# OBJECTIVE IDENTIFICATION AND TRACKING OF Z<sub>DR</sub> COLUMNS IN X-BAND RADAR OBSERVATIONS

Patrick Saunders, Robin Tanamachi, Dan Dietz, Purdue University

Stephen Frasier, Will Heberling, University of Massachusetts-Amherst





### Acknowledgements

- Scott Collis, Robert Jackson, Mark Picel, Zach Sherman, Argonne National Laboratory
- Kevin Knupp, Tony Lyza, and others at UAH
- Ashley Griffin, Allison Lafleur, and Joe Waldinger

# Z<sub>DR</sub> Columns

- Definition: Enhanced Z<sub>DR</sub> (1-5 dB) extending about 1-4km above the 0° C level.
- Polarimetric signature associated with updraft in convective storms.

Contain supercooled liquid raindrops.



# Z<sub>DR</sub> Columns – so what?

- Z<sub>DR</sub> columns have practical applications:
  - Location of updraft.
  - Z<sub>DR</sub> column properties related to updraft strength.
  - Could be a predictor for heavy rainfall and/or hail Picca et al. (2010).
  - Relationship to low-level rotation through vorticity stretching?

### Long Term Goal

- Can Z<sub>DR</sub> columns be used as a prognostic tool for low-level rotation?
- We want to determine if measurable Z<sub>DR</sub> column properties (which are connected to updraft strength) can be a predictive tool for tornadogenesis.
- Objective identification and tracking of Z<sub>DR</sub> columns is just the first step to our long-term goal.





# Objective Identification and Tracking Algorithms

- Enhanced Watershed Algorithm (EWA; Lakshmanan et al. 2009).
- Tracking algorithm in Lakshmanan and Smith (2010).

- Map radar data to a 2-D surface with Py-ART (Helmus and Collis 2016).
  - Cressman weighting function and a constant radius of influence (750 m).



#### Smooth the data.

This is done using a Gaussian filter.



- Quantize the data.
  - Place upper and lower bound on data and then round values in between these bounds to nearest integer.



- Capture Z<sub>DR</sub> columns.
  - Immerse the field starting at centers and assigning pixels to a Z<sub>DR</sub> column objects and decreasing in intensity values until it reaches the hysteresis level.



- Sizing check
  - A threshold is put on the areal extent of the Z<sub>DR</sub> column objects.



- The tracking algorithm in Lakshmanan and Smith (2010) is used.
- Uses Z<sub>DR</sub> column objects identified by EWA.

Example Z<sub>DR</sub> column object



- Z<sub>DR</sub> column objects identified at t<sub>n</sub> are projected to their expected position at t<sub>n+1</sub>
- Projected forward by the average vector for established track or by the Bunkers storm motion for new Z<sub>DR</sub> columns with no track.



Identify Z<sub>DR</sub> column objects at t<sub>n+1</sub> within search radius of projected cell.



• If there is only one  $Z_{DR}$  column within the search radius, the two  $Z_{DR}$  columns are matched and a track is drawn.



If there is more than one Z<sub>DR</sub> column inside of the search radius, a cost function incorporating distance, area and peak value are used to determine which one to match with.



# UMass X-Pol

|                         | UMass X-Pol                          |  |
|-------------------------|--------------------------------------|--|
| Pulse Repetition        | 2 4/1 6/0 51 kHz (triple PRT)        |  |
| Frequencies             |                                      |  |
| Transmitted Power       | 5 kW (per polarization)              |  |
| Half-power beam width   | 1.2°                                 |  |
| Range resolution        | 60 m                                 |  |
| Max/min unambiguous     | +/- 38.2 ms <sup>-1</sup> (dual PRT) |  |
| velocity                |                                      |  |
| Wavelength              | 3 cm (X-band)                        |  |
| Max unambiguous range   | 60 km                                |  |
| Max azimuthal scan rate | 24° s <sup>-1</sup>                  |  |





- Overall Mission: Understand tornadoes and their environments in the southeast United States.
- Domain: Northern Alabama
  - Mobile radars couldn't do traditional storm chasing.
  - Radar remained stationary due to terrain, trees, bad road network.
- Participated in eight Intensive Observing Periods (IOPs) over two seasons

### Case: 5 April 2017, IOP3b



### Case: 5 April 2017, IOP3b



# Case: 5 April 2017, IOP3b



### Animated EWA Columns









# Conclusions

- Z<sub>DR</sub> columns can be objectively identified with the EWA.
- Z<sub>DR</sub> columns can be tracked in time while also retaining valuable information about them such as height above freezing level, areal extent, and peak Z<sub>DR</sub> value.
- It is important to obtain higher resolution data of Z<sub>DR</sub> columns to properly study them.



Snyder et al. (2015)

### **Future Directions**

- Apply these algorithms to WSR-88D data and see how they perform in comparison to higher resolution data.
- End Goal: We want to determine if measurable Z<sub>DR</sub> column properties (which are connected to updraft strength) can be a predictive tool to tornadogenesis.



patrick.saunders94@gmail.com



### **BONUS SLIDES**

#### Determining Parameters for EWA and Tracking Algorithm

- Two main parameters that needed to be determined:
  - Hysteresis level
  - Saliency level
- Other parameters that could be altered:
  - Smoothing technique
  - Search radius







#### Hysteresis=1dB

(b)

Hysteresis=2dB

# Determining Parameters for EWA and Tracking Algorithm

- A few things to consider when deciding these:
  - Typical areal extent and Z<sub>DR</sub> values of a Z<sub>DR</sub> column
  - Limiting identification of spurious data
  - Quality of tracks produced by algorithm
- With this in mind, subjective identification and tracking were done.
  - This was compared to various combinations of parameters in the EWA and tracking algorithm.

#### Hysteresis=1dB

#### Hysteresis=2dB



### **Final Parameter Decisions**

- Saliency of 3 km<sup>2</sup>
- Hysteresis level of 2 dB
- Increase the search radius by a multiple of two.
  - Search radius is dependent on area of object

# Other things that can affect $Z_{DR}$

- Hydrometeor type (ice vs. liquid)
- Weak returns (very low reflectivity)
- Precipitation concentration <u>DOES NOT</u> affect Z<sub>DR</sub>.

Can be adjusted to reduce the dynamic range in images.

δ

Useful for reducing the number of spurious data with poor spatial resolutions.

### Cressman vs. Barnes





# Affecting the scale of identified Z<sub>DR</sub> columns

- Hysteresis level (minimum Z<sub>DR</sub>)
- Saliency (minimum areal extent)



### Western VORTEX-SE Domain





## **Cost Function for Tracking Algorithm**

- Xi and yi are location coordinates
- Ai is the area
- Di is max pixel value within the cell
- |A| = magnitude

$$c_{i,j} = (x_i - x_j)^2 + (y_i - y_j)^2 + \frac{A_j}{\pi} \left( \frac{|A_i - A_j|}{A_i \wedge A_j} + \frac{|d_i - d_j|}{d_i \wedge d_j} \right)$$

### EWA parameter comparisons for identification

| Saliency (km <sup>2</sup> )                                      | 2                                   | 3                                          | 4                                         | 5                                         |                      |
|------------------------------------------------------------------|-------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------|
| False Alarms                                                     | 1                                   | 0                                          | 0                                         | 0                                         | Lh et a rabia —      |
| Misses                                                           | 115                                 | 134                                        | 168                                       | 181                                       | Hysteresis =<br>1 dB |
| Hits                                                             | 178                                 | 161                                        | 146                                       | 132                                       |                      |
| Close                                                            | 46                                  | 30                                         | 25                                        | 19                                        |                      |
| POD                                                              | 0.511                               | 0.463                                      | 0.420                                     | 0.379                                     |                      |
| POFD                                                             | 0.209                               | 0.157                                      | 0.146                                     | 0.126                                     |                      |
|                                                                  |                                     |                                            |                                           |                                           |                      |
| Saliency (km <sup>2</sup> )                                      | 2                                   | 3                                          | 4                                         | 5                                         |                      |
| Saliency (km²)<br>False Alarms                                   | <b>2</b><br>34                      | <b>3</b><br>17                             | <b>4</b><br>8                             | <b>5</b><br>7                             |                      |
| Saliency (km²)<br>False Alarms<br>Misses                         | <b>2</b><br>34<br>21                | <b>3</b><br>17<br>33                       | <b>4</b><br>8<br>45                       | <b>5</b><br>7<br>58                       | Hysteresis =         |
| Saliency (km²)<br>False Alarms<br>Misses<br>Hits                 | <b>2</b><br>34<br>21<br>220         | <b>3</b><br>17<br>33<br>215                | <b>4</b><br>8<br>45<br>211                | <b>5</b><br>7<br>58<br>202                | Hysteresis =<br>2 dB |
| Saliency (km²)<br>False Alarms<br>Misses<br>Hits<br>Close        | 2<br>34<br>21<br>220<br>82          | <b>3</b><br>17<br>33<br>215<br>63          | <b>4</b><br>8<br>45<br>211<br>67          | <b>5</b><br>7<br>58<br>202<br>56          | Hysteresis =<br>2 dB |
| Saliency (km²)<br>False Alarms<br>Misses<br>Hits<br>Close<br>POD | 2<br>34<br>21<br>220<br>82<br>0.632 | <b>3</b><br>17<br>33<br>215<br>63<br>0.618 | <b>4</b><br>8<br>45<br>211<br>67<br>0.606 | <b>5</b><br>7<br>58<br>202<br>56<br>0.580 | Hysteresis =<br>2 dB |

### EWA parameter comparisons for tracking

| Saliency (km²)                                                                                | 2                             | 3                                     | 4                                     | 5                                     |                      |
|-----------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------|
| Columns                                                                                       | 381                           | 328                                   | 304                                   | 276                                   | Hystorosis -         |
| Tracks                                                                                        | 74                            | 63                                    | 60                                    | 53                                    | 1 dB                 |
| Average # of Columns per Track                                                                | 5.14                          | 5.21                                  | 5.07                                  | 5.21                                  |                      |
| Average Duration (s)                                                                          | 885                           | 942                                   | 888                                   | 939                                   |                      |
| Average Duration (min)                                                                        | 14.75                         | 15.70                                 | 14.80                                 | 15.65                                 |                      |
|                                                                                               |                               |                                       |                                       |                                       |                      |
| Saliency (km²)                                                                                | 2                             | 3                                     | 4                                     | 5                                     |                      |
| Saliency (km²)<br>Columns                                                                     | <b>2</b><br>263               | <b>3</b><br>221                       | <b>4</b><br>181                       | <b>5</b><br>159                       |                      |
| Saliency (km²)<br>Columns<br>Tracks                                                           | <b>2</b><br>263<br>46         | <b>3</b><br>221<br>36                 | <b>4</b><br>181<br>30                 | <b>5</b><br>159<br>25                 | Hysteresis =         |
| Saliency (km²)<br>Columns<br>Tracks<br>Average # of Columns per Track                         | <b>2</b><br>263<br>46<br>5.72 | <b>3</b><br>221<br>36<br>6.14         | <b>4</b><br>181<br>30<br>6.03         | <b>5</b><br>159<br>25<br>6.36         | Hysteresis =<br>2 dB |
| Saliency (km²)<br>Columns<br>Tracks<br>Average # of Columns per Track<br>Average Duration (s) | 2<br>263<br>46<br>5.72<br>921 | <b>3</b><br>221<br>36<br>6.14<br>1034 | <b>4</b><br>181<br>30<br>6.03<br>1041 | <b>5</b><br>159<br>25<br>6.36<br>1046 | Hysteresis =<br>2 dB |



### Polarimetric Radar

 Conventional weather radar transmit waves with a single polarization

Polarimetric weather radars usually transmit with two orthogonally oriented waves -H/V



# Differential Reflectivity (Z<sub>DR</sub>)

- First introduced by Seliga and Bringi (1976)
  Z<sub>DR</sub> = log(Z<sub>H</sub>/Z<sub>V</sub>)
  - Z<sub>DR</sub> > 0 for horizontally elongated particles
  - Z<sub>DR</sub> < 0 for vertically elongated particles</p>
  - $Z_{DR} = 0$  for spherical particles



# Discerning Hydrometeor Type with Differential Reflectivity (Z<sub>DR</sub>)

- Rain becomes more oblate with size
  - Higher Z<sub>DR</sub> for larger drops
- Hail can have a variety of Z<sub>DR</sub> values:
  - Wet hail is usually positive
  - Large hail can be negative
  - Most of the time, near zero though
- Snow close to zero since snow has very low density and ice in general has lower Z<sub>DR</sub> values.

# Z<sub>DR</sub> Columns – How are they formed? Why do they occur?

# Two reasons for raindrops above freezing level in updraft:

1. Positive temperature perturbation in updraft



# Two reasons for raindrops above freezing level in updraft:

2. It still takes several minutes for a drop to freeze upon entering subfreezing temperatures



# Z<sub>DR</sub> Columns – so what?

- There are other ways to identify the updraft region in radar data:
  - 1. Bounded weak echo region (BWER)
  - 2. Retrieve vertical velocities from dual doppler analysis



# Z<sub>DR</sub> Columns – so what?

- 1. Bounded weak echo region (BWER)
  - BWER are defined as a "minima" making it difficult to automatically identify
  - They only appear in supercells with strong updrafts.
  - Z<sub>DR</sub> columns on the other hand, are maxima, which is much easier to automatically identify
  - Z<sub>DR</sub> columns are also apparent in almost all thunderstorms and are much more common than BWER.

### Z<sub>DR</sub> Columns – so what?



2. Retrieve vertical velocities from dual doppler analysis

> Require multiple radars to retrieve and are harder to obtain

 Z<sub>DR</sub> columns can be observed by a single radar