### Lake Effect Snow Warning Polygon Experiment Verification

David Church GLOMW - Cleveland, OH May 01-03, 2018

#### Background



- Current NWS warnings issue long-fused Lake Effect Snow Watches and Warnings on a zone basis
  - Most NWS zones are counties
    - This is true in the Buffalo CWA with the exception of Cayuga County







#### Highly Localized / Transient





Judy Levan (2017)

WEATHER FORECAST OFFICE





- Warning Polygons would be issued to delineate the highest impact areas
- As the lake effect snow moves, polygon areas change spatially and temporally



```
EXPERIMENTAL CONTENT BELOW ... DO NOT USE OPERATIONALLY
PLEASE SEE BELOW LINKS FOR MORE INFORMATION ON THIS EXPERIMENT
HTTP://WWW.WEATHER.GOV/BUF/POLYGON PDD
HTTP://WWW.NWS.NOAA.GOV/OS/NOTIFICATION/PNS15LAKE EFFECT SNOW.HTM
TO VIEW THE EXPERIMENTAL POLYGONS PLEASE SEE:
HTTP://WWW.WEATHER.GOV/BUF/LESPOLYGON
COORD...4391 7516 4380 7620 4354 7638 4341 7619
        4342 7550 4360 7513
TIME 160101T0000Z-160101T1200Z
COORD...4402 7516 4402 7559 4387 7628 4367 7620
        4377 7552
TIME 160101T1200Z-160101T1800Z
COORD...4387 7556 4378 7620 4354 7638 4343 7558
        4359 7545
TIME 160101T1800Z-160102T0000Z
COORD...4348 7581 4350 7536 4364 7527 4366 7611
        4335 7668 4322 7587
TIME 160102T0000Z-160102T1200Z
COORD...4388 7544 4387 7622 4352 7623 4342 7550
        4360 7513
TIME 160102T1200Z-160103T0000Z
$$
```

Judy Levan (2017)

#### Benefits



- Area of False Alarm would be reduced thus increasing the effectiveness of the warning
- Ever-increasing use of point specific information requires the NWS to communicate this location-specific impact information in a more efficient means
- Enhanced information provided in polygon lake effect warning areas would allow for a more organized and cost-effective use of public resources to minimize the effects of these high-impact lake effect events
- Minimize the effect of LES events on transportation and commerce



Judy Levan (2017)

#### 2016-2017 Season

Forecast Hourly Snowfall Rate

al Weather Service Buffalo NY Created: 1234 PM TH 11/04/1



- Polygons were created for lake effect snows off both Lakes Erie and Ontario in the Buffalo CWA
- Updates to web display





Judy Levan (2017)

### Background

- Polygons created when zone-based Lake Effect Snow Warning issued
- > 2 to 6 polygons per lake per event
  - Timing & location information!
- Polygons can be updated at ANY time (ESTF)
  - Always the latest and best forecast information available
  - "Goal posts" can be set wide to start and narrowed as confidence increases





Intense band of #lakeeffectsnow (2-3"/hr) to reach #Buffalo metro area during peak rush hour this evening. Adjust commute plans if possible





9:55 AM - 5 Jan 2017

26

21

**BUFFALO** WEATHER FORECAST OFFICE

# Are we any good? What value is added?



## Methodology – The problem

- Verification Nightmare
  - Hundreds of polygons over a multi day event
  - Reliable snowfall reports on 24 hour cycle
    - Most polygons between 6 and 18 hours long
  - Polygon emphasis on area of high impact
    - Verification emphasis on snow amount, not rate / impact



## Methodology – The Solution

- Verification for FIRST warning issuance only
  - This should be our "worst case" scenario
    - Median first-issuance polygon issued 24 hours before it goes into effect, 75<sup>th</sup> percentile polygon 39 hours!
- Develop a spatial verification scheme
  - Combine radar data and reports to define impact area during polygon valid time
  - GIS used to compare spatial footprint of impact area, polygon warning and zone warning
    - Level playing field for POD, FAR, CSI stats



#### First Issuance Polygons Example





BUFFALO WEATHER FORECAST OFFICE

#### **Spatial Verification Scheme Example**



#### **Spatial Verification Scheme Example**

#### Lake Ontario Polygon #2 12/10/17 21Z to 12/11/17 03Z Issued 26 hr lead time; 6 hr duration



158,894

2

#### Spatial Verification Statistics 2016–2018 (2 seasons, 131 polygons)

|            | Median  | POD   | FAR   | CSI   |    |
|------------|---------|-------|-------|-------|----|
|            | Zone    | 0.99  | 0.60  | 0.39  |    |
|            | Polygon | 0.71  | 0.22  | 0.56  |    |
|            | Change  | -0.28 | -0.38 | +0.17 |    |
| Now repeat |         |       | t 131 | l tim | es |

- Easy to have a high POD when "casting a wide net"
- FAR fell more than POD: a good thing!
- Net result: Polygon warnings provided more skilled information than zone warnings
- Not shown: Population weighted stats very similar



#### Spatial Verification Statistics 2016–2018 (2 seasons, 131 polygons)



BUFFALO WEATHER FORECAST OFFICE

### Population Reduction from Zone-Based Warning

- Correct population reduction averages 2 orders of magnitude greater than incorrect reduction
- Median people
   correctly removed: 196,888
- Median people incorrectly removed 1,624



WEATHER FORECAST OFFICE



#### Spatial Verification Statistics 2016–2017 (1 season, 77 polygons, 5 verifiers)

Polygon vs Zone POD, FAR, CSI: Standard Deviation of Verifier



BUFFALO WEATHER FORECAST OFFICE

NEATHA

#### Spatial Verification Statistics 2016-2017 (1 season, 77 polygons, 5 verifiers)

- 4 out of 5 verifiers agree, polygons are good for you!
  - Average Polygon CSI: 0.50, Zone CSI: 0.43
  - 1 verifier found Polygon CSI: 0.45, Zone CSI: 0.50
- Subjectivity does matter, but results don't vary dramatically
- Remember, these first-issuance polygons should be the *worst* verifying of the bunch



## Methodology – The Solution

- How does the total warning time change in a polygon warning scheme?
  - Worst case scenario is zero warning time saved
  - So what is the best case?
    - Use the "zero lead time" or valid polygons
    - GIS use to compare how long the average person is warned in a zone-based world and a polygon-based world for each event



### **Radar and Valid Polygons**





BUFFALO WEATHER FORECAST OFFICE

### **Zone Based Warning Hours**

Lake Effect Storm "E" Zone Warning Hours





### Polygon Based Warning Hours





WEATHER FORECAST OFFICE

#### Event E - Warning Time Matters!



- Population Weighted Warning Times:
  - Zone Based
    - Avg 29.79 hrs
  - Polygons
    - Avg 16.93 hrs
- Avg reduced 12.8 hrs or 43% less time!



### Warning Time Savings

- The average person in an average event was warned:
  - Polygons hours: 16.1 hrs
  - Zone hours: 29.3 hrs
- Most reduction warnine: 36.4 hrs
- Increased specificity of the warning
  - When will it snow at MY house?
  - When will MY section of interstate need to be plowed?
  - When will MY county be impacted?



WEATHER FORECAST OFFICE

impa



### Summary

- Polygons overall show slightly better skill in defining area of impact
  - POD declines, but FAR declines more!
  - Stats only calculated on expected worst case / first issuance only, should improve with updates!
- Polygon Warnings can add significant value both *spatially* and *temporally* 
  - Reductions in population and area warned
  - Reductions in **TIME** a location/person is warned
  - IDSS!



### Future Work

- Explore the future of impact based long-fuse polygons
  - What place does this product have in a HazSimp world?
  - Expansion to other Great Lakes Offices?
  - Can these polygons be useful in other long-fuse products?
    - High wind events
    - Mesoscale banding in winter storms

