Hail Estimation: How Good Are Your Spotters?

Dan Baumgardt NOAA/National Weather Service La Crosse, WI

The views expressed are those of the authors and do not necessarily represent those of the National Weather Service.

Motivation

Gain perspective on the accuracy and behavior of our spotter hail reports.

Methodology: Year One

- 63 balls placed into a box ranging from 0.50 to 3.50 inches in diameter.
- Spotters drew one ball out and wrote an estimate to the nearest 1/8 inch.
- Spotters replaced the ball and redrew for a second estimate.
- Statistics calculated.

■ Known as the "number" dataset (NUM).

Methodology: Year Two

- 63 balls placed into a box ranging from 0.50 to 3.50 inches in diameter.
- Spotters drew one ball out and circled the closest estimate from a list of known objects.
 - Allowed for number entry.
- Spotters drew only one ball.
- Statistics calculated.
 - Known as the "known object" dataset (KO).

Methodology: Year Two

■ The "known object" (KO) form.

Draw ONLY 1 ball. Circle the size of the ball below. Please do not discuss your answer with others until you enter your estimate. **Your Ball Number is:** _____

Dime	Baseball
Quarter	Penny
Pea	Half-Dollar
Nickel	Tennis Ball
Golfball	Softball
Marble	Walnut

If the ball size is **not** represented above, fill in your estimate to the nearest 1/8" here_____.

Pea	0.25"	
Dime	0.75"	(0.71" actual)
Penny	0.75"	
Nickel	0.88"	
Quarter	1.00"	
Half-Dollar	1.25"	
Walnut	1.50"	
Golfball	1.75"	
Tennis Ball	2.50"	
Baseball	2.75"	
Softball	4.50"	

Methodology

- Very technological
 - Space-age cardboard
 - Highest-end industry glues
 - Bounty paper towel
 - Permanent marker
- Total Cost: \$15.63
 Grant not funded by NSF

Methodology

Data/Controls:

- Balls were drawn separately no comparing! (NUM)
- Spotters were able to hold the "hail".
- About 725 NUM "hail size" estimates were made.
- About 388 KO "hail size" estimates were made.

■ Less because only one draw allowed.

Golden,CO

Data: Population

 KO: few attempts 0.75" and below.

Number of Baiis Chosen (By Size)

Data: Mean Absolute Error

■ KO has less absolute error than NUM. KO error growth slightly less than NUM as size increases.

Data: Percent Error

KO remains 5-15% and lower than NUM.
NUM 21% errors around 0.75", decreasing with size.

Percent Error by Size

Data: Standard Deviation

KO STD lower overall, especially above 1.50". ■ Near 0.75", NUM STD nearly 0.25".

Data: Bias

NUM underestimates all below 3.5". ■ KO bias less and also negative except 1.50". ■ Special 0.50" KO case

Data: Average Estimate

KO better
 average
 estimates
 overall.

Data: 0.5" Distribution

Size Guessed (inches)

Data: 0.75" Distribution

Few KO draws.
 NUM: 50%

 underestimates.

 KO signs of
 more accurate.

Data: 1.00" Distribution

 NUM: 50% underestimates.
 KO more accurate.

KO

NUM

Data: 1.25" Distribution

1.25 inch Distribution A and ow underestimation vard 1.00". 60 ■ NUM and KO 77 TOTALS 14° ■ 1/8" size 10 preferred. Λ KO 1.00 1.13 1.25 1.38 1.50 0.75 0.88 1.75 2.00 2.50 0.50 NUM Size Guessed

Data: 1.50" Distribution

■ NUM 50% underestimates. KO shows strong bias toward golfball (1.75''). Only KO size with positive bias.

Data: 1.75" Distribution

 NUM 45% underestimates.
 KO hits many! Low error and STD!

Data: KO Draw vs. Estimated

People drawn toward the Quarter and Golfball sizes. Half-Dollar and Walnut poor KO's?

Data: KO Draw vs. Estimated

Fewer reports for 1.25" and 1.50" also in
Baumgardt and King (Fig. 1, 1998).

Baumgardt, D. A., and C. King, 1998: Verification of the WSR-88D Build 9.0 Hail Algorithm Over the Upper Midwest. Preprints, *19th Conf. on Severe Local Storms, Minneapolis, MN*, Amer. Meteor. Soc., pp. 52-55.

Ball Size (inches)

Summary: Limitations

NUM dataset has double draw. Does that lead the witness on guess #2?

Larger diameter balls drawn more. KO family <0.75" not large in number.</p>

Unfamiliar with Walnut size (vs. Ping-pong)?

 Large amount of data discarded – people cant follow directions.

Summary

- Be aware that spotters tend to underestimate hail overall.
- Having spotters associate hail size to known object is more accurate than numeric estimates.
 - Encourage spotters to *measure* hail size directly.
- Using numeric estimates produces a large number of underestimates: 40-50%. If they report above 0.50" to 0.75"...it is likely severe! (bias ~ -0.15")
- As "hail" sizes grow, more deviation from the truth occurs.
 For 1.00-1.75" diameter sizes, people tend to go toward Quarter and Golfball sizes.

Hail Estimation: How Good Are Your Spotters?

Dan Baumgardt NOAA/National Weather Service La Crosse, WI

The views expressed are those of the authors and do not necessarily represent those of the National Weather Service.