnl, few, mostly, etc)

Aerial photographs courtesy of APRFC staff, partner agencies, and participating commercial and private pilots
PRE-BREAKUP CONDITIONS

Primary sequential phases of the pre-breakup process:

- **Unbroken ice** – continuous ice surface that has few if any cracks
- **Arched ice** – ice that is attached to the banks, which rises in the center of the channel due to increased flow beneath the ice causing melt water to collect in channels along the banks
- **Lifted ice** – ice that has broken from the banks and is floating on the river water, but is not moving; usually has river flow along both sides
- **Shifted ice** – large ice sheets that have moved short distances from their original locations as rising water levels create wider areas of open water into which the ice can move
- **Open reach** – a length of river channel with no ice that results from ice shifting a short distance down river

Other characteristics that may be observed combined with a phase:

- **Open lead** - a narrow channel of open water in the ice
- **Snow on ice** – snow on the ice surface that appears white from the air
- **Clr water on ice** – snow on the ice surface that is melting and forming pools of water
- **Hard ice** – strong ice that appears white, blue or green
- **Rotten ice** – weak ice that appears black or brown
Unbroken ice – continuous ice surface that has few if any cracks

/OV format – Point or Segment

As Snow Melts Off Ice Surface To Expose the Ice, the Color of the Hard Ice Will Usually be White, Blue, or Green
Arched ice – ice that is attached to the banks, which rises in the center of the channel due to increased flow beneath the ice causing melt water to collect in channels along the banks

/OV format – Point or Segment
Rotten ice – weak ice that appears black or brown

/OV format – Point or Segment
Lifted ice – ice that has broken from the banks and is floating on the river water, but is not moving; usually has river flow along both sides

/OV format – Point or Segment
Shifted ice – large ice sheets that have moved short distances from their original locations as rising water levels create wider areas of open water into which the ice can move.

OV format – Point or Segment
• **Breakup front** – location along river between moving ice and stationary ice
• **Ice run** – a continuous length of moving ice that may be up to 10’s of mi in length; typically grades from large ice pieces at downstream end to small ice pieces at upstream end
• **Ice sheets** – large pieces of ice with length greater than width and width > 50% of river width
• **Ice pans** – pieces of ice that are 10 to 50% of the river width in size
• **Ice chunks** – small pieces of ice that are <10% of the river width in size
Breakup front – location along river between moving ice and stationary ice

OV format – Point only
ICE BREAKUP FRONT

• Breakup date and time is when breakup front passes a location
• Flood threat due to an ice jam is greatest just after breakup front passes village
• Can be difficult to differentiate between breakup front and an ice jam

The ice breakup front can move down river like an inchworm… the front may stall out temporarily to wait for the back end to catch up… this would not be called an ice jam

Look for a significant amount of the ice run packing in up river from the location where the breakup front stopped… this would be an indication of an ice jam
TYPICAL RUN OF ICE

May be 10-20 miles in length

- Reach of large moving sheets (nr breakup front)
- Reach of mixed sheets, pans, and chunks
- Reach of mostly chunks
- Subsequent runs are mainly chunks
Ice run – a continuous length of moving ice

/OV format – Point or Segment
Ice run – a continuous length of moving ice
/OV format – Point or Segment
Mostly Chunk Ice in the Ice Run Indicates that the Ice Run Has Traveled a Long Way

Note that a HVY ice run up river looks MOD in this wider reach of river.

Ice run – a continuous length of moving ice

OV format – Point or Segment
ICE JAM CONDITIONS

• **Ice jam** – an ice run that has stopped moving due to any of a variety of reasons; characterized by a long reach of tightly packed chunk ice

• **Ice jam flood** – water spreading over the banks up river from an ice jam

• **Village flood** – water spreading into a village that covers roads or threatens buildings

• **Widespread flooding** – water that has gone over the banks and covered vast areas of land that are normally dry
BREAKUP JAM

Forms when breakup front encounters a competent ice sheet or constriction

May be surface, thickened, or hanging, depending on speed of ice movement

Flood threat upstream varies with type of jam

Stream level can increase very rapidly upstream of a jam

Flood threat is greatest just after breakup front passes village
Historic ice jam problems at Bishop Rock on Yukon and below Aniak on Kusko

This pre-breakup photo shows the wide ice surface in the foreground that will have to go around the bend and through the narrow opening at Bishop Rock
Ice jam – an ice run that has stopped moving due to any of a variety of reasons; characterized by a long reach of tightly packed chunk ice

/OV format – Point only
ICE JAM THREAT LOCATIONS

• Ice jams can occur at any location
• Historic ice jam problems at Bishop Rock on Yukon and below Aniak on Kusko
• Threats also associated with ice conditions at and up to 10 miles down river from…
 ➢ Eagle, Circle, Fort Yukon, Galena, Koyukuk, Nulato, Russian Mission, Pilot Station, and delta villages on the Yukon
 ➢ McGrath, Sleetmute, Red Devil, Crooked Creek, Akiak, Kwethluk, and Bethel on the Kusko
 ➢ Kobuk on the Kobuk and Buckland on the Buckland
ICE JAM IMPACTS

Upstream from the jam...

- Fast water level rise
- Packed ice chunks
- Potential flooding
Village flood – water spreading into a village that covers roads or threatens buildings

/OV format – Point or Segment
Widespread flooding – water that has gone over the banks and covered vast areas of land that are normally dry

/OV format – Point or Segment
POST-BREAKUP CONDITIONS

- **Stranded ice** – ice pushed onto the banks or into side channels that is left behind after the ice has cleared out of the main channel.
- **Open channel** – no ice in the main channel of the river.
- **Ice or debris run** – a length of river channel containing moving ice or debris (trees, brush, etc) that is further categorized by amount...
 - **Light run** – <25% of surface covered
 - **Moderate run** – 25 – 75% of surface covered
 - **Heavy run** – >75% of surface covered
Ice or debris run – a length of river channel containing moving ice or debris (trees, brush, etc)

/OV format – Point or Segment
Ice or debris run – a length of river channel containing moving ice or debris (trees, brush, etc)

/OV format – Point or Segment
Stranded ice – ice pushed onto the banks or into side channels that is left behind after the ice has cleared out of the main channel

/OV format – Point or Segment
Stranded ice – ice pushed onto the banks or into side channels that is left behind after the ice has cleared out of the main channel

/OV format – Point or Segment
Part 3 - River PIREP format and terminology

• Pilots are familiar with pilot reports (PIREPs) for documenting weather impacts to flight.
• River PIREPs supplement a normal PIREP with observations of notable or changing conditions on a river.
• Although river PIREPs can be given at any time of year for any condition, the initial emphasis concentrates on ice breakup observations.
• Lake ice information can also be included in a river PIREP but must still include RIV in remark.
PIREP FORMAT

• UA or possibly UUA for severe flood report
• /OV - Point or route segment format
• /TM – UTC time of event observed
• /FL – Assists weather evaluation and observation resolution
• /TP – Assists weather evaluation
• /SK – Assists weather evaluation
• /WX – Assists weather evaluation
• /TA – Assists weather evaluation
• /WV – Assists weather evaluation
• /TB – Assists weather evaluation
• /IC – Assists weather evaluation
• /RM – Heart of the river report

Items highlighted in red are considered to be the most important part of the PIREP for use in river ice assessments but weather reports are encouraged
/OV – LOCATION FORMAT

• Point format (e.g. /OV MCG18030) is useful to describe specific location of an ice feature such as breakup front, ice jam, downstream end of ice run or flooded village

• Segment format (e.g. /OV SRV-SLQ) is useful to describe ice or flooding conditions along a reach of river

• Optional format to specify river mile in the remark section (maps w/river miles for some rivers available on program web site)
/RM - REMARK FORMAT

• /RM name RIV description, where...
 ➢ name is the name of the river or lake
 ➢ RIV is a key identifier for the NWS and must be included even if it is observations of lake ice
 ➢ description is an abbreviated description of the observed ice conditions

For Example....
FAI UA/OV GAL270013/TM 2355/FL060/TP C207/RM YUKON RIV BISHOP ROCK APPARENT ICE JAM
<table>
<thead>
<tr>
<th>GENERAL</th>
<th>SUPPLEMENTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNBKN</td>
<td>HARD</td>
</tr>
<tr>
<td>ARCHED</td>
<td>ROTTEN</td>
</tr>
<tr>
<td>LIFTED</td>
<td>SNOW ON ICE</td>
</tr>
<tr>
<td>SHIFTED</td>
<td>CLR WATER ON ICE</td>
</tr>
<tr>
<td>OPEN</td>
<td>MUDDY WATER ON ICE</td>
</tr>
<tr>
<td></td>
<td>OPEN HOLES</td>
</tr>
<tr>
<td></td>
<td>OPEN LEADS</td>
</tr>
<tr>
<td></td>
<td>FLOW IN SIDE CHAN</td>
</tr>
<tr>
<td></td>
<td>FLOW ON ICE</td>
</tr>
</tbody>
</table>
STANDARD RIVER PIREP REMARKS

MOVING ICE

GENERAL
• BU FRONT
• ICE RUN...
 ➢ MIXED
 ➢ SHEETS
 ➢ PANS
 ➢ CHUNKS
• X MI ICE RUN
 (LENGTH = X)

ICE RUN DENSITY
• HVY ($>75\%$)
• MOD (25-75\%)
• LGT (<25\%)
STANDARD RIVER PIREP REMARKS

ICE JAM AND FLOODING CONDITIONS

ICE JAMS

• APPARENT ICE JAM
• ICE JAM

FLOODING

• VILLAGE NAME FLOODING
• RWY FLOODING (% USABLE)
• WIDESPREAD FLOODING
• LOW-LYING FLOODING
Part 4 - Tips on taking aerial photographs of river ice

Prepared by Tom George
Alaska Regional Representative
Aircraft Owners and Pilots Association
Overview

• Tips on taking pictures
• Transmitting pictures via e-mail to the River Forecast Center
Tips on photographing

- Don’t wear *bright clothing* which may reflect in the windows of the aircraft
- Keep upper body away from airframe to avoid transmitting vibrations to the camera
- Use a *high shutter speed* to avoid image motion
- If possible, *open the aircraft window* to improve the quality of the images—check with the pilot first!
- Use an *intercom system* to aid communications between pilot and photographer
When photographing into the sun, “forward scattering” tends to enhance haze and obscure ground features.
Shooting “down sun” minimizes haze, resulting in a sharper image.
Glare and reflections

Shooting through curved windshields generally results in glare and reflections. Shooting through flat side windows, or opening the window gives the best results.
Setting up the picture

• Identify the feature you plan to photograph
• Consider the lighting
• Consider the best angle to show the feature
• Position the aircraft relative to the target
 – Typically, behind the strut on the photographer’s side of the aircraft
• Take the photograph
• Record the location, time and other significant features:
 – Ice type, jam, flooding, etc.
Flooding impact

Water outside the channel
Wait for the target…

Target area

Too far to see detail

Good detail and reference locations
Focal length of camera

- **Use wide angle lens to show larger area**
- **35 mm lens on a 35 mm film camera**
- **Easier to:**
 - See the “big picture”
 - Identify landmarks
Generally better to shoot up or down stream.

Cross stream is harder to:
- Establish location
- See ice details
Flight altitude

• ~3,000 feet *above ground level* is a good altitude for general observations
• Lower shows more detail, but a lot less area
• Higher is sometimes useful to show the “big picture”
Example:
Tanana River, looking upstream, into the sun, from ~3,000 feet agl.
Example:
Confluence Chena and Tanana, down sun, ~3,000 feet agl.
Transmitting digital pictures to NWS River Forecast Center

• Images and text transmitted via e-mail:
• Image size ~ 7 x 10 inches, 100 pixels/inch
• Jpeg, factor 8 – 10
• Compresses to image size of ~200K
• If sending many images, may need to spread across several e-mail messages due to 20MB limit

Send to: River Forecast Center
nws.ar.aprfc@noaa.gov

Or call: (800) 847-1739
Thanks for your help

River Watch

http://aprfc.arh.noaa.gov/riverwatch.php