2016-2017 Michigan Winter Hazards Awareness

INSIDE THIS PACKET

- Committee for Severe Weather Awareness Contacts
- Last Winter Season Review
- Winter Safety Tips
- Winter Hazards Frequently Asked Questions (FAQs)
- Preventing Frozen Pipes
- Preventing Roof Ice Dams
- Ice Jams/Flooding
- Preventing Flood Damage
- Flood Insurance FAQs
- Winter Power Outage Tips
- Heat Sources Safety/Portable Generator Hazards
- National Weather Service Offices

The Michigan Committee for Severe Weather Awareness was formed in 1991 to promote safety awareness and coordinate public information efforts regarding tornadoes, lightning, flooding and winter weather.

For more information, visit www.mcswa.com

November, 2016-7
Michigan Committee for Severe Weather Awareness

Rich Pollman, Chair
National Weather Service
9200 White Lake Road
White Lake, MI 48386-1126
248/625-3309, Ext. 726
richard.pollman@noaa.gov

Mary Piorunek, Vice Chair
Lapeer County Emergency Management
2332 W. Genesee Street
Lapeer, MI 48446
810/667-0242
mpiorunek@lapeercounty.org

Lori Conarton, Secretary
Insurance Institute of Michigan
334 Townsend
Lansing, MI 48933
517/371-2880
iim@iiminfo.org

James Maczko
Warning Coordination Meteorologist
Weather Forecast Office - Grand Rapids
4899 South Complex Dr., S.E.
Grand Rapids, MI 49512
616/949-0643 ext. 726
james.maczko@noaa.gov

Paul Gross
Meteorologist, WDIV-TV
550 W. Lafayette
Detroit, MI 48226-3140
313/222-0444, Ext. 318
paulg@wdiv.com

David Chapman
MI Earth Science Teachers Association
Okemos High School
2800 Jolly Road
Okemos, MI 48864
517/706-4886
dave.chapman@okemosschools.net

Kevin Thomason
State Farm Insurance
P.O. Box 4094
Kalamazoo, MI 49003-4094
269/384-2580
Kevin.Thomason.A18Z@StateFarm.com

Terry Jungel
Michigan Sheriffs’ Association
515 N. Capitol
Lansing, MI 48933
517-485-3135
Tjungel@Misheriff.org

Les Thomas
Michigan Dept. of Environmental Quality
P.O. Box 30458, 525 W. Allegan
Lansing, MI 48909-7958
517/335-3448
thomasl@michigan.gov

Richard A Foltman, CCM
Specialist-Meteorologist
DTE Energy
One Energy Plaza, 379SB
Detroit, MI 48226-1221 313-235-6185
foltmanra@dteenergy.com

Tammy Blackburn
Michigan Department of State Police
Emergency Management & Homeland Security
Michigan State Police
7150 Harris Drive
Dimondale, MI 48821
517-284-3660
Blackburnt2@michigan.gov

For more information, visit www.mcswa.com

November, 2016-7
Michigan Committee for Severe Weather Awareness
2015-2016 Winter Season Review

The winter of 2015-16 will be remembered for the near record strength of the El Nino (warmer than average water temperatures in the Eastern Pacific). This resulted in the warmest winter on record across the United States, the third warmest winter for the State of Michigan (see U.S. figure below). Most locations across Michigan were five to seven degrees above average for the winter season (see regional figure below), which placed it in the top five warmest winters on record for most reporting stations.

The warmer temperatures did limit snowfall across the state, especially in the lake effect areas of Upper and Western Lower Michigan. The only exception was parts of Southeast Lower Michigan where snowfall was about average. The snowfall pattern across the winter was typical of a strong El Nino. There were a couple snowstorms early in the season, a prolonged quiet period through the heart of the winter season, and then an increase in storminess at the end of winter that continued through April.

The winter season started slowly with only a few periodic snowfalls for the Upper Michigan snowbelt in mid-October and then again in mid-November. The first significant snow storm of the season hit Southern Lower Michigan on November 21. This storm left a swath of six to 16 inches of snow from Benton Harbor across Lansing, Flint, and metro Detroit. The highest total was 16.8 inches in Howell in Livingston County. The snow fell at rates closer to two inches per hour during the afternoon virtually shutting down traffic for the hardest hit areas. In the wake of this storm, heavy lake effect snow fell in areas around Manistee and Northwest Upper Michigan with up to 10 inches of snow.

December was a record warm month for the state with very little winter activity. In fact, severe weather was more common than snowfall for Southeast Michigan. The first Michigan December tornado on record occurred on December 23 in Canton with a line of thunderstorms that moved through during the evening hours. After the cold front passed through the state, strong winds battered Upper and Northern Lower Michigan on December 24. The highest measured gust was 69 mph in Mackinaw City, which resulted in a large amount of tree damage in the region. Nearly all of the state had a “brown Christmas” for the first time since 2006. Cold air finally filtered back into the state by the end of the month. This set the stage for the next winter storm on December 28 and 29. This storm moved from the Southern Plains into Northern Lower Michigan spreading widespread winter weather across much of the
state. Areas from Southern Upper Michigan to the M-32 highway had eight to 10 inches of snow. Locations south of that to the interstate 96/69 corridor experience mostly sleet with up to four inches reported!

January was noted for an increase in Lake Effect snowfall. The first round of lake effect snowfall occurred on January 2-4 affecting Central Upper Michigan, far Southwest Lower Michigan and portions of the Saginaw Valley and Thumb regions with up to 10 inches of snowfall. A modest winter storm then passed through the Northern Ohio Valley region on January 9 bringing snowfall to Northern Lower Michigan. In the wake of this storm, more cold air filtered over the Great Lakes region to produce another round of lake effect snow for the traditional snowbelt areas in Upper and Western Lower Michigan from January 10-13. These lake effect areas received up to 12 inches of snowfall. More lake effect occurred again on January 16-18 and then again January 25-29. Most of the lake effect in the latter half of the month affected Northwest Lower and Northern Upper Michigan with each event leaving up to 12 to 18 inches of fluffy new snow.

As if on que, the end of the winter season started to become very active with cold air surges and frequent storm systems in February. The first noteworthy event occurred on February 2-3 as a winter storm left six to 12 inches of snow across far Northern Lower and Upper Michigan. The next storm hit on February 9-10 as a low pressure system moved across the northern Great Lakes and stalled over Lake Huron. This system brought eight to 12 inches of snow over the Thumb region. Behind the low pressure system, northwesterly winds produced heavy lake effect snow for Central Upper and Western Lower Michigan. Warmer air returned for the middle of the month before a strong cold front pushed through Southern Lower Michigan on February 19. Strong winds in excess of 70 mph downed many trees and limbs, and left nearly 200,000 homes and businesses without power. The strong winds continued to cause damage and power outages into February 20. By time the wind subsided, there was nearly $50 million in damage.

The last winter storm in February hit most of the Lower Peninsula on February 24. Widespread snowfall totals ranging from 6 to 14 inches caused most schools, and state and local government buildings to close. Strong northeast winds created near blizzard conditions.

March started like the traditional “lion” with a strong winter storm that moved from the southern plains into the Ohio Valley on the March 1. A swath of heavy snow measuring eight to 14 inches fell from Southwest Lower Michigan into the Thumb region. This was followed by a modest winter storm that hit the Upper Peninsula on March 16-17. The next major winter storm affected Central and Northern Lower Michigan and parts of the U.P. This storm brought mostly snow to Southeast Upper and Northern Lower Michigan with 8 to 17 inches recorded. Meanwhile areas in Central Lower Michigan were hit with up to 0.4 of an inch of ice which lead to scattered power outages.

April did not go quietly into spring weather conditions. The first 10 days of the month were brutally cold and featured a pair of winter storms. The first storm dropped five to 10 inches of snow across parts of Northern Lower Michigan on April 3. The second storm hit Upper Michigan with heavy snow on April 8. This storm redeveloped over the Northern Ohio Valley later in the day on April 8 and produced snowfall into the early morning hours of April 9 from Jackson to Toledo were a stripe of six to 8 inches of snow fell.
PREPARING FOR A WINTER STORM

At home:

- Keep handy a battery-powered flashlight, National Oceanic and Atmospheric Administration (NOAA) weather radio and portable radio, extra food (canned or dried food is best), can opener, and bottled water (at least 3 gallons per person). Fully charge all mobile and home telephones.
- Make sure each member of the household has a warm coat, gloves, hat and water-resistant boots. Ensure extra blankets and heavy clothes are available.
- Keep on hand items for infant, elderly or disabled family members.
- Keep on hand items for your pets. Animals feel the effects of wind chill. Be sure to have suitable shelter with food and water.
- Be aware of potential fire and carbon monoxide hazards if you plan to use an emergency heating source such as a fireplace, wood stove or space heater. (See Heat Sources Safety page later in this packet)

Outside:

- Avoid overexertion, such as shoveling heavy snow, pushing a car, or walking in deep snow. Sweating could lead to chill and hypothermia, and abnormally low body temperatures. Cold weather also puts extra strain on the heart, so the elderly and those with heart conditions should be especially cautious when out in the cold.
- Walk carefully on snowy, icy sidewalks.
- Wear loose-fitting, lightweight warm clothing in layers, with a waterproof outer layer. Wear a wool hat, mittens.
- Keep your clothes dry. Change wet socks and clothing quickly to prevent loss of body heat.
- Understand the hazards of wind chill. As wind speed increases, heat is carried away from a person’s body more rapidly which could lead to severe hypothermia.

Automotive preparedness:

- Be sure the vehicle is winterized by late fall. This includes having the proper mix of antifreeze and water in the cooling system, topping off the windshield washing solution, and checking the tire treads. Have a mechanic check the belts, hoses, tires, battery, and coolant.
- Keep the fuel tank near full, as low fuel levels can cause condensation to form, degrading fuel quality and possibly causing the fuel line to freeze. Additionally, gas stations may be closed during a severe winter storm, so it is wise to fill up if storm warnings are being broadcasted.
- Your car should always be equipped with emergency supplies. Keep the following items stored in a portable container:
 - A small battery powered radio (AM is sufficient) and extra batteries
 - Flashlight with extra batteries
 - Cellular phone / Phone book and phone list/Cell phone charger or spare battery pack
 - Windshield scraper
 - Jumper cables
 - Fire extinguisher
 - Maps / GPS Unit
 - Blanket and extra clothes
 - Flares
 - Bottled water and non-perishable, high energy foods.
 - First aid kit
 - Tire repair kit and pump
 - Tow chain or rope and Shovel
 - De-icer and extra antifreeze
 - “Call Police” or other “Help” sign
On average, a major winter storm hits some part of Michigan at least once per month between October and April. In 2013, the last year that statistics were available, 39 people died in Michigan as a direct result of severe winter weather according to the Michigan Department of Community Health. This is in addition to victims of traffic crashes due to slippery roads and those who suffered heart attacks while shoveling snow.

1. What is Windchill?
The Windchill Temperature is how cold people and animals feel when outside exposed to cold air and wind. Wind makes it feel much colder and when combined with cold can result in frostbite and hypothermia faster than if there was no wind. More information, including a Windchill Temperature Chart and Times to Frostbite from exposure to cold and wind can be found at:
http://www.nws.noaa.gov/om/winter/windchill.shtml

2. What is frostbite and what can you do to treat it?
Frostbite is when your body tissue freezes. The most susceptible parts of the body are fingers, toes, ear lobes, tips of the nose and eyes. Symptoms include a loss of feeling in extremities and a white or pale appearance. To treat frostbite: Slowly rewarm the area and seek medical attention immediately. Do NOT rub the area, apply snow or plunge the affected area into very hot or cold water.

3. What is hypothermia and what are the warning signs?
Hypothermia occurs when the body temperature drops to 95 degrees Fahrenheit or lower and develops whenever body heat loss exceeds body heat gain. Hypothermia is often mistaken for fatigue, irritability, or irritability. Warning signs include uncontrollable shivering, memory loss, disorientation, incoherence, slurred speech, drowsiness and exhaustion.

4. How do you treat hypothermia?
- Get medical attention Immediately!
- Begin warming the body slowly. Warm the body core first, NOT the extremities
- Prevent further heat loss. Get the person into a warm area and into dry clothing
- Wrap the person in a warm blanket covering the head and neck
- Do NOT give the person alcohol, drugs, coffee or any HOT beverage
- Give the person WARM broth and food

5. What is an Ice Storm?
An Ice Storm is prolonged period rain that freezes when it hits the ground, leaving a significant coating of ice on trees, power lines, buildings, roads, walkways, etc. An Ice Storm with ice accumulation that is more than 1 inch thick can paralyze a region for days to a week or more. Ice Storms can bring down trees, topple utility poles and communication towers, and can disrupt communications, power and travel for days or weeks. If an Ice Storm is in the forecast, be sure to stock up on at least 72 hours of food, water, medicine and other life-critical supplies.

6. What do the various winter weather Advisories, Watches and Warnings mean?
The National Weather Service issues Advisories, Watches and Warnings individually or for a combination of any of the following: snow, blowing snow, freezing rain, sleet, and dangerous wind chills.
- **Advisories:** Advisories are issued when inconvenient winter weather is expected that will pose some threat to life and property. Advisories are typically issued when mostly travel impacts and some school/business closures are expected, though some power outages and road closures may occur. Advisories are typically issued 12 to 48 hours before hazardous weather begins.
For more information, visit www.mcswa.com

- **Watches**: Watches are issued when life-threatening, dangerous winter weather is possible, but not yet immediate. Watches are commonly issued ahead of Warnings and provide advance notice on the potential for dangerous winter weather that may result in life-threatening conditions and major disruption to daily life for days to weeks. Typical impacts may include: Extremely dangerous or impossible travel, lengthy power outages, and widespread school/business/road closures. Watches are typically issued 24 to 72 hours before hazardous weather would begin.

- **Warnings**: Warnings are issued when life-threatening, dangerous winter weather is imminent or expected to occur. Warnings are issued when life and property will be greatly threatened, when major disruption to daily life is expected to occur and life may not return to normal for days to weeks. Typical Impacts expected include: Extremely dangerous or impossible travel, widespread lengthy power outages, and widespread school/business/road closures. Winter Warnings include Winter Storm Warnings, Ice Storm Warnings and Blizzard Warnings, and are typically issued 12 to 48 hours.

7. **What is Lake Effect Snow?**

Lake effect snow occurs when cold air passes over a large warmer lake, such as one of the Great Lakes. The warmer lake and cold air creates an unstable atmosphere. The air that streams over the warmer lake and picks up some of the moisture and heat from the Great Lake and, in combination with unstable air, creates snow showers. Those snow showers move with the wind into areas downstream of the Great Lakes. Lake effect snow can create a local, intense, and narrow band of moderate to heavy snow that can extend inland as far east as across the entire Lower Peninsula. Lake effect snow may also be accompanied by strong, gusty winds and possibly lightning. Snowfall rates in the most intense lake effect events can reach 3 to 5 inches per hour! Areas that are most susceptible to lake effect snows are Northern Upper Michigan, Western Lower Michigan and to a lesser extent, the Thumb region of Lower Michigan.

8. **What are the various winter weather warnings and advisories?**

- A winter storm watch indicates severe winter weather conditions may affect your area in the next 12 to 48 hours.
- A winter storm warning indicates severe winter conditions are imminent. There are a variety of warnings including, ice storm warning, lake effect snow warning, and winter storm warning.
- A winter storm warning for heavy snow generally indicates snowfalls of at least 8 inches.
- Blizzard warnings are issued when sustained wind speeds or frequent gusts of at least 35 miles per hour are accompanied by considerable falling and/or blowing snow, for a period of at least 3 hours. Visibility is greatly reduced to near zero during a blizzard.
- Winter weather advisories are issued when snowfalls are expected to be hazardous, but less than warning criteria. This generally indicates in the Lower Peninsula: 4 to 5 inches of snow is expected in a 12-hour period. In the Upper Peninsula: 4 to 7 inches of snow is anticipated in that same time period.

For additional information and a Prevention Guide regarding Extreme Cold, visit http://www.bt.cdc.gov/disasters/winter/guide.asp.
Frozen pipes are not just an inconvenience. An average of a quarter-million homes are damaged and lives are disrupted each winter, because of frozen water pipes.

An eighth-inch crack in a pipe can spew up to 250 gallons of water a day, destroying floors, furniture, and personal property. Both plastic (PVC) and copper pipes can burst.

Before the cold hits:

- **INSULATE** pipes in crawl spaces and attics, the ones most susceptible to freezing. Remember: the more insulation, the better protected your pipes will be.
- **HEAT TAPE** or thermostatically-controlled heat cables can be used to wrap pipes. Use only products approved by an independent testing organization, such as Underwriters Laboratories, and only for the use intended (exterior or interior). Closely follow all manufacturer's installation and operating instructions.
- **SEAL** leaks that allow cold air inside, especially near the location of pipes. Look for air leaks around electrical wiring, dryer vents, and pipes. Use caulk or insulation to keep cold air out and the heat in. With severe wind chill, a tiny opening can let enough cold air inside to cause a pipe to freeze.
- **DISCONNECT** garden hoses and, if practical, use an indoor valve to shut off and drain water from pipes leading to outside faucets. This reduces the chance of freezing in the short span of the pipe just inside the house.

When the mercury drops:

- A TRICKLE of water might be all it takes to keep your pipes from freezing. Let warm water drip overnight, preferably from a faucet on an outside wall.
- OPEN cabinet doors to allow heat to get to uninsulated pipes under sinks and appliances near exterior walls.

If you are away:

- SET the thermostat no lower than 55 degrees Fahrenheit.
- ASK a friend or neighbor to check your house daily to make sure it's warm enough to prevent freezing, or...
- SHUT OFF and drain the water system. Be aware that if you have a fire protection sprinkler system in your house, it will be deactivated when you shut off the water.

If your pipes freeze:

- DON'T TAKE CHANCES. If you turn on your faucets and nothing comes out, leave the faucets turned on and call a plumber. If you detect your water pipes have frozen, turn off the water at the main shut-off valve in the house; leave the water faucets turned on.
- NEVER try to thaw a pipe with a torch or other open flame. Water damage is preferable to fire damage. You may be able to thaw a frozen pipe with the warm air from a hair dryer. Start by warming the pipe as close to the faucet as possible, working toward the coldest section of pipe.
- DO NOT use electrical appliances in areas of standing water because electrocution is possible.
Preventing Roof Ice Dams

Hot Tips for Preventing Cold Weather Damage

Roof ice dams occur in climates with freezing temperatures and significant snowfall. When the temperature in the attic is above freezing, snow on the roof melts and runs down the sloping roof. When the snowmelt runs down the roof and reaches the colder eaves (overhang) and gutters, it refreezes.

After several days of melting-freezing cycles, the freezing snowmelt builds up and forms a dam of ice, behind which water ponds. The ponding water can back up under the roof shingles until water enters the attic and eventually does damage to the interior ceilings, walls, and contents along the exterior walls.

Research has shown sun exposure in the winter has little effect on attic air temperature. Warm air from living spaces below penetrating into the attic is usually the culprit in the formation of roof ice dams. The presence of significant icicles along the gutter or eaves may be an indication of roof ice damming.

There’s no way to guarantee an ice dam will not damage your home, but you can reduce the likelihood of an ice dam forming in the first place:

- Thoroughly clean all leaves, sticks, and other debris from rain gutters and down spouts. This allows melting roof snow to flow into gutters and through down spouts.
- Strive to keep snow on your roof to a minimum. Long-handled devices called "roof rakes" let you stand on the ground and pull the snow off the roof. Keeping heavy snow loads off your roof reduces the chances for both ice dam formation and roof failure due to the weight.
- Keep gutters and down spouts clear of snow and icicles all winter.
- Evaluate the insulation and ventilation in your attic. Most experts agree attic insulation should have an R-value of at least R-30 (R-38 is preferable in northern climates). In addition, good airflow from under the eaves or soffit area along the underside of the roof and out through the roof vents is essential. The insulation prevents heat loss from the interior of the home. The venting allows the attic air to stay cold enough to prevent or minimize the freeze/thaw cycle on the roof. Consult a reputable roofing and/or insulation contractor about these improvements.
What is an ice jam?
Pieces of floating ice carried with a stream’s current can accumulate at any obstruction to the stream flow developing an ice jam. These ice jams can accumulate near river bends, mouths of tributaries, points where the river slope decreases, downstream of dams, and upstream of bridges or obstructions. The water held back can cause flooding upstream, and if the obstruction suddenly breaks, flash flooding can occur downstream.

When was the last time ice jam flooding occurred in Michigan?
Ice jams occur every year in Michigan. In January 2013, significant ice jams formed on the Muskegon River near Rogers Heights, Michigan. Flooding from the ice jams on the Muskegon River near Rogers Heights impacted over 60 homes and was reported to have caused approximately 2.6 million dollars in damages. Over the past several years, ice jams have occurred on the Flat River near Smyrna, Looking Glass River near Eagle, Maple River near Maple Rapids, Chippewa River near Mt. Pleasant, Grand River near Portland, Grand River at Comstock Park, Grand River between Grand Haven and Robinson Township, Muskegon River near Evart, and the St. Joseph River near Burlington. Historically, ice jams have also caused flooding on the River Raisin, Thornapple, and Kalamazoo rivers.

What time of year is an ice jam likely to occur?
In Michigan, an ice jam can occur anytime from early winter to late spring depending upon changes in temperatures that cause alternate freezing and melting of water surfaces. The most likely times are in early winter before the surfaces are completely frozen and in early spring when the ice cover begins to break up due to melting.

What effect does snow have on flooding potential?
When snow melts, it adds water to the ground that drains away in the same way as water from rainfall. On average, one inch of fresh snowfall contains about a tenth of an inch of water. However, as snow accumulates and becomes compacted during the winter, the ratio of snow to water decreases. Thus, 10 inches of snow remaining on the ground into early spring may contain as much as five inches of water. A deep snowpack in late spring increases the flood potential.

How fast does snow and ice melt?
Three consecutive days with the maximum temperature of about 50 degrees would create enough melting to cause ice breakup on small streams. These conditions would also melt two inches of snow.

What happens when rain falls on top of snow?
Air temperature is still the most important factor in melting snow. Rain does not usually add much heat to the process. At 40 degrees, one inch of rain will only produce a tenth of an inch of added water from snow melt. At the same time, frozen ground will result in more of the available water running off directly to streams.

What are the main factors that contribute to snowmelt flooding?
1. High soil moisture in the fall
2. Significant frost in the ground
3. High water content of existing snow cover
4. Rapid, continuous melting
5. Moderate to heavy rain during melting
6. Ice jams

The 2017 Hydrologic Outlooks for the spring snowmelt flood potential will be issued in February and March and can be found at www.weather.gov
Your local floodplain manager, building official, city engineer, or planning and zoning administrator can typically tell you whether you are in a flood or other hazard area. Your local community official is also a good source of information on how to protect yourself, your house, and property from flooding and other hazards.

Ways to protect your house and property
Basement flood protection can involve a variety of changes to your house and property—changes that can vary in complexity and cost. You may be able to make some types of changes yourself. Complicated or large-scale changes or those that affect the structure of your house or its electrical wiring and plumbing should be carried out only by a professional contractor licensed to work in your state, county, or city.

Some methods of flood protection include:

• **Install Sewer Backflow Valves.** In some flood prone areas, flooding can cause sewage from sanitary sewer lines to back up into houses through drainpipes. Sewage backup not only causes damage, but also creates health hazards. Backflow valves have a variety of designs ranging from simple to complex. This is something that only a licensed plumber or contractor should do.

• **Raise or Flood-Proof Heating, Ventilating, and Air Conditioning Equipment.** In flood prone houses, a good way to protect HVAC equipment is elevating it above the areas that flood. Another method is building a concrete or masonry block flood wall around the current location.

• **Anchor Fuel Tanks.** Unanchored fuel tanks can be easily moved by floodwaters. One way to anchor a tank is attaching it to a large concrete slab whose weight is great enough to resist the force of floodwaters. Elevate tanks to a minimum of one foot above the base flood elevation. Floating and/or damaged tanks pose serious threats not only to you, your family, and your house, but also to public safety and the environment.

• **Raise Electrical System Components.** Any electrical system component, including service panels (fuse and circuit boxes), meters, switches, and outlets, can easily be damaged by floodwaters. All components of the electrical system, including the wiring, should be raised at least one foot above the base flood elevation.

• **Raise Washers and Dryers.** Washers and dryers can easily be damaged in a flood. To prevent this from happening, utilities can be placed on cinder blocks one foot above the base flood elevation.

• **Add a Sump Pump in Your Basement.** Sump pumps can help keep groundwater from entering your home’s interior.

• **Cut Drywall so It’s One-half to 1-inch Off the Floor.** This is especially important in basements. Concrete floors commonly absorb ground moisture—especially in winter months. The moisture can wick up the wallboard if it’s touching the floor, allowing mold to grow out-of-sight within the walls. The gap can be hidden with wood or rubberized floor trim.

• **Don’t Forget to Buy Flood Insurance.** Flood insurance provides year-round financial protection and improves your ability to quickly recover when severe storms strike and cause unexpected flooding. Call your local insurance agent or 1-888-379-9531 to reach National Flood Insurance Program specialists.

For additional information, visit the official website of the National Flood Insurance Program, www.floodsmart.gov.
Is flood damage covered by my homeowners insurance?

Most homeowners and renters insurance policies do not cover flood damage. Flood insurance can be purchased as a separate policy.

Where can I get flood insurance?

Any licensed property/casualty insurance agent can sell a flood insurance policy. If you experience trouble in locating an agent, contact the National Flood Insurance Program’s (NFIP) agent referral program at 1-888-379-9531 or http://www.floodsmart.gov/floodsmart/pages/purchaseinsurance.jsp

Is there a waiting period before my flood insurance policy becomes effective?

There is a 30-day waiting period before a new or modified flood insurance policy becomes effective.

Are all flood insurance policies the same?

NFIP insurance coverage may be purchased separately for structures and contents. The NFIP has a “Standard Flood Insurance Policy” which includes various forms each with standard provisions for General Property, Dwelling and Residential Condominium Building Associations. The scope of flood insurance coverage under the “Standard Flood Insurance Policy” is based on federal statutes authorizing the NFIP, regulations, and written determinations/interpretive rulings by the Federal Administrator. There will be differences between individual policies as they related to dollar level of coverage for the structure and/or its contents, along with the level of deductible selected by the insured.

Do I need to live in a floodplain to get flood insurance?

You do not need to live in a floodplain to purchase flood insurance – coverage is available for any building located in a community that is enrolled in the NFIP. For a listing of Michigan communities participating in the NFIP, visit http://www.fema.gov/fema/csb.shtm.

Is water back up in basements covered by a flood insurance policy?

Coverage for water back up in basements (drains/sewers) is generally excluded from the policy.

Can I get coverage for water back up in basements?

Although basement water back up is excluded under most homeowner’s insurance policies, coverage can be obtained by purchasing an endorsement. Most insurance companies offer sewer and drain back up as optional coverage. Coverage and limits vary by insurance company, so check with your agent/company about specifics.

Are there steps I can take to minimize losses from water back up in basements?

- Never store perishables or valuables in basements that you can’t afford to lose or replace.
- Do not store any item near basement drains.
- Check storm drain lines to make sure they’re clear of debris, roots, etc.
- Grade the property around your home to drain water away from it.
- Install gutters and make sure downspouts are extended away from the foundation in order to carry water away from the basement walls.

For more information, visit www.mcswa.com
• Use shelving or store items several inches above the potential water level to prevent loss.
• If you do have some water seepage following storms, take corrective measures to alleviate problems in the future.
• Install check valves in basement drains. The community may have a program to assist in this matter. A plumber’s input and assistance could be very beneficial and necessary.
Winter Power Outage Tips

Before an Outage

- Check flashlights and battery-powered portable radios to ensure that they are working, and you have extra batteries. A NOAA All Hazards radio is an important source for obtaining weather and emergency information during a storm.
- Have sufficient heating fuel, as regular sources may be cut off. Have emergency heating equipment and fuel (a gas fireplace, wood burning stove or fireplace) so you can keep at least one room livable. Be sure the room is well ventilated.
- Make sure your home is properly insulated. Caulk and weather-strip doors and windows to keep cold air out.
- Install storm windows or cover windows with plastic from the inside to provide insulation.
- To keep pipes from freezing, wrap them in insulation or layers of newspapers, covering the newspapers with plastic to keep out moisture.
- Let faucets drip a little to avoid freezing.
- Know how to shut off water valves.
- Never try to thaw a pipe with a torch or other open flame. Water damage is preferable to fire damage. You may be able to thaw a frozen pipe with the warm air from a hair dryer. Start by warming the pipe as close to the faucet as possible, working toward the coldest section of pipe.
- If your water supply could be affected (a well-water pump system), fill your bathtub and spare containers with water. Water in the bathtub should be used for sanitation purposes only, not as drinking water.
- Pouring a pail of water from the tub directly into the bowl can flush a toilet.
- If you have medication that requires refrigeration, check with your pharmacist for guidance on proper storage during an extended outage.
- Review the process for manually operating an electric garage door.

During an Outage

- Dress for the season, wearing several layers of loose fitting, light-weight, warm clothing, rather than one layer of heavy clothing. The outer garments should be tightly woven and water repellent.
- Mittens are better than gloves.
- Wear a hat; most body heat is lost through the top of the head.
- Cover your mouth with a scarf to protect your lungs.
- Watch for signs of frostbite: loss of feeling and white or pale appearance in the extremities such as fingers, toes, ear lobes or the tip of the nose. If symptoms are detected, seek medical help immediately.
- Watch for signs of hypothermia: uncontrollable shivering, memory loss, disorientation, incoherence, slurred speech, drowsiness and apparent exhaustion. If symptoms are detected, get the victim to a warm location, remove any wet clothing, warm the center of the body first and give warm, non-alcoholic beverages, if the victim is conscious. Get medical help as soon as possible.
- Snowdrifts can be used as a makeshift freezer for food. (Be aware of attracting animals).
- Snow can be melted for an additional water source.
- In order to protect against possible voltage irregularities that can occur when power is restored, you should unplug all sensitive electronic equipment, including TVs, stereo, VCR, microwave oven, computer, cordless telephone, answering machine and garage door opener.
After an Outage

- Be extra cautious if you go outside to inspect for damage after a storm. Downed or hanging electrical wires can be hidden by snowdrifts, trees or debris, and could be live. Never attempt to touch or move downed lines. Keep children and pets away from them.
- Check with/help neighbors.
- Continue to stay off streets.
- Do not touch anything power lines are touching, such as tree branches or fences. Always assume a downed line is a live line. Call your utility company to report any outage-related problem.
Each year, fire claim the lives of 4,000 Americans, injures tens of thousands, and cause billions of dollars of damage. People living in rural areas are more than twice as likely to die in a fire as those living in mid-sized cities or suburban areas. The misuse of wood stoves, fireplaces, portable space heaters, and kerosene heaters is especially common in rural areas.

The United States Fire Administration (USFA) believes rural fire problems can be reduced by teaching people to recognize potential hazards.

The following precautionary steps can greatly reduce an individual’s chances of becoming a fire casualty:

Wood Stoves
Wood stoves cause over 9,000 residential fires every year. Carefully follow the manufacturer's installation and maintenance instructions. Check for cracks and inspect legs, hinges, and door seals for smooth joints and seams. Use only seasoned wood for fuel, not green wood, artificial logs, or trash. Inspect and clean your pipes and chimneys annually, and check monthly for damage or obstructions. Be sure to keep combustible objects at least three feet away from your wood stove.

Electric Space Heaters
Only buy heaters with the Underwriter’s Laboratory (UL) safety listing. Check to make sure it has a thermostat control mechanism, and will switch off automatically if the heater tips over. “Space” heaters need their space. They are not dryers or tables; don’t dry clothes or store objects on top of your heater. Keep combustibles at least three feet away. Never use an extension cord and always unplug your electric space heater when it is not in use.

Kerosene Heaters
Buy only UL-approved heaters, and check with your local fire department on the legality of using a kerosene heater in your community. Never fill your heater with gasoline or camp stove fuel; both flare up easily. Only use crystal clear K-1 kerosene. Never overfill any portable heater or fill when it is still hot. Only use the kerosene heater in a well ventilated room.

Wood Burning Fireplaces
Fireplaces regularly build up creosote in their chimneys. Fireplaces need to be cleaned out frequently and chimneys should be inspected for obstructions and cracks to prevent deadly chimney and roof fires. Check to make sure the damper is open before starting any fire. Never burn trash, paper, or green wood in your fireplace. These materials cause heavy creosote build-up and are difficult to control. Use a screen heavy enough to stop rolling logs and big enough to cover the entire opening of the fireplace to prevent sparks from igniting carpet, furniture or other combustible items. Don't wear loose-fitting clothes near any open flame. Make sure the fire is completely out before leaving the house or going to bed. Store cooled ashes in a tightly sealed metal container outside the home.

Having a working smoke alarm and carbon monoxide detector (with battery backup) dramatically increases your chances of surviving a fire. Remember to practice a home escape plan frequently with your family.
Portable generators are useful when temporary or remote electric power is needed, but they can be hazardous. The most common dangers associated with portable generators are carbon monoxide poisoning, electrical shock or electrocution, and fire.

The United States Fire Administration (USFA) provides simple steps you can take to prevent the loss of life and property resulting from improper use of portable generators.

To avoid carbon monoxide hazards:
- Always use generators outdoors and away from doors, windows, and vents.
- NEVER use generators in homes, garages, basements, crawl spaces, or other enclosed or partially enclosed areas, even with ventilation.
- Follow manufacturer’s instructions.
- Install battery-operated or plug-in (with battery backup) carbon monoxide alarms in your home, following manufacturer’s instructions.
- Test carbon monoxide alarms often, and replace batteries when needed.
- NEVER cook inside or heat your house with a gas, wood, or charcoal grill.
- PAY attention to flu-like symptoms, especially if more than one person has them. Headache, dizziness, confusion, fatigue and nausea are all common symptoms of carbon monoxide exposure.
- MOVE outside to fresh air immediately if a carbon monoxide leak is suspected. Go to the emergency room or call 911 if you suspect carbon monoxide poisoning.

To avoid generator electrical hazards:
- Keep the generator dry. Operate on a dry surface under an open, canopy-like structure.
- Dry your hands before touching the generator.
- Plug appliances directly into generator or use a heavy-duty outdoor-rated extension cord. Make sure entire extension cord is free of cuts or tears, and the plug has all three prongs, especially a grounding pin.
- NEVER plug the generator into a wall outlet. This practice, known as back-feeding, can cause an electrocution risk to utility workers and others served by the same utility transformer.
- If it’s necessary to connect the generator to house wiring in order to power appliances, have a qualified electrician install appropriate equipment, your utility company may be able to install an appropriate transfer switch.

To Avoid Fire Hazards:
- Before refueling the generator, turn it off and let it cool. Fuel spilled on hot engine parts could ignite.
- Always store fuel outside of living areas in properly labeled, non-glass containers.
- Store fuel away from any fuel-burning appliance.
For more information, visit www.mcswa.com