The Effects of Ship-Induced Bernoulli Wakes on the Savannah River, Georgia

Neil Dixon
NOAA/National Weather Service, Charleston, SC • Neil.Dixon@noaa.gov

1. Background

The National Ocean Service’s Fort Pulaski, GA tidal gauge is the representative tidal observation site for southeast Georgia and portions of the southern South Carolina coast. The gauge is located on the Savannah River, installed on the dock for the Savannah Harbor Pilots (Fig.1). The gauge position is 240 feet from shore and at a depth of 17 feet at mean lower low water (MLLW). Ships traveling between the Port of Savannah and the Atlantic Ocean pass within 580 feet of the tide gauge, the river channel is only 2.015 feet wide. The passing of each moderate to large ship within the narrow channel results in both oscillating waves and a deep depression bore known as a Bernoulli wake (J. Rapaglia et al., 2011). These ship-induced Bernoulli wakes frequently influence the 1-minute and 6-minute tide levels at Fort Pulaski, GA. During high astronomical tide events, the effect of the deep depression bores can result in water levels to exceed Coastal Flood Advisory/Warning criteria or augment water levels already in excess of the flood stage.

2. Analysis Historic Coastal Flood Events

This study looked back at 234 historic flooding events (1997-2018). These events either met or exceeded the Fort Pulaski flood stage of 9.2 feet mean MLLW, using 6-minute data (ex. Fig. 2). Ship wakes were identified by the characteristic trough (V-shaped depression wave) in the 6-minute water level data. Out of the 234 events, 88 events, 38% of flooding events, were augmented by the passage of ships. Water levels increased from 0.01 to 0.38 feet, with an average increase of 0.06 feet. There were 20 flooding events, or 8.5%, that were the direct result of ship-induced Bernoulli wakes.

3. Methodology

- This study recorded the 1-minute and 6-minute water level data from the Fort Pulaski tide gauge during the passage of 113 ships (ex. Fig. 3A, B), ranging from standard sized ships to the recently arriving neo-Panamax vessels. The period of study was 10/29/2018 to 3/21/2019.
- The vessel’s position, displacement, length, width, draught, and speed were collected in near real-time from the MarineTraffic Web site (ex. Fig. 3C).
- These ship-induced flooding events were augmented 88 events, 38% of flooding events, were augmented by the passage of ships. The typical duration of ship wakes is ~400 s, solitary deep depression bores can result in water levels to exceed Coastal Flood Advisory/Warning criteria or augment water levels already in excess of the flood stage.

4. Results

- The passage of 113 ships showed a relationship between the ship size and observed 1-minute and 6-minute water levels. Generally, the larger ships resulted in greater changes in water levels (Table 1).
- Pearson product-moment correlation coefficient was created to study the relationship between the measured water levels to the ship’s water displacement (tonnage), length, width, draught, speed, Froude, length Froude, and blocking coefficient.

Table 1. Average difference between 1-minute high and low values, 6-minute high and low values, and difference in 1-minute values from the ship passage.

<table>
<thead>
<tr>
<th>Vessel Type (Length x Width x Draught)</th>
<th>1-Min Diff (ft.)</th>
<th>6-Min Diff (ft.)</th>
<th>1-Min High vs. Initial (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Container (137m x 17m x 9m)</td>
<td>0.30</td>
<td>0.16</td>
<td>0.02</td>
</tr>
<tr>
<td>Fully Cellular (215m x 20m x 10m)</td>
<td>0.33</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>Panamax (250-275m x 32m x 12.5m)</td>
<td>0.48</td>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td>Post Panamax (280-335m x 40m x 13m)</td>
<td>0.72</td>
<td>0.24</td>
<td>0.20</td>
</tr>
<tr>
<td>Neopanamax (366m x 49m x 15.2m)</td>
<td>0.83</td>
<td>0.24</td>
<td>0.21</td>
</tr>
<tr>
<td>Average</td>
<td>0.53</td>
<td>0.18</td>
<td>0.13</td>
</tr>
</tbody>
</table>

References and Disclaimer

Disclaimer: Mention of specific third-party Websites and services do not constitute an endorsement by, nor an affiliation with, the NWS.