Lead Times Between In-Cloud and Cloud-to-Ground Lightning Flashes in the South Texas Sea Breeze Regime

> Joshua J. Schroeder, Matthew J. Brady, and Brian A. Mejia

NOAA/National Weather Service, Brownsville/Rio Grande Valley, TX

oshua.schroeder@noaa.gov

National Weather Service Brownsville/Rio Grande Valley

Building a Ready Weather Nation

"When thunder roars, go indoors" is great for the general public...

...but other users have different needs:

"OK, I'm hearing thunder. Call me back when you detect a cloud-to-ground strike, because that's what my safety regs are written to."

- Paraphrased from many conversations with test officers building missiles in the field at WSMR.

Wouldn't it be great to tell an EM or Safety Officer...

"OK, you've probably heard thunder, since we've detected in-cloud lightning. You've got 'X' minutes before a cloudto-ground strike is likely. Take any final precautions NOW."

But what is X??

There is little published work on what values of 'X' are.

Consider Δt , the lag time between first In-Cloud (IG) lightning activity and first Cloud-to-Ground (CG) flash in a particular storm.

MacGorman, et al. (2011) in MWR

- Found *∆t* to be in the range of 3-31 min (at 50th percentile).
- Wide variability across three geographical regions (OK, N. Texas, High Plains of CO/KS/NE).
- Used VHF 3-D Lightning Mapping Networks vs. NLDN.

Initial, limited analysis of orographic thunderstorms at @ WSMR generally showed 5-15m lead time from IC to CG activity.

Who Might Want to Know This Number for South Texas?

Liquified Natural Gas export plants coming on-line at Port of Brownsville

Need Two Datasets to Determine Δt

National Lightning Detection Network (NLDN)

- Primarily detects CG flashes
- Magnetic/ToA sensors
- Detection efficiency ~95%.
- Operated by Vaisala; download available to NWS users via NCEI.

Earth Networks Total Lightning Detection Network (ENTLN)

- Detects lightning electric field waveforms at ~700 sites in CONUS.
- Processes "pulses".
- Can discriminate between IC and CG flashes.
- Data available upon request to NWS users.

Focused on Warm-Season Sea-Breeze Thunderstorms

Relatively easy to isolate individual storms around sea-breeze initiation time.

- Analysis was all done "manually".
- Look at first storms of the day, usually around 1500-1800 UTC, for months Jun-Sep 2018.
 - Convection pattern usually gets "messy" quickly.
 - Looked at storms within range of KBRO NEXRAD.
 - Did not consider widespread convection forced by upper-level lows, tropical waves, etc.
- Goal was to identify at least 30 storms where ∆t could be determined to allow for semi-robust statistics.

Start with the CG Data and Work Backward

1. Find the first CG strike occurring around the time of sea-breeze initiation (will often follow a significant break in lightning activity):

2018	/	0	13	13	40.390	25.053	-90.980	13	IN	38.4	L
2018	7	6	13	33	15.749	25.087	-96.98	12	N	118.8	2
2018	7	6	13	33	50.012	25.078	-96.995	12	N	39.6	2
2018	7	6	13	34	59.059	25.074	-96.994	11	N	73	2
2018	7	6	13	41	5.956	25.133	-97.032	4	N	18.4	1
2018	7	6	13	56	33.544	25.322	-98.144	3	P	11.2	1
2018	7	6	14	49	34.625	26.146	-97.25	6	P	11.2	1
2018	7	6	14	53	17.763	26.149	-97.22	6	P	27.5	3
2018	7	6	15	42	21.091	25.623	-97.293	10	N	22.2	1
2018	7	6	15	57	18.497	25.667	-97.396	12	N	22.8	2

- 2. Use Weather and Climate Toolkit or GR2Analyst to review the radar reflectivity imagery from previous 60 min.
 - Look for signs of sea-breeze storm development around the time of the CG strike identified.

Look for a Prior IC Pulse

- 3. Export the radar data to a *kmz* file for use in Google Earth.
 - Plot the lat./lon. of CG strike.
- 4. Try to find a corresponding IC source that occurred nearby and in prior 60 min.

										£
1	2018-07-06T13:34:59.089827299	25.07111	-96.971	6102	18534	18	0.74	0.63	4.4	
0	2018-07-06T13:34:59.130824804	25.09564	-96.972	29263	0	19	0.27	0.1	4.2	
1	2018-07-06T14:49:34.491731882	26.12556	-97.2564	-8485	14316	13	0.57	0.56	11.1	
1	2018-07-06T14:49:34.644515991	26.13103	-97.2388	3231	7640	9	0.6	0.38	28.8	
1	2018-07-06T14:49:34.679929972	26.12876	-97.2364	5266	17971	11	0.25	0.1	7.9	
1	2018-07-06T15:28:11.252523661	25.75568	-97.2557	-8906	10728	16	0.38	0.21	49.6	
1	2018-07-06T15:31:18.040844202	25.67185	-97.2278	-2847	10552	5	2.13	0.2	8.8	

- 5. Plot location of first IC source. Determine spatial separation between the IC and CG strikes.
- 6. If possible, analyze other cells on same day; else, back to Step 1...

IC source must have occurred within **10 miles** of CG strike and be visually associated with the same storm cell.

What Did We Learn?

Note: "Null" cases not considered.

What Did We Learn?

Note: "Null" cases not considered.

There was some variability in LT's.

Measures of central tendency, especially median, fairly consistent month-to-month from Jun-Sep.

"You Can't Always Get What You Want..."

- At least for South Texas sea-breeze storms
 - IC lightning does *not* precede CG strikes reliably enough or early enough to aid with provision of IDSS.
 - Not nearly enough safety margin, especially when considering latency in networks, time for communication, etc.

resume activities.

Concluding Thoughts

Clearly there are climatological differences in IC/CG lead times; concurs with MacGorman, et al. (2011).

Different storm electrification processes/timeframes.

How would the distribution in LT's differ in other environments, e. g. desert/mountain?

- In more synoptically forced situations?
- Need to <u>automate</u> to really expand the sample size.

At what value *does* **\Lambda t** become useful??

Would calculated Δt be any different using GLM sources?

Do other thresholds/predictors (e.g., reflectivity at isotherms) provide more value?

National Weather Service Brownsville/Rio Grande Valley

Building a Ready Weather Nation