The Common Operations and Development
Environment (CODE) for the WSR-88D Open RPG

CODE B24.0r1.20: October 2025

Includes ORPG Build 24.0r1.20

Volume 3. WSR-88D Algorithm
Programming Guide

- API Reference and Algorithm Structure Guidance -

The U.S. Government Edition of CODE is the complete version. Distribution is limited to within the
United States Government.

The Public Edition of CODE is intended for public release. Certain Copyrighted material has been
removed to permit release outside the U.S. Government.

CODE provides:

Instructions for setting up the development environment (includes ORPG source code)
Guidance for compiling software and configuring new ORPG tasks & products
Instructions for definition and use of algorithm adaptation data and algorithm
dependent parameters

API Programming Guide and the structure of WSR-88D algorithms (with sample
algorithms)

WSR-88D specific analysis tools

A set of WSR-88D Archive Il Data files and other special test case data.

CODE User provides:

e An Intel PC with Red Hat Enterprise Workstation.

CODE Guide Volume 1. Guide to Setting Up the Development Environment
Document 1. CODE Specific ORPG Installation Instructions
| - Preparation for Installation
Il - Installation Instructions
111 - Supplemental Information
IV - Running the ORPG
Document 2. Installing CODE Software
| - Software Requisites for CODE Utilities
I1 - Instructions for CODE Utilities
I11 - Instructions for Sample Algorithms

CODE Guide Volume 2. ORPG Application Software Development Guide
Document 1. The ORPG Architecture
Document 2. The ORPG Development Environment
| - Integrating Development Software with ORPG Source Code
Il - Compiling Software in the ORPG Environment
111 - ORPG Configuration for Application Developers
IV - Configuring Site Specific Adaptation Data
Document 3. WSR-88D Final Product Format
I - Product Block Structure
Il - Traditional Product Data Packets
111 - Generic Product Components
IV - ORPG Application Dependent Parameters
Document 4. ORPG Internal Data for Algorithm Developers
| - Base Data Format
I - Algorithm Adaptation Data - Configuration & Use
111 - Other Data Inputs

CODE Guide Volume 3. WSR-88D Algorithm Programming Guide
Document 1. The WSR-88D Algorithm APl Overview
Document 2. The WSR-88D Algorithm APl Reference
| - API Service Registration / Initialization
I - Control - Input/Output - Abort Services
111 - Final Product Construction
IV - API Convenience Functions
Document 3. The WSR-88D Algorithm Structure and Sample Algorithms
I - WSR-88D Algorithm Structure
I - Sample Algorithms
111 - Writing Product Data Fields
Document 4. Special Topics

| - Topics Related to Using the Development Environment
Il - Topics Related to Reading Radial Base Data
I11 - Topics Related to Writing Algorithms

CODE Guide Volume 4. CODE Utility Guide

Document 1. CODEview Text (CVT) - ASCII Product Display

Document 2. CODEview Graphics (CVG) - Graphic Product Display
| - Displaying Products with CVG
I - Configuring Products for Display by CVG

Document 3. Archive 11 Disk File Ingest - play_a2 Tool

Document 4. Product Distribution with the nbtcp Tool

Document 5. Additional CODE / ORPG Tools

file:///C:/Users/Brian.Klein/Documents/CODE/v1_setup_code1_22.pdf
file:///C:/Users/Brian.Klein/Documents/CODE/v2_devel_guide1_21.pdf

Volume 3. WSR-88D Algorithm

Programming Guide

Introduction

These documents provide a reference and tutorial on using the WSR-88D Algorithm API along with
sample algorithms. Additional guidance for WSR-88D algorithm developers and documentation of
ORPG internal data (including base data and final product format) is provided with CODE Guide
Volume 2 - ORPG Application Software Development Guide.

Document 1. The WSR-88D Algorithm APl Overview

A brief overview of the Algorithm API.

Document 2. The WSR-88D Algorithm APl Reference
Section | API Service Registration / Initialization
Section I Control - Input/Output - Abort Services
Section 111 Final Product Construction
Section IV API Convenience Functions

Document 3. WSR-88D Algorithm Structure and Sample Algorithms
Section | Guidance for the Structure of Algorithms
Section Il Sample Algorithms
Section 111 Writing Product Data Fields

Document 4. Special Topics
This document contains miscellaneous topics that have not been placed in other documents. As this type
of information increases, a reorganization of documentation will be considered.

Section | Topics Related to Using the Development Environment
Section Il Topics Related to Writing Algorithms

Appendices

Provides logic flow diagrams and main module source code listing for the sample algorithms.

CODE Volume 3 B24.0r1.20 October 2025 Page 3 of 234

Vol 3 Document 1. WSR-88D Algorithm API Overview

Volume 3. WSR-88D Algorithm

Programming Guide

Document 1. WSR-88D Algorithm API Overview

Introduction

All legacy algorithms written in FORTRAN are being ported to C. The FORTRAN binding which
provided the interface for the legacy algorithms will be eliminated in a future build. These services
are contained in the shared libraries 1ibrpg and 1ibrpgem.

An ANSI-C binding, provided by 1ibrpge, is used to write all new algorithms. The relationship
between these API libraries and ORPG infrastructure services is depicted by the following diagram. The
diagram also indicates the continuing enhancements to the C API (including a standard data structure).

Application
Layer

librpgc
A\ 4
Algorithm API API Enhancements API Layer
. (ANSI-C API) (Standard Data Structure)
librpg
librpgem
Algorithm APl
(FORTRAN-APH
|
! l liborpg 3
Hi-Level ORPG Service Library
1 | | I |
v v v v v Low-Level

I I
I I
I I
I I
I I
' | | | | | | ORPG Libraries
! |
' I
! |

CODE Volume 3 B24.0r1.20 October 2025 Page 4 of 234

Vol 3 Document 1. WSR-88D Algorithm API Overview

Functions in the API layer have a name beginning with one of the following prefixes: Recc_, RPGCS_, Of
RPGP_. Algorithms should not use lower level infrastructure services.

Inappropriate Use of non-API Services

Some existing algorithms do not completely follow the guidance and use non-API functions from the
main ORPG library of services. These services should not be used in development code and the ROC
should not accept algorithms using non-API services. Many of these algorithms are referenced as
examples (cpc007/tsk003/basspect.c, cpc007/tsk013/bref8bit.c,
cpc007/tsk014/bvel8bit.c, cpc007/tsk015/superes8bit.c, etc.) and the use of the following
functions in these algorithms should not be considered correct. Most of the ORPG library functions
incorrectly used have a direct counterpart in the algorithm API.

Inappropriately Used Service Function Corresponding Algorithm API Function
LE _send msg RPGC_log _msg
ORPGPAT get elevation_index RPGC_get buffer elev_index

ORPGPAT get prod_id from code

ORPGPAT get num_ dep prods

ORPGDA_read RPGC_data_access_read
ORPGDA write RPGC_data_access_write
ORPGDA_seek RPGC_data_access_seek
ORPGDA_clear RPGC_data_access_clear
ORPGDA_open RPGC_data_access_open
ORPGDA_info RPGC_data_access _msg_info
ORPGDA list RPGC_data_access_list

ORPGDA_1bfd
ORPGRDA_get_rda config
ORPGVCP_BAMS to_deg RPG_elev_angle_BAMS to_deg

ORPGVST_get volume_ time

Summary of Deprecated API Functions

The algorithm API is continuously evolving. Often newly added functions do not add a new capability
but rather a modified / improved capability. You will still see the deprecated functions in existing
algorithms (including those recently ported from Fortran). However, they should not be used in new

CODE Volume 3 B24.0r1.20 October 2025 Page 5 of 234

Vol 3 Document 1. WSR-88D Algorithm API Overview

algorithms. The following charts include the old deprecated functions highlighted in red. A list of
deprecated functions is provided as a convenient reference.

Deprecated API Function Replaced by new API Function
RPGC_abort datatype because RPGC_abort dataname_ because
RPGC_check_data RPGC_check data_ by name
RPGC_get current elev_index RPGC_get buffer elev_index
RPGC_get current vol num RPGC_get buffer vol num
RPGC_get inbuf RPGC_get_ inbuf by name
RPGC_get_outbuf for_ req RPGC_get outbuf by name for_ req
RPGC_get_ outbuf RPGC_get outbuf by name
RPGC_in data RPGC_reg_inputs

RPGC_reg_io
RPGC_in opt RPGC_in opt_ by name
RPGC_out_data RPGC_reg_outputs

RPGC_reg_ io
RPGC_out data_ wevent RPGC_out_data_ by name wevent
RPGCS_get last elev_index RPGC_is buffer from last elev

CODE Volume 3 B24.0r1.20 October 2025 Page 6 of 234

Vol 3 Document 1. WSR-88D Algorithm API Overview
Algorithm API Chart

Not all of the API functions have been documented. The functions not documented are not critical to
algorithm development and many of the recently added functions were created to support the porting
of legacy FORTRAN algorithms to ANSI-C.

= Some of the new functions are redundant with existing functions.

= Some are not generally useful for algorithm development.

= Some of the new functions have not yet been used in algorithms.

NOTE: Some previously deprecated functions are being used to port FORTRAN algorithms.

WSR-88D Algorithm API (Build 18)
Color Code

Functions not needed for or not appropriate for new algorithms - Note 2
Functions supporting a very specific purpose / not generally useful - Note 2 I
New Functions for Build 12 ™ (or functions modified in Build 12)

Note 1: Deprecated Functions. The new or existing function (in the following row) should be
used for all new development in place of the deprecated function. Some functions recently
deprecated (e.g., RPGC_get_inbuf , RPGC_get outbuf) are still used by many algorithms.
This deprecated function will eventually be eliminated from the API.

Note 2: The functions shaded in the color gray are not documented in Volume 3 Document 2.
These functions are not needed to write new algorithms. There are several reasons for this.
a. Functions not needed for or not appropriate for new algorithms.
Most of these functions will never be documented and some may be deleted from the
API. Some of these functions were used to support mechanisms used in Legacy
algorithms (for example the ITC blocks and timer support). Some were used in the
porting of Fortran algorithms to C and support discontinued methods and should not
be used in new algorithms (for example the ‘adapt_block’ functions). Some were
used in the porting of Fortran algorithms to C and are redundant with existing
functions.
b. Functions supporting a very specific purpose / not generally useful.
These include functions supporting the NCDC model data and functions providing
conversion to and from Lambert projections.

CODE Volume 3 B24.0r1.20 October 2025 Page 7 of 234

Vol 3 Document 1. WSR-88D Algorithm API Overview

Build 18 API

Section I - API Service Registration / Initialization

ANSI-C (librpgc)
see rpgc.h for prototype definition

A. Input / Output Data Registration

Q)
:

X

int RPGC _reg_io(int argc, char *argv([])

int RPGC_reg_inputs(int argc, char *argv[])

int RPGC _reg_outputs(int argc, char *argv[])

Additional Input Output Registration Functions

Build 9 |int RPGC_in_opt_by name(char *data_name, int block_time)
O
Build 9 |int RPGC_out_data_by_name_wevent(char *dataname, en_t event_id)

Advance

d Access of Replay Data

int RPGC_reg_volume_data(int data_id)

B. Adapt

ation Data Registration

Supporting Current Adaptation Data

int RPGC _reg_ade_callback(int (*callback) (), void *blk_ptr, char *grp_name, int *timing,
o)

int RPGC _reg_site_info(void *struct_address)

int RPGC _is_ade_callback_reg(int (*update) (), int *status)

Supporting Old Adaptation Data (used in porting Fortran Algorithms to C)

Build 10

int RPGC_reg_adpt(int id, char *buf, int timing, ...)

Build 10

int RPGC_is_adapt_block_registered(int block_id, int *status)

Build 10

int RPGC_read_adapt_block(int block_id, int *status)

Build 10

void RPGC_update_adaptation ()

C. Other

Registrations

int RPGC _init_log_services(int argc, char *argv[])

Build 11

int RPGC_get_input_stream(int argc, char *argv[])

Access to Internal Data Tables

int RPGC _reg_scan_summary()

CODE Volume 3 B24.0r1.20 October 2025 Page 8 of 234

Vol 3 Document 1. WSR-88D Algorithm API Overview

Build 10|int RPGC_reg_volume_status(VVol_stat_gsm_t *vol_stat)

int RPGC_reg_moments(int moments)

Using Command Line Parameters

int RPGC _reg_custom_options(const char *additional _options,

Build 10 RPGC_options_callback_t callback)

Other Functions Not Required for New Algorithms

Build 10 |int RPGC_register_req_validation_fn(char *prod_name)

Build 9 |int RPGC_reg_color_table(void *buf, int timing, ...)

Build 9 |int RPGC_reg RDA control(void *buf, int timing, ...)

D. Event Registration

int RPGC _reg_for_external_event(int event_code, void (*service_routine)(),
int queued_parameter)

int RPGC _reg_for_internal_event(int event_code, void (*service_routine)(),
int queued_parameter)

int RPGC_UN_register(int data_id, LB_id_t msg_id, void (*service_routine)())

E. Task Timing Initialization

int RPGC_task_init(int what_based, int argc, char *argv([])

int RPGC_reg_and_init(int what_based, int argc, char *argv[])

CODE Volume 3 B24.0r1.20 October 2025 Page 9 of 234

Vol 3 Document 1. WSR-88D Algorithm API Overview
Build 12 API

Section Il - Control - Input/Output - Abort Services

ANSI-C (librpgc)
see rpgc.h and rpgcs.h for prototype definition

A. Algorithm Control Loop

int RPGC_wait_act(int wait_for)

int RPGC_wait_for_any_data(int wait_for)

int RPGC_wait_for_event()

B. Reading Input Data

Reading Product Data Linear Buffers

™

Build 9 |void* RPGC_get_inbuf by name(char *regname, int *opstat)

void* RPGC_get_inbuf_any(int *datatype, int *opstat)

int RPGC_get_inbuf_len(void *bufptr)

int RPGC_rel_inbuf(void *bufptr)

int RPGC_rel_all_inbufs()

Reading Data from Product Database

Build 10 int RPGC_find_pdb_product(char *name, RPGC_prod_rec_t *results, int max_results,

)

Build 10|void* RPGC_get _pdb_product(char *name, LB_id_t msg_id)

Build 11|void RPGC_release_pdb_product(void *buf)

Advanced Access of Replay Data

int RPGC_check_volume_radial(unsigned int vol_seq_num, int elev_num,
unsigned int type)

char* RPGC_read_volume_radial(unsigned int vol_seq_num, int elev_num,
unsigned int *type, int *size)

void RPGC_rel_volume_radial(char *bufptr)

C. Writing Output Data

Build 9 |void* RPGC_get outbuf by name(char *regname, int bufsiz, int *opstat)

void* RPGC_get outbuf by name_for_req(char *dataname, int bufsiz,
Build 9 User_array_t *user_array, int *opstat)

Build 8 |void* RPGC_realloc_outbuf(void *bufptr, int bufsiz, int *opstat)

CODE Volume 3 B24.0r1.20 October 2025 Page 10 of 234

Vol 3 Document 1. WSR-88D Algorithm API Overview

int RPGC_rel_outbuf(void *bufptr, int disposition, ...)

int RPGC _rel_all_outbufs(int disposition)

int RPGC_abort_remaining_volscan()

D. Getting Request Information

void *RPGC_get_customizing_data(int elev_index, int *n_requests) M

Build 10

int RPGC_get_request_by name(int elev_index, char *dataname, User_array t *uarray,
int max_requests)

Build 10

int RPGC_get_customizing_info(int elev_index, User_array_t *user_array,
int *num_requests)

Build 10

Build 9

int RPGC_get_request(int elev_index, int prod_id, User_array_t *uarray,
int max_requests)

~

int RPGC_check_data_by name(char *data_name)

Y

E. Getting Information About the Current VVolume / Elevation

void RPGC_what_moments(Base_data_header *hdr, int *ref_flag, int *vel_flag,
int *wid_flag)

5

int RPGC_get_buffer_vol_num(void *bufptr)

Build 8

unsigned int RPGC_get_buffer_vol_seq_num(void *bufptr)
Q
int RPGC_get_buffer_elev_index(void *bufptr)

Y

int RPGC_get_buffer_vcp_num(void *bufptr)

int RPGCS_get target_elev_ang(int vcp_num, intelev_ind)

Build 12

Build 11

short *\RPGCS_get_elev_index_table(int vcp_num) Y Note: for porting VWINDPRO
Q

int RPGC_is_buffer_from_last_elev(void *bufptr, int *elev_index, int *last_elev_index)

&

Build 9

int RPGCS_get_ wxmode_for_vcp(int vep_num)

Build 10

int RPGC_bins_to_ceiling(void *bdataptr, int bin_size)

Build 9

int RPGC_num_rad_bins(void *bdataptr, int maxbins, int radstep, int wave_type) "

Scan_Summary *RPGC_get_scan_summary(int vol_num)

Build 9

Vcp_struct* RPGCS_get_vcp_data(int vep_num)

Build 10

int RPGC _read_volume_status()

Build 12

int RPGCS_get CMD _status() Y

Build 12

int RPGCS_is_ CMD _status_applied_this_elev(int vep_num, int elev_ind) "

CODE Volume 3 B24.0r1.20 October 2025 Page 11 of 234

Vol 3 Document 1. WSR-88D Algorithm API Overview

F. Reading Adaptation Data

int RPGC_ade_get_values(char *alg_name, char *value_id, double *values)

int RPGC_ade_get_string_values(char *alg_name, char *value_id, char **values)

int RPGC_ade_get_number_of values(char *alg_name, char *value_id)

Functions Not Required for Algorithms

int RPGC_read_ade(int *callback_id, int *status)

int RPGC_update_all_ade()

G. Reading Base Data Messaqges

Functions for Reading Basic Moments

void* RPGC_get_surv_data(void* bufptr, int* first_good_bin, int* last_good_bin)

void* RPGC_get vel data(void* bufptr, int* first_good_bin, int* last_good_bin)

void* RPGC_get_wid_data(void* bufptr, int* first_good_bin, int* last_good_bin)

Determining Basedata Message Type

Build 10

unsigned short RPGC_check_radial type(void *radptr, unsigned short check type)

Build 10

unsigned short RPGC_check_cut_type(void *radptr, unsigned short check_type)

Reading Advanced Data Fields (Dual Polarization Data)

Build 10

void* RPGC_get radar_data(void™ bufptr, int type, Generic_moment_t *mom)

H. Aborting Product Construction

int RPGC_abort()

Build 9

int RPGC_abort_because(int reason)

r.

)

int RPGC_abort_dataname_because(char *dataname, int reason)

int RPGC _abort_request(User_array_t *request, int reason)

int RPGC_cleanup_and_abort(int reason)

Build 10

int RPGC_product_replay_request_response(int pid, int reason, short *dep_params)

I. Non-Product Data Access (Not used by legacy algorithms)

Basic Linear Buffer Access Functions (Note 3)

int RPGC_data_access_open(int data_id, int flags)

int RPGC_data_access_close(int data_id)

Build 9

int RPGC_data_access_list(int data_id, LB_info *list, int nlist)

int RPGC_data_access_read(int data_id, void *buf, int buflen, LB_id_t msg_id)

int RPGC_data_access_write(int data_id, void *buf, int buflen, LB_id_t msg_id)

Build 8

int RPGC_data_access_seek(int data_id, int offset, LB_id_t *msg_id)

Build 9

int RPGC_data_access_clear(int data_id, int msgs)

CODE Volume 3 B24.0r1.20 October 2025 Page 12 of 234

Vol 3 Document 1. WSR-88D Algorithm API Overview

Build 8

int RPGC_data_access_UN_register(int data_id, LB_id_t msg_id, void (*callback) ())

Build 9

LB id t RPGC_data_access_previous_msgid (int data_id);

Build 9

int RPGC_data_access_msg_info(int data_id, LB_id_t id, LB_info *info)

Build 9

int RPGC_data_access_stat(int data_id, LB_status *status)

Database Linear Buffer Access Functions (Note 4)

Build 10

int RPGC_DB_select(int data_id, char *where, void **result)

Build 10

int RPGC_DB_get_record(void *result, int ind, char **record)

Build 10

int RPGC_DB_get_header(void *result, int ind, char **hd)

Build 10

int RPGC_DB _insert(int data_id, void *record, int rec_len)

Build 10

int RPGC_DB_delete(int data_id, char *where)

Standard Disk File Support Functions

int RPGC_get_working_dir(char **path_name)

int RPGC_construct_file_name(char *file_name, char **path_name)

Build 10

void RPGCS_full_name(char *file_name, char *full_name)

J. Misce

llaneous Functions

void RPGC_log_msg(int code, const char *format, ...)

int RPGC_monitor_input_buffer_load(char *dataname)

r.

)

void RPGC_abort_task()

Build 10

void RPGC_kill_rpg()

Note 3:

Note 4:

CODE Vo

The purpose of these functions is to provide linear buffer data storage / access for algorithm
data that is not part of the data "flow". Typically non-product data storage is used for state
information and does not necessarily change every volume / elevation. Data stored and
accessed in this manner are not defined as products. The operation of these functions
depends upon the linear buffer being configured via the data_attr table configuration
file (see CODE Guide Volume 2 Document 2 Section 111 - ORPG Configuration for
Application Developers).

These functions support linear buffer access to non-product data as a database of records
and provide the capability to search the records as well as a read / write / delete capability.
Defining a new database which can be accessed by these functions requires modification of
an infrastructure task. Use of this feature is restricted to data having numerous records
which must be searched.

lume 3 B24.0r1.20 October 2025 Page 13 of 234

Vol 3 Document 1. WSR-88D Algorithm API Overview

Build 18 API

Section Il - Final Product Construction

ANSI-C (librpgc)
see rpgc.h and rpgp.h for prototype definition

A. Final Product Construction (Not used by legacy algorithms)

Functions for Writing and Reading 4-byte Data

int RPGC_set_product_int(void *loc, unsigned int value)

int RPGC_set_product_float(void *loc, float value)

int RPGC_get_product_int(void *loc, void *value)

int RPGC_get_product_float(void *loc, void *value)

MISC Product Construction Helper Functions

Build 8 [float RPGC_NINT(float real)

Build 9 |double RPGC_NINTD(double value)

Build 9 |int RPGC_get_id_from_name(char *data_name)
Build 9 |int RPGC_get _code_from_id(int prod_id)

Build 9 [int RPGC_get code _from_name(char *data_name)

int RPGC_compress_product(void *bufptr, int method)

void* RPGC_decompress_product(void *bufptr)

Data Packet Specific Helper Functions

Supporting Packet 16 Header and Data Array (packet_16.h)

Build 10

int RPGC_digital_radial_data_hdr(int first_bin_idx, int num_bins, int icenter, int jcenter,
int range_scale_factor, int num_radials, void *output)

Build 8

int RPGP_set_packet 16 _radial(unsigned char *packet, short start_angle, short
angle_delta,
unsigned char *data, int num_values)

Build 10

int RPGC_digital_radial_data_array(void *input, int input_size, int start_data_idx,
int end_data_idx, int start_idx, int num_rad_bins,
int binstep, int start_angle, int delta_angle,
void *output)

Supporting Packet 17 Header and Data Array (for porting the DPA product)

int RPGC_digital_precipitation_data_hdr(int Ifm_boxes_in_row, int num_rows,

Build 10 void *output) - very specific use
int RPGC _digital_precipitation_data_array(void *input, int input_size,
Build 10 int Ifm_boxes_in_row, int num_rows,

void *output) - very specific use

Supporting AF1F and BAO7 RLE data arrays

CODE Volume 3 B24.0r1.20 October 2025 Page 14 of 234

Vol 3 Document 1. WSR-88D Algorithm API Overview

int RPGC_run_length_encode(int start, int delta, short *inbuf, int startix,

Build 9 int endix, int max_num_bins, int buffstep, short *cltab,
int *nrleb, int buffind, short *outbuf)
int RPGC _run_length_encode_byte(int start, int delta, unsigned char *inbuf, int startix,
Build 10 int endix, int max_num_bins, int buffstep, short *cltab,
int *nrleb, int buffind, short *outbuf)
Build 9 int RPGC _raster_run_length(int nrows, int ncols, short *inbuf, short *cltab, int maxind,

short *outbuf, int obuffind, int *istar2s)

Functions used to Assemble Header Blocks

int RPGC_prod_desc_block(void *ptr, int prod_id, int vol_num)

int RPGC_set_dep_params(void *ptr, short *params)

int RPGC_prod_hdr(void *ptr, int prod_id, int *length)

Build 10

int RPGC_set_prod_block_offsets(void *ptr, int sym_offset, int gra_offset, int tab_offset)

int RPGC_stand_alone_prod(void *ptr, char *string, int *length)

B. Support for the Generic Product Format

Functions Used For Product Construction

int RPGP_build_RPGP_product_t(int prod_id, int vol_num, char *name, char *description,

Build 8 RPGP_product_t *prod)
int RPGP_finish_RPGP_product_t(RPGP_product_t *prod, int numof_prod_params,
Build 8 RPGP_parameter_t *prod_params,
int numof_components, void **components)
Build 8 int RPGP_set_int_param(RPGP_parameter_t *param, char *id, char *name, int type,
void *value, int size, int scale, ...)
int RPGP_set_float_param(RPGP_parameter_t *param, char *id, char *name, int type,
Build 8 void *value, int size, const int fld_width, const int precision,
const double scale, ...)
int RPGP_set_string_param(RPGP_parameter_t *param, char *id, char *name, void
Build 8 |*value,
intsize, ...)
Build 8 [int RPGP_product_serialize (RPGP_product_t *prod, char **serial_data)
Build 8 |int RPGP_product_free (RPGP_product_t *prod)

Functions Used For Debugging Generic Products

Build 8

int RPGP_product_deserialize (char *serial_data, int size, RPGP_product_t **prod)

Build 8

void RPGP_print_prod (RPGP_product_t *prod)

Build 8

void RPGP_print_components (int n_comps, char **comps)

Build 8

void RPGP_print_area (RPGP_area_t *area)

Build 8

void RPGP_print_points (int n_points, RPGP_location_t *points)

Build 8

void RPGP_print_params (int n_params, RPGP_parameter_t *params)

CODE Volume 3 B24.0r1.20 October 2025 Page 15 of 234

Vol 3 Document 1. WSR-88D Algorithm API Overview

Build 8 |void RPGP_print_event (RPGP_event_t *event)

Functions Specific to Using External Model Data
(Not documented in API Reference, Vol 3 Doc 2) Note 5

Build 9 |int RPGCS_get _model_data(int model, char **data) i

Build 9 |void* RPGCS_get_model_attrs(int model, char *data) r

Build 9 |void* RPGCS_get_model_field(int model, char *data, char *field) r

double RPGCS_get_data_value(RPGCS_model_grid_data_t *data, int level, inti_ind,

Build 9 int j_ind, int *units) Y

Build 9 |void RPGCS_free_model_field(int model, char *data) i

Note 5: Functions supporting data access from a specific type of external data from NCDC models
(the only "external" data at this time).

CODE Volume 3 B24.0r1.20 October 2025 Page 16 of 234

Vol 3 Document 1. WSR-88D Algorithm API Overview
Build 18 API

Section IV - API Convenience Functions

ANSI-C (librpgc)
rpgcs_data_conversion.h, rpges_time_funcs.h, and rpgcs_coordinates.h for prototype
definition

A. Data Conversion Functions

RESO RPGCS_get_velocity reso(int dop_res)

RESO RPGCS_set_velocity_reso(int dop_res)

Base Data Value Decoding

float RPGCS _reflectivity to dBZ(int value)

float RPGCS_velocity to_ms(int value)

float RPGCS_spectrum_width_to_ms(int value)

Base Data Value Encoding

int RPGCS_dBZ_to_reflectivity(float value)

int RPGCS_ms_to_velocity(RESO reso, float value)

int RPGCS_ms_to_spectrum_width(float value)

Decoding Generic Base Data

int RPGCS _radar_data_conversion(void* data, Generic_moment_t *data_block,
Build 10 float below_threshold, float range_folded,
float **converted_data)

B. Date / Time Conversion Functions

System Date / Time

Build 9 |int RPGCS_get_time_zone()

Build 10 |int RPGCS_get_date_time(int *ctime, int *cdate)

Julian Date Conversions

int RPGCS_julian_to_date(int julian_date, int *year, int *month, int *day)

int RPGCS_date_to_julian(int year, int month, int day, int *julian_date)

time_t RPGCS_time_span(int start_time, int start_date, int end_time, int end_date)

Unix Time Conversions

int RPGCS_unix_time_to_ymdhms(time_t time, int *year, int *month, int *day, int *hour,
int *minute, int *second)

int RPGCS_ymdhms_to_unix_time(time_t *time, int year, int month, int day, int hour,
int minute, int second)

Radial Time Conversions

CODE Volume 3 B24.0r1.20 October 2025 Page 17 of 234

Vol 3 Document 1. WSR-88D Algorithm API Overview

int RPGCS_convert_radial_time(unsigned int time, int *hour, int *minute, int *second,
int *mills)

C. Coordinate Conversion Functions

void RPGCS_set_input_units(int units)

void RPGCS_set_output_units(int units)

int RPGCS_get_input_units()

int RPGCS_get_output_units()

Single-Plane Cartesian x y Conversions

int RPGCS_xy _to_azran(REAL x, REAL y, REAL *range, REAL *azm)

int RPGCS_xy to_azran_u(REAL x, REAL y, int xy_units, REAL *range, int range_units,
REAL *azm)

int RPGCS_azran_to_xy(REAL range, REAL azm, REAL *x, REAL *y)

int RPGCS_azran_to_xy u(REAL range, int range_units, REAL azm, int azm_units,
REAL *x, REAL *y, int Xy_units)

Single-Plane Lat Lon Conversions

int RPGCS_xy to_latlon(float x, float y, float *lat, float *lon)

int RPGCS _latlon_to_xy(float lat, float lon, float *x, float *y)

int RPGCS_azran_to_latlon(float rng, float azm, float *lat, float *lon)

int RPGCS _latlon_to_azran(float lat, float lon, float *rng, float *azm)

Elevation Scan to Ground Cartesian Conversions

int RPGCS_azranelev_to_xy(REAL range, REAL azm, REAL elev, REAL *x, REAL *y)

int RPGCS_azranelev_to_xy u(REAL range, int range_units, REAL azm, int azm_units,
REAL elev, int elev_units, REAL *x, REAL *y,
int Xy_units)

int RPGCS_height(REAL range, REAL elev, REAL *height)

int RPGCS_height_u(REAL range, int range_units, REAL elev, int elev_units,
REAL *height, int height_units)

Build 10

int RPGCS_range(REAL height, REAL elev, REAL *range)

Build 10

int RPGCS_range_u(REAL height, int height_units, REAL elev, int elev_units,
REAL *range, int range_units)

Window

Product Helper

Build 10

void RPGCS_window_extraction(float radius_center, float azimuth_center, float length,
float *max_rad, float *min_rad, float *max_theta,
float *min_theta) - very specific use

D. Lambert Projection / Grid Conversion Functions

(Not documented in API Reference, Vol 3 Doc 2) Note 6

Build 9

int RPGCS_lambert_grid_point_xy(inti_ind, int j_ind, double *x, double *y) i

CODE Volume 3 B24.0r1.20 October 2025 Page 18 of 234

Vol 3 Document 1. WSR-88D Algorithm API Overview

Build 9 [int RPGCS_lambert_grid_point_latlon(inti_ind, int j_ind, double *lat, double *lon) r

Build 9 |int RPGCS_lambert_grid_point_azran(inti_ind, int j_ind, double *azm, double *ran) i

int RPGCS_lambert_latlon_to_grid_point(double lat, double lon, int *i_ind, int *j_ind

Build 9) 4

Build 9 [int RPGCS_lambert_xy to_grid_point(double X, double y, int *i_ind, int *j_ind) M

Build 9 [int RPGCS_lambert_latlon_to_xy(double lat, double lon, double *x, double *y) "

Build 9 |int RPGCS_lambert_xy to_latlon(double x, double y, double *lat, double *lon) "

Build 9 |void RPGCS_lambert_init(RPGCS_model_attr_t *model_attr) "

Build 9 [int RPGCS_lambertuv_to_uv(double ur, double vr, double lon, double *u, double *v) M

Note 6: Functions supporting conversions between a specific Lambert projection coordinates to
various grid coordinates are useful only for reading external model data that are in that
specific projection.

CODE Volume 3 B24.0r1.20 October 2025 Page 19 of 234

Vol 3 Document 1. WSR-88D Algorithm API Overview
Build 21 API

Section V - Legacy Algorithm Support

ANSI-C (librpgc)
see rpgc.h for prototype definition

Inter-task common block (ITC) support (Not documented in APl Reference, Vol 3 Doc 2) Note 7

int RPGC_itc_in(int itc_id, void *first, unsigned int size, int sync_prod, ...)

int RPGC _itc_out(int itc_id, void *first, unsigned int size, int sync_prod, ...)

int RPGC_itc_callback(int itc_id, int (*func)())

int RPGC _itc_read(int itc_id, int *status)

int RPGC_itc_write(int itc_id, int *status)

Timer Support (Not documented in API Reference, Vol 3 Doc 2)

int RPGC_reg_timer(malrm_id_t id, void (*callback)())

int RPGC_set_timer(malrm_id_t id, int interval)

int RPGC_cancel_timer(malrm_id_t id, int interval)

Note 7: Several Legacy Fortran algorithms used a mechanism of sharing persistent data called 'Inter-
Task Communication (ITC) Blocks'. Support for this communication mechanism was
implemented in the ORPG infrastructure. Even though the C Algorithm API includes
functions to use ITC blocks, they are not recommended for use in new algorithms. The non-
product data access functions should be used to store and share non-product data.

CODE Volume 3 B24.0r1.20 October 2025 Page 20 of 234

Vol 3 Document 2. The WSR-88D Algorithm API Reference

Volume 3. WSR-88D Algorithm

Programming Guide

Document 2. The WSR-88D Algorithm API
Reference

The following API discussion is oriented toward a developer writing a new algorithm in ANSI-C
so topics such as ITC blocks and timer services (Legacy Algorithm Support) are not included.

New algorithm development in FORTRAN is no longer supported by the National
Weather Service. The WSR-88D algorithms written in FORTRAN are being ported to
ANSI-C during the next few development cycles. Development activities must be
coordinated with the Radar Operations Center Engineering Branch if modifying an existing
FORTRAN algorithm. A list of recently ported algorithm tasks is provided in Appendix B.

Note: The reader should be familiar with the instructions for configuring new algorithms and the
description of ORPG configuration files contained in CODE Guide Volume 2 - ORPG Application
Software Development Guide. Some terms used here (e.g., <Prod_Buffer Number>,
<Prod_Buffer_Name>, and <Product_Code>) are defined in Document 2 Section |11 of that guide.

Section 1 API Service Reqistration / Initialization

The service registration / initialization routines are called only when the algorithm task is launched.
These initialize internal data structures that enable the underlying infrastructure to function correctly.

Section Il Control - Input/Output - Abort Services

After registrations and initialization, the algorithm enters into the processing phase. The algorithm
remains in this phase until the ORPG is shut down or the task fails.

Section 111 Final Product Construction

This section documents functions that aid in the construction of final products (products distributed to
external users).

Section IV API Convenience Functions

Currently the API convenience functions consist of standard services for encoding and decoding radar
data moments, for accomplishing date and time conversions and for transforming polar coordinate data
into rectangular coordinates.

CODE Volume 3 B24.0r1.20 October 2025 Page 21 of 234

Vol 3 Doc 2 Section | - API Service Registration / Initialization

Vol 3. Document 2 -
The WSR-88D Algorithm API Reference

Section I API Service Registration / Initialization

The service registration / initialization routines are called only when the algorithm task is launched.
These initialize internal data structures that enable the underlying infrastructure to function correctly.
Note: These registration services do not completely "register" data stores and tasks with the ORPG. The
configuration files product_attr_ table and task_attr_table described in Volume 2, Document 2,
Section 111 must be modified to actually register inputs and outputs.

NOTE

Not all of the API functions have been documented. The functions not documented are not
critical to algorithm development and many of the recently added functions were created to
support the porting of legacy FORTRAN algorithms to ANSI-C.

= Some of the new functions are redundant with existing functions.

= Some are not generally useful for algorithm development.

= Some of the new functions have not yet been used in algorithms.

NOTE: Some previously deprecated functions are being used to port FORTRAN algorithms.

Input / output data registration, task timing initialization, and summary scan registration calls are
required for all algorithms. Input data registration is not required for event driven algorithms not using
product data as input. The task timing initialization must follow all others. See the discussion of
algorithm control loop under Section Il of this document (Control - Input/Output - Abort Services) for
an explanation of how the registration / initialization services affect algorithm processing.

NOTE: This document makes multiple references to two forms of a data driven algorithm
control loop. This is the continuous main loop of an algorithm that is entered after all
registrations and initializations are complete.

1. The WAIT_ALL form of the control loop is the most common and is used in
algorithms that have only one data input or need more than one data input to create a
product. The loop control function used iS RPGC_wait act (WAIT DRIVING INPUT)

2. The WAIT_ANY form of the control loop is used in algorithms having multiple
registered data inputs but need only one input to produce a product. There are two
functions that can be used: RPGC_wait_act (WAIT_ANY INPUT) and
RPGC_wait_for_ any data (WAIT ANY INPUT).

The contents of this section are organized as follows:
CODE Volume 3 B24.0r1.20 October 2025 Page 22 of 234

Vol 3 Doc 2 Section | - API Service Registration / Initialization

e Part A. Input / Output Data Registration

o Part B. Adaptation Data Registration

o Part C. Other Registrations (log services / internal data / command parameters)
« Part D. Event Registration

e Part E. Task Timing Initialization

CODE Volume 3 B24.0r1.20 October 2025 Page 23 of 234

Vol 3 Doc 2 Section | - API Service Registration / Initialization

Part A. Input / Output Data Registration

All input data (i.e., base data and any product data produced by another algorithm) and all output data
for each algorithm task must be registered. Input and output data registration applies to products each of
which has an entry in the product attribute table contained in the product_attr_table configuration
file.

Input / Output Registration

Beginning with Build 9 the rRpGc_reg_io function is used to register input and output data. The products
listed in the input_data and output_data attributes of the task’s entry in the task_attr_table file are
registered. This function can be used in all data driven algorithm tasks.

The functions RPGC_reg_inputs and RPGC_reg_outputs could also be used. Their primary use would
be in event driven tasks that have product input but no product output or vice versa.

The data timing attribute of both input and output product data are determined by the
value of the type attribute for that product entry in the task_attr_table file. The
values for the type attribute are related to (but not the same as) the input/output data
type definitions in rpg_port.h.. The input/output data type definitions in rpg_port.h
are used by the infrastructure and some deprecated API registration functions. See the
topic "Configuring a New Product” in Volume 2, Document 2, Section Il Part C.

value of the correspondsto | Data Timing Name

prod _attr table This name was used with the deprecated
type attribute registration functions.

type O VOLUME_DATA

type 1 ELEVATION DATA

type 2 TIME DATA - NOt currently supported
type 3 DEMAND DATA

type 4 REQUEST DATA - Special case

type 5 RADIAL DATA

Note: The following functions have been deprecated and should not be used.

¢ RPGC_in data
e RPGC_out_data

l-'37'They will be eliminated in a future build. If any development software uses
these functions they should be replaced with RPGC_reg io.

CODE Volume 3 B24.0r1.20 October 2025 Page 24 of 234

Vol 3 Doc 2 Section | - API Service Registration / Initialization

int RPGC_reg io(int argc, char *argv[])

PARAMETER: argc From task’'s main function, used by API infrastructure.
*argv[]l From task's main function, used by API infrastructure.

RETURN VALUE: With problem registering inputs/outputs, the task self terminates;
returns O on success.

Registers all of the data inputs & outputs for the task based upon the task_attr table and
product_attr_ table configuration.

EXAMPLE:

int RPGC_reg inputs(int argc, char *argv[])
PARAMETER: argc From task’'s main function, used by API infrastructure.
*argv[]l From task's main function, used by API infrastructure.

RETURN VALUE:! With problem registering inputs/outputs, the task self terminates;
returns O on success.

Registers all of the data inputs for the task based upon the task_attr table and
product _attr table configuration.

EXAMPLE:

int RPGC_reg outputs(int argc, char *argv[])
PARAMETER: argc From task's main function, used by API infrastructure.
*argv[]l From task's main function, used by API infrastructure.

RETURN VALUE: With problem registering inputs/outputs, the task self terminates;
returns O on success.

Registers all of the data outputs for the task based upon the task_attr table and
product attr table configuration files.

EXAMPLE:
Notes / Rules for use (for a data driven task):

Input Data Notes:

1. Multiple data inputs are allowed (8 maximum).

2. There can only be one rabpIaL_DATA input. With respect to legacy algorithms, all algorithms that
have a RaDIAL DaTa input have no other product input. Now it is possible to mix non radial
inputs with a RapIAL DATA driving input. See rule 4 below.

3. Multiple data inputs - order of registration

CODE Volume 3 B24.0r1.20 October 2025 Page 25 of 234

Vol 3 Doc 2 Section | - API Service Registration / Initialization

o Inthe case where the algorithm blocks until a specific input is available (the WAIT_ALL
form of the algorithm control loop), the first (or only) product listed in the input_data
attribute of the task_attr_table entry for the algorithm task is the "driving" input. If
there is more than one input, the driving input must be the first data input actually read in
the body of the algorithm.

o Inthe case where the algorithm blocks until any one of several inputs are available (the
WAIT_ANY form of the algorithm control loop), the order of products listed in the
input_data attribute is not important.

4. Multiple data inputs - input timing type

5.

o Inthe case where the algorithm blocks until a specific input is available (the WAIT_ALL
form of the algorithm control loop), inputs in addition to the "driving" are typically of the
same timing (ELEVATION DATA, VOLUME_DATA, DEMAND_DATA) Or must be specified as a
time-based input. Time based inputs are not yet supported by the Algorithm API. A mix
of input timing types is allowed with restrictions:

= ELEVATION DATA and VOLUME DATA can be mixed if the driving input is
ELEVATION DATA. In addition, the programmer must assure that the voLuME paTa
being input is from the same volume as the driving input. One way to accomplish
this is to read the volume input after reading all elevation inputs needed.

= |tis possible to mix RADIAL DATA and ELEVATION DATA inputs in the same
manner (used in Sample Algorithm 4). The driving input must be RADIAL DATA.
When obtaining the ELEVATION DATA input, the programmer must be sure it is
asked for after the acquisition of the first radial of the expected elevation/volume
and before the acquisition of the first radial of the next elevation/volume.

o Inthe case where the algorithm blocks until any one of several inputs are available (the
WAIT_ANY form of the algorithm control loop), the timing types can be any
combination but cannot include RADIAL DATA..

Only a non-driving input within a WAIT_ALL form of algorithm control loop can be designated
as an optional input.

Output Data Notes:

1.
2.
3.

5.

Each algorithm task must have at least one registered output.
Multiple data outputs are allowed (8 maximum).
Most algorithms with multiple outputs have either all ELEVATION DaTa Or all voLUME_DATA
outputs. pEMAND_DATA is used for data that is not directly related to the volumetric radar data.
An algorithm can output pEMAaND_DaTa even if there is no request for it.
The following types have been mixed:
- VOLUME_DATA and ELEVATION DATA
- VOLUME_DATA and DEMAND DATA.
In both cases the task timing iS VOLUME _BASED.
There is no documented restriction on the order that multiple products are produced.

Input Timing related to Output Timing

1.

Normally the timing of the input data must be equal to or less than the timing of the output data.
For example, a voLuME_DATa output could have any input timing with the restrictions noted
above. But an ELEVATION DaTa output should not have a voLuME_paTa input. There are two
unique exceptions to this.

CODE Volume 3 B24.0r1.20 October 2025 Page 26 of 234

Vol 3 Doc 2 Section | - API Service Registration / Initialization

a. The tdaruprod task and the mesoruprod task. The only reason this makes sense is that
these tasks have other ELEvATION DATa inputs and also have a warT_any type of control
loop. In these algorithms the ELEvaTION DATA input actually drives the production of the
ELEVATION DATA output. The voLuME_paTa input only serves to store this data for use in
the processing of the elevation data in the next volume scan.

b. The alerting task which is event driven and the combattr task also mix

ELEVATION DATA and VOLUME_DATA inputs but are not exceptions because the output is
VOLUME DATA.

Additional Input / Output Registration
There are two cases where an additional registration function is needed.

Designating an Input as Optional

After registering input data a subsequent call to ReGC_in_opt_by name designates a specified input as
optional and prevents the data read function from blocking indefinitely if the product is not available.
There is another method for designating an input as optional using the product_attr_ table described
in Volume 2, Document 2, Section 3. As of Build 9, it is recommended that the product_attr_table
method be used and the default block time be changed with RPGc_in_opt_by_name.

Posting an Event on Product Output
After registering output data a subsequent call to RPGC_out_data by name wevent resultsin a
specified event being posted when the product is output.

Note: The following functions have been deprecated and should not be used.

e RPGC_in_opt
e RPGC_out _data wevent

@They will be eliminated in a future build. If any development software uses
these functions they should be replaced with ReGC_in_opt_ by name and
RPGC_out _data by name wevent.

int RPGC_in opt by name(char *data name, int timing)
PARAMETER: data_name The product name.

timing The maximum block time (in seconds) when the data is read.
RETURN VALUE: Not Used

Designates the named registered input as optional and sets the maximum block time. Must be
used after the input is registered with any of the registration functions. A product can also be
designated as optional via an entry in the product _attr table configuration file. However, this
function must be used to set the block time if the default time is not desired. Only non-driving
inputs with a WAIT_ALL form of control loop can be designated as optional. See Reading Input

CODE Volume 3 B24.0r1.20 October 2025 Page 27 of 234

Vol 3 Doc 2 Section | - API Service Registration / Initialization

Data for an explanation of how this registration affects ReGC_get_inbuf_ by name function
which reads the input data.

EXAMPLE: cpc005/tsk002/pcipdalg.c
Parameter Descriptions

data_name
The name of the product as listed in the input_data attribute of the task_attr_table entry for
the algorithm task. The input_data entry determines the number or 1D of the linear buffer that
is the source of the input data. See CODE Guide Volume 2, Document 2, Section Il for a
complete explanation of product and task configuration via the product_attr table and
task_attr table configuration files.

timing
The maximum block time (in seconds) when the input is read by ReGC_get_inbuf by name. A
typical block time is 4. The maximum recommended is 10.

Notes / Rules for use (for a data driven task):

1. Only a non-driving input within a WAIT_ALL form of algorithm control loop can be designated
as an optional input.

2. The opt_prods_1list attribute in the product_attr_table file can be used instead of this
function to designate the input as optional. The default block time in this case is 0 seconds in
Build 9 and increased to 5 seconds in Build 10. This function can be used to override the default
block time.

int RPGC_out_data by name wevent(char *dataname, en_t event id)

PARAMETER: dataname The output product name.
event_id The event that is posted when the product is produced.
RETURN VALUE: Not Used

Designates an event that will be posted when the named product is written to the product linear
buffer. One example of an event is orpGEVT cpcamse Which is posted when the product cecamsc
is generated. NOTE: There can be a maximum of 8 registered data outputs for an algorithm task.

EXAMPLE: cpc005/tsk002/pcipdalg.c
cpc008/tsk001/alerting.c

Parameter Descriptions

dataname
The name of the product as listed in the output_data attribute of the task_attr_table entry
for the algorithm task. The output_data entry determines the number or ID of the linear buffer
that will be associated with the posted event. See CODE Guide Volume 2, Document 2, Section
I11 for a complete explanation of product and task configuration via the product_attr_table
and task_attr_table configuration files.

event id
The identity of the ORPG event that is posted when the product is produced. Available ORPG
events are defined in orpgevt.h.

CODE Volume 3 B24.0r1.20 October 2025 Page 28 of 234

Vol 3 Doc 2 Section | - API Service Registration / Initialization

Notes / Rules for use (for a data driven task):

1.

Advanced Access of Replay Data

The following registration function, along with three access functions listed in Part B of Section I,
support a more advanced method of accessing replay data. This function was added in Build 9 and is
currently not used in any algorithm. If this capability is determined to be generally useful the function
will be documented.

int RPGC_reg volume data(int data_id)

CODE Volume 3 B24.0r1.20 October 2025 Page 29 of 234

Vol 3 Doc 2 Section | - API Service Registration / Initialization

Part B. Adaptation Data Registration

Supporting Current Adaptation Data

From the application’s point of view, the major purpose of adaptation data is to parameterize certain
characteristics of an algorithm to permit changing its behavior using ORPG configuration files.
Adaptation data also include site specific information and the default color table associated with certain
products. A 'DEA access function' is written (using API functions to read individual data elements). This
function can be part of the algorithm itself or included in a shared library.

With the previous adaptation data mechanism, the adaptation data had to be registered. With the new
DEA mechanism, registration of the adaptation data is optional because the "DEA access function" can
be implemented as part of the algorithm and be called from within the algorithm. Though not required,
most adaptation data "access functions™ in existing algorithms have been registered as callbacks. If an
access function is registered as a callback, the function must have a single parameter which is the
address of the data structure containing fields representing the individual data elements. The access
function updates the fields in this structure.

RPGC_reg_ade_callback registers the 'DEA data access function' as a callback function which
automatically updates the adaptation data as specified. The use of ReGC_reg_ade_callback is only
required if you wish reduce resource use.

RPGC_reg_site_info reads the site specific adaptation data into a C structure for use by the algorithm.

For guidance on how to define, create, and install adaptation data for use by an algorithm, see the CODE
Guide Volume 2, Document 3, Section Il - Algorithm Adaptation Data - Configuration & Use.

int RPGC_reg ade callback(int (*callback) (), void *blk ptr, char *grp name,
int *timing, ...)

PARAMETER: callback Name of the callback function.
blk _ptr Pointer to adaptation data structure

grp_name Name of adaptation data group

timing Frequency of update.
loptional]l The event id that triggers update for ADPT UPDATE ON EVENT
timing.
RETURN VALUE: Returns an identifier for this registration. If error occurs, returns -1.

Registers a callback function which reads and updates adaptation data.

EXAMPLE: rc = RPGC_reg ade callback(read my adapt,
&samplel adapt, "alg.samplel dig.",
ADPT UPDATE_BOV) ;
if (re <0) {
RPGC_log msg(GL_INFO,
"SAMPLEl: cannot register callback function\n");

CODE Volume 3 B24.0r1.20 October 2025 Page 30 of 234

Vol 3 Doc 2 Section | - API Service Registration / Initialization

where samplel adapt iS the designated structure and
the callback is of the form int read my adapt(int).

Parameter Descriptions
callback

The name of the data access function used to read and update the adaptation data. For
development purposes, this function should be implemented as part of the algorithm. The data
access function must have a return value of type int with one parameter that is the address of a

data structure containing the fields to be updated.
blk pointer

A pointer to a C structure that contains the adaptation data fields. This structure is used within

the data access function to store updated adaptation data for local use by the algorithm.
grp_name

The adaptation group name. With sample algorithm 1 for example, the adaptation data file is
named samplel dig.alg. The group name is based on the inverse of the filename:
"alg.samplel dig." (note the trailing period). This represents the upper level structure of an
ORPG hierarchical database.

timing
Frequency of update. This parameter can have the following values defined in rpg_port.h:
ADPT UPDATE_ BOE - beginning of elevation, abpT upDATE Bov - beginning of volume,
ADPT UPDATE ON CHANGE - When data changes, ADPT UPDATE WITH CALL,
ADPT UPDATE ON_EVENT - When event is posted.

[optional]
This is the ORPG event id, type en_t (which is an integer), that triggers an update of adaptation
data. This parameter is used when the timing is abptT_uppATE oN_EVENT. ORPG events (external
events) are defined in orpgevt.h. See the next section for a definition of internal and external
events.

Notes / Rules for use

1. The use of RPGC_reg_ade_callback is only required if you wish reduce resource use.
2. Most existing functions use AbpT_upDATE Bov and a few Use ADPT_UPDATE ON_CHANGE.
Currently appT_UPDATE_BOE iS not used for adaptation data.

int RPGC_reg site info(void *struct_address)
PARAMETER: struct_address Pointer to a site_adapt structure
RETURN VALUE: Returns >= 0 if successful, < 0 if not.

Registers a structure to get the latest site information adaptation data. The current version of the
data are entered into the site_adapt_t.

EXAMPLE: rc = RPGC_reg_site_info(&site_adapt)
if (re< 0) {
RPGC_log msg(GL_INFO,
"SITE INFO: cannot register callback function\n");
}

\Nheresite_adaptiSOftypestruct Siteadp_adpt_t

Parameter Descriptions

CODE Volume 3 B24.0r1.20 October 2025 Page 31 of 234

Vol 3 Doc 2 Section | - API Service Registration / Initialization
struct_address
Pointer to a site_adapt structure which is defined in siteadp.h to be populated.

Notes / Rules for use

The following function is not required to implement an algorithm. If this capability is determined to be
generally useful the function will be documented.

int RPGC_is_ade callback reg(int (*update) (), int *status)

Supporting Old Adaptation Data (used in porting Fortran to C)

The following functions use an older, unapproved mechanism for adaptation data. These functions are
not approved for new algorithms and may be removed from the API at a later date.

int RPGC_reg adpt(int id, char *buf, int timing, ...)
int RPGC_is_adapt block registered(int block_id, int *status)
int RPGC_read adapt block(int block_id, int *status)

void RPGC_update_ adaptation ()

CODE Volume 3 B24.0r1.20 October 2025 Page 32 of 234

Vol 3 Doc 2 Section | - API Service Registration / Initialization

Part C. Other Registrations (log services / internal data / command params)
Log Services Registration

The RPGC_init_log_services function initiates the internal ORPG log services. Since these services

are initiated with the task initialization function, the only purpose this function serves is to initiate these
services before other registration functions.

int RPGC_init log services(int argc, char *argv[])

PARAMETER:; argc Not used.
*argv|[] Not used.
RETURN VALUE: Not Used

Initializes log services for the task. Currently the only benefit of using this function is to initialize
log services before the Repcc_task_init Statement. This would permit recording of messages
during the buffer initialization and adaptation data initialization that is accomplished before
proceeding to the algorithm control loop.

EXAMPLE:

Notes / Rules for use

1. Useof RPGC_init log_ services is not required. Currently the only advantage of using this
function is to have log services running during the initialization section of the algorithm prior to
entering the algorithm control loop.

Determining the Input Stream

The RPGC_get_input_stream function is used to determine the input stream (real-time or the alternate
replay stream). This function is not required for the normal. data driven tasks having a second instance
using the replay stream. It is required for event driven algorithms having a replay instance.
int RPGC_get input stream(int argc, char *argv[])
PARAMETER: argc Not used.
*argv(] Not used.

RETURN VALUE:! Either PGM_REALTIME STREAM Of PGM_REPLAY_ STREAM ON SUCCESS,
or -1 on error.

This function obtains the type of input data steam (the normal realtime stream or the alternate
replay stream) the task is using. PGM_REALTIME STREAM and PGM REPLAY STREAM are defined in
prod gen msg h.

EXAMPLE:

CODE Volume 3 B24.0r1.20 October 2025 Page 33 of 234

Vol 3 Doc 2 Section | - API Service Registration / Initialization

Notes / Rules for use
RPGC_get input_stream iS called during the registration / initialization part of the algorithm before
reaching the main algorithm loop.

Access to Internal Data Tables

The function RPGC_reg_scan_summary registers the Scan Summary Table by obtaining a memory
address to be referenced. The Scan Summary Table contains information about the current volume scan
that is used by various parts of the ORPG infrastructure. This registration is no longer required with C
algorithms if appropriate helper functions are used (RPGC_prod_desc_block and

RPGC_get scan_s ummary).

int RPGC_reg scan_ summary()
PARAMETER: None
RETURN VALUE: Not Used (currently, always returns 0)

Registers the Scan Summary Table for those parts of the infrastructure that require access of this
data.

EXAMPLE:
Notes / Rules for use

1. RPGC_reg_scan_summary Can be used in all algorithms. However, if the supplied helper
functions are used there is no need to register for scan summary in algorithms using the C API.

The following function registers and accomplishes the initial read of the volume status portion of the
general status message. Another function, listed in Part E of Section 11, accomplishes subsequent
reading of the data. Most of the information is also available in the scan summary table or even the
base data header.

However, this function is useful in event driven algorithms and must be used with the corresponding
reading function if the even driven algorithm has no data input. It is the primary method of determining
the volume number, sequence number, and the volume date - time if not registered for product inputs.

int RPGC_reg volume status(Vol _stat gsm t *vol stat)
PARAMETER: vol_stat jddress of a volume status structure

RETURN VALUE: Always returns 0.

Description paragraph

CODE Volume 3 B24.0r1.20 October 2025 Page 34 of 234

Vol 3 Doc 2 Section | - API Service Registration / Initialization

EXAMPLE: cpc008/tsk001/alerting.c
Parameter Descriptions

vol_stat

The address of a pre-allocated volume status structure of type vol_stat gsm t. See
gen_stat msg.h.

Notes / Rules for use (for a data driven task):

1. If the task has product inputs, the structure returned by this function will be automatically updated
each volume and the associated read function need not be called. If the task has no product
inputs the associated read function RPGC_read volume_status must be called every volume.

The function RPGC_reg moments iS used to tell the API services which moments of basedata or rawdata
are desired. If the moment is not available

o for the driving input in a WAIT_ALL form of control loop, the loop control function does not
release if the registered moments are not available.

« for other inputs the get_inbuf_by_name function fails (does not return Recc_NormaL) if the
registered moments are not available.

int RPGC_reg moments(int moments)
PARAMETER: moments Desired basedata moments.

RETURN VALUE: Returns -1 if the specified moments do not correspond to the registered
input data or if no basedata inputs are registered..

Registers the base data moments needed for correct algorithm function. On error, this functions
has no affect other than to write an error message to the task's log file.

EXAMPLE: RPGC_reg _moments (my moments) ;
where int my moments = (REF_MOMENT | VEL_ MOMENT) ; if interested in
velocity and reflectivity.

Parameter Descriptions

moments
The base data moments required for this algorithm or'd together. The three moments are
REF_MOMENT, VEL_MOMENT, and wID_MoMENT (defined in rpg_port.h).

Notes / Rules for use

1. When needed moments are registered with RPGC_reg_moments, then RPGC_what_moments does
not have to be used when reading the first base data radial / elevation message from a volume
(because the call to "get_inbuf" will return an error).

CODE Volume 3 B24.0r1.20 October 2025 Page 35 of 234

Vol 3 Doc 2 Section | - API Service Registration / Initialization

Using Command Line Parameters

Though not generally useful, this function provides the capability of reading any custom command line
parameters used to launch the algorithm task. The registered callback function accomplishes the
processing desired in the algorithm.

int RPGC_reg custom options(const char *additional options,
RPGC_options_callback t callback)

PARAMETER: additional options yser-defined command line arguments
callback name of callback routine to process options
RETURN VALUE: 0 on success, -1 on error

Registers a user-supplied callback routine to process custom (user-defined) command line
options. A user-defined option will not be processed if it is identical to a pre-defined command
line option (currently: T, 1, and n).

EXAMPLE: See superres8bit main.c in cpc007/tsk015
Parameter Descriptions

additional_ options

A string containing user-defined command line options that will be processed by the callback
function caliback. The options are in two possible forms:

= asingle character, for example "ar

= asingle character followed by a colon, for example "v: "
If the algorithm used both of these command line options the format would be "v:a" or "av: .
Reviewing the man page of getopt (3) will aid in the understanding of the permissible format of
command line options.

callback
The name of a user-supplied callback function. This function must be of type

RPGC_options_callback_t(dEﬁned "lrpgc.h)
typedef int (*RPGC_options_callback t) (int arg, char *optarg)

The first parameter of this function is passed the return value of getopt. The second parameter
of this function will point to the argument (if any) for the defined option. The value of optarg is
only meaningful if the option is a character followed by a colon. Reviewing the man page of
getopt (3) will aid in the understanding of the parameter optarg.

Notes / Rules for use (for a data driven task):

1. This function should be call before any other registration function. If called after
RPGC_init_log_services Of RPGC_task_init, the custom options will not be processed.

2. Since the RPG uses getopt in the standard fashion when passing parameters to the defined
callback, all options in the command line must begin with a ' - and all options must be before
any element of argv[] that is not an option or argument for an option.

CODE Volume 3 B24.0r1.20 October 2025 Page 36 of 234

Vol 3 Doc 2 Section | - API Service Registration / Initialization

Other Functions Not Required for New Algorithms

The following function was added in Build 10 and is not yet used by any algorithm. If this capability is
determined to be generally useful the function will be documented.

int RPGC_register req validation_fn(char *prod name)

Two new registration functions were included with Build 9 to facilitate porting of the Legacy
FORTRAN algorithms to C. These functions are not required for general algorithm development.

int RPGC_reg color_ table(void *buf, int timing, ...)
This function registers a predefined color table. A color table is actually a table that assigns a
data value having up to 255 levels into one of 16 levels used for run length encoded (RLE)
products. Since data levels are part of the product's specification, there is no need to implement
the table in adaptation data.

int RPGC_reg RDA control(void *buf, int timing, ...)
Registers the roacnT (RDA Control) block of adaptation data. This is the only block of
adaptation data that remains in Legacy format. It is not needed by new product algorithms.

CODE Volume 3 B24.0r1.20 October 2025 Page 37 of 234

Vol 3 Doc 2 Section | - API Service Registration / Initialization
Part D. Event Registration

Virtually all algorithms should be data driven. That is the algorithm begins processing with the
availability of input product data. Very few meteorological algorithms have a need to register for
events. Most existing algorithms using events are involved in system monitoring and control, for
example pcipdalg, cltutprod).

e The main reason for using an event driven algorithm would be if the task had non-product
data inputs and no product inputs. In this case an alternative would be to have a driving
product data input of the desired timing (elevation or volume) to act as a trigger to activate the
algorithm. This alternative should be used if the task also has a replay version.

e Another reason for using an event driven algorithm is an algorithm that does not function with
the data flow timing of the ORPG. In this case any output product produced is not
RADIAL DATA, ELEVATION DATA, Of VOLUME DATA. The input product (if any) would be
DEMAND_DATA and the output data also DEMAND_DATA.

The registering of events can be used to interrupt the algorithm and accomplish processing via a callback
routine whenever an ORPG event is raised. This feature can be used with data driven algorithms
(RPGC_wait_act Of RPGC_wait_for_any data used for the loop control) or with event driven
algorithms (rRpec_wait for_ event used for loop control).

An event driven algorithm can be used for tasks that do not have any product input data. The algorithm
begins processing upon posting of a registered event rather than the availability of input data.

External events are global to the ORPG. That is, any ORPG task can post an event and register for and
respond to an event. ORPG algorithm tasks use this API to register and respond to events. Other ORPG
tasks use lower level services. The most useful external event iS ORPGEVT START OF VOLUME_ DATA.

Internal events only have meaning to ORPG algorithm tasks using the Algorithm API. They are actually
defined within the algorithm API. The internal event that is generally useful is
EVT_ANY INPUT AVAILABLE.

int RPGC_reg for internal event(int event code, void (*service routine) (),
int queued parameter)

PARAMETER: event_code ID of event being registered.

(*service_routine) () Address of a function service routine which
contains the logic to be executed when the event is
posted.

queued_parameter A parameter that will be passed to the event service
routine when called.

RETURN VALUE: Not used.

Registers one of the two internal events that are defined.

CODE Volume 3 B24.0r1.20 October 2025 Page 38 of 234

Vol 3 Doc 2 Section | - API Service Registration / Initialization

EXAMPLE: RPGC_reg for internal event (EVT ANY INPUT AVAILABLE,
&ALG_Event Handler, (int)O0);
where ALG Event Handler IS a function with one parameter of type int,
EVT_ANY INPUT_ AVAILABLE iS an event that is posted when any one of the
registered data inputs is available

int RPGC_reg for external event(int event code, void (*service routine) (),
int queued parameter)

PARAMETER: event_code ID of event being registered.

(*service_routine) () Address of a function service routine Which contains
the logic to be executed when the event is posted.

queued_parameter A parameter that will be passed to the event service
routine when called.

RETURN VALUE: Not used.

Registers one of the external events that are defined.
EXAMPLE: RPGC_reg for external event (ORPGEVT START OF VOLUME DATA,
&ALG_Event Handler, (int)0);
where ALG_Event Handler IS a function with one parameter of type int,
ORPGEVT START OF VOLUME DATA is a globally defined event that is posted at every
start of volume scan.

Parameter Descriptions

event_code
The identity of the registered event.

e The one internal event of general interest: EVT_aNYy INPUT AVAILABLE. Thisevent is
posted by the API infrastructure when any of the algorithm's registered data inputs is
available.

e External events are global to the ORPG. They are defined in orpgevt.h. The one
external event of general interest is ORPGEVT_START OF _VOLUME_DATA IS at the beginning
of the volume scan. It is safer to use that the previously documented event because it

is posted after the product generation table is complete for the current volume.
(*service_ routine) ()

Address of a service routine. This a function of the following type:
void defined function (int); This function contains logic to be executed when the

registered event is posted.
queued_ parameter

A parameter passed to the event handler service routine. This parameter is useful if several
events are registered all using the same event handler service routine. In this case a different
parameter value is used for each registered event.

Notes / Rules for use
1. The only internal event that is generally useful is Evr_any 1npuT_avarrasre. With one or more

registered data inputs, the event is posted when any input is available. The input must be WSR-
88D data that is not RADIAL DATA.

CODE Volume 3 B24.0r1.20 October 2025 Page 39 of 234

Vol 3 Doc 2 Section | - API Service Registration / Initialization

2. External events are events that are global to the ORPG; that is any ORPG task can respond to the
event. An event designating the beginning of a volume is the most useful event for
meteorological algorithms. Algorithm tasks should use ORPGEVT START OF VOLUME DATA
because it is the safest beginning volume event to use. There is no corresponding elevation data
event. The event orpGEVT_BEGIN_ELEV could be used with caution because it is posted before
the product generation table is complete. If used, the algorithm should sleep 5 seconds before
beginning processing.

3. With more than one registered event, and if there is a need to respond differently to each event;
either provide a unique event handler for each event, or use the queued_parameter to indicate
which event is being responded to.

4. With more that one registered event in the queue, the event handlers are executed sequentially.

User Notification of an updated data store

A user of a data store (linear buffer) can be notified of an update to that store. The algorithm logic can
respond when a particular buffer data store is updated.

Documentation of This Function is Not Complete

int RPGC_UN register(int data id, LB id t msg_id,
void (*service routine) ())

PARAMETER: data_id The linear buffer ID
msg_id The LB message ID

(*service_routine) () Address of a function service routine which
contains the logic to be executed when the event is
posted.

RETURN VALUE: Returns 0 on success. Negative return value indicates
error.

Registers for the User Notification event posted when the specified data store is updated.

EXAMPLE: cpc006/tsk001/rpg_status_prod.c

Parameter Descriptions

data_id
The identity of the linear buffer. Non-product buffer ID's are defined in orpgdat.h/
orpgdat.inc. If the header file has not been modified to include this new data 1D, the
<Data_Buffer_ Number> must be entered rather than the <pata_Buffer Name>. Whichever is
used (name or number), it must be the same as the data_id attribute for the data store definition
inthe data_attr table configuration file.

msg_id
The message ID of the message being written. The value LB_any can be used to react to any
update to the buffer.

(*service_routine) ()
Address of a service routine. This a function of the following type:
void defined function (int); This function contains logic to be executed when the
registered event is posted.

CODE Volume 3 B24.0r1.20 October 2025 Page 40 of 234

Vol 3 Doc 2 Section | - API Service Registration / Initialization

Notes / Rules for use

1. TBD

CODE Volume 3 B24.0r1.20 October 2025 Page 41 of 234

Vol 3 Doc 2 Section | - API Service Registration / Initialization

Part E. Task Timing Initialization

The registering of task timing affects the behavior of the algorithm control loop. ReGC_task_init
determines when a task will begin processing once the routine begins or after aborting an output
product.

int RPGC_task init(int what_based, int argc, char *argv[])

PARAMETER: what based The timing base for the task.

argc From task’s main function, used by API infrastructure.
*argv(] From task's main function, used by API infrastructure.
RETURN VALUE: Not Used

Registers the timing base for the task. In the case of aborted product output (that is one of the
RPGC_abort functions called), this determines the earliest time the algorithm control loop will
release. If voLuME BASED, the algorithm control resume time is "new-volume", otherwise the
resume time is "new-elevation".

EXAMPLE: RPGC_task init (ELEVATION BASED, argc, argv);
where arge and argv are the standard parameters from the main () function.

Parameter Descriptions
what_based

Timing base for the task. The allowed values for this parameter (defined in rpg_port.h) are:
ELEVATION BASED, VOLUME BASED, RADIAL BASED, EVENT BASED. The new form is:
TASK_ELEVATION BASED, TASK VOLUME BASED, TASK RADIAL BASED, TASK EVENT BASED.
Note that TIME_BASED / TASK_TIME_BASED are notsupported.

Notes / Rules for use

1. Must be called after all other registrations.

2. Eventdriven tasks (those that use ReGc_wait for event used for algorithm loop control) will
have a timing input of EVENT BasED With no registered data inputs. On the other hand, event
driven algorithms with registered product data inputs should have a task timing basis compatible
with the input data (typically voLuME BasEeD).

3. Data driven tasks typically have a task timing compatible with the output data (that is a task
timing of ELEVATION BASED for ELEVATION DATA output and vOoLUME_BASED for VOLUME_DATA
output). Normally the task timing is either the same as or greater than the largest input
timing and the same as the output timing. There are several algorithms where this is not the
case.

a. The superob_vel task and the mdaprod task have a task timing of ELEVATION BASED
and the output product is voLuME_DATA. In other words, the volume product is produced
even if there are missing elevations. These are not typical algorithms.

b. The several tasks has a task timing of voLuMme BaseD and the output iS ELEVATION DATA.
Most of these are of the Kinematic algorithm type. This configuration is used if the
output products for later elevations in the volume should not be produced if there is any
problem with the lower elevations of input data. In other words the downstream tasks
cannot handle a missing elevation.

CODE Volume 3 B24.0r1.20 October 2025 Page 42 of 234

Vol 3 Doc 2 Section | - API Service Registration / Initialization

4. (Expanded discussion of exception b above). Though not required by the infrastructure, if a task
is producing an intermediate product, the task timing should be set to the greatest output timing
of downstream tasks. Typically this means that if any downstream task produces voLuME DATA
products, it is usually a good idea to register upstream tasks as voLuME BASED even if only
producing ELEVATION DATA. See the topic Read All Input Data (If not Aborting) in Part D. of
Volume 3, Document 3, Section I.

The following function is not documented because it precludes use of some of the other registration
functions. It is not recommended for general use.

int RPGC_reg _and init()

CODE Volume 3 B24.0r1.20 October 2025 Page 43 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

Vol 3. Document 2 -
The WSR-88D Algorithm API Reference

Section Il Control - Input/Output - Abort Services

NOTE

Not all of the API functions have been documented. The functions not documented are not
critical to algorithm development and many of the recently added functions were created to
support the porting of legacy FORTRAN algorithms to ANSI-C.

= Some of the new functions are redundant with existing functions.

= Some are not generally useful for algorithm development.

= Some of the new functions have not yet been used in algorithms.

NOTE: Some previously deprecated functions are being used to port FORTRAN algorithms.

After registrations and initialization, the algorithm enters into the processing phase. The algorithm
remains in this phase until the ORPG is shut down or the task fails. The algorithm control loop service
determines when the algorithm begins processing data. Other services described in this section involve
data input / output and aborting product construction. Functions aiding in product construction are
covered in Section 11 of this document. See Section IV - APl Convenience Functions) for various data
conversion / transformation functions.

NOTE: This document makes multiple references to two forms of a data driven algorithm
control loop. This is the continuous main loop of an algorithm that is entered after all
registrations and initializations are complete.

e The WAIT_ALL form of the control loop is the most common and is used in
algorithms that have only one data input or need more than one data input to create a
product. The loop control function used is RPGC_wait_act (WAIT_DRIVING_INPUT)

e The WAIT_ANY form of the control loop is used in algorithms having multiple
registered data inputs but use only one input to produce a product. There are two
functions that can be used: RPGC_wait_act (WAIT_ANY INPUT) and
RPGC_wait for any data (WAIT_ ANY INPUT).

The contents of this section are organized as follows:

e Part A. Algorithm Control Loop

o Part B. Reading Input Data

e Part C. Writing Output Data

o Part D. Getting Request Information

e Part E. Getting Information About the Current Volume / Elevation

CODE Volume 3 B24.0r1.20 October 2025 Page 44 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

o Part F. Reading Adaptation Data

o Part G. Reading Base Data Messages
e Part H. Aborting Product Construction
e Part I. Non-Product Data Access

o Part J. Miscellaneous Functions

CODE Volume 3 B24.0r1.20 October 2025 Page 45 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services
Part A. Algorithm Control Loop

The algorithm control loop is a continuous loop that holds processing until certain conditions are met.
Most of the existing algorithms are data driven. Data driven algorithms begin processing only when
required input is available. Algorithms can be event driven where processing is blocked until a particular
ORPG event is posted.

Data Driven Algorithms
There are two types of data driven algorithms.

1. The most common type of data driven algorithm uses the WAIT_ALL form of the control loop
with one or more registered data inputs. With multiple inputs registered, generally all are
necessary though some can be designated as optional. The first registered input (called the
driving input) cannot be optional. Algorithms using this form of the control loop read input(s)
with individual calls to ReGC_get_inbuf by name.

2. The other type of data driven algorithm uses the WAIT_ANY form of loop control with more
than one registered input. This type of algorithm produces a product from any one of several
inputs. The available input is read with a call to RPGC_get inbuf_ any.

The release conditions of these two differ significantly.

1. The WAIT_ALL form of control loop releases when the registered driving input is available and
there is a request for at least one of the registered output products.

2. The WAIT_ANY form of control loop releases when one of the registered inputs is available. It
is recommended that an algorithm use RPGC_check data_by name t0 check that the output
product is requested. Document 3 - WSR-88D Algorithm Structure & Sample Algorithms
includes additional information.

The behavior of a replay task (a special second instance of a task) is covered in Document 3, Section I,
Part C - Algorithm Initialization and Control Loop. A replay task can only be used with the
WAIT_ALL form of control loop.

WARNING: Attempting to use the WAIT_ANY form of control loop in an algorithm requiring more
than one input to produce an individual product can provide unexpected results. There is no
synchronization of one input with another. What is guaranteed is that a data message read will be from
a volume / elevation subsequent to the last message (of that input type) read.

int RPGC_wait act(int wait_for)

PARAMETER: wait for FEjther WAIT DRIVING INPUT Of WAIT ANY INPUT

RETURN VALUE: Not Used

CODE Volume 3 B24.0r1.20 October 2025 Page 46 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

Algorithm processing is blocked as follows. If the input parameter iS WAIT DRIVING INPUT three
conditions must be met. First, if the algorithm has just been launched or has just aborted
processing, it blocks until the 'resume time' (either new-volume or new-elevation) determined by
the RPGC_task_init parameter. Second, at least one of the registered output products must be
requested. And third, the driving input (the first registered data input) must be available. If the
parameter is warT_any_INpUT the blocking and limitations are identical to
RPGC_wait for any data.

EXAMPLE:
Parameter Descriptions

wait for
The value warT_pRIVING INPUT provides blocking for a driving input and the synchronization
of multiple inputs. The value warT_any 1nput provides for blocking for one of several inputs.

int RPGC wait for any data(int wait_ for)

PARAMETER: wait for Parameter must be set to warT any 1neut for normal functioning.
RETURN VALUE: Not Used

Continually checks the availability of all registered inputs. If any input has been updated, returns
and allows processing to proceed. This loop control function is only valid for inputs other than
RADIAL DATA and SUpports vVOLUME BASED tasks and ELEVATION BASED tasks.

EXAMPLE: cpc004/tsk007/recclprods_main.c
cpc018/tsk003/tdaru.c

Parameter Descriptions

wait for
RPGC_wait_for_any data can only be called with the value warT_any_1input. The value
wWAIT_ANY INPUT provides for blocking for one of several inputs.

Notes / Rules for use

1. Almost all data-driven algorithms use the WAIT_ALL form of algorithm loop control.

2. For the WAIT_ANY form of algorithm loop control, input(s) must not be RADIAL DATA.

3. Currently, only voLuME BaseD tasks and ELEVATION BASED tasks are supported with the
WAIT_ANY form of loop control.

4. Care must be used with the WAIT_ANY form. While the algorithm may produce more than one
output product, any product produced can only require one of the registered inputs. Attempting
to synchronize multiple inputs will not work.

Event Driven Algorithms

CODE Volume 3 B24.0r1.20 October 2025 Page 47 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

Event driven algorithms use ReGc_wait_for_event Version of the algorithm control loop. There are
two types of event driven algorithms.

1. Event driven algorithms that are also registered for product input data use a task timing
appropriate for the registered input, for example RPGC_task init (VOLUME BASED, argc,
argv). The available input data is read with RPGC_get_inbuf_any.

2. Event driven algorithms that are not registered for product input data use a task timing of
RPGC_task_init (EVENT_ BASED, argc, argv)

The event driven algorithm can be registered for more than one event. The release condition for an event
driven algorithm is the handling of any of the registered events.

Regardless of where the algorithm is, when a registered event is posted, the logic in the callback
function registered for that event is processed immediately. If there is more than one registered event
posted to the event queue, the callbacks are executed sequentially

If the algorithm is holding in the loop control function (ReGc_wait for event), the call back is
executed and the control function releases for the algorithm to begin processing the logic in the main
loop. If the algorithm is already processing the main loop, when a registered event is posted, the loop is
temporarily interrupted, the callback function is executed, and the main loop continues when the
callback returns.

The behavior of this function is a little different if the task is configured as a replay task. The use of a
replay task (a special second instance of a task) with an event driven algorithm is covered in Document
3, Section I, Part C - Algorithm Initialization and Control Loop.

int RPGC_wait for event()
PARAMETER: None

RETURN VALUE: Not Used

Continually checks to see if any of the registered events are posted. When an event is posted, the
logic in the event handler function is executed. If more than one event is in the queue, they are
executed sequentially. After all events in the queue are handled, ReGc_wait for_ event returns.
NOTE: Even if no registered events are posted, ReGC_wait for event Will automatically return
at the end of volume.

EXAMPLE: cpc005/tsk002/pcipdalg.c
cpc008/tsk001/alerting.c

Notes / Rules for use

1. Very few algorithms are event driven. Normal algorithm tasks should be data driven.

2. One use for an event driven algorithm would be with a data stream not synchronized with the
WSR-88D volume scans. Another is an algorithm that has no product data inputs.

3. With an event driven algorithm, normally all of the algorithm logic is in the event handler itself,
rather than the body of the while loop containing RPGc_wait for event.

CODE Volume 3 B24.0r1.20 October 2025 Page 48 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services
4. Input data for event driven algorithms that is not derived from WSR-88D base data should be

configured with a DEMAND_DATA timing.
5. Output data for event driven algorithms having no product inputs should be pEMAND DaTA.

6. See Part D of this document for the types of events that are useful for algorithms.

CODE Volume 3 B24.0r1.20 October 2025 Page 49 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services
Part B. Reading Input Data

Reading Product Data Linear Buffers

The API provides a high-level access for reading the input product linear buffer. When used correctly,
all sequencing checks and (with multiple inputs) data synchronization checks are accomplished with
these services.

Requirement to read all radials / elevations

o Analgorithm reading base data (or any RapIAL DaTa input) and producing ELEVATION DATA
output must read until the actual end-of-elevation even if data only up to pseudo end-of-
elevation are needed. Do not read beyond the actual end-of-elevation.

o An algorithm reading base data (or any rapIaL_paTa input) and producing VOLUME DATa output
must read until the actual end-of-volume even if data only up to pseudo end-of-volume are
needed. Do not read beyond the actual end-of-volume.

e An algorithm reading elevation based input and producing a volume based output must read all
elevations produced for that volume by the upstream task, even if fewer elevations are actually
used.

The need to read all elevations / radials produced can be avoided only in algorithms that produce
VOLUME DATA output (and whose task timing is voLuME BASED). The function
RPGC_abort_remaining_volscan Can be used to accomplish this. LIMITATION: Currently this function
does NOT work with the WAIT_ANY form of the control loop.

Algorithms blocking until a driving input is available
For algorithms that block until a particular input is available (the WAIT_ALL form of the algorithm
control loop), the data are actually read (and synchronized) with ReGC_get_inbuf_by name for each
individual input.
The driving input must be read first. It is recommended that the optional inputs (if any) be read last.

Algorithms needing only one of several inputs

For algorithms that block until any one of several inputs is available (the WAIT_ANY form of the
algorithm control loop), the data must be read with RPGC_get_inbuf_any.

The WAIT_ANY form of the control loop, using either RPGC_wait act (WAIT _ANY INPUT) OF
RPGC_wait for any data(WAIT ANY INPUT), releases when one of the registered inputs is
available regardless whether the output product has been requested. Therefore, when using the
WAIT_ANY control loop and the function ReGC_get_inbuf_any, it is recommended that
RPGC_check data by name be used to check to see if the registered output is requested.

Functions used with both forms of the control loop

CODE Volume 3 B24.0r1.20 October 2025 Page 50 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

e RPGC get inbuf len IS USed to get the size of the input buffer message.
e RPGC_rel_inbuf is used to deallocate the memory that was obtained when the buffer was read.
e RPGC_rel all_inbufs Can used to release all acquired input buffers.

Note: The following function has been deprecated and should not be used.
e RPGC_get inbuf

©This will be eliminated in a future build. If any development software uses this
function it should be replaced with ReGc_get_inbuf by name.

void* RPGC_get_ inbuf by name(char *regname, int *opstat)
PARAMETER: regname The input product registration name.
opstat Address of the status of the operation. (output)

RETURN VALUE: Pointer to the buffer containing input data or NULL if an error
occurred. The returned pointer must be cast to the appropriate type for
the product message being input.

Returns a pointer to a block of memory containing the input data message. The buffer is always
allocated and must be cast to the proper type of an awaiting pointer. See the description of the
parameter opstat for additional guidance on using this API function. NOTE: There have been
situations where the returned pointer has been NULL even though the opstat Was RPGC_NORMAL.

EXAMPLE: JbasedataPtr=(Base_data radial*)RPGC_get_ inbuf by name ("REFLDATA",
(Using Base &opstatus) ;
Data) where struct Base data radial is defined in basedata.h. The header information

for the base data radial is struct Base data_ header also defined in basedata.h.
See CODE Guide Volume 2 - The ORPG Application Development Guide for an
introduction to the structure of the ORPG base data radial message.

Parameter Descriptions

regname
The name of the product data to be read. The value of this parameter is the same as the input
product registered. This name must be in the list contained in the input_data attribute of the
task_attr_table entry for the algorithm task (the input_data entry determines the number or
ID of the linear buffer that is the source of the input data). See CODE Guide Volume 2,
Document 2, Section |11 for a complete explanation of product and task configuration via the
product attr_ table and task_attr table configuration files.
NOTE: Using base data (and raw data) as an input is a special case. REFLDATA (79) is used when
only reflectivity data are needed and coMBBASE (96) is used when interested in Doppler data
(velocity and spectrum width). Reflectivity data is also obtained when registered for
COMBBASE (96) . Basedata is also available via complete elevations. For complete elevations of
basedata either REFLDATA ELEV(302) Of COMBBASE ELEV (303) must be registered See CODE
Guide Volume 2, Document 4, Section | - Base Data Format for a description of both radial and
elevation basedata messages.

CODE Volume 3 B24.0r1.20 October 2025 Page 51 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

It is also possible to register for BASEDATA (55) BASEDATA ELEV (301). See CODE Guide
Volume 2, Document 4, Section | - Base Data Format for a complete explanation of all base data
types.

opstat (output)
Address of the status of the operation. This is the status returned for the read operation. Return
values are defined in a309.h. NOTE: There have been situations where the returned pointer has
been NULL even though the opstat was RPGC_NORMAL. There are two cases for correctly
handling the returned status. It is the programmer’s responsibility to ensure that the algorithm
handles this correctly. CASE 1: For required inputs, with any value other than Rpcc_NORMAL, the
algorithm must be aborted. CASE 2: If the registered input has been configured as optional, the
value No_bara indicates the read attempt has timed out. The algorithm must account for the
missing data in this event.

Notes / Rules for use

1. For data driven algorithms: RPGC_get inbuf by name Cannot be used with the WAIT_ANY
form of control loop, it must be used with the WAIT_ALL form.

2. RPGC_get_inbuf_ by name iS not compatible with event driven algorithms. Use only with data
driven algorithms.

3. For a data driven algorithm with a driving input, the first input product read must correspond to

the first registered product (the first entry in the input_data attribute in the task_attr table

entry).

Optional inputs (if any) should be read last.

The first ReGC_get_inbuf_ by name call reads the driving input and accomplishes data

sequencing checks. Additional ReGc_get_inbuf by name calls (if any) check to see if the next

input data is synchronized with the driving input. The opstat must be checked after each call,

and if any value other than Recc_NoRMAL, the algorithm must be aborted properly (for required

inputs).

6. Normally, only one input buffer of any product type should be open (obtained) at any time.
Actually, 2 buffers of a particular product type may be open (perhaps to facilitate comparison).

7. IfRPGC_get inbuf by name iS successful, then RrGc_rel inbuf must be called before
returning to the beginning of the algorithm control loop (both for successful product generation
and when aborting the product). Note that in the case of aborting product generation, calling
RPGC_cleanup_and_abort also releases the input buffer.

SN

void* RPGC_get inbuf any(int *datatype, int *opstat)
PARAMETER: datatype A pointer to the linear buffer id of the data read.
opstat Address of the status of the operation. (output)

RETURN VALUE: Pointer to the buffer containing input data or NULL if an error
occurred. The returned pointer must be cast to the appropriate type for
the product message being input.

Returns a pointer to a block of memory containing the input data message. The buffer is always
allocated and returned pointer must be cast to the proper type.

CODE Volume 3 B24.0r1.20 October 2025 Page 52 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

EXAMPLE: cpc004/tsk007/recclprods_main.c
cpc018/tsk003/tdaru.c

Parameter Descriptions
datatype

A pointer to the linear buffer id of the data actually read. This will be one of the types of input
data registered (the input_data attribute in the task_attr_table). This value is used to
determine the appropriate typecast for the return value.

opstat (output)
Address of the status of the operation. This is the status returned for the read operation. Return
values are defined in a309.h. With any value other than Rpcc_NorRMAL, the algorithm must be
aborted. It is the programmer’s responsibility to ensure that the algorithm handles this correctly.

Notes / Rules for use

1. For data driven algorithms: ReGC_get_inbuf_any must be used with the WAIT_ANY form of
the algorithm control loop, it cannot be used with the WAIT_ALL form.

2. RPGC_get_inbuf_any IS compatible with event driven algorithms.

3. IfrPGC_get_inbuf_any is successful, then Recc_rel_inbuf must be called before returning to
the beginning of the algorithm control loop (both for successful product generation and when
aborting the product). Note that in the case of aborting product generation, calling
RPGC_cleanup_and_abort also releases the input buffer.

int RPGC_get inbuf len(void *bufptr)
PARAMETER: bufptr Pointer to the input buffer to be sized.
RETURN VALUE: -1 (on error) or the size of the input buffer in bytes (on success).

Returns the size of the input product in bytes. This is the size of the input product not the size of
the buffer message which included the 96 byte internal header.

EXAMPLE: cpc014/tsk013/saaprods_main.c

Parameter Descriptions
bufptr

Pointer to the input buffer. This is the pointer returned by the corresponding
RPGC_get_inbuf_by name Call cast to type void *.

Notes / Rules for use

1. WARNING: This function cannot be used after releasing the input buffer butptr (returns -1).

int RPGC_rel inbuf(void *bufptr)

PARAMETER: bufptr None

CODE Volume 3 B24.0r1.20 October 2025 Page 53 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services
RETURN VALUE: Not Used

Deallocates buffer created by RPGC_get_inbuf by name.

EXAMPLE: RPGC_rel inbuf ((void*)basedataPtr) ;
where basedataPtr is the value returned by RPGC_get inbuf by name.

int RPGC_rel all inbufs()
PARAMETER: None

RETURN VALUE: Not Used

This function releases all input buffers that are currently open.

EXAMPLE: This function is not yet used in any algorithm
Parameter Descriptions
bufptr

Pointer to the input buffer. This is the pointer returned by the corresponding
RPGC_get_inbuf_ by name Call cast to type void *.

Notes / Rules for use

1. If an input buffer is acquired successfully (RPGC_get inbuf by name OF
RPGC_get inbuf_ any), then the buffer must be released (RPGC_rel inbuf Of
RPGC_rel all inbufs) before returning to the beginning of the algorithm control loop (both for
successful product generation and when aborting the product). Note that in the case of aborting
product generation, calling RPGC_cleanup and_abort also releases the input buffer.

2. Normally, only one input buffer of any product type should be open (obtained) at any time. The
absolute limit is 2 buffers of a particular product type may be open (perhaps to facilitate
comparison).

Reading Data from Product Database

The following functions provide a method for reading product data directly from the product database.
This includes warehoused intermediate products. The product must be a registered input.

RPGC_find pdb product iS Used to get a listing of products in the database for a specified registration
name.

After reviewing the list, RPGc_get pdb product is used to get the product message from the database.
Memory allocated for the product message must be freed using RPGC_release pdb product.

int RPGC_find pdb product(char *name, RPGC prod rec t *results,
int max results, ...)

CODE Volume 3 B24.0r1.20 October 2025 Page 54 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services
PARAMETER: name registration name
results an array containing the results of the search (ouTpuT)
max_results the size of the input array results
additional query fields
RETURN VALUE: The number of product found in the query.

Searches the product database for a product code associated with the registration name provided
in the first parameter name. The parameter max results limits the number of results listed in the
array represented by the second parameter results.

EXAMPLE: clutprod handle volstart.c in cpc004/tsk004
Parameter Descriptions
name

The registration name of the product to search for.

results (output)
A pointer to an array containing the results of the search. This is an array of max results
number of structures of type RPGC_prod_rec_t defined in rpge.h. The structure contains the
following fields:

int msg_id; which is the internal message id

int vol_time; which is the volume time in Julian seconds UTC
int elev; which is the elevation angle in deg*10

int elev_ind; which is the elevation index

short params[6]; which are the product request parameters.
max_ results

The number of structures in the results array.

Variable arguments containing additional (optional) query fields. This list must always be
terminated by guery END_r1sT even if no additional fields are specified. Each additional query
field is either a 2-tuple or 3-tuple defined as follows:

* QuERY voL_TIME iS followed by the UTC volume time in Julian seconds

» ouERrY_ELEV IS followed by elevation angle in deg*10

* QUERY VOL_TIME RANGE is followed by a beginning and end volume time

" QUERY ELEV_RANGE IS followed by a beginning and end elevation angle

Notes / Rules for use

1. The optional query fields have not been tested.

void* RPGC_get pdb product(char *name, LB _id t msg_id)
PARAMETER: name product registration name

msg_id database message id

CODE Volume 3 B24.0r1.20 October 2025 Page 55 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

RETURN VALUE: Returns a pointer to the product message on success. Returns NULL
on failure

Reads the product message with the internal message ID, msg_id, from the product database.
The product is decompressed if required. If this product message has a product id or product
code consistent with the registration name provided in the first parameter, name, a pointer to the
product message is returned.

EXAMPLE:

Parameter Descriptions

name

The product registration name. This is used internally as a check.

msg_id
The database internal message id of the product message to read.. This is returned in the results
parameter in RPGC_find pdb product.

Notes / Rules for use (for a data driven task):

1. This function is not yet used in any algorithm.

void RPGC_release pdb product(void *buf)

PARAMETER: buf product buffer to be freed
RETURN VALUE: NONE
This function frees the product buffer obtained with RPGC_get_pdb_product.

EXAMPLE:

Parameter Descriptions
buf

Pointer to the product buffer to be freed. This is the return value of ReGc_get pdb product.

Notes / Rules for use (for a data driven task):

1. This function is not yet used in any algorithm.

Advanced Access of Replay Data

The following data access functions, along with a registration function listed in Part A of Section I,
support a more advanced method of accessing replay data. These functions were added in Build 9 and

CODE Volume 3 B24.0r1.20 October 2025 Page 56 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

are currently not used in any algorithm. If this capability is determined to be generally useful the
functions will be documented.

int RPGC_check volume radial(unsigned int vol_seq num, int elev_num,
unsigned int type)

char* RPGC_read volume radial(unsigned int vol_seq num, int elev_num,
unsigned int *type, int *size)

void RPGC_rel volume radial(char *bufptr)

CODE Volume 3 B24.0r1.20 October 2025 Page 57 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services
Part C. Writing Output Data

A high-level service is provided for product output (writing to the appropriate ORPG product data
store). This output service also accomplishes necessary functions to announce product output to the
ORPG infrastructure that handles product distribution.

With multiple product outputs, before acquiring the output buffer, it should be determined whether a
request for that product exists using RPGC_check_data_by name Of RPGC_get_request_by name.
Though recommended, this is not mandatory since the function that obtains the output buffer will return
an 'opstatus' other than RPGC_NORMAL if there is no request for the product.

RPGC_get outbuf by name / RPGC_get outbuf by name for_ regq allocate a working space in which
the product is constructed. The working space must accept the largest possible product.

RPGC_get outbuf by name iS the normal form of this function. ReGc_get outbuf by name for req
is used only for those products which can be modified via request message parameters (product
dependent parameters). These request parameters are obtained with RPGC_get customizing data

RPGC_realloc_outbuf is called to increase the buffer size if needed.

RPGC_rel outbuf iS used to output the product and release memory obtained with the
get_outbuf_by name function. RpGc_rel outbuf accepts an optional third parameter which is the
actual size of the product being output. This significantly improves efficiency in some cases including
product compression.

RPGC_abort_remaining_volscan does not abort product construction but is used to avoid having to
read all input data in certain situations. This function is used in tasks producing a volume based output
that read elevation based data and / or radial based data. The algorithm must use the "WAIT_ALL" form
of the control loop.

Note: The following functions have been deprecated and should not be used.

e RPGC_get_outbuf
e RPGC_get outbuf for req

@They will be eliminated in a future build. If any development software uses
these functions they should be replaced with RPGC_get outbuf by name and
RPGC_get outbuf by name for req.

void* RPGC_get outbuf by name(char *reqname, int bufsiz, int *opstat)
PARAMETER: reqname The output product registration name.
bufsiz The requested size of the output buffer (in bytes).

opstat Address of the status of the operation. (output)

CODE Volume 3 B24.0r1.20 October 2025 Page 58 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

RETURN VALUE: Pointer to buffer for the output product. This should be cast to type
short * in order to use some of the common services related to
product construction.

Returns a pointer to a block of memory in which the output product will be placed.

EXAMPLE: buffer=(short *)RPGC_get outbuf by name ("DIGREFL", BUFSIZE,
&opstatus) ;

void* RPGC_get outbuf by name for req(char *dataname, int bufsiz,
User array t *user_array, int *opstat)

PARAMETER: dataname The output product registration name.
bufsiz The requested size of the output buffer (in bytes).

user_array Address of the user array entry containing the product request
parameters for a specific product request

opstat Address of the status of the operation. (output)

RETURN VALUE: Pointer to buffer for the output product. This should be cast to type
short * Iin order to use some of the common services related to
product construction.

Returns a pointer to a block of memory in which the output product will be placed.

EXAMPLE: int opstatus; User_array t *my requests;
buffer=(short *)RPGC_get outbuf by name for req("DIGREFL",
BUFSIZE, &my requests[n-1], &opstatus);

Where n is request number.
Parameter Descriptions

regname and dataname
The name of the product data to be output. The value of this parameter is the same as the
output product registered. This name must be in the list contained in the output_data
attribute of the task_attr_table entry for the algorithm task (the output_data entry
determines the number or ID of the linear buffer containing the output data). See CODE Guide
Volume 2, Document 2, Section 111 for a complete explanation of product and task configuration

via the product_attr_table and task_attr_table configuration files.
bufsiz

Size of product in bytes (does NOT include the 96-byte internal header). This must be sufficient
to accommodate the largest possible product. The programmer is responsible for allocating
sufficient space in which to construct the product. The maximum buffer size that can be allocated
is 8,000,000 bytes (increased from 2,000,000 bytes in Build 8).

user_array
Address of the user array entry that contains the request parameters (that is the customizing data)
for a specific product request. The user array containing up to 10 product requests is obtained via
the RPGC_get customizing data call. The first user array entry is at suser_array, the second
request (if there is one) is at suser_array[1], and so forth.

opstat (output)

CODE Volume 3 B24.0r1.20 October 2025 Page 59 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

Address of the status of the operation. This is the status returned by the operation of allocating
buffer space.

Notes / Rules for use

1. Only one output buffer of a specific product type can be open (obtained) at any time. However, if
an algorithm task produces more than one product type (having different product id's), one buffer
of each type may be opened an any given time.

void* RPGC_realloc_ outbuf(void *bufptr, int bufsiz, int *opstat)

PARAMETER: bufptr Pointer to the output buffer to be resized.
bufsiz The requested size of the output buffer (in bytes).
opstat Address of the status of the operation. (output)
RETURN VALUE: The pointer to the reallocated buffer on success, NULL on failure.

Reallocates the block of memory at the address returned by the associated
RPGC_get_outbuf by name call. If opstat is RPGC_NORMAL the operation was successful. The
contents of the original buffer are copied to the new location before the function returns. If the
function fails, the original buffer pointer is valid.

EXAMPLE: cpc018/tsk001/buildDMD_PSB.c

Parameter Descriptions
bufptr

Pointer to the output buffer to be resized. This is the pointer returned by the corresponding

RPGC_get_outbuf_by_nameCa".
bufsiz

Size of product in bytes (does NOT include the 96-byte internal header). The programmer is

responsible for allocating sufficient space in which to construct the product. The maximum

buffer size that can be allocated is 8,000,000 bytes (increased from 2,000,000 bytes in Build 8).
opstat (output)

Address of the status of the operation. This is the status returned by the operation of allocating

buffer space.

Notes / Rules for use

1. Only one output buffer of a specific product type can be open (obtained) at any time. However, if
an algorithm task produces more than one product type (having different product id's), one buffer
of each type may be opened an any given time.

2. With multiple product outputs, before acquiring the output buffer, it should be determined
whether a request for that product exists using RPGC_check_data_ by name Of
RPGC_get_request_by name. This is optional since the function that obtains the output buffer
returns an 'opstatus' other than RPGC_NORMAL if there is no request for the product.

CODE Volume 3 B24.0r1.20 October 2025 Page 60 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services
int RPGC_rel outbuf(void *bufptr, int disposition, ...)
PARAMETER: bufptr Pointer to the output buffer to be released.

disposition F|ag to determine whether product is distributed (successful
construction).

[optionall The size of the product being output.

RETURN VALUE: Not Used

Deallocates buffer created by RPGC_get_outbuf_by name and
RPGC_get outbuf by name for_req. With disposition = FORWARD, the product is written to
the appropriate linear buffer and a successful product generation message is generated. If
disposition = DESTROY, an unsuccessful product generation message is generated.

EXAMPLE: RPGC_rel outbuf((void*)buffer, FORWARD) ;
where buffer is the value returned by RPGC_get_outbuf_by name.

int RPGC_rel all outbufs(int disposition)

PARAMETER: disposition Flag to determine whether product is distributed (successful
construction).

RETURN VALUE: Not Used

This function releases all output buffers that are currently open with the indicated disposition.
EXAMPLE: This function is not yet used in any algorithm

Parameter Descriptions
bufptr

Pointer to the output buffer to be released. This is the pointer returned by the corresponding
RPGC_get outbuf by name Call.

disposition
Flag to determine whether product is distributed (successful construction). The value FORWARD is
used when product construction has been successful. The value pEsTroy is used when product
generation has not been successful.

[optional] (for REGC_rel_outbuf only)
The size in bytes of the product being released. In order to use this parameter, the disposition

must be OR'd with ReGc_EXTEND_aRGs, for example:
RPGC_rel_outbuf (buf_id, FORWARD | RPGC_EXTEND ARGS, buf_size)

Notes / Rules for use

1. The first parameter passed to ReGC_rel outbuf must be the same as the buffer pointer returned
by the corresponding RPGC_get outbuf by name / RPGC_get_ outbuf by name for req call.

2. An output buffer must be successfully obtained (with RPGC_get outbuf by name Of
RPGC_get outbuf by name for req) before releasing with a disposition of FORWARD
(RPGC_rel_outbuf Or RPGC_rel all outbuf s).

CODE Volume 3 B24.0r1.20 October 2025 Page 61 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

3. If an output buffer is successfully acquired (with RPGC_get outbuf by name Or
RPGC_get_outbuf_by name_ for_req), then the buffer must be released (RpGc_rel_outbuf or
RPGC_rel all outbufs) before returning to the beginning of the algorithm control loop (both
for successful product generation and when aborting product). Note that in the case of aborting
product generation, calling RPGC_cleanup and abort also releases the output buffer (and
generates an unsuccessful product generation message).

4. Only one output buffer of a specific product type can be open (obtained) at any time. However, if
an algorithm task produces more than one product type (having different product id's), one buffer
of each type may be opened an any given time.

RPGC_abort_remaining volscan Serves a different purpose than the abort routines in Part H. The
purpose of this function is to avoid having to read input data until the end of the volume scan if no more
data are needed to complete product construction. LIMITATION: Currently this function does not work
with the WAIT_ANY form of the control loop.

int RPGC_abort remaining volscan()
PARAMETER: None

RETURN VALUE: Not Used

Accomplishes internal house cleaning before returning to the algorithm control loop after
successful product generation. ONLY USED IN VERY SPECIFIC SITUATIONS. SEE NOTES.

EXAMPLE: cpc013/tsk003/epre_main.c
Notes / Rules for use

1. For tasks using elevation based and / or radial based input data to create volume based output
data: RPGC_abort_remaining_volscan Must be called after successful product output
(RPGC_rel_outbuf (<xxxxx>, FORWARD) ;) Wwhen not reading all input data available in the
volume (i.e. all elevations and / or all radials). This is demonstrated in the second task of sample
algorithm 3.

CODE Volume 3 B24.0r1.20 October 2025 Page 62 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services
Part D. Getting Request Information

This section includes three functions that are needed in algorithms that either create more than one
product type or create customized products based upon request information.

RPGC_check_data by name Can be used to determine if a particular registered output is requested. It is
useful in two situations:

1. For algorithms producing more than one product type, RPGC_check data_by name iS Used to
see which are requested.

2. Algorithms that proceed after reading one of several registered inputs (algorithms using the
WAIT_ANY form of control loop) must always check for product requests even when there is
only one output product registered.

If not used, RPGC_get_outbuf / RPGC_get outbuf by name also checks for a request and will return an
opstatus other than RPGC_NORMAL if there is no request for the product.

RPGC_get customizing data iS uUsed in algorithms that use parameters in the product request message
to control the algorithm logic. This function can only be used in algorithms having one output product.
This function was modified in Build 12 to also provide the ability to limit the number of requests.

RPGC_get_request_by name (added in Build 10) is a more flexible method of obtaining request
information and can be used in any algorithm. With multiple product outputs, this function can also be
used (instead of RPGC_check_data_ by name) to determine if a particular product has been requested.

The contents of the request list is different for replay tasks (a special second instance of a task covered
in Document 3, Section I, Part C - Algorithm Initialization and Control Loop).
= The product request list obtained by the replay instance of a task contains only the one-time
requests for the product.
= The product request list obtained by the normal real-time task has the routine requests and any
one-time requests not serviced by the replay instance.
= If no replay task is configured, the product request lists contains all requests.

Since there can be more than one request for a product in this case, an alternate form of the function that
obtains the output buffer must be used: RPGC_get_outbuf_by name for_req.

Note: The following function has been deprecated and should not be used.

e RPGC_check data

©This will be eliminated in a future build. If any development software uses this
function it should be replaced with ReGc_check_data by name.

Modified in Build 12

CODE Volume 3 B24.0r1.20 October 2025 Page 63 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

void *RPGC_get customizing data(int elev_index, int *n_requests)

PARAMETER: elev_index The elevation index (-1 for volume products)
n_requests Address of the number requests for this product (output)

RETURN VALUE: Returns a pointer to the product request data (an array containing
structures of type user_array t defined in rpgc_globals.h).
Returns nuLL if no product requests are found.

Obtains an array of structures each of which contain the request parameters for a specific product
request. For products that can be customized via product request parameters, there can be up to 20
requests for each product type. The number of requests used in Legacy algorithms is 10 and can
be specified by setting *n requests to zero or 10).
NOTE: This function allocates memory which must be freed after use.
ASSUMPTION: This function is only used in algorithms having one output.
EXAMPLE: int num requests = 6;

User_array t *request list;

request_list = (User_array t *)RPGC_get customizing data(

-1, &num_requests) ;
The structure type user_array t is defined in rpg globals.h

Parameter Descriptions

elev_index
For elevation outputs, the current elevation index of the data being processed. -1 is used for all
volume based outputs.

n_requests (output)
The number of requests for this product (the number of entries in the user_array).

Notes / Rules for use

1. Must deallocate memory at the address returned prior to returning to the beginning of the control
loop.

2. If algorithm produces more than one product using customizing parameters, the function

RPGC_get_request_by name should be used to obtain the request parameters.

Inherent limit of 20 requests (Build 12).

4. Must initialize the second parameter to a value (Build 12).

w

int RPGC_get request by name(int elev_index, char *dataname,
User array t *uarray, int max requests)

PARAMETER: elev_index The elevation index (-1 for volume products)
dataname registration name for the output
uarray an array to receive the requests (outpur)

max_requests maximum number of requests to be returned

CODE Volume 3 B24.0r1.20 October 2025 Page 64 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

RETURN VALUE: The number of requests for this product (the number of entries in
the uarray array.

Returns the product request parameters for the registered output dataname and the specified
elevations elev_index. If a negative number is supplied for elev_index with an elevation based
product, requests for all elevations are returned.

EXAMPLE: cpc007/tsk015/superes8bit.c
Parameter Descriptions

elev_index
For elevation outputs, the current elevation index of the data being processed. The value. -1 is
used for all volume based outputs and can be used to return request information for all elevations
with elevation based products.

dataname
The registration name of the output product.

uarray (Output)
A pre-allocated array containing structures of type user_array t (defined in rpgec_globals.h)
to receive the product request information. Must be sized to handle max_requests elements.

max_requests

The maximum number of requests to be returned. This must not be larger than the size of the
uarray supplied to receive the output.

Notes / Rules for use

1. The uvarray supplied must be sufficiently sized to hold max_requests number of user_array t
structures.

The following functions, added in Build 10, are not required to implement an algorithm and are not
documented.

int RPGC_get_customizing info(int elev_index, User_array t *user_array,
int *num_requests)
This function is redundant with RPGC_get_customizing data, Which is preferred.
int RPGC_get_request(int elev_index, int prod id, User_array t *uarray,

int max_requests)
This function should be an internal function and is not recommended for use.

int RPGC_check data by name(char *data name)

PARAMETER: data_name The product registration name.

CODE Volume 3 B24.0r1.20 October 2025 Page 65 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

RETURN VALUE: Returns NorMaL if the product is requested, otherwise returns
NOT_REQD.

Used with algorithms producing more than one product type to determine which product types are
requested. Must be called for every output product registered.

EXAMPLE: cpc014/tsk003/hybrprod.c
Parameter Descriptions

data_name
The name of the product data who's request status is being checked. The value of this
parameter is the same as the output product registered. This name must be in the list
contained in the output_data attribute of the task_attr_table entry for the algorithm task
(the output_data entry determines the number or ID of the linear buffer containing the output
data). See CODE Guide Volume 2, Document 2, Section Il for a complete explanation of
product and task configuration via the product attr_ table and task_attr table
configuration files.

Notes / Rules for use

1. An output of bEMAND DATA type is unique in that a product can be output even if there is no
request for it.

CODE Volume 3 B24.0r1.20 October 2025 Page 66 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services
Part E. Getting Information About the Current Volume / Elevation

This section includes a few helper functions that obtain information about the radar data being currently
ingested by the ORPG. Most of the information obtained by these functions is contained within the
header for the base data message. Some of the information is also contained in an internal table called
the Scan Summary table. Since some of this information is needed when constructing final products,
using these functions reduce the amount of information that needs to be passed with intermediate
products.

Three helper functions have been replaced.

Note: The following functions do not work in all situations and have been deprecated.

e RPGC_get current vol num
e RPGC_get current elev_index
e RPGCS _get_last_elev_index

Ot any development software uses these functions they should be replaced immediately
With RPGC_get buffer vol num, RPGC_get buffer elev_index and
RPGC_is buffer from last elev respectively.

RPGC_what moments iS used only by algorithm tasks reading base data messages (radial and elevation).
It is used to test the first base data message of each elevation for elevation products and the first message
of the volume for volume products.

The following helper functions are available.
NOTE For Algorithms Having no Product Inputs (Event Driven Algorithms)

Functions marked with an * can only be used in algorithms having at least one product data input. Event
driven algorithms are one example of algorithms having no product inputs. If there are no product

inputs, the data obtained by these * functions can be obtained by using RpGC_reg volume status and
RPGC_read_volume_status t0 obtain the volume date, volume time, volume number and volume
sequence number. The volume number can be used to with RPGc_get_scan_summary to obtain the
scan summary table and with ReGcs_get vcp_data to obtain the vcp information structure.

VCP
RPGC_get buffer vcp num” Obtains the type of VCP currently running.

Volume Number
RPGC_get buffer vol num” Obtains the volume number which is used is used as an input to
RPGC_prod_desc_block, RPGP_build RPGP_product t, and RPGC_get scan_summary.

Volume Sequence Number

CODE Volume 3 B24.0r1.20 October 2025 Page 67 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

RPGC_get buffer vol seq num” reads the volume sequence number.

Elevation Index
RPGC_get buffer elev index™ provides the current elevation index.

Target Elevation Angle
RPGCS_get_target_elev_ang returns the target elevation angle which is used in the final
product as well as in any algorithm needing height information.

Determining the end of the Volume:

RPGC_is buffer from last elev™ provides both the current elevation index and the highest
elevation index in the current volume. This should be used in algorithms reading elevation data
to determine when the final elevation of a volume has been read. In the future, the RDA at times
may not accomplish all scans defined in the VCP. After this modification, algorithms producing
volume data from elevation data must use this function.

Weather Mode
RPGCS_get wxmode for_ vcp returns the weather mode for the specified VCP sequence number.

The number of bins to 70,000 feet:
RPGC_bins_to_ ceiling returns the number of bins to 70,000 feet based upon the bin resolution
and elevation angle.
RPGC_num rad bins IS used for porting Legacy algorithms from Fortran to C, can only be used
with Legacy / recombined data, and is not recommended for new algorithms.

There are three functions which obtains a structure containing multiple data fields.

The contents of the structures obtained by these functions are documented in Part D - Miscellaneous
Configuration / Status Data in Volume 2, Document 4, Section I11.

= The scan summary table (obtained by RpGc_get scan_summary) makes additional information
available to the algorithm. Most of this information is available via other means. Information
includes: volume start date/time, wx mode, vcp number, number of rpg elevation cuts, number of
rda elevation cuts, and the spot blanking bitmap.

" RPGCS_get_vcp_data returns the structure containing VCP information. This includes: vcp
number, number of elevations (rda), clutter map number, pulse width (long/short), velocity
resolution, pulse width, sample resolution, reflectivity range resolution, velocity & spectrum
width range resolution, and radial angular interval.

" RPGC read volume status updates the contents of the structure obtained by the corresponding
registration function. This is the primary method of obtaining the volume number and the
volume time if not registered for input product data. The volume number obtained can be used to
obtain the scan summary table with RPGC_get_scan_summary. Most of the additional
information is also available elsewhere. Information includes: volume number, volume sequence
number, volume date-time, vcp number, weather mode, number of elevation cuts and each
elevation angle.

Many of these functions have related inputs and outputs:

e The output of RPGC_get_buffer vol num iS Used as an input t0 RPGC_get scan_summary.

CODE Volume 3 B24.0r1.20 October 2025 Page 68 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

e The output of RPGC_get buffer elev index iS USed as an input to
RPGCS_get_target elev_angadn d RPGC_is_buffer from last elev.

e The output of RPGC_get buffer vcp_num iS Used as an input to RPGCS_get_target elev_ang,
RPGCS_get wxmode for_ vcp, aNd RPGCS_get _vcp data.

int RPGC_what moments(Base data header *hdr, int *ref flag,
int *vel flag, int *wid flag)

PARAMETER: hdr Pointer to the Base Data Header portion of the radial message.

ref_flag Address of a flag indicating whether the reflectivity moment is
enabled. (output)

vel_flag Address of a flag indicating whether the velocity moment is enabled.
(output)

wid_flag Address of a flag indicating whether the spectrum width moment is
enabled. (output)

RETURN VALUE: Not Used

Returns Boolean flags indicating which of the moments (reflectivity, velocity, and spectrum
width) are currently enabled in the RDA.

EXAMPLE: cpc007/tsk014/bvel8bit.c
cpc007/tsk015/superes8bit.c

Parameter Descriptions
hdr

Pointer to the base data header portion of the radial message. The header is the first part of the
base data radial message. struct Base_data_ header iS defined in basedata.h.
ref flag (output)
Address of the reflectivity enabled flag. Flag set to TRuE if enabled.
vel_flag (output)
Address of the velocity enabled flag. Flag set to Truk if enabled.
wid flag (output)
Address of the spectrum width enabled flag. Flag set to TruE if enabled.

Notes / Rules for use

1. RPGC_what_moments iS used when base data is the registered input (see CODE Guide Volume 2,
Document 4, Section I, Base Data Format for a description of all base data types). The flag value
of the applicable moment(s) should be checked immediately after the first time a base data
message is read (RPGC_get_inbuf_ by name) during the construction of a product. If a needed
moment is disabled (flag not TRUE), the construction and output of the product must be
aborted.

2. The use of this function is not required if the needed moments are registered with
RPGC_reg_moments.

CODE Volume 3 B24.0r1.20 October 2025 Page 69 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

int RPGC_get buffer vol num(void *bufptr)
PARAMETER: bufptr Pointer to the input buffer

RETURN VALUE: VVolume scan sequence number.

Returns the sequence number of the current volume scan (the volume number of the product
contained in the input buffer). This number cycles 1 through 80. This information is an input to the
function RPGC_prod desc_block.

EXAMPLE:

Parameter Descriptions
bufptr

Pointer to the input buffer (the return value of the get input buffer function). With multiple inputs
having a driving input, use the buffer pointer to the driving input (the first call to
RPGC_get_inbuf_ by name).

Notes / Rules for use

1. This function cannot be used in algorithms having no product data inputs.
2. WARNING: This function cannot be used after releasing the input buffer butptr (returns -1).

unsigned int RPGC_get buffer vol seq num(void *bufptr)

PARAMETER: bufptr Pointer to the input buffer

RETURN VALUE: VVolume scan sequence number.

Returns the sequence number of the current volume scan (the volume number of the product
contained in the input buffer). This number increases monotonically (actually it increases to a very
large value limited by the maximum value of a short).

EXAMPLE:

Parameter Descriptions
bufptr

Pointer to the input buffer (the return value of the get input buffer function). With multiple inputs
having a driving input, use the buffer pointer to the driving input (the first call to
RPGC_get_inbu f_by_name) .

Notes / Rules for use

1. This function cannot be used in algorithms having no product data inputs.
2. WARNING: This function cannot be used after releasing the input buffer butptr (returns -1).

CODE Volume 3 B24.0r1.20 October 2025 Page 70 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services
int RPGC_get buffer elev_index(void *bufptr)
PARAMETER: bufptr Pointer to the input buffer

RETURN VALUE: The elevation index (1 through N, with N being the number of
elevations in the VCP in use)

Returns the "RPG" elevation index of the current elevation (the elevation of the product contained
in the input buffer). This is the ordinal of the elevation within the Volume Coverage Pattern in
use.

EXAMPLE:

Parameter Descriptions
bufptr

Pointer to the input buffer (the return value of the get input buffer function). With multiple inputs
having a driving input, use the buffer pointer to the driving input (the first call to
RPGC_get inbuf by name).

Notes / Rules for use

1. This function cannot be used in algorithms having no product data inputs.
2. WARNING: This function cannot be used after releasing the input buffer butptr (returns -1).

int RPGC_get buffer vcp num(void *bufptr)
PARAMETER: bufptr pointer to algorithm input buffer

RETURN VALUE: -1 on error or non-negative volume scan number on success

Returns the VCP number of the data used to produce the product contained in the input buffer.

ASSUMPTION:

EXAMPLE:

Parameter Descriptions
bufptr

Pointer to the input buffer (the return value of the get input buffer function). With multiple inputs
having a driving input, use the buffer pointer to the driving input (the first call to
RPGC_get_inbu f_by_name) .

Notes / Rules for use

1. This function cannot be used in algorithms having no product data inputs.
2. WARNING: This function cannot be used after releasing the input buffer butptr (returns -1).

int RPGCS get target elev_ang(int vcp num, int elev_ind)

CODE Volume 3 B24.0r1.20 October 2025 Page 71 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services
PARAMETER: vep_num \/glume coverage pattern (VCP) number
elev_ind RPG elevation index within VCP

RETURN VALUE: Error code rReccs_ERROR (defined in rpgcs.h) on error or elevation
angle*10 on success (i.e., a return value of 54 is 5.4 degrees).

Returns the target elevation angle of the product contained in the input buffer. The return value is
undefined if this function is used on a volume based product.

ASSUMPTION:

EXAMPLE:
Parameter Descriptions

vcp_num
Volume coverage pattern (VCP) number. This number identifies the type of volume scan that
produced the current base data input. This value is obtained via the RPGc_get_buffer vcp_num

function.
elev_ind

The "RPG" elevation index. This is the ordinal of the elevation within the VVolume Coverage
Pattern in use. This value is obtained via the RPGC_get buffer elev index function.

Notes / Rules for use

int RPGCS_get last elev_index(int vcp num)

PARAMETER: vecp_num \/olume coverage pattern (VCP) number

RETURN VALUE: Error code rReGcs_ERROR (defined in rpgcs.h) on error or the elevation
index.

Returns the last elevation index that can be expected from the VCP that produced the product in
the input buffer (i.e., the size of the defined VCP currently being used).

ASSUMPTION:

EXAMPLE:
Parameter Descriptions

vcp_num
Volume coverage pattern (VCP) number. This number identifies the type of volume scan that
produced the current base data input. This value is obtained via the RPGc_get_buffer_vcp_num
function.

Notes / Rules for use

CODE Volume 3 B24.0r1.20 October 2025 Page 72 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

1. Though currently not used by many algorithms. The following function is preferred.
Beginning in Build 11, for algorithms having no product inputs, the last elevation index can
be obtained from the scan summary table.

int RPGC_is buffer from last elev(void *bufptr, int *elev_index,
int *last elev_index)

PARAMETER: bufptr Pointer to the input buffer
elev_index RPG elevation index within VCP
last_elev_index |ndex of the last elevation (output)

RETURN VALUE: 1 if the buffer data is from the last elevation index, 0O if the
buffer data is not from the last elevation index, or -1 on error.

Determines whether the current elevation is the last elevation in the VCP being used for data
ingest.

EXAMPLE: cpc008/tsk003/a30831.c
cpc018/tsk001/mdaprodMain.c
cpc018/tsk003/tdaru.c

Parameter Descriptions
bufptr

Pointer to the input buffer (the return value of the get input buffer function). With multiple inputs
having a driving input, use the buffer pointer to the driving input (the first call to
RPGC_get_inbuf_by_pame)
elev_index
The "RPG" elevation index. This is the ordinal of the elevation within the Volume Coverage
Pattern in use. This value is obtained via the RPGC_get_buffer elev_index function.
last_elev_index (Output)
The index of the last elevation in the volume.

Notes / Rules for use

1. This function cannot be used in algorithms having no product data inputs. For algorithms

having no product inputs, the last elevation index can be obtained from the scan summary

table.

WARNING: This function cannot be used after releasing the input buffer butptr (returns -1).

3. This is the preferred function for obtaining the last elevation index. After a future RDA
modification, this function must be called every elevation by algorithms producing volume
products from elevation input data.

no

int RPGCS_get wxmode for vcp(int vcp num)

INPUT: vep_num \/glume coverage pattern (VCP) number

CODE Volume 3 B24.0r1.20 October 2025 Page 73 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services
RETURN VALUE: -1 or error or 1 for clear air mode or 2 for precipitation mode.

Returns the weather mode in effect during data collection. cLear_aIRrR MoDE and
PRECIPITATION MODE are defined in a309.h.

EXAMPLE:
Parameter Descriptions
vcp_num
Volume coverage pattern (VCP) number. This number identifies the type of volume scan that
produced the current base data input. This value is obtained via the RPGC_get buffer vcp num
function.

Notes / Rules for use

int RPGC bins to ceiling(void *bdataptr, int bin size)
PARAMETER: bdataptr pointer to a base data radial

bin_size gsjze of the range bins in meters

RETURN VALUE: the number of bins or o on error.

Calculates the number of range bins to 70,000 feet for the given the bin_size.

EXAMPLE: cpc007/tsk015/superes8bit.c

Parameter Descriptions
bdataptr

A pointer to a base data radial. This is used to obtain the target elevation angle.

bin size
The size of the range bins in meters. For basic moment data this is obtained from either the
surv_bin_size Of the dop_bin_size field in the basedata header. For advanced Dual Pol data
fields this is obtained from the bin_size field in the generic moment structure.

Notes / Rules for use (for a data driven task):

1. This function cannot be used in algorithms having no product data inputs.
2. WARNING: This function cannot be used after releasing the input buffer bdataptr (returns 0).

The function
int RPGC_num rad bins(void *bdataptr, int maxbins, int radstep,
int wave_type)
is used in several Legacy algorithms ported to C but should not be used in new algorithms.

CODE Volume 3 B24.0r1.20 October 2025 Page 74 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services
The following functions obtain data structures containing several data fields.

Scan_Summary* RPGC_get scan_summary (int vol num)

PARAMETER: vol_num Sequence number of the current volume scan.

RETURN VALUE: Returns NULL on error, or pointer to Scan_Summary structure for
"vol_num" on success. The struct scan_summary is defined in
orpgsum. h.

ASSUMPTION:

EXAMPLE: cpc007/tsk013/bref8bit.c
cpc007/tsk015/superes8bit.c
cpc014/tsk013/saaprods_main.c
cpc018/tsk003/tdaru.c

Parameter Descriptions

vol num

The sequence number of the current volume scan (cycles 1 through 80). This value is obtained
via the RPGC_get_buffer_vol_num function.

Notes / Rules for use

1. The structure of the returned scan summary table could be modified in a future build. This

function should be used with caution and only if directly reading the scan summary table is the
only source of needed data.

Vcp_struct* RPGCS_get vcp data(int vcp num)
PARAMETER: vep_num \/glume coverage pattern (VCP) number

RETURN VALUE: Returns NULL on error, or pointer to Vcp_struct for "vol_num™ on
success. The structure vep_struct is defined in vep . h.

EXAMPLE: CODE Sample Algorithm 1
Parameter Descriptions
vcp_num

Volume coverage pattern (VCP) number. This number identifies the type of volume scan that

produced the current base data input. This value is obtained via the RPGC_get buffer vcp num
function.

Notes / Rules for use

1. This function is not yet used in any algorithm.
CODE Volume 3 B24.0r1.20 October 2025 Page 75 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

The following function reads the volume status portion of the general status message. Another function,
listed in Part C of Section I, accomplishes the necessary registration and obtains the pointer to the data.
Much of the information is also available in the scan summary table or even the base data header.

However, this function is useful in event driven algorithms and must be used with the registration
function if the even driven algorithm has no data input. It is the primary method of determining the
volume number, sequence number, and the volume date - time if not registered for product inputs.

int RPGC_read volume status()

PARAMETER: None
RETURN VALUE: Always returns 0.

Updates the volume status structure obtained by the registration function.

EXAMPLE: cpc008/tsk001/alerting_buffer_control.c

Notes / Rules for use (for a data driven task):

1. The registration function RPGC_reg volume_status must be called before this function can be
used.

2. If the task has product inputs, the structure returned by RPGC_reg_volume_status Will be
automatically updated each volume and this read function need not be called. If the task has no
product inputs this function must be called every volume to update the data..

CODE Volume 3 B24.0r1.20 October 2025 Page 76 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services
Part F. Reading Adaptation Data

From the application’s point of view, the major purpose of adaptation data is to parameterize certain
characteristics of an algorithm to permit changing its behavior using ORPG configuration files.

With the previous adaptation data mechanism, a C structure was automatically populated with all of the
algorithm’s adaptation data fields. With the new DEA mechanism, each data field (data element) must be
read individually from the database. The algorithm API provides two helper functions to read adaptation
data. A 'DEA access function' must be written using the following API functions to read individual data
elements.

RPGC_ade get values iS uUsed to read all integer and floating point data. This function is also used for
enumerated types.

RPGC_ade get string values iS Used to read all string data.

If the data element consists of a list of values (an array), the function
RPGC_ade _get number of_ values IS Used to determine the number of values defined.

Typically an adaptation data "access function™ using these calls is written as part of the algorithm.
Though not required, the ROC has included these access functions as part of 1ibadaptstruct for C
algorithms and 1ibadaptcomblk for Fortran algorithms. This facilitates sharing of adaptation data by
making the access function easily available to all algorithms. However, an algorithm can access any
adaptation data by using the full ID of the data element (including the algorithm group name) with the
API data read functions.

Modification of these libraries is not recommended for development activity that is not directly involved
with the ROC in integrating new algorithms into the operational ORPG. If modifying an existing
algorithm having a data access function already integrated into the shared library, an alternative to
modifying the original access function is to develop a new access function that reads the new adaptation
data elements.

int RPGC_ade get values(char *alg name, char *value_id, double *values)

INPUT: alg_name The name of the algorithm "owning" this data.

value_id The variable name in the DEA file.

values Pointer to a temporary variable to hold the numeric value.
RETURN VALUE: Returns -1 on error, 0 on success.

Retrieves a value of a data element from the database given "alg_name", "value_id", and a pointer
to a variable to receive the value(s).

CODE Volume 3 B24.0r1.20 October 2025 Page 77 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

EXAMPLE: ret = RPGC_ade get values("alg.samplel dig.",
"db Element 1", &get value);
if(ret == 0) {
struct ptr->my element 1 = (short)get value;
}

where struct_ptr is the address of the C structure and get_value iS type double.

Parameter Descriptions

alg name
A string containing the name of the algorithm "owning" this data. This is identical to the group
name parameter used in the callback registration function. The group name is based on the
inverse of the filename of the adaptation data DEA file. With sample algorithm 1 for example,
The adaptation data file is named samplel dig.alg.

The resulting alg_name parameter is "alg.samplel dig." (note the trailing period).
value id

A string containing the variable name as it appears in the DEA file.
values

Pointer to a temporary variable to hold the numeric value(s). This must be cast to the correct type
of the variable representing the data filed. See example.

Notes / Rules for use

1.

int RPGC_ade get string values(char *alg name, char *value id,
char **values)

PARAMETER: alg_name The name of the algorithm "owning" this data.
value_id The variable name in the DEA file.
values Pointer to a temporary variable to hold the string.
RETURN VALUE: Returns -1 on error, 0 on success.

Retrieves string(s) from the database given "alg_name", "valid_id", and a pointer to string to
receive the string(s).

EXAMPLE: cpcl01/1ib004/rpgc_site info_callback fx.c
Parameter Descriptions
alg name

A string containing the name of the algorithm "owning" this data. This is identical to the group
name parameter used in the callback registration function. The group name is based on the
inverse of the filename of the adaptation data DEA file. With sample algorithm 1 for example,
The adaptation data file is named samplel dig.alg.
The resulting alg_name parameter is "alg.samplel_dig." (note the trailing period).

value_ id
A string containing the variable name as it appears in the DEA file.

values
Pointer to a temporary variable to hold the string.

CODE Volume 3 B24.0r1.20 October 2025 Page 78 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

Notes / Rules for use

1. This function is not yet used in any algorithm.

int RPGC_ade get number of values(char *alg name, char *value_ id)

PARAMETER: alg_name The name of the algorithm "owning" this data.
value_id The variable name in the DEA file.

RETURN VALUE: The number of data values in the list / array or with failure, a negative
error code.

Returns the number of value(s) or negative error code.

EXAMPLE:
Parameter Descriptions

alg name
A string containing the name of the algorithm "owning" this data. This is identical to the group
name parameter used in the callback registration function. The group name is based on the
inverse of the filename of the adaptation data DEA file. With sample algorithm 1 for example,
The adaptation data file is named samplel dig.alg.

The resulting alg_name parameter is "alg.samplel dig." (note the trailing period).
value id

A string containing the variable name as it appears in the DEA file.

Notes / Rules for use

1. This function is not yet used in any algorithm.

Functions Not Required for Algorithms

The following functions are not required by normal algorithms and are not documented.

int RPGC_read ade(int *callback_id, int *status)

int RPGC_update all ade()

CODE Volume 3 B24.0r1.20 October 2025 Page 79 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services
Part G. Reading Base Data Messages

Guidance for Determining the Number and Size of Radial Data Arrays

The best approach to take in determining the number of radials and sizing of data arrays is
described in is Part B of Volume 3, Document 4, Section Il. To summarize:

= Determining the maximum size of the data array (number of bins) (Data above 70,000 feet
MSL are not valid).
CAUTION: If either statically allocating arrays for the radials or allocating a standard size at the
beginning of an elevation, the method used must be conservative. It is always possible for the first
radial in an elevation to be spot blanked and contain no data bins. The reference above includes a
discussion of attempting to preserve resources if pre-allocating all of the radial arrays at the
beginning of an elevation.

= Determining the size of an individual radial (Data above 70,000 feet MSL are not valid).

o When reading basic moments (R, V, SW) from one of the Legacy resolution data types
(BASEDATA, REFLDATA, O COMBBASE) the maximum size of the reflectivity array is 460.
Beginning with Build 12 the maximum size of the velocity and spectrum width arrays is
1200 at lower elevations and 920 at higher elevations. This must be checked every
elevation. Prior to Build 12 the maximum size was 920 bins. The reference above
contains details and sample code that includes consideration of the 70,000 foot limit and
product range limit.

o When reading basic moments (R, V, SW) from one of the super resolution data types
(srR_coMBEBASE, etc.) or the dual pol data types (puaLpoL_cOMBBASE, etc.) the size of the
reflectivity array can be either 460 or 1840. Beginning with Build 12 the maximum size of
the velocity and spectrum width arrays is 1200 at lower elevations and 920 at higher
elevations. This must be checked every elevation.

o When reading one of the Dual Polarization fields the number of valid data values within the
array is determined by the value of no_of_gates field in the generic moment structure.
The standard sizes of the Dual Pol field arrays are either 1200 or 1840. The reference
above contains details and sample code that includes consideration of the 70,000 foot limit
and product range limit. The presence of the Dual Pol fields must be checked every
elevation.

= Determining the radial spacing. When reading the first radial of an elevation, the field azm_reso
is used obtain the radial spacing. If the value is 1, the radials are in the new higher resolution of
half degree spacing. This must be accomplished every elevation if reading one of the Super
Resolution data types (SR_COMBBASE, etc.).

= Determining the data sample bin size (in range). When reading the first radial of an elevation:

o For the basic moments (R, V, SW) the field surv_bin_size is used to obtain the size of
the surveillance bins and determine the range of the data. If the value is 250, the
surveillance data is in the higher resolution of 250 meters.

o For the Dual Pol data the bin_size field in the generic moment structure is used to obtain
the size of the Dual Pol data bins and determine the range of the data.

In addition,

CODE Volume 3 B24.0r1.20 October 2025 Page 80 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

= For basic moments, the fields n_dop_bins / n_surv_bins must be checked when reading each
radial to ensure data beyond the last good bin is not used (and the algorithm's data array padded
with zero's). This can eliminate checking for the spot blank field in the basedata header.

= For Dual Pol data, the field no_of_gates must be checked when reading each radial to ensure
data beyond the last good bin is not used (and the algorithm's data array padded with zero's).

Following this procedure will accommodate any future changes to the design of the VCPs.

The contents of the base data header and the structure and contents of the radial and elevation base data
messages is covered in Volume 2, Document 4, Section I, Base Data Format.

Reading Basic Moments (R, V, SW)

Reading the data arrays contained in base data messages must be accomplished by using the correct
offsets into the base data radial / elevation. The base data header fields ref_offset, vel offset, and
spw_offset give the offset for the reflectivity array, velocity array, and the spectrum width array.

1. Base Data Radial Messages - These offsets are in bytes from the beginning of the header.

2. Base Data Elevation Messages - Prior to Build 10, these offsets are in bytes relative to the
beginning of the base data header. After Build 10, these offsets are in bytes relative to the
beginning of the first data array (e.g., just after the end of the basedata header).

The size of the data arrays depend upon the type of base data registered. When registering for the
original types (REFLDATA, COMBBASE, BASEDATA), the reflectivity arrays are 460 and the Doppler arrays
are 920. Beginning with Build 10, registering for the new types (Super Resolution and Dual Pol) the
reflectivity arrays can be either 460 or 1840 and the Doppler arrays either 920 or 1200. The following
are defined in basedata.h.

BASEDATA_REF_SIZE 460 Size of the reflectivity array
MAX_BASEDATA_REF_SIZE 1840 Super Res reflectivity array
BASEDATA_VEL_SIZE 920 Size of the Doppler arrays
BASEDATA_DOP_SIZE 1200 Super Res Doppler arrays

The size of the arrays for the current elevation are obtained indirectly from related base data header
fields:. The value of these fields must be tested with every elevation if registered for sr_ and puarpor_
data types for two reasons: (1) the volume coverage patterns can be redefined and (2) operationally the
Super Resolution capability can be disabled in the RDA.

The position of the first good data value is determined by the fields: surv_range and dop_range. This
value is usually 1 which means the first position in the array has the first good data value.

If statically allocating space for a complete elevation of radial base data, the following macros should be
used in order to handle extreme conditions in the WSR-88D radar. Also note that in Build 10 the
Compact_basedata_elev Structure in basedata_elev.h Was modified to require allocation of memory
for each compact_radial structure.

CODE Volume 3 B24.0r1.20 October 2025 Page 81 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

BASEDATA_MAX_RADIALS 400 Maximum number or radials with a 1.0
degree azimuth interval

BASEDATA_MAX_SR_RADIALS 800 Maximum number of radials with a 0.5
degree azimuth interval

NOTE: Current basic moment data arrays are arrays of shorts in the radial message and arrays of bytes in
the elevation message. At some point in the future the radial message arrays may be converted to
bytes.

Functions for Reading Basic Moments

The base data moments (velocity, spectrum width, and reflectivity) are no longer guaranteed to be in a
specific order. The data offsets in the radial header or the provided helper functions must be used to
access the data arrays.

For radial messages only, three helper functions can be used rather than the offsets. Using a pointer to
the base data radial message obtained when reading the linear buffer, these functions return the pointer
to the beginning of the array containing the desired moment. These functions cannot be used with
elevation basedata messages.

RPGC_get surv_data

Returns a pointer to the surveillance data array.
RPGC_get vel data

Returns a pointer to the radial velocity data array.
RPGC_get wid data

Returns a pointer to the spectrum width data array.

RPGC_get radar data (Available with Build 10)
Though designed to read the future Dual Polarization data fields, this function can also read the
basic moments. Returns a pointer to the designated data array.

The function ReGC_bins_to_ceiling provides a convenient means of determining the last good data
point in the array based upon the 70,000 ft MSL data cut-off. The function RPGC_num_rad bins
accomplished the same but is only valid for Legacy recombined data. These functions are described in Part E of
this document.

void* RPGC get surv _data(void* bufptr, int* first good bin,
int* last good bin)

PARAMETER: bufptr Pointer to the radial message
first_good bin Pginter to the index of the first bin (output)
last_good bin Pointer to the index of the last bin (output)

RETURN VALUE: Pointer to start of surveillance data within a radial, or NULL on
failure.

CODE Volume 3 B24.0r1.20 October 2025 Page 82 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

EXAMPLE:

void* RPGC get vel data(void* bufptr, int* first good bin,
int* last good bin)

PARAMETER: bufptr Pointer to the radial message
first_good bin Pginter to the index of the first bin (output)
last_good bin Pginter to the index of the last bin (output)

RETURN VALUE: Pointer to start of velocity data within a radial, or NULL on
failure

EXAMPLE:

void* RPGC get wid data(void* bufptr, int* first good bin,
int* last good bin)

PARAMETER: bufptr Pointer to the radial message
first_good bin Pginter to the index of the first bin (output)
last_good bin Pginter to the index of the last bin (output)

RETURN VALUE: Pointer to start of spectrum width data within a radial, or NULL
on failure.

EXAMPLE: This function is not yet used in any algorithm.

Parameter Descriptions
bufptr

A pointer to the input buffer containing radial data.

first_good bin (Output)
A pointer to the value of the index to first good data bin. The index can be used with the returned
pointer to the surveillance data (almost always 0). That is the index is intended for use ina C
array (i.e., beginning with 0). NOTE: This value is 1 less than the contents of the base data
header field surv_range Or dop_range Which were array indexes originally intended for
FORTRAN (i.e., beginning with 1).

last_good bin (Output)
A pointer to the value of the index to last good data bin. The index can be used with the returned
pointer to the surveillance data (almost always 0). That is the index is intended for use ina C
array (i.e., beginning with 0). This value is calculated from the base data header fields
dop_range & num_dop_bins for velocity and spectrum width and from surv_range &
num_surv_bins for reflectivity data. This value reflects the 70,000 feet MSL cutoff.

Notes / Rules for use

CODE Volume 3 B24.0r1.20 October 2025 Page 83 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

1. Itis important that the return value always be tested for NULL. Though rare, it is possible to
have a NULL pointer to the data array even though that moment is enabled in the RDA.

2. ltis critical that the algorithm does not read and use data that exceed the limits of the first and
last "good" bin. See item 2 - Processing Individual Radials in Volume 3, Document 4, Section 11
Part B. If the algorithm internal arrays or product arrays exceed this, they should be padded with

‘0.

Determining Basedata Message Type

The following convenience functions provide a method of determining the type of basedata radial
message. They provide a method of reading the cut type bits and the radial type bits in the msg_type
field in the base data header.

RPGC_check_radial_type Can be used to determine two factors.
e In Build 12.1 the meaning of the SUPERRES_TYPE Dbit reflects the azimuth resolution.
e In Build 12 the meaning of the HIGHRES_REFL_TYPE bit reflects the horizontal range of the
surveillance bins. The information about the size and resolution of the data can be obtained via

other basedata header fields.
e The values of the other radial type bits are directly related to the type of basedata being used so
as long as the algorithm registers for the correct type data these fields do not need to be tested.

unsigned short RPGC_check radial type(void *radptr,
unsigned short check type)

PARAMETER: radptr address of the basedata message
check_type hjt mask for radial type desired

RETURN VALUE: The result of AND'ing the bit mask provided in the check_type
parameter with the value of the radial type bits in the basedata
header msg_type field. These are bits 8, 9, 10, 11, and 12.

Used with the appropriate radial type masks to determine the radial type of the basedata message.

EXAMPLE: cpc007/tsk015/superes8hit.c

Parameter Descriptions
radptr
The address of the basedata radial message (or at least the basedata header).

check_type
A bit mask for the radial type desired. Possible values are: SUPERRES_TYPE, DUALPOL_TYPE,
RECOMBINED TYPE, and PREPROCESSED DUALPOL_TYPE Of any combination OR'd together.
Using the raDIAL TYPE_MasK passes the value of all of the radial type bits which can be
subsequently tested. These masks are defined in basedata.h.

Notes / Rules for use (for a data driven task):

CODE Volume 3 B24.0r1.20 October 2025 Page 84 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

1. WARNING: The return value is undefined if the radptr is NULL.
2. The use of this function is not recommended until Build 12.

RPGC_check_cut_type iS useful if registered for one of the BasebaTa types instead of a REFLDATA Or
COMBBASE type in determining whether the radial is desired.

unsigned short RPGC_check cut type(void *radptr, unsigned short check type)

PARAMETER: radptr address of the basedata message
check_type hijt mask for cut type desired

RETURN VALUE: The result of AND'ing the bit mask provided in the check type
parameter with the value of the cut type bits in the basedata header
msg_type field. These are bits 5, 6, and 7.

Used with the appropriate cut type masks to determine the cut type of the basedata message..

EXAMPLE: cpc007/tsk015/superes8hit.c

Parameter Descriptions
radptr

The address of the basedata radial message (or at least the basedata header).

check type
A bit mask for the cut type desired. Possible values are: REFLDATA TYPE, COMBBASE TYPE, and
BASEDATA TYPE Or any combination OR'd together. Using the cut_tyPE_Mask passes the value
of all of the cut type bits which can be subsequently tested. These masks are defined in
basedata.h.

Notes / Rules for use (for a data driven task):

=

WARNING: The return value is undefined if the radptr is NULL.

2. To select the desired radials for products needing only surveillance data, a bit mask of
REFLDATA_TYPE | BASEDATA_TYPE Would return a value of TRUE for desired radials.

3. To select the desired radials for products needing Doppler data. a bit mask of

COMBBASE_TYPE | BASEDATA TYPE Would return a value of TRUE for desired radials

Reading Dual Polarization Data (in the generic moment)

Beginning with Build 10, support is provided for advanced data fields that will be contained in the series
of generic moment structures in the basedata radial message. This data will not be available until Build

CODE Volume 3 B24.0r1.20 October 2025 Page 85 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

12. Only preliminary development support for these Dual Pol fields is provided in Build 11. See
Volume 2, Document 4, Section I, Base Data Format, for a description of these data types and the
structure of the basedata radial message.

These data fields can be accessed by using the offsets provided in the of£sets array in the base data
header. The number of offsets in the array is given by the no_moments field. Each offset must be tested
for a value of 0, meaning no data.

The offset obtains the generic structure address. Reading the advanced data fields contained in the
generic moment structures is more involved than the original basedata moments and requires:

o Reading the name field in the structure to determine the data type.
e Reading the data_word size field in the structure to determine whether the gate union field is
dN unsigned char alfay, unsigned short dlfay, unsigned int alray, Or £loat array.

The position of the first good data value is assumed to be 1, which means the first position in the array
has the first good data value. The number of valid data values within the array is determined by the
value of no_of gates field.

The Dual Pol data fields available to algorithms are either 1200 or 1840. The maximum number of data
bins in each type of array is:

1200 for ZDR, RHO, PHI, KDP, SDP
1840 for SNR, SMZ, SDZ (related to number of Z gates)
1200 for SMV (related to number of V gates)

Currently it is unclear whether in Build 12 the number of gates could be 900 instead of 1200 and
460 instead of 1840. This could occur at higher elevations or if ‘Super Resolution® is turned off at
the RDA. If preallocating arrays use 1200 or 1840 as appropriate. Even though the following are
defined in basedata.h, as you can see this list is not complete.

BASEDATA_RHO_SIZE 1200 Size of the DRHO Correlation Coefficient array (shorts)
BASEDATA_PHI_SIZE 1200 Size of the DPHI Differential Phase array (shorts)
BASEDATA_SNR_SIZE 1840 Size of the DSNR Signal to Noise Ratio array (bytes)
BASEDATA_ZDR_SIZE 1200 Size of the DzDR Differential Reflectivity array (bytes)
BASEDATA RFR_SIZE 240 Ignore for now.

Function for Reading Generic Moment Data Fields (Dual Pol Data) and Basic Moments

This helper function can be used to obtain the pointer to the array containing the additional desired data
fields present in the base data message instead of using the no_moments field and the offsets array
field in the basedata header. This function reads radar data contained in the Generic moment structure.
This structure contains advanced data fields including Dual Polarization data fields targeted for Build 12
Only preliminary development support for Dual Pol data is provided in Build 11. In addition, this
function can read the basic data moments (reflectivity, velocity, and spectrum width).

CODE Volume 3 B24.0r1.20 October 2025 Page 86 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

void* RPGC_get radar data(void* bufptr, int type, Generic_moment t *mom)

PARAMETER: bufptr Pointer to the radial message

type The Type of Data Desired
mom A pointer to a generic moment structure
RETURN VALUE: Returns a pointer to the desired data array in the base data message.

Returns NULL if data is not present or message is not a radial
message.

Given the address of the radial message and the type of data desired, this function returns a
pointer to the start of the desired data and populates a generic structure with appropriate header
information.

EXAMPLE: s_data = (short *) RPGC_get radar data((void *)radial,

RPGC_DREF, &gen moment) ;

where
Generic_moment_t gen_ moment;
Generic _moment t *my gen moment = &gen_moment;

Parameter Descriptions
bufptr

type

mom

A pointer to the basedata message obtained by RPGC_get inbuf.

The type of data field to read are defined in rpgc.h (ignore RPGC_DRF2 and RPGC_DRFR).
RPGC_DZzDR - Differential Reflectivity

RPGC_DPHI - Differential Phase

RPGC_DRHO - Correlation Coefficient

RPGC_DSNR - Signal-to-Noise Ratio

RPGC_DsMz - Smoothed Reflectivity

RPGC_DsMv - Smoothed Velocity

RPGC_DKDP - Specific Differential Phase

RPGC_DSDZ - Texture (standard deviation) of Reflectivity

RPGC_DSDP - Texture (standard deviation) of Differential Phase

For data types that have not been predefined, use the type Recc_bany. When RpGc_DaNY is used
the desired type must be entered in the 'name’ field of the structure passed in the mom parameter.
Even though the original base moments are not contained in a generic moment structure. they
can be read with this function using the types RPGC_DREF, RPGC_DVEL, and RPGC_DSW..

A pointer to a generic moment structure, type Generic_moment_t defined in
generic_basedata.h. YOU must provide the address of a declared variable of that type. A
NULL pointer cannot be used. The header fields in this structure are populated with the
information required to interpret the data array. In the case that the type passed is RPGC_DaNY,
the 'name’ field in the generic moment structure must be set to the desired 4 character name
before calling this function.

Notes / Rules for use

1.

This function has been tested in a sample algorithm and is available for use.

CODE Volume 3 B24.0r1.20 October 2025 Page 87 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

CODE Volume 3 B24.0r1.20 October 2025 Page 88 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services
Part H. Aborting Product Construction

This guidance is based upon changes in the ORPG algorithm abort services introduced after
the initial deployment of the ORPG. However, some algorithms have a different pattern of
usage based upon the legacy algorithms (which were not completely consistent).

The typical reason an algorithm is aborted is an inability to read input data or input data that are
out of sequence. All algorithms must do one of the following:

1. Successfully output a product, or

2. Call the appropriate abort function.

The algorithm developer is responsible for accomplishing an abort. When aborting product

generation:

o All output buffers successfully obtained must be released with ReGc_rel outbuf (Or
RPGC_rel all outbufs) USing the value bEsTRroY for the disposition parameter.

e All input buffers successfully obtained must be released with RPGC_rel inbuf (Or
RPGC_rel all inbufs).

e One of the RPGC abort routines must be called. Finally, control must be returned to the
algorithm control loop function.

Note: The following function has been deprecated and should not be used.

e RPGC_abort_datatype_because

©This will be eliminated in a future build. If any development software uses this
function it should be replaced with RPGC_abort dataname because.

int RPGC_abort()
PARAMETER: None

RETURN VALUE: Not Used

Accomplishes infrastructure house cleaning before returning to the algorithm control loop. An
abort reason code is generated internally based upon the failure to obtain either an input buffer or
an output buffer.

EXAMPLE:

int RPGC_abort because(int reason)

PARAMETER: reason Abort reason code.

CODE Volume 3 B24.0r1.20 October 2025 Page 89 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services
RETURN VALUE: Not Used

Accomplishes infrastructure house cleaning before returning to the algorithm control loop. Passes
an abort reason code specified by the reason parameter.

EXAMPLE:

int RPGC_abort dataname because(char *dataname, int reason)

PARAMETER: dataname Name of the output product not being generated.
reason Abort reason code.

RETURN VALUE: Not Used

Accomplishes infrastructure house cleaning before returning to the algorithm control loop. Passes
an abort reason code specified by the reason parameter. This abort function is used by algorithms
producing more than one product type. This does not include products requiring customizing data
in the product request parameters (other than the standard elevation parameter). Allows aborting a
request for one product type while continuing to generate other products.

EXAMPLE: cpc007/tsk001/basrflct.c
cpc014/tsk003/hybrprod.c

int RPGC_abort request(User_ array t *request, int reason)

PARAMETER: request Address of the user array entry containing a specific product request.

reason Abort reason code.

RETURN VALUE: Not Used

Accomplishes infrastructure house cleaning before returning to the algorithm control loop. Passes
an abort reason code specified by the reason parameter. This abort function is used by algorithms
producing products requiring customizing data in the product request parameters. Allows aborting
one request for a product type while satisfying other requests for that product type.

EXAMPLE: cpc007/tsk015/superes8bit.c
cpc014/tsk011/user_sel LRM.c
cpc014/tsk014/saausers_main.c

int RPGC_cleanup and abort(int reason)
PARAMETER: reason Aport reason code.

RETURN VALUE: Not Used

CODE Volume 3 B24.0r1.20 October 2025 Page 90 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

Releases all acquired input buffers that are not already released, releases all output buffers still
open using a DESTROY disposition (see RPGC_rel outbuf), and accomplishes infrastructure
house cleaning before returning to the algorithm control loop. Passes an abort reason code
specified by the reason parameter.

EXAMPLE: cpc013/tsk005/prcprate_RateAlg_buffctrl.c

cpc013/tsk008/saa_main.c

Parameter Descriptions

reason

Abort reason code. Abort reason codes are defined in prod_gen msg.h (prior guidance
stipulated use of codes in a309.h). In some cases the reason code is simply the value of opstat
returned by get_inbuf and get_outbuf calls. In other cases the codes pGM_MEM LOADSHED,
PGM_DISABLED MOMENT, PGM_INVALID REQUEST, PGM PROD_ NOT GENERATED, Of
PGM_INPUT DATA ERROR are explicitly passed. See the rules for use below.

dataname

The name of the product not being produced. The value of this parameter is the same as the
output product registered. This name must be in the list contained in the output_data
attribute of the task_attr table entry for the algorithm task (the output data entry
determines the number or ID of the linear buffer containing the output data). See CODE Guide
Volume 2, Document 2, Section 111 for a complete explanation of product and task configuration
viathe product_attr_table and task_attr_table configuration files.

request

The individual request being aborted. The user array contains up to 10 product requests and is
obtained via the RPGC_get_customizing_data Call. The first user array entry is at
suser_array, the second request (if there is one) is at suser_array[1], and so forth.

Notes / Rules for use

=

If all products cannot be successfully completed, at least one abort service must be called.
The appropriate abort function is called after releasing the appropriate open output buffer (if any)
and prior to returning to the loop control function.
The current guidance is to use RPGC_abort When possible. This basic function can be used if the
failure is due to the inability to obtain either an input or output buffer and the task only produces
one product.
With algorithms producing more than one product type, RPGC_abort_dataname_because iS
used when unable to complete the specified product type but able to continue the generation of
other products.
With algorithms producing products that use customizing data from the product request message,
RPGC_abort_request IS used when unable to complete generation of a product for a specific
request message but able to continue the generation of that product for other requests.
The convenience function RPGC_cleanup_and_abort Can be used in situations where no
remaining requested products can be completed.
A reason code must be passed when the applicable abort function requires a code and when
aborting for reasons other than the failure to obtain an input or output buffer. The correct reason
code to be passed is:
o Typical Algorithms (those NOT producing RADIAL DATA)
= |If the abort is because of an inability to get a buffer with get_inbuf or get_outbuf,
the opstatus returned is used as the reason code.

CODE Volume 3 B24.0r1.20 October 2025 Page 91 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

o

If the abort is because not all required base data moments are enabled (in the case
where the RPGC_what_moments test was used), PGM_DISABLED MOMENT iS the
reason code passed. Note: The above test is not required if the required basic
moments are registered (See RPGC_reg_moments).
Beginning with Build 12, peM_DIsSABLED MOMENT is also used if a needed
advanced data field (Dual Pol in the generic moment structure) is not available.
If the abort is because of the failure to obtain memory via malloc Or calloc,
PGM_MEM_LOADSHED iS passed.
When the current elevation cut does not support the product being generated in
algorithms ingesting one of the super resolution data types use
PGM_PROD_NOT_GENERATED.
When readlng a non-product data store fails use PGM_PROD NOT GENERATED.
If there is some algorithm unique reason for being unable to complete product
generation, then

o Use the pgM_1NPUT DATA ERROR COde if problem is generally related to

the nature of the input data.
o Use the pgM_1nvaLID REQUEST code if the problem is related to the nature
of the product request parameters.

DEFAULT: If the reason for aborting the product generation does not clearly fall
into one of the above cases, PréM_PROD NOT GENERATED IS a safe default reason
code that can be used.

Algorithms Producing RADIAL DATA

The only time an algorlthm producing RabpIAL DATA aborts is for the failure to
obtain an input buffer or output buffer. The status returned by the API function is
used as the abort reason so RpGc_abort is used if the radial output is the only
output.

For other conditions (disabled basic moment, an advanced Dual Pol data missing,
etc.) the radial is passed along. See Special Instructions for Radial Producers in
Volume 3 Document 3 Section | Part D.

8. Some abort functions permit continued processing while others do not

o

o

o

After RPGC_abort, RPGC_abort_because O RPGC_cleanup_and_abort dle called,

processing (reading input, writing output, etc.) must not continue. The algorithm must
accomplish any necessary cleanup and return to the loop control function.

After RPGC_abort_dataname because IS called, processing of other registered output

products (if any are requested) may continue.

After RrGC_abort_request is called, processing of additional requests for that product

(if any) may continue. The correct reason code would be peM_INVALID REQUEST if there
is a problem with the request message.

The following function was not intended for normal replay product request responses and should not be
used by normal algorithms. This function is not documented.

int RPGC_product_replay request response(int pid, int reason,

short *dep params)

CODE Volume 3

B24.0r1.20 October 2025 Page 92 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

CODE Volume 3 B24.0r1.20 October 2025 Page 93 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services
Part I. Non-product Data Access

There are situations where an algorithm can use a persistent data store (on disk) that does not need to be
configured as an intermediate product. Part D of CODE Guide Vol 2, Document 2, Section Ill - ORPG
Configuration for Application Developers provides guidance in deciding when to use an intermediate
product and when to use a non-product data store.

Several Legacy algorithms ported from FORTRAN use another mechanism of sharing
persistent data called ‘Inter-Task Communication (ITC) Blocks'. Even though the C
Algorithm API includes functions to use ITC blocks, they are not recommended for use in
new algorithms. For new algorithms, non-product data stores are used in place of 'ITC
Blocks'

There are 11 functions involved in access of a linear buffer non-product data store. Currently some these
functions are used by the snow product algorithm in cpc013/tsk008 (Saa_compute_products.c) and in
cpc014/tsk014 (saausers_main.c & saausers_io_functions.c)

e RPGC data access_open 0pens a linear buffer that has been configured in the
data_attr_ table configuration file.

¢ RPGC_data_ access_close closes a linear buffer.

e RPGC_data_access_list - obtains a list of information about linear buffer messages. This is a
convenient means of getting a list of available message IDs.

e RPGC_data_access_read reads a data message from a linear buffer non-product data store.

e RPGC_data_access_write Writes a data message to a linear buffer non-product data store.

e RPGC data_access_seek lepositions the read pointer. Normally used with a message queue
type linear buffer.

e RPGC_data_access_clear erases a specified number of older messages in a buffer. Used in
specific situations to make room for new messages.

The following function provides a means of reacting to an update to a specific message buffer.

e RPGC_data_access_UN_register iS Used to register a callback handler function that is executed
when the specified buffer is updated.

The following functions are used to obtain information about a buffer or a particular message in a buffer.
e RPGC data access_previous msgid Obtains the message ID of the last message read from or
written to the buffer.

e RPGC_data_access_msg_info Obtains information about the linear buffer message specified.
e RPGC data access_stat 0Obtains several kinds of status information about a linear buffer

There are 5 function that provide database style access of a linear buffer non-product data store.
Currently these functions are not used in any operational algorithm.

CODE Volume 3 B24.0r1.20 October 2025 Page 94 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

" RPGC DB select Obtains the 'location’ of messages that match the query provided

* RPGC_DB get record Obtains the entire message (record) based upon the 'location’.

* RPGC_DB_ get_ header ODbtains a reference to just the query header portion of the message
(record).

" RPGC DB insert inserts a new record into the database linear buffer.

* RPGC_DB delete permanently removes a message (record) from the database.

There are two functions that support use of a standard disk file non-product data store. Currently used by
the snow algorithm in cpc013/tsk008 (Saa_file_io.c).

e RPGC_get_working_dir obtains the current ORPG working directory.
e RPGC_construct_ file_name Creates complete-path filename for the disk file non-product data
store.

Basic Linear Buffer Access Functions

These functions support access to Public non-product data stores which are implemented as linear
buffers and configured in the data_attr_table configuration file. Functions are provided to open and
close the buffer files and to read a message from the buffer and write a message into the buffer.

Currently, the Public non-product linear buffers are frequently configured as 'replaceable’ (LB_REPLACE)
which creates a non-sequential linear buffer where messages are written with a specific user provided
message ID. If the user writes a message with a previously used message ID, it replaces the message
with the same ID. If a user writes a message with an ID not being used, the message is added to the
buffer.

A message database type buffer (LB_bs) has been defined that provides either the behavior of the
LB_REPLACE type or the LB_MsG_PooL type. The purpose of this type of buffer is to provide a non-
sequential message set. The algorithm is responsible for making room for more messages when the
buffer is full. With LB_bB buffers, the behavior is determined by the method of specifying the user ID
when adding messages to the linear buffer. The method chosen must be used consistently. With this type
of linear buffer the user has more control because any specific message can be read or updated
(replaced). Each message could even contain different types of data.
= |f messages are added by writing with a user specified message ID (a non-zero positive integer),
the subsequent behavior is like LB_REPLACE. It is the users' responsibility to use the IDs
uniquely. The advantage of this method is each specific message 1D can contain an algorithm
specific type of data.
= If messages are added by writing with a message 1D of LB_any, the subsequent behavior is the
LB_MsSG_POOL Or database type. The user must subsequently obtain the message 1D chosen by the
infrastructure in order to access the message.

Public non-product linear buffers can also be configured as a message queue type buffer (the default
LB_QUEUE). The purpose of this type of buffer is to write message sequentially and read message
sequentially. When full, the older messages are automatically deleted. This type of data store might be
advantageous for use even with product data (associated with the radar scan) if there is a need to read

CODE Volume 3 B24.0r1.20 October 2025 Page 95 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

previous messages. The RPGC_data_access_seek function permits moving the read pointer to provide
access to previous messages.

NOTE: These linear buffer access functions require that the linear buffer be managed by the
ORPG by being defined in the data_attr_ table configuration file.

Basic Access Functions

The RPGC_data_access_open function opens the buffer with the desired access privileges. Normally
RPGC_data_access_close IS not used unless the access privileges must be changed.

int RPGC_data access open(int data_id, int flags)

PARAMETER: data_id The linear buffer ID

flags Access permission flags

RETURN VALUE: The LB descriptor on success or a negative number for indicating an
error condition (codes defined in orpgda.h)

Opens the linear buffer data_id for access permissions £lags. If buffer is already open no action
is taken.

EXAMPLE: cpc005/tsk002/pcipdalg.c
cpc013/tsk008/saa_compute_products.c
cpc014/tsk014/saausers_main.c

Parameter Descriptions

data_id
The identity of the linear buffer. Non-product buffer id's are defined in orpgdat.h/
orpgdat.inc. If the header file has not been modified to include this new data id, the
<Data_Buffer_ Number> Must be entered rather than the <pata_Buffer Name>. Whichever is
used (name or number) it must be the same as the data_id attribute for the data store definition

in the data_attr_table configuration file.
flags

Read / write permission flags. These are 'LB_RreaD' for read only, 'LB_wrITE' for write only, or
'LB_READ | LB _WRITE' for both.

Notes / Rules for use

1. RPGC_data access_open Must be called with the required permissions. If the linear buffer is
opened read-only, in order to write to the buffer it would have to be closed with
RPGC_data_access_close then reopened with write permission.

2. If afile based linear buffer (typically used by algorithms) is already open, no action is taken by
this function. However, if a shared memory linear buffer is already open,
RPGC_data_access_ppenlﬂayfa“.

CODE Volume 3 B24.0r1.20 October 2025 Page 96 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services
int RPGC_data access close(int data_id)
PARAMETER: data_id The linear buffer ID

RETURN VALUE: Not Used

Closes the linear buffer data_id.

EXAMPLE: This function is not yet used in any algorithm

Parameter Descriptions

data_id
The identity of the linear buffer. Non-product buffer id's are defined in orpgdat.h/
orpgdat.inc. If the header file has not been modified to include this new data id, the
<Data_Buffer Number> Must be entered rather than the <pata Buffer Name>. Whichever is
used (name or number), it must be the same as the data_id attribute for the data store definition
in the data_attr_table configuration file.

Notes / Rules for use

1. Since algorithms are persistent tasks, there is generally no need to close a linear buffer unless
o the buffer is SINGLE_WRITER and other tasks also need to update the buffer or
o the buffer was initially opened as read only and write permissions are needed.

A common use of the ReGC_data_access_list function is to provide a list of valid message 1Ds that
are currently in the linear buffer.

int RPGC_data access_list(int data_id, LB info *1list, int nlist)

PARAMETER: data_id The linear buffer ID

list pointer to a list of information structures (ourput)
nlist maximum number of items in the list
RETURN VALUE: the number of item is the list or a negative error number.

Returns a list of information structures about the latest n1ist messages in the linear buffer.

EXAMPLE: cpc005/tsk002/write_gagedb.c

Parameter Descriptions

data_id
The identity of the linear buffer. Non-product buffer IDs are defined in orpgdat.h /
orpgdat.inc. If the header file has not been modified to include this new data ID, the
<Data_Buffer_ Number> Must be entered rather than the <pata_Buffer Name>. Whichever is
used (name or number) it must be the same as the data_id attribute for the data store definition
inthe data_attr table configuration file.

list (output)

CODE Volume 3 B24.0r1.20 October 2025 Page 97 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

A pointer to a pre-allocated array of information structures (LB_info defined in 1b.h). The size
of this pre-allocated array cannot be less than the n1ist parameter. The structure contains the
following fields:

LB_id_t id; which is the internal message id
int size; which is the size of the message
int mark; which is the mark value of the message ?????

nlist
The maximum number of items to include in the list.

Notes / Rules for use

The following functions provide the capability of reading and writing messages.

CASE 1: Message Database Buffers.

= Method 1 (Message Replace). A specific message ID is used with RPGC_data access_read and
RPGC_data_access_write. This is because the data content do not have to be similar from
message to message. Each message ID is typically associated with specific data or message type
content. This is one reason a message database linear buffer useful. The user of the data must
know the meaning of the message IDs.

= Method 2 (Message Pool) A specific message ID is used with RPGC_data_access_read and a
message ID of LB_any is used with RPGC_data_access_write. This creates a message pool or
database of messages for random access. The messages may contain the same type of data. If the
message contain different type of data, the type must be identified by information in the message
itself, not the message ID. To read the message, the message ID must be obtained using
RPGC_data_access_previous_msgid immediately after it is written to the buffer.

CASE 2: Message Queue Buffers.

It is best to NOT specify a specific message ID when writing messages to a message queue linear buffer.
In this type buffer the data are similar in content from message to message, but in a specific sequence
(for example elevation index or time). The sequence is determined solely by the order the messages are
written (added). Normally a message is added sequentially by using LB_any as the message 1D with
RPGC_data_access_write. The messages can be read sequentially by using LB_NEXT as the message
ID with RPGC_data_access_read. After reading messages, earlier messages can be read again by
moving the read pointer with ReGC_data_access_seek.

int RPGC_data access read(int data_ id, void *buf, int buflen,
LB id t msg_id)

PARAMETER: data_id The linear buffer ID

buf Pointer to the buffer to receive the message read (output)

buflen The number of bytes to read or a flag to read the entire message.

CODE Volume 3 B24.0r1.20 October 2025 Page 98 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services
msg_id The LB message ID

RETURN VALUE: The message length on success; o for message not yet received
(LB_To_coME); or a negative number for indicating an error condition
(error codes are defined in orpgda.h).

Reads the message msg_id from the linear buffer data_id into the allocated buffer but.

EXAMPLE: cpc013/tsk008/saa_compute_products.c
cpc014/tsk014/saausers_io_functions.c

Parameter Descriptions

data_id
The identity of the linear buffer. Non-product buffer ID's are defined in orpgdat.h/
orpgdat.inc. If the header file has not been modified to include this new data ID, the
<Data_Buffer Number> Must be entered rather than the <pata Buffer Name>. Whichever is
used (name or number), it must be the same as the data_id attribute for the data store definition
in the data_attr_table configuration file.

buf (output)
A pointer to a buffer to hold the message read.
Option 1: If reading the entire message, space is allocated and the caller is responsible to free the
buffer when no longer needed. In this case the but must be type char**.
Option 2: If reading a portion of the message, the function copies the indicated number of bytes,

buflen, into the address provided.
buflen

Option 1: To read the entire message, a flag value LB_arroc Bur is used. In this case the function
allocates the required space in the location but. Program logic must free this memory when no
longer needed.
Option 2: To read just a portion of a message (useful for example to read a message header), the
number of bytes to be read is specified. No memory is allocated in this case.

msg_id
The message ID is used to determine which message in the linear buffer is read.
CASE 1: For a message database type linear buffer, this is a user-specified message ID. This
permits a user to read and write to a specific message ID in the linear buffer.
CASE 2: The message queue linear buffer permits retrieval of a series of message via a LB read
pointer. This could be LB NExT to simply read the next message in sequence (the location of the
read pointer. The function RrGc_data_access_seek can be used to place the read pointer at the
desired location before reading.

Notes / Rules for use

1. IfrRPGC_data_access_read is Called with LB_arroc_Bur, the caller is responsible for freeing
memory allocated to the buffer but.

2. Unlike reading product data with ReGC_get_inbuf_ by name, N0 Synchronization is
accomplished when reading a series of messages with RPGC_data_access_read from a message
queue type buffer. The caller is responsible for obtaining the correct message.

CODE Volume 3 B24.0r1.20 October 2025 Page 99 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

int RPGC data access write(int data id, void *buf, int buflen,

LB id t msg_id)

PARAMETER: data_id The linear buffer ID

buf Pointer to the buffer containing the data to be written
buflen The number of bytes to be written

msg_id The LB message ID

RETURN VALUE: The message length on success; o for a full buffer (LB_rurr); ora

negative number for indicating an error condition (error codes are
defined in orpgda.h).

Writes data contained in the buffer buf into the message msg_id of linear buffer data_id.

EXAMPLE: cpc013/tsk008/saa_compute_products.c

cpc014/tsk014/saausers_io_functions.c

Parameter Descriptions
data_id

buf

The identity of the linear buffer. Non-product buffer ID's are defined in orpgdat.h/
orpgdat.inc. If the header file has not been modified to include this new data ID, the

<Data Buffer Number> Must be entered rather than the <pata Buffer Name>. Whichever is
used (name or number), it must be the same as the data_id attribute for the data store definition
in the data_attr_table configuration file.

A pointer to the buffer containing the data to be written into the linear buffer.

buflen

The number of bytes to be written into the linear buffer message.

msg_id

The message ID of the message being written.
CASE 1: For a message database type linear buffer, there are two methods. Which ever is chosen,
must be used consistently:
= Method 1: A user-specified message ID (a non-zero positive integer). This permits a user
to read and write to a specific message ID in the linear buffer and associate a type of data
with a specific message ID. This is the LB_REPLACE behavior.
* Method 2.:With the value of LB_aNY , the message ID is chosen by the infrastructure.
The user must obtain the ID to access the message after written. This is the LB_MsG_pooL
behavior.
CASE 2: The message queue linear buffer permits storage and retrieval of a series of messages.
The value of LB_any should always be used to allow the 1Ds to be assigned automatically (an 1D
that is one larger than the previous message ID).

Notes / Rules for use

=

Must have write permission.

The return value LB_ruLL can be a result of several conditions. You cannot overwrite a message
before reading it in an LB_MusT READ type buffer. You can run out of space in LB_NO_EXPIRE
and LB_REPLACE type buffers. Older messages can be removed with RPGC_data_access_clear.
Immediately after writing a message using LB_aANY, RPGC_data_access_previous msgid Can
be called to obtain the message ID assigned by the infrastructure.

CODE Volume 3 B24.0r1.20 October 2025 Page 100 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

The function RPGC_data_access_seek provides a means of setting the read pointer to the desired
location in a message queue type linear buffer.

Documentation of This Function is Not Complete
int RPGC_data access_seek(int data_id, int offset, LB id t *msg_id)
PARAMETER: data_id The linear buffer ID

offset The offset (+/-) from the input message msg_id

msg_id Input: The buffer message ID from which the offset is applied.
Output: The message ID of the moved read pointer or error code.
RETURN VALUE: the size of the message on success, o for message expired or not yet
available, or a negative error condition (error codes defined in
orpgda.h)

Resets the location of the buffer read pointer with respect to the input msg_id.

EXAMPLE: This function is not yet used in any algorithm

Parameter Descriptions

data_id
The identity of the linear buffer. Non-product buffer ID's are defined in orpgdat.h/
orpgdat.inc. If the header file has not been modified to include this new data ID, the
<Data_Buffer_ Number> Must be entered rather than the <pata_Buffer Name>. Whichever is
used (name or number), it must be the same as the data_id attribute for the data store definition

in the data_attr_table configuration file.
offset

The number of steps to move the read pointer from the input msg_id. A negative value moves

the pointer to an earlier message and a positive value moves the pointer to a later message.
msg_id (input/ output)

Input: The ID of the message from which the offset is applied. This can be a specific message 1D

or one of the following: LB_FIRST, LB_CURRENT, Or LB_LATEST Which is the first message in the

buffer, the message at the current read pointer, or the last message in the buffer.

Output: The message ID to where the read pointer has been moved or LB_SEEK_TO_COME if

message not in buffer or LB_seex_EXPIRED if message is expired.

Notes / Rules for use

1. WARNING: This function can place the read pointer on an EXPIRED message or a message that
has not yet been received. Always check the return value.

The following function permits removal of a specified number of oldest messages. Currently there is no
‘delete’ function to remove any single message.

CODE Volume 3 B24.0r1.20 October 2025 Page 101 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

Documentation of This Function is Not Complete
int RPGC_data_access_clear(int data_id, int msgs)
PARAMETER: data_id The linear buffer ID

msgs Number of messages to remove

RETURN VALUE: The number of message removed or a negative error (message error
codes defined in orpgda.h).

Removes the oldest msgs number of messages from the buffer. If the buffer has fewer than msgs
messages, all messages are cleared.

EXAMPLE: This function is not yet used in any algorithm

Parameter Descriptions

data_id
The identity of the linear buffer. Non-product buffer ID's are defined in orpgdat.h/
orpgdat.inc. If the header file has not been modified to include this new data ID, the
<Data_Buffer_ Number> Must be entered rather than the <pata_Buffer Name>. Whichever is
used (name or number), it must be the same as the data_id attribute for the data store definition
in the data_attr_table configuration file.

msgs
The number of messages to remove from the buffer.

Notes / Rules for use

1. Must have write permission (LB_wriTE) for the buffer.

2. This function can be used with a message database type buffer to remove messages that are no
longer needed or desired to make room for new messages. Not needed with a message queue
type buffer.

Responding to an Update of a Specific Buffer

Documentation of This Function is Not Complete

int RPGC_data access UN register(int data id, LB id t msg_id,
void (*callback) ())

PARAMETER: data_id The linear buffer ID
msg_id The LB message ID triggering the handler function.

(*callback) () Address of a function callback which contains the logic to be
executed when the buffer is updated.

CODE Volume 3 B24.0r1.20 October 2025 Page 102 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

RETURN VALUE: LB_SUCCESS Or a negative error number (error codes defined in
orpgda.h).

Registers the handler function for the linear buffer update for msg_id.

EXAMPLE: cpc005/tsk002/pcipdalg.c

Parameter Descriptions

data_id
The identity of the linear buffer. Non-product buffer ID's are defined in orpgdat.h/
orpgdat.inc. If the header file has not been modified to include this new data 1D, the
<Data_Buffer Number> Must be entered rather than the <pata Buffer Name>. Whichever is
used (name or number) it must be the same as the data_id attribute for the data store definition
inthe data_attr_table configuration file.

msg_id
The message ID who's update triggers the handler function. There are two special values of this
parameter. If LB_any, the handler is executed if any message is updated. If LB_EXPIRED, the

handler is executed if any message is cleared, expired, or deleted.
(*callback) ()

Address of a function caliback Which contains the logic to be executed when the buffer is
updated.

Notes / Rules for use

Obtaining Information About a Buffer or a Specific Message

LB_id t RPGC_data access_previous msgid (int data_id)

PARAMETER: data_id The linear buffer ID

RETURN VALUE: The message ID of the last read / write action on the buffer.
Obtains the message ID of the last read / write action on the buffer.

EXAMPLE: This function is not yet used in any algorithm

Parameter Descriptions

data_id
The identity of the linear buffer. Non-product buffer ID's are defined in orpgdat.h/
orpgdat.inc. If the header file has not been modified to include this new data 1D, the
<Data_Buffer Number> Must be entered rather than the <pata Buffer Name>. Whichever is
used (name or number) it must be the same as the data_id attribute for the data store definition
in the data_attr_table configuration file.

CODE Volume 3 B24.0r1.20 October 2025 Page 103 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services
Notes / Rules for use

1. This function should be called immediately after writing a message with LB_any to obtain the
message 1D assigned by the infrastructure.

int RPGC_data access msg info(int data_id, LB _id t id, LB info *info)

PARAMETER: data_id The linear buffer ID

id The LB message ID
info address of the information structure obtained
RETURN VALUE: LB_SUCCESS, LB_NOT FOUND, LB_TO COME, Of LB_EXPIRED

Obtains information about the linear buffer message specified.
EXAMPLE: This function is not yet used in any algorithm

Parameter Descriptions

data_id
The identity of the linear buffer. Non-product buffer ID's are defined in orpgdat.h/
orpgdat. inc. If the header file has not been modified to include this new data ID, the
<Data_Buffer_ Number> must be entered rather than the <pata_Buffer Name>. Whichever is
used (name or number), it must be the same as the data_id attribute for the data store definition
inthe data_attr table configuration file.

id
The message ID for the information to be obtained. This can be a specific message 1D or one of
the following: LB_FIRST, LB CURRENT, Of LB_LATEST Which is the first message in the buffer, the
message at the current read pointer, or the last message in the buffer.

info

The address of the structure LB_info containing the data obtained about the specified message.
LB_info iS defined in 1b.h The structure contains the following fields:

LB_id_t id; which is the internal message id
int size; which is the size of the message
int mark; which is the mark value of the message ?????

Notes / Rules for use
1.

The RPGC_data_access_stat function can obtain several kinds of status information about a linear
buffer.

Documentation of This Function is Not Complete

int RPGC_data access_stat(int data id, LB status *status)

PARAMETER: data_id The linear buffer ID

CODE Volume 3 B24.0r1.20 October 2025 Page 104 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

status TBD
RETURN VALUE: TBD

FUNCTION DESCRIPTION - TBD

EXAMPLE: This function is not yet used in any algorithm

Parameter Descriptions

data_id
The identity of the linear buffer. Non-product buffer ID's are defined in orpgdat.h /
orpgdat.inc. If the header file has not been modified to include this new data ID, the
<Data_Buffer_ Number> Must be entered rather than the <pata_Buffer Name>. Whichever is
used (name or number), it must be the same as the data_id attribute for the data store definition

inthe data_attr_table configuration file.
status

TBD

Notes / Rules for use

1. TBD

Database Linear Buffer Access Functions

These functions support database style access to Public non-product data stores which are implemented
as linear buffers and configured in the data_attr table configuration file. In addition, an ORPG
service that manages database access must be modified.

IMPORTANT: These functions should not be used unless the data are made up of numerous records that
must be searched and retrieved via specified key fields. The basic non-product data access functions
described earlier are preferred because they do not require modification of an ORPG infrastructure
service.

The Public non-product linear buffers must be configured as 'replaceable’ (using LB_DB Or LB_REPLACE)
which creates a message database type buffer. These functions provide a database record search
capability in addition to the ability to add, delete, and read message (records). WARNING: It is the user's
responsibility to not exceed the number of messages configured for the data store in the
data_attr_table.

Defining the Database

In order to use these functions a query structure (called a 'query record' in ORPG documentation) must
be defined. The fields in this query structure can be used to accomplish an SQL-like search of the
records (messages) in the linear buffer. For algorithm non-product data stores, the query structure
should always be the first part of the linear buffer message. To create the query structure:

1. The query structure is defined in a header file which included by the algorithm source code.

2. The file include/rpgdm.h is modified to include this new file.

CODE Volume 3 B24.0r1.20 October 2025 Page 105 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

The RPG database manager must be modified to recognize the new database being defined for the
algorithm.

1. The file rpg_sdgs.conf£ in the cpc002/tsk006 directory is edited to define the new database.
This includes the data_id of the non-product data store, the data type of the structures making up
the message, and a list of the names of the structure fields which can be used in a query.

2. Then the task is recompiled by executing 'make clean', 'make all', then 'make install'inthe
cpc002/tsk006 directory.

A more detailed description of defining the database will be included in a future version of this
document.

Defining the Query Text
The query text string uses a syntax similar to that used in the SQL "where" clause. This query text
specifies the search criteria for selecting messages in the non-product data store and is the where

parameter for the RPGC_DB_select and RPGC_DB_delete functions.

A more detailed description of defining the query text will be included in a future version of this
document.

NOTE: These linear buffer access functions require that the linear buffer be managed by the
ORPG by being defined in the data_attr table configuration file.

Documentation of This Function is Not Complete
int RPGC_DB_select(int data_id, char *where, void **result)
PARAMETER: data_id The linear buffer ID
where text string describing the "where™ portion of an SQL query
*result address of a pointer to the result of the query (ouTpuT)
RETURN VALUE: the number of records found or a negative error code

Obtains a list of messages meeting the criteria of the query defined by the where parameter from
the non-product data store data_id.

EXAMPLE: cpc013/tsk012/dp_dua_accum_func.c (Build 12)

Parameter Descriptions

data_id
The identity of the linear buffer. Non-product buffer ID's are defined in orpgdat.h/
orpgdat.inc. If the header file has not been modified to include this new data ID, the

CODE Volume 3 B24.0r1.20 October 2025 Page 106 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

<Data_Buffer Number> Must be entered rather than the <pata Buffer Name>. Whichever is
used (name or number), it must be the same as the data_id attribute for the data store definition

in the data_attr_table configuration file.
where

The text string describing the "where" portion of an SQL query. The data fields in the query text
must be present in the query structure defined for the data store.

*result (Output)
The address of a pointer to the result of the query. The user should not attempt to decode or read
the result. It's only purpose is to be used as in input parameter to other functions. If not NuLL,
*result must be freed by the user when no longer needed.

Notes / Rules for use (for a data driven task):

1. If not NULL, *result must be freed by the user when finished.

Documentation of This Function is Not Complete

int RPGC_DB get record(void *result, int ind, char **record)
PARAMETER: result pointer to the result returned by RPGC DB select
ind index into result to retrieve
*record pointer to the retrieved record. (ouTput)
RETURN VALUE: Returns the size of the record on success or a negative error code.

Retrieves one of the records (linear buffer message) specified by the index ind from the result of a
query.

EXAMPLE: cpc013/tsk012/dp_dua_accum_func.c (Build 12)
Parameter Descriptions

result
A pointer to the result returned by RPGC_DB_select.
ind
The index into the list result to retrieve. (is this 0-based or 1-based?)
record (Output)
A pointer to the retrieved record. This pointer (if not nurL) must be freed by the user when no
longer needed.

Notes / Rules for use (for a data driven task):

1. If not NULL, *record must be freed by the user when finished

CODE Volume 3 B24.0r1.20 October 2025 Page 107 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

Documentation of This Function is Not Complete

int RPGC DB get header(void *result, int ind, char **hd)

PARAMETER: result pointer to the result returned by RPGC DB select

ind index into result to retrieve
*hd address of the query structure of the record (ouTpuT)
RETURN VALUE: Returns the size of the query structure on success or a negative error
code.

Obtains a reference to the query structure portion of the record specified by the index ind.

EXAMPLE: This function is not yet used in any algorithm
Parameter Descriptions

result
A pointer to the result returned by ReGc_DB_select.
ind
The index into the list result to retrieve. (is this 0-based or 1-based?)
*hd (output)
The address of the query structure of the record. This is a reference to a memory location that
must NOT be freed.

Notes / Rules for use (for a data driven task):

1. This function is not yet used in any algorithm.

Documentation of This Function is Not Complete
int RPGC DB insert(int data_id, void *record, int rec_len)
PARAMETER: data_id The linear buffer ID
record message to be inserted into the non-product linear buffer
rec_len |ength of the message being inserted
RETURN VALUE: Returns the size of the record inserted or a negative error code.

Inserts a new message into the non-product linear buffer. This function will fail if the linear
buffer is full.

EXAMPLE: This function is not yet used in any algorithm

Parameter Descriptions

data_id
The identity of the linear buffer. Non-product buffer ID's are defined in orpgdat.h/
orpgdat.inc. If the header file has not been modified to include this new data ID, the

CODE Volume 3 B24.0r1.20 October 2025 Page 108 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

<Data_Buffer Number> Must be entered rather than the <pata Buffer Name>. Whichever is
used (name or number), it must be the same as the data_id attribute for the data store definition

in the data_attr_table configuration file.
record

The message to be inserted into the non-product linear buffer.
rec_len

The length of the message being inserted.

Notes / Rules for use (for a data driven task):

1. This function is not yet used in any algorithm.

Documentation of This Function is Not Complete

int RPGC_DB delete(int data_id, char *where)

PARAMETER: data_id The linear buffer ID

where text string describing the "where" portion of an SQL query
RETURN VALUE: Returns the number of records deleted on success or a negative error
code.

Deletes a message from the non-product linear buffer. This function is used to remove record no
longer needed.

EXAMPLE: This function is not yet used in any algorithm

Parameter Descriptions

data_id
The identity of the linear buffer. Non-product buffer ID's are defined in orpgdat.h/
orpgdat.inc. If the header file has not been modified to include this new data ID, the
<Data_Buffer Number> Must be entered rather than the <pata Buffer Name>. Whichever is
used (name or number), it must be the same as the data_id attribute for the data store definition

in the data_attr_table configuration file.
where

The text string describing the "where" portion of an SQL query. This defines the records to be
deleted. The data fields in the query text must be present in the query structure defined for the
data store.

Notes / Rules for use (for a data driven task):

1. This function is not yet used in any algorithm.

CODE Volume 3 B24.0r1.20 October 2025 Page 109 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services

Standard Disk File Support Functions

The API provides little support for Private non-product data stores which are implemented as standard
disk files. These files are not managed by the ORPG but controlled by the algorithm. The Private non-
product data stores should be placed in the current ORPG working directory. The function

RPGC_get working dir returns the path to the working directory that includes a trailing '/'. The
function RPGC_construct_file name Creates the fully qualified path name using the input filename.

int RPGC_get working dir(char **path name)
PARAMETER: path_name The address of a character string to hold path (output)

RETURN VALUE: The length of the string containing the working directory path or a
non-positive error code.

Obtains the full path of the current working directory (including a trailing '/') being used by the
ORPG.

EXAMPLE: This function is not yet used in any algorithm

Parameter Descriptions

path name (Output)
The address of the character string containing the full path of the current ORPG working
directory (including the trailing /') as determined by the function. path_name Will be NULL
upon failure.

int RPGC_construct file name(char *file name, char **path name)

PARAMETER: file name The file name to be used for the data store
path_name The address of a character string to hold path (output)

RETURN VALUE: The length of the string containing the fully qualified file name or a
non-positive error code.

Determines the fully qualified filename for the data store based upon the current working
directory being used by the ORPG and the file name string £ile name.

EXAMPLE: cpc013/tsk005/preprtac_file_io.c
cpc013/tsk008/saa_file_io.c

Parameter Descriptions

file name
The file name to be used for the private data store.

path_name (Output)
The address of the character string containing the fully qualified filename for the data store as
determined by the function. path_name will be NULL upon failure.

CODE Volume 3 B24.0r1.20 October 2025 Page 110 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services
Notes / Rules for use

1. Caller is responsible for freeing memory allocated for path_name when no longer needed.

The following function, added in Build 10, is completely redundant with ReGC_construct file name
and is not documented.

void RPGCS_full name(char *file name, char *full name)

CODE Volume 3 B24.0r1.20 October 2025 Page 111 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services
Part J. Miscellaneous Functions

Log Services

void RPGC_log msg(int code, const char *format, ...)
PARAMETER: code The type of error message.
*format error message and text format specifier

variable number of arguments depending upon the content of the error
message.

RETURN VALUE: None

Writes an error message to the task's log file. This file (named <task_name>.log) is in the
$ORPGDIR/logs directory.

EXAMPLE:
Parameter Descriptions

code
A valid ORPG log services code. c._1nro should be used for all algorithm log messages. If
aborting due to a system failure (e.g., failure of malloc Or calloc), GL_ERROR iS also acceptable.
The inability to obtain in input or output buffer (product and non-product data store) is not an

error and GL_INFO should be used.
format

a string representing the error message and text format specifiers for following arguments
(identical to the common print£ format specifier). See print£ man page.

Additional arguments upon which the format specifiers operate. See print£ man page.

Notes / Rules for use

1. For operational algorithms, the required method of logging diagnostic information in the event
of algorithm failures is using ReGc_log_msg to write the message to the task's log file. Using
stdout / stderr Via printf and £print£ Statements has a disadvantage of writing to an output
file with no mechanism for limiting the file size and therefore should not be used.

The following function is not required for normal algorithms and is not documented.

int RPGC_monitor_input buffer load(char *dataname)

On rare occasions, there may be a need to completely terminate the algorithm task rather than abort the
product and return to the control loop.

CODE Volume 3 B24.0r1.20 October 2025 Page 112 of 234

Vol 3 Doc 2 Section Il - Control - Input/Output - Abort Services
void RPGC_abort task()
PARAMETER: None

RETURN VALUE: Not Used

Completely terminates the algorithm task.

EXAMPLE: cpc007/tsk001/basrflct.c
cpc016/tsk002/srmrmrv_main.c

Notes / Rules for use

1. Rarely used. Another example is the hiresreet task in cpc014/tsk012 uses an older version of
this function: ReGC_hari_kiri.

The following function is intended for special testing and serves no purpose in an algorithm. It shuts
down the RPG software.

void RPGC_kill rpg()

CODE Volume 3 B24.0r1.20 October 2025 Page 113 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

Vol 3. Document 2 -
The WSR-88D Algorithm API Reference

Section 11l Final Product Construction

NOTE

Not all of the API functions have been documented. The functions not documented are not
critical to algorithm development and many of the recently added functions were created to
support the porting of legacy FORTRAN algorithms to ANSI-C.

= Some of the new functions are redundant with existing functions.

= Some are not generally useful for algorithm development.

= Some of the new functions have not yet been used in algorithms.

NOTE: Some previously deprecated functions are being used to port FORTRAN algorithms.

This section documents functions that aid in the construction of final products (products distributed to
external users). Helper functions are provided to assist in filling standard fields in the product headers
and to write 4-bit data fields in a manner consistent with providing products in network format (Big
Endian). Other functions assist in constructing selected data packets. In addition, functions are provided
to support construction and debugging of the generic product data structure. See Section IV - API
Convenience Functions) for various data conversion / transformation functions.

The contents of this section is organized as follows:

e Part A. Final Product Construction
o Part B. Support for the Generic Product Data Packet

Part A. Final Product Construction

The functions described here assist in setting fields in the initial header block portions of the product,
correctly writing integer fields into the product, and support construction of several data packets.

API support for the construction of the generic product data packet is provided in Part B. of this
document.

The Algorithm API has some support for the construction of ICD format final products. The assembly of
the complete product is complex and is demonstrated in the sample algorithms provided in the next
section.

CODE Volume 3 B24.0r1.20 October 2025 Page 114 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

Major Block Structure of a Final Product
There are several principles for the overall structure of WSR-88D final products.

1. One Message Header Block (MHB) and one Product Description Block (PDB) always precede the
product data blocks. These two blocks are sometimes called the "product header” in the ICD for the
RPG to Class 1 User.

2. The remaining product blocks are called optional blocks and data blocks. Product messages usually
(but not always) include the Product Symbology Block, and may include the Graphic Alphanumeric
Block (GAB) and the Tabular Alphanumeric Block (TAB).

3. Though not all products require all blocks; the blocks are always assembled in the order described
above.

A detailed description of the block structure of a final product is provided in CODE Guide
VVolume 2, Document 3, Section 1.

Structure of Symbology Block in Traditional Products

The following guidelines are not formal 'rules' contained in the Class 1 User ICD or the Product
Specification ICD. However they describe how traditional products typically use data packets within
the symbology block. If followed, unexpected impacts on users of new products can be minimized.

1. Itis recommended that a symbology block not be empty. It should contain at least one data
packet in the first layer.

2. Itis recommended that a layer in a symbology block not be empty. A layer should contain at
least one data packet.

3. For the two dimensional data arrays (packets AF1F, BAQO7, and 16) intended for graphical
display

o The 2-D data array must be in layer 1 of the symbology block.

o Only one 2-D array should be included in any product. There is one legacy product that
has multiple 2-D arrays in an LFM grid: the Hourly Digital Precipitation Array (DPA).

o Data packets for any additional data (whether text, vector graphics, or special symbols)
should be in subsequent layers.

4. Though not explicitly stated in the ICD for the RPG Class 1 User (mandatory requirements):

o All 2-byte and 4-byte data fields must begin at an even numbered byte offset from the
beginning of the product message.

CODE Volume 3 B24.0r1.20 October 2025 Page 115 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

o All series of 1-byte data fields must begin at an even numbered byte offset from the
beginning of the product message. This implies that 1-byte data fields must be used in
pairs.

o All data length fields used in data packets containing 1-byte data fields must account for
an even number of 1-byte data fields. These fields may represent integer data or
character data.

A detailed description of the structure of the symbology block is provided in CODE Guide Volume
2, Document 3 Section 1.

CODE Guide Volume 2, Document 3, Section Il provides a description and use of the traditional
data packets within the product symbology block. Currently there is APl support for the construction
of several data packets.

CODE Guide Volume 2, Document 3, Section 111 provides a description and purpose for the
generic components within the generic product structure. API support for the construction of the
generic product data packet is provided in Part B. of this document.

Special Considerations
There are two factors that must be considered when constructing final product messages.

1. Affects of the Byte-Swapping Infrastructure.
The data fields within a final product message cannot always be written in a straight forward
manner. This is due to the byte-swapping accomplished by the ORPG infrastructure. This byte-
swapping is a result of the evolution of the ORPG from a Big Endian architecture to a Little Endian
architecture. This topic is covered in detail in Part B of Volume 3, Document 3, Section IlI.

2. The Alignment of Data Fields within a Product Message.
The structure of the final product message and the individual data packets (described in VVolume 2,
Document 3 and the RPG to Class 1 User ICD) is only partially aligned. Because the 4-byte integers
are not always offset by a number of bytes that is evenly divisible by 4 and the size of logical
portions of the product is not always evenly divisible by 4, care must be used in assembly of the
product message. This topic is covered in detail in Part C of Volume 3, Document 3, Section III.

Functions for Writing and Reading 4-byte Data

The WSR-88D ORPG was initially implemented on a big Endian architecture, the Sun Solaris platform.
Beginning with Build 9 the Linux PC (little Endian architecture) is the new operational platform. Final
products are distributed in network format (big Endian). In order for algorithms to function correctly,
data fields in final products must be written in a controlled manner. A complete guide for writing final
product data fields is provided in CODE Guide Volume 3, Document 3, Section Il1.

The functions RPGC_set product int and RPGC_set product float Must be used to correctly write
4-byte data fields to the final products. Subsequently, the functions RpGc_get_product_int and
RPGC_get product_float Can be used to read the 4-byte fields.

CODE Volume 3 B24.0r1.20 October 2025 Page 116 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

int RPGC_set product_int(void *loc, int value)

PARAMETER: loc The starting address of data field in product buffer.
value Integer value to be written in the product.
RETURN VALUE: Not Used

Writes a 4-byte integer data field into the product buffer at address "loc"

EXAMPLE: RPGC_set product_int((void *) &hdr->msg len,
(unsigned int) prod_len);

where hdr IS type struct Graphic product

int RPGC_set product float(void *loc, float value)

PARAMETER: loc The starting address of data field in product buffer.
value Floating point value to be written in the product.
RETURN VALUE: Not Used

Writes a 4-byte integer data field (type float) into the product buffer at address "loc™

EXAMPLE: CODE Sample Algorithm 2
cpc007/tsk001/basrflct.c

Parameter Descriptions

loc
The starting address of data field in product buffer. This is the address of the first halfword or 2-
byte integer (short) representing the floating point or 4-byte integer data. The offset must be an
even number of bytes. If a C structure is properly aligned, it can be used to specifically the
location (see Part C of Vol 3, Document 3, Section Il1).

value

Value to be written in the product (int or float)
Notes / Rules for use

1. RPGC_set product_int and RPGC_set product float must be used for the algorithm to
correctly write the data on a Linux PC platform.

int RPGC_get product_int(void *loc, void *value)

PARAMETER: loc Pointer to the product data field to be retrieved
value Pointer to the retrieved value (int)
RETURN VALUE: Not Used

CODE Volume 3 B24.0r1.20 October 2025 Page 117 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

Returns in "value™ an integer or unsigned integer that can be read by the current platform
architecture (big or little Endian).

EXAMPLE: RPGC_get product_int((void *) &short buf[62], &len);
where short buf IS an array of shorts containing the final product.
cpc014/tsk003/hybrprod.c
cpc018/tsk003/tdaru.c
cpc018/tsk006/buildRapidUpdate TAB.c

int RPGC_get product float(void *loc, void *value)

PARAMETER: loc Pointer to the product data field to be retrieved
value Pointer to the retrieved value (float)
RETURN VALUE: Not Used

Returns in "value" a float that can be read by the current platform architecture (big or little
Endian).

EXAMPLE: RPGC_get product _int((void *) &short buf[54], &caleb const);
where short buf IS an array of shorts containing the final product.

This function is not yet used in any algorithm
Parameter Descriptions

loc
Pointer to the starting address of the product data field to be retrieved. This is the address of the
first halfword or 2-byte integer (short) representing the floating point or 4-byte integer data.
value (Output)
Value to be retrieved (int or float)

Notes / Rules for use

1. RPGC_set product_int and RPGC_set product float must be used for the algorithm to
correctly write the data on a Linux PC platform.

MISC Product Construction Helper Functions

float RPGC NINT(float real)

PARAMETER: real floating point number to be rounded
RETURN VALUE: The closest integer value.

The function returns the closest integer value to the input IEEE floating point number.

CODE Volume 3 B24.0r1.20 October 2025 Page 118 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

EXAMPLE: cpc007/tsk001/basrflct.c

double RPGC_NINTD(double real)

PARAMETER: real floating point number to be rounded
RETURN VALUE: The closest integer value.
The function returns the closest integer value to the input IEEE floating point number.

EXAMPLE: This function is not yet used in any weather algorithm
Parameter Descriptions

real
IEEE floating point number to be rounded.

Notes / Rules for use

This function obtains the product id from the product name.

int RPGC_get_id from name(char *data name)
PARAMETER: data name The product name

RETURN VALUE: The product ID. If not found, returns -1

EXAMPLE: cpc007/tsk001/basrflct_main.c
cpc007/tsk013/bref8bit_main.c

Parameter Descriptions

data_ name
The name of the product. This name must be in the list contained in either the input_data
attribute or the output_data attribute of the task_attr table entry for the algorithm task (this
entry determines the number or ID of the linear buffer containing the data).

Notes / Rules for use

1. LIMITATION: This function only works if the data_name is one of the registered inputs or
registered outputs.

CODE Volume 3 B24.0r1.20 October 2025 Page 119 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

The following functions obtain the product code (the external user id for the product) from the product
id and product name.

int RPGC_get code from id(int prod id)
PARAMETER: prod_id The product ID
RETURN VALUE: The product code, or a negative number on error.

The product code returned is a positive number if prod_id refers to the final product and is 0 if
data_name refers to an intermediate product.

EXAMPLE: cpc007/tsk015/superes8bit_main.c

Parameter Descriptions

prod_id
The product ID. This ID is determined by contents of the corresponding input_data /
output_data attribute in the task_attr_table entry for the task.

Notes / Rules for use

1.

int RPGC_get code from name(char *data name)

PARAMETER: data_name The product name

RETURN VALUE: The product code, or a negative number on error.

The product code returned is a positive number if data_name refers to the final product and is O if
data_name refers to an intermediate product.

EXAMPLE: cpc014/tsk003/hybrprod.c
cpc016/tsk002/srmrmrv_main.c

Parameter Descriptions

data_ name
The name of the product. This name must be in the list contained in the output_data attribute of
the task_attr_ table entry for the algorithm task (the output_data entry determines the
number or ID of the linear buffer containing the data).

Notes / Rules for use

1. LIMITATION: This function only works if the data_name is one of the registered outputs.

The following functions which compress and decompress products are not generally needed by
algorithms. They may be useful in debugging products.

CODE Volume 3 B24.0r1.20 October 2025 Page 120 of 234

Vol 3 Doc 2 Section Il - Final Product Construction
int RPGC_compress product(void *bufptr, int method)

void* RPGC_decompress product(void *bufptr)

Data Packet Specific Helper Functions

Supporting Packet 16 Header and Array

int RPGC_digital radial data hdr(int first bin idx, int num bins,
int icenter, int jcenter,
int scale factor, int num radials,
void *output)

PARAMETER: first _bin_idx jndex of the first range bin

num_bins number of range bins
icenter icenter of sweep
jcenter jeenter of sweep

scale_factor range scale factor

num_radials pumber of radials in sweep

output location of the completed header
RETURN VALUE: Currently always returns 0.
Populates the header portion (first 7 shorts) of data packet 16.

EXAMPLE: cpc007/tsk013/bref8bit.c
cpc007/tsk014/bvel8bit.c

Parameter Descriptions

first bin idx
The index of the first range bin. This should be o to indicate that the first data item in the array
is valid.

num _bins
The number of range bins in the data array. In WSR-88D products the number of bins reflects
the 70,000 ft MSL cutoff.

icenter

The icenter of sweep is always 0. Used in the Legacy display device.
jcenter

The jcenter of sweep is always 0. Used in the Legacy display device.
scale_factor

The range scale factor. Regardless of how this field is described in the Class 1 ICD, existing
products have not followed a consistent definition. The best choice is to enter the cosine of the

target elevation angle times 1000. For 0.5 degrees this is 999.
num radials

The number of radials in this product.

CODE Volume 3 B24.0r1.20 October 2025 Page 121 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

output
A pointer to the beginning address in which the header fields are to be populated

Notes / Rules for use

1. Must include packet_16.h.

There are two functions can be used in filling out each radial in the digital radial data array packet (data
packet 16).

RPGP_set packet 16 radial
is limited to an input array of 1-byte data. In addition, the input and output data arrays must
always start and end at the same bin number and the bin step is assumed to be 1. Must also
include rpgp.h in order to use this function. NOTE: the return value of this function was
inadvertently changed in Build 10.

RPGC_digital radial data_array
is more flexible. The most useful option is the ability to accept input arrays of 1-byte, 2-byte,
and 4-byte data. Other options include specifying the index of the starting bin for both the input
and output data array. One advantage is that if the input data is smaller than the output data
array, the output array is padded with the value 0.

int RPGP_set packet 16 radial(unsigned char *packet, short start angle,
short angle delta, unsigned char *data,
int num values)

PARAMETER: packet pointer to the buffer to hold the radial data
start_angle radial start angle (deg*10)
angle_delta radial angle delta (deg*10)
data pointer to the radial data array values
num_values nymber of items in radial data

RETURN VALUE: number of bytes in this radial. In Build 9 this included the 6 byte
radial header. The build 10 version of this function does not
include the 6 byte radial header. Includes a padded byte at the
end if required.

Constructs a single radial portion of data packet 16. Function returns number of bytes in this radial
(does NOT include the header portion of the radial). The radial header fields: number of bytes in
the radial (including pad), radial start angle, and radial delta angle are filled along with the radial
data array values. As required for the ORPG byte-swapping infrastructure, the function writes all
data as shorts, including the 1-byte data fields. The function also pads a O if there is an odd number
of data fields.

CODE Volume 3 B24.0r1.20 October 2025 Page 122 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

EXAMPLE: CODE Sample Algorithm 1
cpc007/tsk006/itwsdbv.c

Parameter Descriptions
packet

A pointer to the buffer to hold the radial data. Within the buffer into which the product is being
built, this is the location of the beginning of this packet radial header (number of bytes, start
angle, and delta angle) followed by the data array. This structure can be represented by the

structure packet_16_data_t defined in packet_16.h.
start_angle

Radial start angle in units (deg*10). For example: 1262 represents 126.2 degrees. Can be

obtained from Base_data_header.start_angle.
angle delta

Radial angle delta in units (deg*10). For example: 10 represents 1.0 degrees. Can be obtained

'ﬁOﬁ]Base_data_header.delta_angle.
data

A pointer to the beginning of the radial data array, the first data value in the radial. This must be

an array of 8-bit data (unsigned char).
num values

The number of items (data values) in radial data array.

Notes / Rules for use

1. Must include rpgp.h to USe the RPGP_set_packet_16_radial function.
2. The input and output data arrays must always start and end at the same bin number and the bin
step is assumed to be 1.

int RPGC_digital radial data_array(void *input, int input size,
int start data idx, int end data idx,
int start idx, int num rad bins,
int binstep, int start angle,
int delta angle, void *output)
PARAMETER: input pointer to the input radial data array values
input_size number of bits representing an individual input data value
start_data_idx starting index in the input array
end data idx ending index in the input array
start_idx starting index in the data array portion of packet 16
num_rad _bins number of data values in the radial array
binstep bin step size
start_angle radial start angle (deg*10)

delta_angle radial angle delta (deg*10)

CODE Volume 3 B24.0r1.20 October 2025 Page 123 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

output pointer to the radial portion of packet 16 (ouTpur)
RETURN VALUE: number of bytes in this radial (this includes the header
portion of the radial). Includes a padded byte at the end if
required.

Constructs a single radial portion of data packet 16. The radial header fields: number of bytes
in the radial (including pad), radial start angle, and radial delta angle are filled along with the
radial data array values. As required for the ORPG byte-swapping infrastructure, the function
writes all data as shorts, including the 1-byte data fields. The function also pads a O if there is
an odd number of data fields.

EXAMPLE: cpc007/tsk013/bref8bit.c
cpc007/tsk014/bvel8bit.c
cpc014/tsk003/hybrprod.c

Parameter Descriptions

input
A pointer to the input radial data array values. The type of input data array should correspond to
the value set for input_size.

input_size
The number of bits representing an individual input data value. Either Recc_BYTE DATA (8),
RPGC_SHORT_DATA (16), and Rpcc_INT DATA (32) are defined in rpgc. h.

start_data_idx
The starting index in the input array. If the first item at the address provided by input is the
first data to be processed, this is "0".

end data_idx
The index in the input array containing the last data value to place in the output array.

start_idx
The starting index in the data array portion of packet 16 For normal radial products this is
always "o". If a larger number is used, then output array values before the start idx are set to
0.

num rad bins
The number of data values in the output radial array. If this exceeds the last input data value to
be processed, input[end data_idx], then the corresponding output array value is set to 0.

binstep
The bin step size. Currently this must always be "1".

start_angle
Radial start angle in units (deg*10). For example: 1262 represents 126.2 degrees. Can be

obtained from Base_data_header.start_angle.
delta_angle

Radial angle delta in units (deg*10). For example: 10 represents 1.0 degrees. Can be obtained
from Base_data_header.delta_angle.

output (output)
A pointer to the location in which a radial portion of packet 16 is to be built. This is that portion
repeated for each radial that contains a radial header (number of bytes, start angle, and delta

CODE Volume 3 B24.0r1.20 October 2025 Page 124 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

angle) followed by the data array. This structure can be represented by the structure
Packet 16 data t defined in packet_16.h.

Notes / Rules for use

1. This function is preferred over the previous RPGP_set_packet 16 radial.

2. Using a value for binstep other than 1 has not been tested.
3. Must include packet_16.h.

Supporting Packet 17 Header and Data Array

The following functions are going to be used to port the DPA product from Fortran to C.

Applicability limited to a specific product.

Will be documented in a future edition of this guide.

int RPGC digital precipitation data_hdr(int 1fm boxes in row, int num rows,

void *output)

PARAMETER: 1lfm boxes in row ShOI‘t_dESC

num_rows
output

RETURN VALUE:

short_desc
short_desc

retval_descript

Fills the header portion of data packet 17 in the DPA product.

EXAMPLE:

Parameter Descriptions

1fm boxes in row
long_desccription

num_rows
long_desccription

output
long_desccription

Notes / Rules for use

CODE Volume 3

B24.0r1.20 October 2025

Page 125 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction
1. This function is not yet used in any algorithm.

Applicability limited to a specific product.
Will be documented in a future edition of this guide
int RPGC_digital precipitation data array(void *input, int input size,
int 1fm boxes in row, int num rows,

void *oatput)

PARAMETER: input short_desc

input_size short_desc

1fm boxes_in_row ghort desc

num_rows short_desc
output short_desc
RETURN VALUE: retval_descript

Enters data values into the data array portion of data packet 17 in the DPA product.
EXAMPLE:
Parameter Descriptions

input
long_desccription

input_size
long_desccription

1fm boxes_in_ row
long_desccription

num_rows
long_desccription

output
long_desccription

Notes / Rules for use

1. This function is not yet used in any algorithm.

Supporting AF1F and BAO7 RLE Headers and Data Arrays

CODE Volume 3 B24.0r1.20 October 2025 Page 126 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

Currently there are no helper functions for the header portion of data packets ar1r and Ba07.
ar1F: The guidance provided for setting parameters for ReGc_digital radial data_hdr can
be used in entering values in the header portion of packets ariF.

Ba07: Guidance to be provided in a future version of this document.

There are two functions which provide a standard means to run-length data for the ar1r radial data
packet. The only difference between the functions is the type of input data array to be encoded.

RPGC_run_length_encode
uses an input array of 2-byte integers (as found in the radial basedata messages).

RPGC_run_length_encode_byte
uses an input array of 1-byte integers (as found in the compact radial in the elevation basedata
messages).

int RPGC_run_length encode(int start, int delta, short *inbuf,
int startix, int endix, int max num bins,
int buffstep, short *cltab, int *nrleb,
int buffind, short *outbuf)

PARAMETER: start radial start angle (deg*10)
delta radial delta angle (deg*10)
inbuf input data to be run-length encoded
startix index into inbuf to start of data to run-length encode
endix index into inbuf to end of data to run-length encode

max_num_bins maximum number of data bins

buffstep number of 2-byte words per entry in inbuf
cltab pointer to color table (for data level translation)
*nrleb number of run-length encoded bytes (ouTpur)
buffind index into outbuf for beginning of rle data
outbuf pointer to output buffer

RETURN VALUE: Currently always returns 0

From an input data array of 256-level data, creates an output data array of 16-level data (or 8 or 4
level) that has been run-length encoded in a manner consistent with the AF1F data packet.

EXAMPLE: See CODE sample algorithm 2.
cpc007/tsk002/basvlcty.c
cpc014/tsk003/hybrprod.c

CODE Volume 3 B24.0r1.20 October 2025 Page 127 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

int RPGC_run_length encode byte(int start, int delta, unsigned char *inbuf,

int startix, int endix, int max num bins,
int buffstep, short *cltab, int *nrleb,
int buffind, short *outbuf)

PARAMETER: start radial start angle (deg*10)
delta radial delta angle (deg*10)
inbuf input data to be run-length encoded
startix index into inbuf to start of data to run-length encode
endix index into inbuf to end of data to run-length encode

max num_bins maximum number of data bins

buffstep number of 2-byte words per entry in inbuf
cltab pointer to color table (for data level translation)
*nrleb number of run-length encoded bytes (ouTpur)
buffind index into outbu£ for beginning of rle data
outbuf pointer to output buffer

RETURN VALUE: retval_descript

From an input data array of 256-level data, creates an output data array of 16-level data (or 8 or 4
level) that has been run-length encoded in a manner consistent with the AF1F data packet.

EXAMPLE: This function is not yet used in any algorithm

Parameter Descriptions

start
Radial start angle (deg*10) For example: 1262 represents 126.2 degrees. Can be obtained from
Base_data_header.start_angle if reading base data.

delta
Radial delta angle (deg*10) For example: 10 represents 1.0 degrees. Can be obtained from
Base data header.delta_angle if reading base data.

inbuf
Pointer to the input data to be run-length encoded. This is the beginning of the data array. This is
an array of 2-byte integers for the RPGc_run_length_encode function and an array of 1-byte
integers for the RPGC_run_ length encode byte function.

startix
The index into inbuf£ to start of data to run-length encode. The first "good" data bin. This is a 0-
based index that is the first position in the array is 0. Sett0 (Base_data_header.surv_range -
1) if reading directly from base data.

endix

The index into inbuf to end of data to run-length encode. The last "good" data bin. This index is
based upon 0 being the first position in the array. For input base data this never exceeds 70,000
ft MSL. Setto (Base data header.n_surv bins - 1) if reading directly from base data.
WARNING: At lower elevations the following correction must be made if the range of the product
is less than the range of the base data. The value of this parameter must be reduced as required so

CODE Volume 3 B24.0r1.20 October 2025 Page 128 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

that (endix - startix +1) does not exceed the max num bins parameter. This correction may
be placed inside future versions of this function.

max num bins O
The maximum number of data bins. This corresponds to the maximum range of the product (at
lower elevation angles). For example, many products using reflectivity data only produce the

product to 230 km even though data to 460 is available.
buffstep

The size of the input buffer data elements in short integers (2-byte). This is usually "1". If set to
"2", every other data value in the input data array is read. If setto "4", every fourth entry in the

input data array is read.
cltab

The pointer to color table (for data level translation). This table converts the 256-level input data
into one of 16 (or 8 or 4) data levels to be run-length encoded. For legacy products this
conversion is defined in the Product Specification ICD.

*nrleb (Output)
The number of run-length encoded bytes (function outpuT). The size in bytes of the output run-
length encoded data array. This includes the 6-byte radial header in addition to the number of

bytes in the run-length encoded array. Always an even number.
buffind

The index into outbuf for beginning of the run-length encoded data. This index is in 2-byte
integers (halfwords).
e For the first radial: If outbuf is a pointer to the beginning of a geographic final product
and the RLE data is in an AF1F data packet in the first layer, buffind = 75. If outbuf
only contains the RLE data array, buffind = 0.
e For subsequent radials. The value of bugfind must be increased by the size of the

previous radial data which is the output: buffind = buffind + (*nrleb / 2)
outbuf

The pointer to buffer to contain the run-length encoded data. The previous parameter is used to
place the run-length encoded data within this buffer.

Notes / Rules for use

1. RPGC_run_length encode Can be used with data from the radial basedata message and the
function RPGC_run_length encode_ byte Can be used with data from the elevation basedata
message.

2. At higher elevation angles, where the maximum number of bins is adjusted for 70,000 ft MSL,
the size of the resulting product may vary from previous implementations of the run-length
encoding function.

The following function provides a standard means to run-length data for the Bao7 raster data packet.

This function is not completely documented.

int RPGC_raster run length(int nrows, int ncols, short *inbuf, short *cltab,
int maxind, short *outbuf, int obuffind,
int *istar2s)

CODE Volume 3 B24.0r1.20 October 2025 Page 129 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

PARAMETER: nrows Number of rows in data grid
ncols Number of columns in data grid
inbuf Input buffer address - used to reference input data grid
cltab Product data levels adaptation data for the product

maxind Maximum output buffer index that this module can store into

outbuf output buffer address used to specify output buffer location to store a
byte

obuffind output buffer starting index

*istar2s number of 2-byte words stored in the product output buffer by this
module (ouTpuT)

RETURN VALUE: 0 - complete, 1 incomplete

From an input data array of 256-level data, creates an output data array of 16-level data (or 8 or 4
level) that has been run-length encoded in a manner consistent with the BAO7 data packet.

EXAMPLE: cpc008/tsk022/radcdmsg.c

Parameter Descriptions

nrows

Number of rows in data grid
ncols

Number of columns in data grid
inbuf

Input buffer address - used to reference input data grid
cltab

Product data levels adaptation data for the product
maxind

Maximum output buffer index that this module can store into
outbuf

output buffer address used to specify output buffer location to store a byte
obuffind

output buffer starting index

*istar2s (output)
The number of 2-byte words stored in the product output buffer by this module (function
OUTPUT).

Notes / Rules for use

1. This function cannot be used for the elevation base data message, only the radial message.
2. Has not been tested in an algorithm.

Functions used to Assemble Header Blocks

CODE Volume 3 B24.0r1.20 October 2025 Page 130 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

The following subroutines construct the two blocks always present in any ICD graphic product:
RPGC_prod_desc_block supports the Product Description Block and RpGC_prod_hdr supports the
Message Header Block.

There are two functions supporting several data fields in the Product Description Block that are not

filled in by RPGC_prod desc block.
RPGC_set dep_ params
RPGC_set prod block offsets

There is no support for the construction of the Symbology Block layers.

The function RPGC_stand _alone_prod is used only for a special stand alone alphanumeric product and
is not recommended for new algorithms.

int RPGC_prod desc_block(void *ptr, int prod id, int vol num)
PARAMETER: ptr pointer to the beginning of the final product
prod_id | jnear buffer id of the output product.

vol_num A sequential volume number.

RETURN VALUE: Not Used

Places appropriate data into the Product Description Block portion of the ICD graphic product.
Those portions of the block representing the 16 threshold levels, the 10 product dependent
parameters, and block offsets are not set by this function, and must be set manually at a later time.
The block offsets must be set prior to calling ReGc_prod_hdr.

EXAMPLE:

Parameter Descriptions

ptr
A pointer to the beginning of the final product. Normally this is the product buffer that is
returned by the corresponding RPGC_get outbuf by name call.

prod_id
Linear buffer id of the corresponding output product. This is the same value of the output

product registered.
vol num

A sequential volume number. The current volume sequence number is obtained via the
RPGC_get buffer vol num function.

int RPGC_set dep params(void *ptr, short *params)
PARAMETER: ptr pointer to the beginning of the final product

params Pointer to an array of product dependent parameters.
RETURN VALUE: Not Used

CODE Volume 3 B24.0r1.20 October 2025 Page 131 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

Sets the 10 product dependent parameters within the Product Description Block by direct mapping
from an array of 10 elements (short integers).

EXAMPLE: CODE Sample Algorithm 2
cpc007/tsk001/basrflct.c
cpc018/tsk001/mdaprodMain.c

Parameter Descriptions
ptr
A pointer to the beginning of the final product. Normally this is the product buffer that is

returned by the corresponding RPGC_get _outbuf_by name call.
params

Pointer to an array of product dependent parameters (10 short integers).

int RPGC_set prod block offsets(void *ptr, int sym offset,
int gra offset, int tab offset)

PARAMETER: ptr pointer to the beginning of the final product
sym_offset offset to the symbology block (in 2-byte integers)
gra_offset offset to the GAB (in 2-byte integers)
tab_offset offset to the TAB (in 2-byte integers)

RETURN VALUE: retval_descript
The block offsets must be set prior to calling ReGCc_prod_hdr.

Description paragraph

EXAMPLE: cpc007/tsk014/bvel8bit.c
cpc014/tsk003/hybrprod.c

Parameter Descriptions
ptr
A pointer to the beginning of the final product. Normally this is the product buffer that is

returned by the corresponding RPGC_get_outbuf_by name Call.
sym_offset

The offset from the beginning of the product to the symbology block (in 2-byte integers).
gra_offset

The offset from the beginning of the product to the GAB (in 2-byte integers).
tab_offset

The offset from the beginning of the product to the TAB (in 2-byte integers).

int RPGC_prod hdr(void *ptr, int prod id, int *length)
PARAMETER: ptr pointer to the beginning of the final product
prod_id |jnear buffer id of the output product.
length Pointer to the current length of the product, in bytes.

RETURN VALUE: Returns 0 upon success.

CODE Volume 3 B24.0r1.20 October 2025 Page 132 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

Places appropriate data into the Message Header Block portion of the ICD graphic product. The
block offsets must be entered in the Product Description Block before calling this function.

EXAMPLE:

Parameter Descriptions

ptr
A pointer to the beginning of the final product. Normally this is the product buffer that is
returned by the corresponding RPGC_get _outbuf_by name call.

prod_id
Linear buffer id of the corresponding output product. This is the same value of the output

product registered.
length

The length of the product (*length) used as an input parameter to RPGC_prod_hdr is the total
length of the assembled product (in bytes) minus the size of the Message Header Block and the
Product Description Block (minus 120 bytes). In other words, the length passed as input is the
total length of all optional parts of the product (the Symbology Block, the GAB, and the TAB).
When rpGc_prod_hdr returns, the product length has been increased by 120 bytes to reflect the
total product size.

Notes / Rules for use

1. The programmer is responsible for assembling the symbology block (and any other blocks),
calculating their length and setting the block offsets in the Product Description Block prior to
calling ReGC_prod_hdr

2. The following product construction functions must be used in the following order:
RPGC_prod_desc_block, RPGC_set dep_ params, RPGC_prod_hdr.

CODE Volume 3 B24.0r1.20 October 2025 Page 133 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

Part B. Support for the Generic Product Data Packet

Initial support for the construction of the generic product data packet (packet 28) was added in Build 8.
rpgp . h must be included to use these functions. All generic product structures are defined in
orpg_product.h Which is included with rpgp.h. orpg_product.h also contains enumerations for
product types, component types, grid types, and area types.

The DMD product in cpc018/tsk001 creates a generic product using area components. The DMD
product uses numerous component parameters to convey most of the information.

A detailed description of the block structure of a final product is provided in CODE Guide
VVolume 2, Document 3, Section 1.

Structure of Symbology Block in Generic Products

The following guidelines are not formal 'rules’ contained in the Class 1 User ICD or the Product
Specification ICD. However they describe how to use generic product components within the
symbology block with the goal of minimizing unexpected impacts on users and simplifying the decoding
logic required to interpret the products while not overly constraining the use of these components.

1. Itis recommended that a symbology block not be empty.
2. The symbology block must contain only one data packet 28 in the first layer.

3. Itis recommended that the other optional blocks, the Graphical Alphanumeric Block (GAB) and
Tabular Alphanumeric Block (TAB) NOT be used.

4. For the two dimensional data arrays (the generic radial component and the generic grid
component) intended for graphical display

o The 2-D data array component should be the first component in the product.
o Only one 2-D array component should be included in any generic product.
o Generic components for any additional data should follow.

5. For the header portion of data packet 28, all 2-byte and 4-byte data fields must begin at an even
numbered byte offset from the beginning of the product message.

NOTE: The restrictions on alignment of 2-byte and 4-byte data fields and the requirement to use 1-byte
data fields in pairs does NOT apply to the data portion of packet 28. Very specific C structures are used
to assemble this data. Because the data is serialized by the API function provided, the structure of the
data portion of the actual message cannot be diagramed graphically as the other portions of the final
product.

An introduction to the generic data packet and component types used in a generic product is
provided in CODE Guide Volume 2, Document 3, Section I11.

CODE Volume 3 B24.0r1.20 October 2025 Page 134 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

Functions Used For Product Construction

The functions RPGP_build RPGP product tand RPGP_finish RPGP product t are used to set the
header fields in the generic product structure ReGP_product_t. The functions are called in that order.
The list of product parameters and the array of components must be constructed before calling
RPGP_finish RPGP_product_t. Using these functions ensures that contents of the generic product
structure header fields are correct.

int RPGP_build RPGP product_ t(int prod id, int vol num, char *name,
char *description, RPGP_product t *prod)

PARAMETER: prod_id Product ID
vol_num Volume Scan Number (1-80)
name Product mnemonic

description Product Description
prod Pointer to the Generic Product Structure
RETURN VALUE: Negative value on error, 0 on success.

Sets the value of most of the generic product structure, RPGP_product_t, header fields. Much of
this information is redundant with contents of the product description block.
EXAMPLE: RPGP_build RPGP_product_ t(STATPROD, vol num, "ASP",

"Archive III Status Product", xdrbuf);

where sTaTprop is defined in a309.h, vol num is the return value of

RPGC_get buffer vol num, and xdrbuf iS a pointer to the product structure.

Parameter Descriptions

prod_id
Product ID as configured in the product_attr_table. configuration file. If a309.h/a309.inc
have been modified to define to define the Buffer ID's, the <Prod_Buffer Name> Ccan be used

rather than the <Prod Buffer Number>.
vol num

Volume Scan Number (1-80). The return value of RPGc_get_buffer vol num.
name

Product mnemonic. By convention, the same as (for final products) the initial 1-3 characters

prior to the first space in the desc attribute in the product_attr_table configuration file.
description

Product Description. By convention, the same as the text in the desc attribute in the

product_attr_table configuration file after the 1-3 character mnemonic.
prod

Pointer to the preallocated Generic Product Structure RPGP_product_t.

Notes / Rules for use

1. This function is called before ReGP_finish RPGP product_t.

CODE Volume 3 B24.0r1.20 October 2025 Page 135 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

2. HINT: Though not required, it is suggested that the list of product parameters and the array of
product components be completed prior to calling this function. This function sets the generation
time field. Calling this function as late as possible will result in a generation time as close as
possible to the time recorded in the product description block.

int RPGP_finish RPGP_product t(RPGP_product t *prod, int numof prod params,
RPGP_parameter t *prod params,
int numof components, void **components)

PARAMETER: prod Pointer to the Generic Product Structure
numof_prod_params Number of product parameters in the product structure.
prod_params Pointer to the parameter list.
numof_components Number of components in the product.
components Address of the component array.

RETURN VALUE: Negative value on error, 0 on success.

Finishes populating the generic product structure with the number of parameters, the product
parameters, the number of components and the array of components.
EXAMPLE: RPGP_finish RPGP product t(xdrbuf, 0, NULL, num messages,
(void **) text packet);
where xdrbuf IS a pointer to the product structure, 0 is the number of product
parameters, NULL is value of the pointer to parameters, num messages is the
number of components, and text_packet is the address of an array of component
pointers (RPGP_text t **text packet iN this example).

Parameter Descriptions
prod

Pointer to the preallocated Generic Product Structure RPGP_product _t.
numof prod params

Number of product parameters in the product structure.
prod_params

Pointer to the parameter list. This is an array of RPGP_parameter_t Structures.
numof components

Number of components in the product. This is the size of the void **components array.
components

Address of the component array. This is actually a pointer to an array of void * or type void
**_ This can support an array of component structures of different types. Currently all algorithm
examples use components of the same type.

Notes / Rules for use

1. This function is called after ReGP_build RPGP product t and after creating the product
parameter list and the array of product components.

CODE Volume 3 B24.0r1.20 October 2025 Page 136 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

Both the generic product structure and each component structure can have a list of parameters. Each
parameter is represented by the structure ReGP_parameter_t Which consists of an ID and a list of
attributes (both type char *). Attributes include "name", "type", "unit”, "range", "value", "default”, and

"description”. The following functions assist in population of the parameter structure.

RPGP_set int param

Used for parameters having one of the integer types for "type".
RPGP_set float param

Used for parameters having one of the floating point types for "type".
RPGP_set string param

Used for parameters having "type" of string.

int RPGP_set_ int param(RPGP_parameter t *param, char *id, char *name,
int type, void *value, int size, int scale,

PARAMETER: param Pointer to the parameter.
id Parameter 1D
name Parameter Name
type Type of integer
value Value of parameter.
size Number of values (size of value array).
scale Integer value scale factor.

Optional argument; o indicates last (ignored) argument.
RETURN VALUE: Not Used

Creates an integer parameter with attributes based upon function arguments.

EXAMPLE: RPGP_set int param(param, id, name, RPGP_TYPE INT, value,
size, scale, RPGP_ATTR UNITS, units, 0);

where value iStype int *, setting the value of the integer array element [size],

the scale factor is scale, and an additional attribute "units™ is being set.

cpc018/tsk001/buildDMD_PSB.c

int RPGP_set float param(RPGP_parameter t *param, char *id, char *name,

int type, void *value, int size,
const int fld width,
const int precision, const double scale,

PARAMETER: param Pointer to the parameter.
id Parameter ID
CODE Volume 3 B24.0r1.20 October 2025

Page 137 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

name Parameter Name

type Type of floating point

value Value of parameter.

size Number of values (size of value array).

£1d width Maximum number of characters to represent the value.
precision Number of characters to the right of the decimal point.
scale Floating point value scale factor.

Optional argument; o indicates last (ignored) argument.
RETURN VALUE: Not Used

Creates a floating point parameter with attributes based upon function arguments.

EXAMPLE: RPGP_set float param(param, id, name, RPGP_TYPE FLOAT,
(void *) &value, 1, fld width, precision, 1.0, RPGP_ATTR UNITS,
units, 0);

where value iS type const float, this is a single value parameter (size = 1),
the scale factor is 1.0, and an additional attribute "units" is being set.

cpc018/tsk001/buildDMD_PSB.c

int RPGP_set string param(RPGP_parameter t *param, char *id, char *name,

void *value, int size, ...)
PARAMETER: param Pointer to the parameter.
id Parameter ID
name Parameter Name
value Value of parameter.
size Number of values (size of value array).

Optional argument; o indicates last (ignored) argument.
RETURN VALUE: Not Used

Creates a string parameter with attributes based upon function arguments.

EXAMPLE: RPGP_set string param(
text packet[num nodes]->comp params, "Msg Type",
n"n "RDA ALARM CLEARED", 1, 0);

where we are setting a parameter in the text component text_packet|
num nodes], With an id of "Type", a blank name, and a single value of "rRDA
ALARM CLEARED".

cpc018/tsk001/buildDMD_PSB.c
Parameter Descriptions

param

CODE Volume 3 B24.0r1.20 October 2025 Page 138 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

id

name

type

value

size

Pointer to the parameter structure RPGP_parameter t.

Parameter ID. A unique single token identifier. The ID is intended for machine processing rather
than display to a human user. Each parameter ID in a product should have a single consistent
meaning throughout the product (think of an ID as a type or class). In addition for the parameter
ID's to be useful: (1) the product parameter ID's should be unique, and (2) a component's
parameter ID's should be unique. If multiple components within a product represent the same
thing then these components use the same component parameter 1D's with their purpose and
meaning remaining consistent. Components within a product that are either (a) different types of
components or are (b) the same component type but represent different kinds of objects, should
not share the same component parameter ID's.

Parameter Name. A short description (several words) for the parameter which could be displayed
as a title or label. The optional "description™ attribute on the other hand is intended to provide
additional information to the user.

For integer parameters: REGP_TYPE_INT, RPGP_TYPE_UINT, RPGP_TYPE_SHORT,
RPGP_TYPE USHORT, RPGP_TYPE BYTE, RPGP_TYPE UBYTE, and RPGP_TYPE BIT are defined in
rpgp . h. For floating point parameters: ReGp_TYPE_FLOAT and RPGP_TYPE_DOUBLE are defined in

rpgp . h.
Value of the parameter. This is an integer / floating point / string value as appropriate.

Number of values (size of the vaiue array). Normally 1 for a single value parameter.

£1d_width

Maximum number of characters to represent the value for floating point parameters. Use o for
unlimited. This is analogous to the formatting of print£ Statements to determine how many
digits to use in the character representation.

precision

scale

Number of characters to the right of the decimal point for floating point parameters. This is
analogous to the formatting of print£ statements to determine the number of decimal places of
precision.

Scale factor used for integer and floating point parameter values. Determines location of decimal
point. 1.0 means the decimal is positioned correctly in value.

Optional Argument. The last argument is always represented by o. Additional arguments are
used to specify additional attributes for the parameter. Additional arguments are specified using
tuples <attr, string val> where the supported attr are defined in rpgp_prod support.h
and string_val are strings. The defined attr include: ReGp_ATTR_uNITS for "units"”,
RPGP_ATTR_DESCRIPTION for "description”, ReGp_ATTR_RaANGE for "range", and
RPGP_ATTR_DEFAULT for "default”. The format of the string_val depends on the item.

Notes / Rules for use

1.

Parameter construction is accomplished before ReGP_finish RPGP_product_t is called.

CODE Volume 3 B24.0r1.20 October 2025 Page 139 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

The function RPGP_product_serialize is used to serialize the serial data portion of data packet 28
prior to releasing the product buffer (writing to the product database). Once the product output is
complete, generic product memory allocation is released using RPGP_product_free.

int RPGP_product_serialize(RPGP_product_ t *prod, char **serial data)

PARAMETER: prod Pointer to the Generic Product Structure
serial data Pointer to the resulting serialized data.

RETURN VALUE: The number of bytes of the serialized data on success or -1 on
failure.

Takes the fully populated generic product and creates a serialized data block. The returned pointer
must be freed if not NULL.

EXAMPLE: cpc018/tsk001/buildDMD_PSB.c

Parameter Descriptions
prod

Pointer to the fully Generic Product Structure RPGP_product_t.
serial data

Pointer to the resulting serialized data.

Notes / Rules for use

1. If not NULL, after copying the serialized data into data packet 28 the returned pointer must be
freed.

int RPGP_product_ free(RPGP_product_t *prod)
PARAMETER: prod Pointer to the Generic Product Structure
RETURN VALUE: Returns o on success or -1 on failure.
Frees the generic product structure.

EXAMPLE: cpc018/tsk001/mdaprodMain.c

Parameter Descriptions
prod

Pointer to the fully Generic Product Structure RPGP_product_t.

Notes / Rules for use

1. The generic product data structure must be freed after product construction.

CODE Volume 3 B24.0r1.20 October 2025 Page 140 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

Functions Used For Debugging Generic Products

The following functions can be used in debugging a populated generic product structure. If the product
data is already serialized, RPGP_product deserialize IS called to create the populated generic product
structure. The remainder of the functions are used to create a text output of the product.

RPGP_print_prod prints the entire product to which the argument is pointing. The output is to standard
output, stdout. If the function is called by a running algorithm which has been launched during ORPG
startup, the output is captured in the tasks log file named <task name>.output in the 1ogs directory
under $ORPGDIR.

LIMITATION: Even though all components can be deserialized, only area components and
event components are supported by the debugging print functions listed below.

The rest of the print functions could be used to selectively print portions of the product.

After the product has been completed (and in the product database or in a single product binary file) the
CODE utilities can be used to view the product. cve provides basic display of the generic product
(currently area and radial components are supported). cvt provides a text output generic product (all
components supported). cvt supports all data types. Both provide the ability to decode unsigned integer
arrays used by the radial component.

The following print functions could be used within an algorithm to analyze the contents of a generic
product but they have not been expanded to include all data types (only short, unsigned short, and
unsigned char are supported), the format of the output is not as easy to examine in some cases as the cvr
output, and there is no capability to decode unsigned integer arrays.

These functions are used by void RPGP_print_prod (RPGP_product_ t *prod) t0 print the entire
generic product to stdout.

void RPGP_print components(int n_comps, char **comps)

void RPGP_print area(RPGP_area t *area)

void RPGP_print points(int n_points, RPGP_location_t *points)
void RPGP_print params(int n_params, RPGP_parameter t *params)

void RPGP_print event(RPGP_event t *event)

int RPGP_product deserialize(char *serial data, int size,
RPGP_product t **prod)

CODE Volume 3 B24.0r1.20 October 2025 Page 141 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

PARAMETER: serial data Pojnter to the data to be deserialized.

size Size in bytes of the serialized data.
prod Pointer to the resulting deserialized data.
RETURN VALUE: Returns o on success and -1 on failure.

Deserializes the serialized product data.
EXAMPLE: This function is not yet used in any algorithm

Parameter Descriptions

serial data

Pointer to the data to be deserialized.
size

Size in bytes of the serialized data.
prod

Pointer to the resulting deserialized data.

Notes / Rules for use

1.

void RPGP_print prod(RPGP_product t *prod)

PARAMETER: prod Pointer to the Generic Product Structure

RETURN VALUE: Not Used

Prints the entire generic product to standard output.

EXAMPLE:

Parameter Descriptions
prod

Pointer to the Generic Product Structure RPGP_product_t

Notes / Rules for use

1.

Functions Specific to Using External Model Data
Five functions were added in Build 9 and will be documented in a subsequent edition of this guide.

int RPGCS_get model data(int model, char **data)

CODE Volume 3 B24.0r1.20 October 2025 Page 142 of 234

Vol 3 Doc 2 Section 11l - Final Product Construction

void* RPGCS_get model attrs(int model, char *data)

void* RPGCS_get model field(int model, char *data, char *field)

double RPGCS_get data value(RPGCS_model grid data_t *data, int level,
int i_ind, int j_ind, int *units)

void RPGCS_free model field(int model, char *data)

CODE Volume 3 B24.0r1.20 October 2025 Page 143 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions

Vol 3. Document 2 -
The WSR-88D Algorithm API Reference

Section IV API Convenience Functions

NOTE

Not all of the API functions have been documented. The functions not documented are not
critical to algorithm development and many of the recently added functions were created to
support the porting of legacy FORTRAN algorithms to ANSI-C.

= Some of the new functions are redundant with existing functions.

= Some are not generally useful for algorithm development.

= Some of the new functions have not yet been used in algorithms.

NOTE: Some previously deprecated functions are being used to port FORTRAN algorithms.

The contents of this section is organized as follows:

o Part A. Data Conversion Functions

o Part B. Date / Time Conversion Functions

o Part C. Coordinate Conversion Functions

e Part D. Lambert Projection / Grid Conversion Functions

Part A. Data Conversion Functions

This is a collection of functions that assist in encoding and decoding the WSR-88D standard
representation of velocity, reflectivity, and spectrum width data using integer variables.

Velocity Resolution Functions

Unlike reflectivity and spectrum width moments, the WSR-88D has two operating modes for the
velocity data moment. Velocity mode 1 (high resolution) is the normal mode providing velocity data
from -63.5m/s t0 63 m/s in 0.5 m/s intervals. Velocity mode 2 (low resolution) provides velocity data
from -127 m/s to 126 m/s in 1.0 m/s intervals.

The following functions establish the correct velocity resolution for the conversion functions.
RPGCS_set_velocity reso must be called before using the function Rrccs_velocity to_ms. The
return value of either function is used as a parameter to provide the resolution to

RPGCS ms_to_velocity. The current velocity resolution must be obtained at least once each volume
scan before using the velocity conversion functions.

CODE Volume 3 B24.0r1.20 October 2025 Page 144 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions

RESO RPGCS_get velocity reso(int dop_res)
PARAMETER: dop_res Base data radial velocity resolution

RETURN VALUE: One of the two possible values of the enumerated type reso (either
HI_RES Of LOW_RES). S€e rpgcs_data_conversion.h.

Returns the rReso value corresponding to the Doppler resolution input via the reso parameter but
does not change / set the variable used by the conversion functions.

EXAMPLE: cpc008/tsk001/alerting_grid_processing.c
Notes / Rules for use

1. RPGCS_get velocity reso is not actually needed for use with the velocity conversion
functions because the return value from ReGCS_set velocity reso can be used as well.

RESO RPGCS_set velocity reso(int dop res)

PARAMETER: dop_res Base data radial velocity resolution

RETURN VALUE: One of the two possible values of the enumerated type rReso (either
HI_RES Of LOW_RES). S€e rpgcs_data_conversion.h.

Returns the rReso value corresponding to the Doppler resolution input via the reso parameter and
sets an internal infrastructure variable used by the velocity conversion functions.

EXAMPLE: cpc007/tsk002/basvlicty.c
cpc007/tsk014/bvel8bit.c

Parameter Descriptions

dop_res
The velocity resolution obtained from the dop_resolution field of the base data header. The
structure Base_data_header iS defined in basedata.h.

Notes / Rules for use

1. RPGCS_set_velocity_ reso must be called before using RPGes_velocity to_ms. The return
value of this function (or from RPGCS_get velocity reso) IS an input to
RPGCS_ms_to_velocity.

Base Data Value Decoding

These functions decode the scaled data values for the three radar moments (reflectivity, velocity, and
spectrum width) which are contained in the base data radial messages and base data elevation messages.
This encoded data is also contained in products using the digital data array (packet code 16). The scaled
data (values 2-255) are decoded into the real physical parameters having the following units of measure:
aBz for reflectivity, meters/second for velocity, and meters/second for spectrum width. The special

CODE Volume 3 B24.0r1.20 October 2025 Page 145 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions

value -999.0 is returned to represent the binary encoded flag value 0 (Below Threshold) and special
value -888.0 is returned to represent the binary encoded flag value 1 (Range Folded).

float RPGCS_reflectivity to dBZ(int value)

PARAMETER: value Encoded (scaled) data value for reflectivity

RETURN VALUE: Returns nvarIp pata (-777.0) if input not 0-255. Otherwise returns
the real reflectivity value in aBz or -999.0 for below threshold and -
888.0 for missing data.

Converts the scaled reflectivity value to the real data value in units of dz. The value -999 is
returned for the below threshold flag (binary 0) and the value -888 is returned for the missing data
flag (binary 1).

EXAMPLE: cpc007/tsk001/basrflct.c
cpc007/tsk013/bref8bit.c

float RPGCS velocity to ms(int value)

PARAMETER: value Encoded (scaled) data value for velocity

RETURN VALUE: Returns invanIp_pata (-777.0) if input not 0-255. Otherwise returns
the real velocity value in meters/second or -999.0 for below
threshold and -888.0 for range folded.

Converts the scaled velocity value to the real data value in units of meters/second. The value -
999.0 is returned for the below threshold flag (binary 0) and the value -888.0 is returned for the
range folded data flag (binary 1).

EXAMPLE: cpc007/tsk002/basvlcty.c
cpc007/tsk014/bvel8bit.c

float RPGCS_spectrum width to ms(int value)

PARAMETER: value Encoded (scaled) data value for spectrum width

RETURN VALUE: Returns invaLIp_pata (-777.0) if input not 0-255. Otherwise returns
the real spectrum width value in meters/second or -999.0 for below
threshold and -888 for range folded.

Converts the scaled spectrum width value to the real data value in units of meters/second. The
value -999.0 is returned for the below threshold flag (binary 0) and the value -888.0 is returned
for the range folded data flag (binary 1).

EXAMPLE: cpc007/tsk003/basspect.c
cpc007/tsk015/superes8hit.c

Parameter Descriptions

value

CODE Volume 3 B24.0r1.20 October 2025 Page 146 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions

The encoded (scaled) data value for one of three radar moments (reflectivity, velocity, and
spectrum width). These values are contained in base data radial messages, base data elevation
messages, and in products using the digital data array packet (packet code 16).

Notes / Rules for use

1. RPGCS_set_velocity reso must be called at least once each volume scan before using
RPGCS_velocity_ to_ms.

Base Data Value Encoding

These functions encode real data for the three radar moments (reflectivity, velocity, and spectrum width)
into the proper scaled values (2-255) that can be represented by a single byte integer. The encoding of
flag values for binary data values 0 and 1 (which are flag values) must be handled separately. This
encoding is often used in the creating of products using the digital data array (packet code 16). The input
data must be in the following units of measure: aBz for reflectivity, meters/second for velocity, and
meters/second for spectrum width.

int RPGCS _dBZ_ to reflectivity(float value)
PARAMETER: value reflectivity in aBz

RETURN VALUE: Returns DATA_ouT_oF_RANGE if input value exceeds WSR-88D limits
(-32.0 to 94.5 daBz). Otherwise returns reflectivity encoded
appropriately (values 2-255) for use in a digital data array (packet code
16). Flag values 0 and 1 must be handled separately.

Converts real value of reflectivity (in dBz) to the appropriate scaled reflectivity value for use in a
digital data array (packet code 16). Flag values 0 and 1 must be handled separately.

EXAMPLE: cpc008/tsk001/alerting_grid_processing.c

int RPGCS_ms_to_velocity(RESO reso, float value)

PARAMETER: reso the API velocity resolution code
value velocity in meters/second
RETURN VALUE: Returns pATa_ouT_OF RANGE if input value exceeds WSR-88D limits

(-63.51t0 63 m/s HIGH_RES and -127 to 126 m/s Low_RES). Returns
INVALID DATA if input reso not valid. Otherwise returns velocity
encoded appropriately (values 0-255) for use in a digital data array
(packet code 16). Flag values 0 and 1 must be handled separately.

CODE Volume 3 B24.0r1.20 October 2025 Page 147 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions

Converts real value of velocity (in meters/second) to the appropriate scaled velocity value for
use in a digital data array (packet code 16). Flag values 0 and 1 must be handled separately.

EXAMPLE: cpc007/tsk014/bvel8bit.c

int RPGCS ms_to_spectrum width(float value)
PARAMETER: value spectrum width in meters/second

RETURN VALUE:! Returns DATA_ouT_OF RANGE if input value exceeds WSR-88D limits
(0.0 to 10.0 m/s). Otherwise returns spectrum width encoded
appropriately (values 0-255) for use in a digital data array (packet
code 16). Flag values 0 and 1 must be handled separately.

Converts real value of spectrum width (in meters/second) to the appropriate scaled spectrum
width value for use in a digital data array (packet code 16). Flag values 0 and 1 must be handled
separately.

EXAMPLE:
Parameter Descriptions

value
The real data value of the corresponding moment (reflectivity in dBZ, radial velocity in

meters/second, and spectrum width in meters/second).
reso

The API value for representing the velocity resolution or the RDA. HIGH RES corresponds to
velocity mode 1 and Low_REs corresponds to velocity mode 2. This value (an enumerated type
RESO defined in rpges_data_conversion.h) is returned by the functions
RPGCS_set_velocity_resoZﬂKﬂRPGCS_get_velocity_reso.

Notes / Rules for use

1. The current resolution must be obtained at least once each volume scan before calling
RPGCS_ms_to_velocity.

Decoding Generic Base Data Field (Future Build 12 Dual Polarization Data)

This function decodes radar data contained in the Generic moment structure. This structure contains
advanced data fields including Dual Polarization data fields implemented Build 12. This function can
also decode the basic moments (R, V, SW), but only if these moments were read with

RPGC_get radar data.

The design of this function assumes that the data never uses the lowest two data levels (0 and 1)
for encoded numerical values. That is, either data levels 0 and 1 are flag values or they are not
used. This is the case for the base data basic moments and all Dual Polarization data fields in the
generic radial structure.

CODE Volume 3 B24.0r1.20 October 2025 Page 148 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions

= For typical base data, the first flag (encoded as integer value 0) represents data that are below
threshold and the second flag (encoded as integer value 1) represents data that are range folded.
The parameters below_threshold and range_folded are used to specify the decoded values of
these flags.

= The Dual Polarization data fields currently use data level 0 for below threshold or no data.
It is unknown whether data level 1 represents a flag value or is just not used.

It is possible to use this function even with data that have encoded numerical values in data levels
0 and 1 as with some final product data. If not a flag value, the decoded value for data level O is
entered for below_threshold and the decoded value for data level 1 is entered for range_folded.

int RPGCS_radar data conversion(void* data, Generic moment t *data block,
float below_threshold, float range folded,
float **converted data)

PARAMETER: data Pointer to the input data array
data_block Pointer to the Generic Moment Structure
below_threshold \/alue to assign to below threshold data (the first flag)
range_folded Value to assign to range folded data (the second flag)
*converted data Pojnter to the output data array

RETURN VALUE: -1 on error, 1 on success, 0 no conversion accomplished
because input array was not integer

Decodes data in the input data array (data). Input value o is decoded to the value of the

below threshold parameter and input value 1 is decoded to the value of the range folded
parameter. All other values in the input data array (data) are decoded according to the scale and
offset field values contained in the input generic moment structure (data_block). The decoded
a”ayiShﬂconverted_data.

EXAMPLE: This function is not yet used in any algorithm

Parameter Descriptions
data

A pointer, cast to void *, of the input data array. This is normally the return value of the

function RPGC_get_radar_data().
data_block

A pointer to a generic moment structure associated with the input data array. This is normally the
*mom parameter of the function ReGc_get_radar_data(). This structure contains the scale and

offset fields used to decode the data array data.
below_threshold

Value to assign to input data level o (which is below threshold or no data). Input data level o is
assigned this value in the output data. The value -999. 0 should be used for the basic data
moments (R, V, and SW). This parameter can be used to assign a decoded value for data level o

regardless of the meaning.
range_ folded

Value to assign to input data level 1 (which is range folded in basic Doppler data). Input data
value 1 is assigned this value in the output data. The value -888. 0 should be used for the basic

CODE Volume 3 B24.0r1.20 October 2025 Page 149 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions

data moments (R, V, and SW). This parameter can be used to assign a decoded value for data

level 1 regardless of the meaning.
*converted data

The output array of decoded data values (type £10at). Must be freed by caller.

Notes / Rules for use

1. Though not required, this function is conveniently used in conjunction with
RPGC_get radar data().

2. The allocated memory *converted data must be freed by the algorithm.

3. This function and decode input data in bytes and shorts. The unsigned int option in
Generic_moment_t IS NOt supported.

4. This function assumes that there are two leading flag values encoded as integer value o and
integer value 1. That is it assumes that data levels o0 and 1 do not represent encoded numerical
values. However it is possible to use this function even with data that have only 1 or have no flag
values.

a. The correct decoded value for integer o must be used for the below_threshold
parameter and the correct decoded value for integer 1 must be used for the range_folded
parameter, whether they represent flag values or numerical values.

b. Comments should be included to clarify when these are not flag values.

CODE Volume 3 B24.0r1.20 October 2025 Page 150 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions
Part B. Date / Time Conversion Functions

This collection of functions provides conversions for modified Julian date, UNIX time, and WSR-88D
radial time. A time span function using Julian date and radial time is also included.

System Date / Time

int RPGCS get time zone()

PARAMETER: NONE

RETURN VALUE: Time zone in hours West of GMT.
Returns the time zone using the POSIX tzset function.

EXAMPLE: This function is not yet used in any algorithm

Notes / Rules for use

1. This function will not work unless the variable Tz is present in the ORPG account environment.

int RPGCS_get date time(int *ctime, int *cdate)

PARAMETER: ctime calculated current time (seconds after midnight)
cdate calculated current Modified Julian date
RETURN VALUE: always returns 0

From the system time calculates the seconds after midnight and the modified Julian date.

EXAMPLE: cpc008/tsk001/alerting_product_generation.c

Parameter Descriptions
ctime (Output)

The calculated current time (in seconds after midnight)
cdate (Output)

The calculated current Modified Julian date.

Notes / Rules for use (for a data driven task):

1.

CODE Volume 3 B24.0r1.20 October 2025 Page 151 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions

Julian Date Conversion

These functions provide a two way conversion between modified Julian date and a date represented by
year, month, and day.

int RPGCS_julian_ to_date(int julian_date, int *year, int *month, int *day)

PARAMETER: julian_date modified Julian date (day 1 is Jan 1, 1970)

year calculated whole year

month calculated month number

day calculated day number
RETURN VALUE: Currently always returns 0

Calculates the whole year, month number, and day number from the modified Julian date.
The minimum date is 1: 1970/01/01, the maximum is 534361755: 1465002/10/17

EXAMPLE: cpc018/tsk003/tdaru.c

int RPGCS_date to julian(int year, int month, int day, int *julian_date)

PARAMETER: year whole year
month month number
day day number

julian_date cg|culated modified Julian date (day 1 is Jan 1, 1970)
RETURN VALUE: Currently always returns 0

Calculates the modified Julian date from the whole year, month number, and day number.
The minimum date is 1: 1970/01/01, the maximum recommended date is 65535: 2149/06/05

EXAMPLE: cpc013/tsk012/dp_dua_accum_func.c (Build 12)
cpc014/1ib002/dp_time_conversions.c (Build 12)

Parameter Descriptions
julian_date
The modified Julian date where day 1 is January 1, 1970.

year

The whole year (e.g., 1972)

month

The month number (1-12)
day

The day number (1-31)

Notes / Rules for use

CODE Volume 3 B24.0r1.20 October 2025 Page 152 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions

1. The earliest modified Julian date of 1 corresponds to the earliest valid date of 1970/01/01.
Though not the actual limit of the function, the latest modified Julian date that is recommended

is 65,535 which corresponds to the latest recommended date of 2149/06/05..

2. For RPGCs_date_to_julian, it is the user's responsibility to ensure that the earliest date and the
latest date are not exceeded and that the range limits of the individual parameters year, month,

and day are not exceeded.

3. ForrpGcs _julian_to_date, it is the user's responsibility to ensure the input Julian date is

between 1 and 65,535 inclusive.

This function calculates a time span in seconds between two modified Julian dates and times.

time t RPGCS time span(int start time, int start date, int end time,

int end date)
PARAMETER: start_time seconds after midnight
start_date |Modified Julian
end_time geconds after midnight
end _date Modified Julian
RETURN VALUE: Time span in seconds.
Calculates the time span in seconds between two date / time inputs.

EXAMPLE: This function is not yet used in any algorithm

Parameter Descriptions

start_time

The seconds after midnight on the starting date.
start_date

The modified Julian date where day 1 is January 1, 1970.

end time

The seconds after midnight on the end date.
end date

The modified Julian date where day 1 is January 1, 1970.

Notes / Rules for use

1.

Unix Time Conversion
CODE Volume 3 B24.0r1.20 October 2025

Page 153 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions

These functions provide a two way conversion between UNIX time and a time represented by year,
month, day, hours, minutes, and seconds.

int RPGCS unix time_ to_ymdhms(time_t time, int *year, int *month, int *day,
int *hour, int *minute, int *second)

PARAMETER: time UNIX time
year calculated year
month calculated month number
day calculated day number
hour calculated hours

minute calculated minutes
second calculated seconds
RETURN VALUE: Returns -1 with an input UNIX time out of range; returns O otherwise.

Calculates the year, month, day, hours, minutes, and seconds from UNIX time.
The earliest time is 1970/01/01 00:00:00, the latest time is 2106/02/07 06:28:15

EXAMPLE: cpc013/tsk012/dp_dua_accum_func.c (Build 12)
cpc014/1ib002/dp_time_conversions.c (Build 12)

int RPGCS_ymdhms to unix time(time_t *time, int year, int month, int day,
int hour, int minute, int second)

PARAMETER: time calculated UNIX time
year year
month month number
day day number
hour hours

minute minutes
second seconds

RETURN VALUE: Returns -1 with the input total time out of range; returns 0 otherwise.
NOTE: This does not reliably warn about an individual
parameter being out of range.

Calculates UNIX time from whole year, month number, day number, hours, minutes, and
seconds. The earliest time is 1970/01/01 00:00:00, the latest time is 2106/02/07 06:28:15

EXAMPLE: cpc013/tsk012/dp_dua_accum_func.c (Build 12)
Parameter Descriptions

time

CODE Volume 3 B24.0r1.20 October 2025 Page 154 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions
UNIX time. (1-4294967295)

year

The whole year (1970 - 2106)

month

The month number (1-12)
day

The day number (1-31)

hour

The hour using a 24 hour clock (e.g., 0-23)

minute
Minutes (0-59)
second

Seconds (0-59)

Notes / Rules for use

1. The earliest UNIX time of 1 corresponds to the earliest valid date of 1970/01/01 and time of
00:00:00. The latest UNIX time of 4294967295 corresponds to the latest valid date of
2106/02/07 and time of 06:28:15.

2. For RpGCs_ymdhms_to_unix_time, it iS the user's responsibility to ensure that the earliest date-
time and the latest date-time are not exceeded and that the range limits of the individual
parameters year, month, day, hour, minute, and second are not exceeded.

Radial Time Conversion

This function converts WSR-88D radial time to a time represented by hours, minutes, seconds, and
milliseconds.

int RPGCS_convert radial time(unsigned int time, int *hour, int *minute,
int *second, int *mills)

PARAMETER: time radial time

hour calculated hours

minute calculated minutes

second calculated seconds

mills calculated milliseconds
RETURN VALUE: Returns -1 on error and 0 on success.
Calculates hours, minutes, seconds, and milliseconds from radial time.

EXAMPLE: cpc018/tsk003/tdaru.c
Parameter Descriptions

time

CODE Volume 3 B24.0r1.20 October 2025 Page 155 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions

The radial time obtained from the ORPG radial header (the number of milliseconds past
midnight).
hour

The number of hours using a 24 hour clock (0-23).
minute

The number of minutes
second

The number of seconds.
mills

The number of milliseconds.

Notes / Rules for use

1.

CODE Volume 3 B24.0r1.20 October 2025 Page 156 of 234

Vol 3 Doc 2 Section IV -. API Convenience Functions
Part C. Coordinate Conversion Functions

This is a collection of functions that assist in

e converting between polar coordinates (azimuth and range or azran) and rectangular coordinates
(x and y). The rectangular or Cartesian grid is centered upon the same point as the polar
coordinate reference.

e converting between Latitude and Longitude and either polar coordinates (azran) or rectangular
coordinates (x and y).

In order to use these coordinate conversion functions, the file rpges_coordinates.h must
be included in addition to the standard algorithm include files. See CODE Guide Volume 3,
Document 3, Section I, Guidance for the Structure of Algorithms for a complete discussion
or required header files.

The WSR-88D base data and much of the internal data are in polar coordinates with the antenna location
at the point of origin. These conversion functions assume a Cartesian grid also centered about the
antenna location (positive values of y are north of the antenna, negative y is south, positive x is east, and
negative values of x are west of the antenna.

Three sets of functions are provided. The first can be used to change the default units of measurement
for distance. The second involve basic transformations in a single plane. The third set involves a
projection from polar coordinates in conical sections (that is a WSR-88D elevation scan) to a Cartesian
grid (flat plane at the antenna).

All functions except the Latitude / Longitude conversion functions accept either type float Or double
for the parameters representing polar coordinate range (range) and azimuth (azm); Cartesian North-
South (y) and East-West (x); elevation angle (elev); and height above the surface (height). The
Latitude / Longitude conversion functions use type f£1oat for all parameters.

The type REAL is used to represent either type float Or double in the function parameters. REAL isS
defined as follows.

Including the definition of Reccs Froat and rRear prior to including the header file will permit the use
of parameters of type £1oat. Including the definition of Reccs_pouBLE and ReAL prior to including the
header file will permit the use of parameters of type double.

#define RPGCS_FLOAT
#define REAL float
#include <rpgcs_coordinates.h>

int retval;

float range p;
float azm p;
float elev_p;
float x_op=0.0;

#define RPGCS_DOUBLE
#define REAL double
#include <rpgcs_coordinates.h>

int retval;

double range p;
double azm p;
double elev_p;
double x op=0.0;

CODE Volume 3 B24.0r1.20

October 2025

Page 157 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions

float y_op=0.0; double y op=0.0;

float x p; double x p;

float y p; double y_p;

float range op=0.0; double range op=0.0;

float azm op=0.0; double azm op=0.0;

retval = RPGCS_azranelev_to xy(range p,azm p,elev_p,6&x op, &y _op);
retval = RPGCS_xy to_azran u(x p,y p,METERS, &range op,NMILES, &azm op) ;

Setting Units of Measure
DISTANCE

The Latitude / Longitude conversion functions use kilometers for all distances both Cartesian x y and
polar coordinate range. The remaining functions permit a selection of the unit of measure used for
distance.

Except for the Latitude / Longitude conversion functions, the default unit of measure for distance is
meters. This applies to range in polar coordinates, x and y values in Cartesian coordinates and to
height as used as input and output for the transformation functions in this section.

The following functions are provided to change this default value. Currently meters (m), thousands of
feet (xrt), and Nautical miles (nm) are supported. If meters is satisfactory for all distance measures used
in an algorithm, nothing has to be done.

The unit of measure can be set independently for function inputs and outputs. The units can be changed
(set) at any time. If all inputs in an algorithm are in meters (the original default) and all outputs are in
NM, then the action required is to set the output to nm once prior to calling the first transformation
function.

ANGLE

The default unit of measure for angles is degrees. This applies to azimuth angle (azm) and elevation
angle (e1lev) values in polar coordinates. There are no functions provided to change this default.
void RPGCS_set_ input units(int units)

PARAMETER: units input unit of measure for distance

RETURN VALUE: Not Used

Sets the input unit of measure for distance for subsequent invocations of the coordinate
transformation functions.

EXAMPLE: This function is not yet used in any algorithm

CODE Volume 3 B24.0r1.20 October 2025 Page 158 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions
void RPGCS_set output units(int units)
PARAMETER: units output unit of measure for distance

RETURN VALUE: Not Used

Sets the output unit of measure for distance for subsequent invocations of the coordinate
transformation functions.

EXAMPLE: This function is not yet used in any algorithm

int RPGCS get input units()
PARAMETER: None
RETURN VALUE: The input unit of measure for distance.

Returns the current setting of the input unit of measure for distance being used by the coordinate
transformation functions.

EXAMPLE: This function is not yet used in any algorithm

int RPGCS_get output units()
PARAMETER: None
RETURN VALUE: The output unit of measure for distance.

Returns the current setting of the output unit of measure for distance being used by the coordinate
transformation functions.

EXAMPLE: This function is not yet used in any algorithm
Parameter Descriptions

units

The unit of measure for distance. This value is defined separately for inputs and outputs for the
coordinate transformation functions. It applies to the range, %, y, and height parameters. The

current permissible values for this parameter are: METERS (1), KFEET (2), and NMILES (3) as
deﬁnedinrpgcs_coordinates.h.

Notes / Rules for use

1. If units are not set, the default value for both input and output is meters (a parameter value of

METERS)

2. If the default input / output unit of measure is changed, it retains this new value until either reset

or the task terminates and is restarted.

Single-Plane Cartesian x y Conversions

CODE Volume 3 B24.0r1.20 October 2025 Page 159 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions

This set of functions accomplish two-way conversion between polar coordinates (azran) and rectangular
coordinates (x and y). Some of the functions use the current default setting for input and output range
units while other functions use the input and output units as specified via function parameters.

WARNING: Ignore duplicate implementations of theses functions in cpc018/tsk006.

int RPGCS xy to_azran(REAL x, REAL y, REAL *range, REAL *azm)

PARAMETER: x Cartesian x distance (East-West) meters
Y Cartesian y distance (North-South) meters
range calculated range (polar coord) meters
azm calculated azimuth (polar coord) degrees

RETURN VALUE: Currently, always returns 0.

Given Cartesian distance inputs x and y, calculates polar coordinate range and azimuth using the
set units of measure.

EXAMPLE: See Part C. Introduction

cpc018/tsk003/tdaru.c

int RPGCS xy to azran u(REAL x, REAL y, int xy units, REAL *range,
int range units, REAL *azm)

PARAMETER: x Cartesian x distance (East-West)
' Cartesian y distance (North-South)
Xy_units unit of measure for x and y parameters
range calculated range (polar coord)
range_units ynijt of measure for range parameter
azm calculated azimuth (polar coord)

RETURN VALUE: Returns -1 if any unit of measure parameter (xy units and
range_units) has an invalid value, otherwise returns 0.

Given Cartesian distance inputs x and y, calculates polar coordinate range and azimuth using the
input parameters xy units and range units.

EXAMPLE: See Part C. Introduction
Parameter Descriptions

X

The Cartesian East-West distance (positive is East).
'

The Cartesian North-South distance (positive is North).
range

The polar coordinate range value calculated by the function.

CODE Volume 3 B24.0r1.20 October 2025 Page 160 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions
azm

The polar coordinate azimuth value calculated by the function.
Xy units

The unit of measure for the input Cartesian coordinates. Permitted values are METERS, KFEET, and

NMILES as defined in rpgcs_coordinates.h.

range units
The unit of measure for the calculated polar coordinate range. Permitted values are METERS,
KFEET, and NMILES as defined in rpges_coordinates.h.

Notes / Rules for use

1. WARNING: Ignore duplicate implementations of theses functions in cpc018/tsk006.

int RPGCS_azran_to xy(REAL range, REAL azm, REAL *x, REAL *y)

PARAMETER: range range (polar coord) meters
azm azimuth (polar coord) degrees
X calculated Cartesian x distance meters
y calculated Cartesian y distance meters
RETURN VALUE: Currently, always returns 0.

Given the polar coordinate range and azimuth, calculates the Cartesian coordinates x and y using
the set units of measure.

EXAMPLE: See Part C. Introduction

cpc017/tsk011/makeTVSAssociation.c

int RPGCS_azran_to xy u(REAL range, int range units, REAL azm,
int azm units, REAL *x, REAL *y, int xy units)

PARAMETER: range range (polar coord)
range_units ynit of measure for range parameter
azm azimuth (polar coord)
azm_units ynit of measure for azm parameter
x calculated Cartesian x distance
y calculated Cartesian y distance
Xy_units unit of measure for x and y parameters

RETURN VALUE: Returns -1 if any unit of measure parameter (range_units,
azm_units, and xy _units) has an invalid value; otherwise returns
0.

CODE Volume 3 B24.0r1.20 October 2025 Page 161 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions

Given the polar coordinate range and azimuth, calculates the Cartesian coordinates x and y using
the input parameters range units and xy units.

EXAMPLE: See Part C. Introduction

This function is not yet used in any algorithm

Parameter Descriptions

range
The polar coordinate range value.
azm
The polar coordinate azimuth value.
X
The Cartesian East-West value calculated by the function.
Y

The Cartesian North-South value calculated by the function.
range_units

The unit of measure for the input polar coordinate range. Permitted values are METERS, KFEET,

and NMILES as defined in rpges_coordinates.h.
azm units

The unit of measure for the input polar coordinate azimuth. Permitted values are peG (degrees)
and pEG10 (degrees*10) as defined in rpges_coordinates.h. The DEG10 unit is used by the

ORPG in order to represent tenths of a degree with integer variables.
Xy units

The unit of measure for the calculated Cartesian coordinates. Permitted values are METERS,
KFEET, and NMILES as defined in rpges_coordinates.h

Notes / Rules for use

1.

Single-Plane Latitude / Longitude Conversions

This set of functions accomplish two-way conversion between Latitude and Longitude and either polar
coordinates (azran) or rectangular coordinates (x and y). These functions do not use the multiple units
of measure for distance that are used by the other functions. All distances are in kilometers.

These functions use the antenna location contained in the Site Information adaptation data. In a

development environment, the Site Information adaptation data must be set prior to the creation of the
products.

WARNING: Ignore duplicate implementations of theses functions in cpc018/tsk001. Some of these
duplicates have parameters in a different order

int RPGCS_xy to latlon(float x, float y, float *lat, float *1lon)

CODE Volume 3 B24.0r1.20 October 2025 Page 162 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions

PARAMETER: x Cartesian x distance (East-West) kilometers
Y Cartesian y distance (North-South) kilometers
lat calculated Latitude
lon calculated Longitude

RETURN VALUE: Currently, always returns 0.

Given Cartesian coordinate inputs x and y, calculates the Latitude and Longitude.

EXAMPLE:

int RPGCS_latlon_to xy(float lat, float lon, float *x, float *y)

PARAMETER: lat Latitude
lon Longitude
x calculated Cartesian x distance (kilometers)
Y calculated Cartesian y distance (kilometers)
RETURN VALUE: Currently, always returns 0.

Given the Latitude and Longitude, calculates the Cartesian coordinates x and y.

EXAMPLE: This function is not yet used in any algorithm

int RPGCS_azran to latlon(float rng, float azm, float *lat, float *1lon)

PARAMETER: rng range (polar coord) kilometers
azm azimuth (polar coord) degrees
lat calculated Latitude
lon calculated Longitude

RETURN VALUE: Currently, always returns 0.

Given the polar coordinate range and azimuth, calculates the Latitude and Longitude.

EXAMPLE:

int RPGCS_latlon_to_azran(float lat, float lon, float *rng, float *azm)

PARAMETER: lat Latitude
lon Longitude
rng calculated range (polar coord) kilometers

CODE Volume 3 B24.0r1.20 October 2025 Page 163 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions
azm calculated azimuth (polar coord) degrees
RETURN VALUE: Currently, always returns 0.
Given Cartesian distance inputs x and y, calculates the polar coordinate range and azimuth.

EXAMPLE:

Parameter Descriptions

X
The Cartesian East-West distance in kilometers (positive is East).

Y The Cartesian North-South distance in kilometers (positive is North).
o The polar coordinate range value (kilometers).

- The polar coordinate azimuth value (degrees).

e The Latitude of the point.

lon

The Longitude of the point.

Notes / Rules for use

1. WARNING: Ignore duplicate implementations of theses functions in cpc018/tsk001. Some of
these duplicates have parameters in a different order.

Elevation Scan to Ground Cartesian Coordinates

These functions provide a projection from a conical section in polar coordinates (azran) to a Cartesian
grid (x and y in a plane at the antenna) and provide a height calculation from the conical section to the
earth's surface. Some functions use the current default setting for input and output range units while
other functions use the input and output units as specified via function parameters.

WARNING: Ignore duplicate implementations of theses functions in cpc018/tsk006.

int RPGCS_azranelev_to xy(REAL range, REAL azm, REAL elev, REAL *x, REAL *y)

PARAMETER: range slant range (conical section) meters
azm azimuth angle (conical section) degrees
elev elevation angle (conical section) degrees
x calculated Cartesian x distance meters
' calculated Cartesian y distance meters

CODE Volume 3 B24.0r1.20 October 2025 Page 164 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions

RETURN VALUE: Returns -1 if the elevation angle parameter is out of range, otherwise
returns 0.

Given the conical section slant range, azimuth, and elevation angle, calculates the flat-plane
Cartesian coordinates x and y using the set units of measure.

EXAMPLE: See Part C. Introduction

cpc018/tsk003/tdaru.c

int RPGCS_azranelev_to xy u(REAL range, int range units, REAL azm,
int azm units, REAL elev, int elev_units,
REAL *x, REAL *y, int xy units)

PARAMETER: range slant range (conical section)
range_units ynijt of measure for the range parameter
azm azimuth angle (conical section)
azm_units ynit of measure for the azm parameter
elev elevation angle (conical section)
elev_units ynit of measure for the elev parameter
* calculated Cartesian x distance
Y calculated Cartesian y distance
Xy_units unit of measure for the x and y parameters

RETURN VALUE: Returns -1 if the elevation angle parameter is out of range; returns -
1 if any unit of measure parameter (range_units, azm units,
elev_units, and xy_units) has an invalid value; otherwise
returns 0.

Given the conical section slant range, azimuth, and elevation angle, calculates the flat-plane
Cartesian coordinates x and y using the input parameters range units, azm units, elev_units,
andxy_units

EXAMPLE: See Part C. Introduction

This function is not yet used in any algorithm

Parameter Descriptions

range

The conical section slant range value.
azm

The conical section azimuth angle value.
elev

The conical section elevation angle value.
x (output)
The Cartesian East-West value calculated by the function.

CODE Volume 3 B24.0r1.20 October 2025 Page 165 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions

y (output)

The Cartesian North-South value calculated by the function.
range units

The unit of measure for the input slant range. Permitted values are METERS, KFEET, and NMILES

as defined ”]rpgcs_coordinates.h.
azm units

The unit of measure for the input azimuth angle. Permitted values are peG (degrees) and bEG10
(degrees*10) as defined in rpges_coordinates.h. The DEG10 unit is used by the ORPG in order

to represent tenths of a degree with integer variables.
elev_units

The unit of measure for the input elevation angle. Permitted values are peG (degrees) and DEG10
(degrees*10) as defined in rpges_coordinates.h. The DEG10 unit is used by the ORPG in order

to represent tenths of a degree with integer variables.
Xy units

The unit of measure for the calculated Cartesian coordinates. Permitted values are METERS,
KFEET, and NMILES as defined in rpges_coordinates.h.

Notes / Rules for use

int RPGCS_height (REAL range, REAL elev, REAL *height)
PARAMETER: range slant range (conical section) meters

elev elevation angle (conical section) degrees

height calculated height above the earth's surface (meters)

RETURN VALUE: Returns -1 if the elevation angle parameter is out of range, otherwise
returns 0.

Given the conical section slant range and elevation angle, calculates the height above the earth's
surface using the preset units of measure.

EXAMPLE: cpc022/tsk005/hreet_compute_eet.c

int RPGCS _height u(REAL range, int range units, REAL elev, int elev_units,
REAL *height, int height units)

PARAMETER: range slant range (conical section)
range_units ynjt of measure for range parameter
elev elevation angle (conical section)
elev_units ynit of measure for elev parameter

height calculated height above the earth's surface

CODE Volume 3 B24.0r1.20 October 2025 Page 166 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions
height_units (nijt of measure for height parameter

RETURN VALUE: Returns -1 if the elevation angle parameter is out of range; returns
-1 if any unit of measure parameter (range units, elev_units,
and height_units) has an invalid value; otherwise returns 0.

Given the conical section slant range and elevation angle, calculates the height above the earth's
surface using the input parameters range_units, elev_units, and height_units.

EXAMPLE: cpc024/tsk003/mlprod.c (Build 12)
Parameter Descriptions

range

The conical section slant range.
elev

The conical section elevation angle.
height (output)
The height above the earth's surface calculated by the function.
range_ units
The unit of measure for the input slant range. Permitted values are METERS, KFEET, and NMILES

as defined in rpges_coordinates.h.
elev_units

The unit of measure for the input elevation angle. Permitted values are peG (degrees) and bEG10
(degrees*10) as defined in rpges_coordinates.h. The DEG10 unit is used by the ORPG in order

to represent tenths of a degree with integer variables.

height_units
The unit of measure for the calculated height. Permitted values are METERS, KFEET, and NMILES
as defined ”lrpgcs_coordinates.h.

Notes / Rules for use

int RPGCS_range(REAL height, REAL elev, REAL *range)

PARAMETER: height height above the earth's surface

elev elevation angle (conical section)
range calculated slant range (conical section)
RETURN VALUE: Returns -1 if the elevation angle parameter is out of range, otherwise
returns 0.

Given the height above the earth's surface and elevation angle, calculates the conical section slant
range using the preset units of measure.

EXAMPLE: This function is not yet used in any algorithm

CODE Volume 3 B24.0r1.20 October 2025 Page 167 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions

int RPGCS_range u(REAL height, int height units, REAL elev, int elev_units,
REAL *range, int range units)

PARAMETER: height height above the earth's surface
height_units (nijt of measure for height parameter
elev elevation angle (conical section)
elev_units ynijt of measure for elev parameter
range calculated slant range (conical section)
range_units ynjt of measure for range parameter

RETURN VALUE: Returns -1 if the elevation angle parameter is out of range; returns
-1 if any unit of measure parameter (range_units, elev_units,
and height_units) has an invalid value; otherwise returns 0.

Given the height above the earth's surface and elevation angle, calculates the conical section slant
range using the input parameters range_units, elev_units, and height units.

EXAMPLE: This function is not yet used in any algorithm

Parameter Descriptions
height

The height above the earth's surface.
elev

The conical section elevation angle.
range (Output)

The conical section slant range calculated by the function.
height _units

The unit of measure for the calculated height. Permitted values are METERS, KFEET, and NMILES
as defined in rpges_coordinates.h.

elev_units
The unit of measure for the input elevation angle. Permitted values are peG (degrees) and bEG10
(degrees*10) as defined in rpges_coordinates.h. The DEG10 unit is used by the ORPG in order
to represent tenths of a degree with integer variables.

range_units
The unit of measure for the input slant range. Permitted values are METERS, KFEET, and NMILES
as defined ”lrpgcs_coordinates.h.

Notes / Rules for use

CODE Volume 3 B24.0r1.20 October 2025 Page 168 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions

Window Product Helper

This function supports construction of a very specific type of product referred to as a "window" product.
This is a polar array of data where only a subset of radial contain data. Within those radials the data are
only valid between a minimum and maximum range.

Documentation of This Function is Not Complete

void RPGCS window_extraction(float radius center, float azimuth center,
float length, float *max rad, float *min rad,
float *max theta, float *min_theta)

PARAMETER: radius_center ghort desc

azimuth center ghort desc

length short_desc
max_rad short_desc
min_rad short_desc
max_theta short_desc
min_theta short_desc
RETURN VALUE: retval_descript

Description paragraph
EXAMPLE:
Parameter Descriptions

radius_center
long_desccription

azimuth_center
long_desccription

length
long_desccription

max_rad
long_desccription

min_rad
long_desccription

CODE Volume 3 B24.0r1.20 October 2025 Page 169 of 234

Vol 3 Doc 2 Section IV -. APl Convenience Functions

max_theta
long_desccription

min_theta
long_desccription

Notes / Rules for use

CODE Volume 3

B24.0r1.20

October 2025

Page 170 of 234

Vol 3 Doc 2 Section IV -. API Convenience Functions
Part D. Lambert Projection / Grid Conversion Functions

Nine functions were added in Build 9 and will be documented in a subsequent edition of this guide.
These functions support conversions between a specific Lambert projection coordinates and various grid
coordinates. They are useful only for reading external model data that are in that specific projection.
int RPGCS_lambert grid point xy(int i_ind, int j_ind, double *x, double *y)

int RPGCS_lambert grid point_latlon(int i_ind, int j_ind, double *lat,
double *lon)

int RPGCS_lambert grid point_azran(int i_ind, int j_ind, double *azm,
double *ran)

int RPGCS_lambert latlon_ to grid point(double lat, double lon, int *i ind,
int *j_ind)

int RPGCS_lambert xy to_grid point(double x, double y, int *i ind, int *j_ind)
int RPGCS_lambert latlon_to_xy(double lat, double lon, double *x, double *y)
int RPGCS_lambert xy to_latlon(double x, double y, double *lat, double *lon)

void RPGCS_lambert init(RPGCS_model attr t *model attr)

int RPGCS_lambertuv_to uv(double ur, double vr, double lon, double *u, double *v
)

CODE Volume 3 B24.0r1.20 October 2025 Page 171 of 234

Vol 3 Document 3. WSR-88D Algorithm Structure and Sample Algorithms

Volume 3. WSR-88D Algorithm

Programming Guide

Document 3. WSR-88D Algorithm Structure and
Sample Algorithms

For an algorithm to function correctly in an operational WSR-88D ORPG, the API must be used
correctly which includes following a basic logical structure. CODE Guide Vol 3 Document 2 covered
rules for using the individual API services. This document places this guidance in the context of a
logical structure of an algorithm and provides sample algorithms that follow that structure. In addition,
procedures for correctly writing product data fields are covered.

New algorithm development in FORTRAN is no longer supported by the National
Weather Service. The WSR-88D algorithms written in FORTRAN are being ported to
ANSI-C during the next few development cycles. Development activities must be
coordinated with the Radar Operations Center Engineering Branch if modifying an existing
FORTRAN algorithm. A list of recently ported algorithm tasks is provided in Appendix B.

Section | Guidance for the Structure of Algorithms

Section Il Sample Algorithms

Section 11 Writing Product Data Fields

CODE Volume 3 B24.0r1.20 October 2025 Page 172 of 234

Vol 3 Doc 3 Section | - Guidance for the Structure of Algorithms

Vol 3. Document 3 -
WSR-88D Algorithm Structure and Sample Algorithms

Section I Guidance for the Structure of Algorithms

The following rules for the basic logical structure of an algorithm must be followed to
function correctly in an operational WSR-88D ORPG. Many of these rules are not
otherwise published and are derived from the structure of legacy algorithms, from the
documentation for the API libraries (librpg and librpgc), and via consultation with the ROC
Engineering Branch.

The typical reason an algorithm is aborted is an inability to read input data or input data that are
out of sequence. All algorithms must do one of the following:

1. Successfully output a product, or

2. Call the appropriate abort function.

Part A. Introduction

It should be noted that a task may run and produce a valid product even though some of the rules in this
document are not followed. However, the algorithm would not be correctly integrated into the ORPG.
Not properly structuring an algorithm (following these guidelines) could result in unexplained behavior
(for example, an algorithm task that crashed upon a commanded volume restart).

Additional rules for using the API services are described in CODE Guide Vol 3, Document 2 - The
WSR-88D Algorithm API Reference, which should be read before studying the sample algorithms.

Part B discusses high level design issues for multiple task algorithms and the classification of persistent
data. Part C provides guidance for initialization of data driven algorithms and event driven algorithms
and describes inter dependencies on the type of algorithm loop control. Part D covers the logic after
passing the control loop in data driven algorithms (or prior to returning from event handlers in event
driven algorithms) for basic algorithms producing one output product. Part E provides additional
guidance for algorithms producing more than one product and algorithms that use input parameters
contained in a request message.

NOTE: This document makes multiple references to two forms of a data driven algorithm
control loop. This is the continuous main loop of an algorithm that is entered after all
registrations and initializations are complete.

1. The WAIT_ALL form of the control loop is the most common and is used in
algorithms that have only one data input or need more than one data input to create a
product. The loop control function used iS RPGC_wait act (WAIT DRIVING INPUT)

CODE Volume 3 B24.0r1.20 October 2025 Page 173 of 234

Vol 3 Doc 3 Section | - Guidance for the Structure of Algorithms

2. The WAIT_ANY form of the control loop is used in algorithms having multiple
registered data inputs but use only one input to produce a product. There are two
functions that can be used: RPGC_wait act (WAIT ANY INPUT) and
RPGC_wait for any data (WAIT_ ANY INPUT).

File Naming Conventions

The configuration management system used by the ROC requires unique filename regardless of the
directory in which the file is located. The following suggestion will minimize potential filename
conflicts.

= All files for an individual task (files within a tsk subdirectory) should begin with a prefix related
to the tasks purpose or the product produced by the task.

Required Header Files

There are four header files to be included in main source code file for every algorithm: rpg_globals.h,
gen_stat msg.h, rpgc.h, and rpges.h. Note that rpg_globals.h includes several standard libraries
(stdio.h, stdlib.h, time.h, ctype.h, and string.h) along with numerous ORPG header files (for
example basedata.h and a309.h). Some algorithms include individual header files instead of
rpg_globals.h.

If using the coordinate conversion functions, the file rpges_coordinates.h must be included. If using
any reGP helper function, including support functions for the generic data packet, the file rpgp .h must
be included. The file containing the structures for the generic data packet, orpg_product.h, is included
by rpgp.h. Inaddition, if the algorithm uses adaptation data, the header file defining that data structure
must be included.

SPECIAL NOTE: Algorithms should use the macros defined in the include files mentioned above rather
than defined new macros within the algorithm. For example, an algorithm should use Exp_vor defined

in a309.h rather than creating a new macro #define END_OF_voL 4 in the algorithm. It would be
acceptable to define a macro #define END_OF_voL END_voL While including a309.h.

Required Linked Libraries
See the makefile discussion in CODE Guide Volume 2, Document 2, Section 11, Compiling Software in
the ORPG Environment for the list of system and ORPG libraries that must be linked.

Inappropriate Use of non-API Services

Some existing algorithms do not completely follow the guidance and use non-API functions from the
main ORPG library of services. These services should not be used in development code and the ROC

CODE Volume 3 B24.0r1.20 October 2025 Page 174 of 234

Vol 3 Doc 3 Section | - Guidance for the Structure of Algorithms

should not accept algorithms using non-API services. Many of these algorithms are referenced as
examples (cpc007/tsk003/basspect.c, cpc007/tsk013/bref8bit.c,
cpc007/tsk014/bvel8bit.c, cpc007/tsk015/superes8bit.c, etc.) and the use of the following
functions in these algorithms should not be considered correct. Most of the ORPG library functions
incorrectly used have a direct counterpart in the algorithm API.

Inappropriately Used Service Function Corresponding Algorithm API Function
LE send msg RPGC_log_msg
ORPGPAT get elevation_index RPGC_get buffer elev_index

ORPGPAT get prod_id_ from code

ORPGPAT get num dep prods

ORPGDA_read RPGC_data_access_read
ORPGDA write RPGC_data_access_write
ORPGDA_seek RPGC_data_access_seek
ORPGDA_clear RPGC_data_access_clear
ORPGDA_open RPGC_data_access_open
ORPGDA_info RPGC_data_access_msg_info
ORPGDA list RPGC_data_access_list

ORPGDA 1bfd
ORPGRDA_get_rda config
ORPGVCP_BAMS to_deg RPG_elev_angle BAMS to_deg (Fortran API)

ORPGVST_get volume_ time

Summary of Deprecated API Functions

The algorithm API is continuously evolving. Often newly added functions do not add a new capability
but rather a modified / improved capability. You will still see the deprecated functions in existing
algorithms (including those recently ported from Fortran). However, they should not be used in new
algorithms. The following charts include the old deprecated functions highlighted in red. A list of
deprecated functions is provided as a convenient reference.

Deprecated API Function Replaced by new API Function
RPGC_abort datatype because RPGC_abort dataname_ because
RPGC_check data RPGC_check data by name
RPGC_get current_elev_index RPGC_get buffer elev_index
RPGC_get_ current vol num RPGC_get buffer vol num

CODE Volume 3 B24.0r1.20 October 2025 Page 175 of 234

Vol 3 Doc 3 Section | - Guidance for the Structure of Algorithms

RPGC_get_ inbuf RPGC_get_inbuf by name
RPGC_get_ outbuf for req RPGC_get_ outbuf by name for req
RPGC_get_outbuf RPGC_get outbuf by name
RPGC_in data RPGC_reg_inputs

RPGC_reg_io
RPGC_in opt RPGC_in opt_ by name
RPGC_out_data RPGC_reg_outputs

RPGC_reg_io
RPGC_out data_ wevent RPGC_out_data_ by name wevent
RPGCS_get last elev_index RPGC_is buffer from last elev

CODE Volume 3 B24.0r1.20 October 2025 Page 176 of 234

Vol 3 Doc 3 Section | - Guidance for the Structure of Algorithms

Non-Standard or Special Case Program Logic / Structure

Some algorithms do not completely follow the guidelines presented in this document. Though this list
will be expanded in the future, there will be no-attempt to make a complete list of algorithm tasks not
following standard guidance. Some departures from this guidance are minor and some significant.

Non-Standard Task Logic Resulting in Unusual Configuration
One task that is significant is the ntda_fp task (included only with NWS CODE).

Task ntda_fp
* The task_attr_table configuration of the output NTDA EDR (156) is non-standard in that
the other output of the task, NTDA _CONF (157), is listed as a dependent product. This
permits normal operation if only product 156 is requested.
= The output final products use data packet 16. The threshold level fields contain the Scale
Offset parameters but are not encoded in the recommended method, which was defined after
these products were developed.

Elevation Task Timing with Volume Output Product - Special Case

There are two tasks having a task timing less than the timing of an output product. This is unusual but
the result of this is the volume product can be produced even if some of the elevations of the
intermediate product are not available.

Task superob_vel iS an ELEVATION BASED task and its product supEROBVEL (136) is
VOLUME_DATA.

Task mdaprod is an ELEVATION BASED task and one of the output products, Mpaprop (141), is
VOLUME DATA.

Volume Task Timing with Elevation Output Product - Special Case

The several tasks has a task timing of voLuMe_Basep and the output is ELEvATION paTa. Most of these
are of the Kinematic algorithm type. This configuration is used if the output products for later
elevations in the volume should not be produced if there is any problem with the lower elevations of
input data. In other words the downstream tasks cannot handle a missing elevation (e.g., they produce
VOLUME_DATA products).

Volume Input with an Elevation Output

Normally an EvELvVATION DATA product cannot have a voLuMe DaTa input. This is a limitation of the
WAIT_ALL form of control loop. There are two tasks where this occurs but the task uses the
WAIT_ANY form of control loop.

CODE Volume 3 B24.0r1.20 October 2025 Page 177 of 234

Vol 3 Doc 3 Section | - Guidance for the Structure of Algorithms

The tdaruprod task and the mesoruprod task have one vorLuMe_paTa input for their
ELEVATION DATA output. However they also have ELEVATION DaTa inputs that provide data for
the early elevations. In both cases it is an ELEVATION DATA input that controls the output of the
ELEVATION DATA product. The voLuME paTa input is used to obtain a data set that is saved and
used while producing the next volume scan of elevation data.

Not Using Predefined System Macros

The include files such as a309.h and basedata.h include system macros which should be used when
applicable. Some algorithm tasks redefine these locally. For example mda1d defines END_oF voL as 4
and psu_END_OF_VoL as 9 instead of using ENp_voL and psenp_voL from a309.h. However, it would
have been acceptable to define END_OF voL as END_voL and define PSU_END_OF VOL aS PSEND_VOL.

CODE Volume 3 B24.0r1.20 October 2025 Page 178 of 234

Vol 3 Doc 3 Section | - Guidance for the Structure of Algorithms
Part B. High Level Algorithm Design Issues

There are many issues affecting high-level algorithm design many of which are beyond the scope of this
document. Some of the factors to be considered:

Data driven or Event driven

Virtually all algorithms should be data driven. That is the algorithm begins processing with the
availability of input product data. Very few meteorological algorithms have a need to register for
events. Most existing algorithms using events are involved in system monitoring and control, for
example pcipdalg, cltutprod).

e The main reason for using an event driven algorithm would be if the task had non-product
data inputs and no product inputs. In this case an alternative would be to have a driving
product data input of the desired timing (elevation or volume) to act as a trigger to activate the
algorithm. This alternative should be used if the task also has a replay version.

e Another reason for using an event driven algorithm is an algorithm that does not function with
the data flow timing of the ORPG. In this case any output product produced is not
RADIAL DATA, ELEVATION DATA, Of VOLUME DATA. The input product (if any) would be
DEMAND DATA and the output data also DEMAND DATA.

Input data and number of tasks

e Can the algorithm be implemented in one task or should the processing be divided among a
series of tasks producing intermediate products?

o One factor in this decision is that customizing parameters in the request message (other
than elevation for elevation products) are only passed to the task producing the final
product.

o Another factor is that with multiple tasks, intermediate products can be produced that
could be used by other downstream tasks.

o Finally, responsiveness to one-time requests for products could be a factor in dividing the
processing into multiple tasks.

« Should the algorithm input base data or are there existing intermediate products that can form the
basis of input data? Obviously use caution in depending upon intermediate product data from an
algorithm stream controlled by another organization.

e LIMITATION: If an algorithm task has multiple product data inputs, the data timing (VOLUME,
ELEVATION, RADIAL) of the product inputs are typically the same. There are restrictions on using
multiple product data inputs having different data timings. See Part C of this document for more
information.

o Are there any existing Public non-product data stores that would be useful?
CODE Volume 3 B24.0r1.20 October 2025 Page 179 of 234

Vol 3 Doc 3 Section | - Guidance for the Structure of Algorithms

Types of Persistent Algorithm Data

There are several classifications of persistent data within the ORPG. From an algorithm design /
configuration perspective there are three classes of interest: "product data", "non-product data", and
"adaptation data". These classes are configured in a different manner.

e Product data stores are implemented as linear buffers and configured using the
product_attr_table configuration file.

e Public non-product data stores are implemented as linear buffers and configured with the
data_attr_ table file.

« Private non-product data stores are standard disk files and require no configuration because they
are not managed by the ORPG.

o Adaptation data is covered in CODE Guide Volume 2, Document 2, Section IV and VVolume 2,
Document 4, Section II.

Several Legacy Fortran algorithms use another mechanism of sharing persistent data called
'Inter-Task Communication (ITC) Blocks'. Support for this communication mechanism was
implemented in the ORPG infrastructure. Even though the C Algorithm API includes
functions to use ITC blocks, they are not recommended for use in new algorithms.

In place of 'ITC Blocks', special data access functions are provided to support the non-
product data stores described in CODE Guide Volume 2, Document 2 Section I11.

Basic Definition:

e Any data distributed to external users via product distribution interfaces are product data. These
are called "final products".

« Base data messages from the RDA are product data.

e LIMITATION: In an algorithm where processing is divided among two or more tasks, the tasks
must be connected by at least one "intermediate product” (product data). Within the ORPG
architecture, intermediate products are a process triggering mechanism for downstream tasks.

Beyond the basic definition, how are algorithm persistent data classified as product or non-product?
Data classification Factors

o Generally data should be classified as product data when:
o The data is derived from or associated with the radar scan. If requested or scheduled for
production, this data is modified either every elevation or every volume.
o The data must be synchronized. The ORPG API product reading functions automatically
ensure the data are of the same elevation and/or the same volume as appropriate.

o Generally data should be classified as non-product data when:
o The data is some kind of algorithm state data. It may change frequently or infrequently
but is not necessarily associated with the radar scan. One example is accumulation data
that spans time periods not associated with volume scans.

CODE Volume 3 B24.0r1.20 October 2025 Page 180 of 234

Vol 3 Doc 3 Section | - Guidance for the Structure of Algorithms

o Synchronization is not needed. The non-product data access API functions provide no
synchronization of data. Depending upon the type of data this may be desirable.

Storage Implementation Factors

e Product linear buffers are always configured as a message queue type buffer and the algorithm
API product reading functions read the messages sequentially until the appropriate elevation /
volume data is found. All messages must contain the same type (and structure) of data.

e Public non-product linear buffers can be configured in two ways.

o A message database type buffer. The purpose of this type of buffer is to provide a non-
sequential message set. The algorithm is responsible for making room for more messages
when the buffer is full. With this type of linear buffer messages are written and read with
a specified message ID. The user has more control because any specific message can be
read or updated (replaced). Beginning with Build 10, the API provides a database style
access for use with very large data sets. Each message may contain different types of
data.

o A message queue type buffer. The purpose of this type of buffer is to write message
sequentially and read message sequentially. When full, the older messages are
automatically deleted. This might be advantageous for use even with product data
(associated with the radar scan) if there is a need to read previous messages. With the
product API, once a message in a message queue buffer is read the message pointer
automatically points to the next message. All messages should contain the same type
(and structure) of data.

e Private non-product disk files are not managed by the ORPG and are accessed via the standard
C file input/output library. Private data stores are useful if the data do not need to be shared with
other algorithm tasks. They are also useful for data that must be preserved even if the ORPG is
shutdown. If data are used by more than one task, the public non-product data store should be
considered.

Responsiveness to One-Time Requests

The response time for one-time requests is a concept of operations issue. Normally this consideration
only applies to those products that use the 6 product dependent parameters in the request message to
customize a product in some fashion. For data driven algorithms reading the original base data
(recombined base data) or reading intermediate product data, this is a configuration issue not an
algorithm design issue.

Types of Product Requests

There are two basic types of product requests.
= Routine Requests. These products are produced every volume. The request is a result of being
part of the default product generation list or listed on a Routine Product Set (RPS) list of a Class
1 user.
= One-Time Requests. These products are produced once in response to each received one-time
request, unless already produced as a result of routine requests.

CODE Volume 3 B24.0r1.20 October 2025 Page 181 of 234

Vol 3 Doc 3 Section | - Guidance for the Structure of Algorithms

It does not make sense to have routine requests for some products having content customized with the
request parameters. One example are the vertical cross section products. For other customized
products, such as precipitation accumulation products, having the product automatically produced could
be useful.

Replay Tasks

The purpose of a replay task is to respond more quickly to a one-time request than the normal real-time
instance of a task can. A replay task is a second instance of an algorithm task which handles the one-
time requests for the output products while the original instance of the task handles the routine requests
for the product. For data driven tasks this is handled seamlessly by the infrastructure. For event driven
tasks, the algorithm must use an API function to determine which instance it is running as. Replay tasks
are configured using the task_attr table and task_tables configuration files (see Volume 2,
Document 2, Section 111, Part C).

For a replay task to function as intended (that is to respond to the one-time request as soon as possible),
the input product data must be immediately available. The current and previous volumes of the original
base data (BASEDATA, REFLDATA, and cOMBBASE) are available in special buffer for use by replay tasks.
Any intermediate product data used by replay tasks must be configured as warehoused with generation
assured with a priority of 255.

For tasks using one of the new non-recombined base data streams or a raw data stream (which are not
stored in a replay buffer), the algorithm could be divided into multiple tasks with needed intermediate
product data warehoused.

There is a tradeoff for obtaining this responsiveness. When satisfying a one-time request, a replay task
will use data from the current volume scan if available. If not available, data from the previous volume
is used to immediately satisfy the request.

The behavior of a replay task is covered in Document 3, Section I, Part C - Algorithm Initialization and
Control Loop.

CODE Volume 3 B24.0r1.20 October 2025 Page 182 of 234

Vol 3 Doc 3 Section | - Guidance for the Structure of Algorithms
Part C. Algorithm Initialization and Control Loop
This portion of the document is a summary of basic rules for using the algorithm registration and

initialization routines and determining which form of the algorithm control loop function to use.
Complete guidance for using individual API service calls is contained in Document 2 of this volume.

Control Loop for Data Driven Algorithms

Virtually all of the existing WSR-88D algorithms are dependent on the flow of internal WSR-88D data
and generally produce elevation or volume based output. There are a few types of internal message
products that are produced on demand but their input data is either elevation based or volume based.

Behavior of Data Driven Control Loop

There are two types of data driven algorithms using either the WAIT_ALL or the WAIT_ANY form of
the control loop function.

1. Algorithms with a driving input. These algorithms block until a specific input is available (the
first input if more than one is registered) and use RPGC_wait_act (WAIT DRIVING INPUT) for
blocking. Each data input is accomplished with an individual call to ReGc_get inbuf by name.

2. Algorithms with no driving input. These algorithms block until any one of several inputs is
available and use RPGC_wait act (WAIT ANY INPUT) Of RPGC_wait for any data for
blocking. The available input is read with a single call to ReGC_get_inbuf_any.

The release conditions of these two types of algorithms differ significantly.
1. The WAIT_ALL form of the control loop releases when the registered driving input is available
and there is a request for at least one of the registered output products.
2. The WAIT_ANY form of the control loop releases when any one of the registered inputs is
available. This requires an algorithm to check that the output product is requested. See sample
algorithm 4.

Replay Tasks - a special case

The purpose of a replay task is to respond more quickly to a one-time request than the normal real-time
instance of a task can. A replay task is a second instance of an algorithm task which handles the one-
time requests for the output products while the original instance of the task handles the routine requests
for the product.

= Replay tasks can only be used with the WAIT_ALL form of the control loop.

= A normal real-time task will release at most once each elevation with an ELEVATION BASED
driving input and once each volume with a voLuMeE_BasEeD driving input.

= Areplay instance of a task will release every time a one-time request is received for an output
product.

For a replay task to function as intended (that is to respond to the one-time request as soon as possible),
the input product data must be immediately available. The current and previous volumes of the original
base data (BASEDATA, REFLDATA, and coMBBASE) are available in special buffer for use by replay tasks.

CODE Volume 3 B24.0r1.20 October 2025 Page 183 of 234

Vol 3 Doc 3 Section | - Guidance for the Structure of Algorithms

Any intermediate product data used by replay tasks must be configured as warehoused with generation
assured with a priority of 255.

If the replay task fails or is unable to handle the one-time request from the saved data, the real-time
instance can handle the request with the next volume data. For data driven tasks this is handled
seamlessly by the infrastructure.

Rules for input / output data registration

Input Data Limits

Data driven algorithms must be registered for at least one product input and one output

product. There are a couple of algorithms where this is not followed, but they should be
considered special cases. Data driven algorithms may also register for "external” events.

There can be only one rRaDIAL DATA input to an algorithm.

For the WAIT_ANY form of algorithm loop control, input(s) must not be RADIAL DATA.

With multiple data inputs, they are generally all ELEVATION DATA Or vOLUME_DATA. However, a
mix of input timing types is allowed with restrictions. For algorithms having the WAIT_ALL
form of control loop:

a. ELEVATION_DATA and voLuME_DATA can be mixed if the driving input is
ELEVATION DATA. In addition, the programmer must assure that the voLuMeE _paTa being
input is from the same volume as the driving input. One way to accomplish this is to read
the volume input after reading all elevation inputs needed.

b. Itis possible to mixX RADIAL DATA and ELEVATION DATA inputs in the same manner (used
in Sample Algorithm 4). The driving input must be RADIAL_DATA. When obtaining the
ELEVATION DATA input, the programmer must be sure it is asked for after the acquisition
of the first radial of the expected elevation/volume and before the acquisition of the first
radial of the next elevation/volume.

Normally meteorological algorithms do not produce RADIAL DATA. However the existing
algorithms that do produce radial data have only one input: RADIAL DATA. Itis
recommended that algorithms that produce RADIAL DATA have only one input and the
timing of that input is RADIAL DATA.

In the case where the algorithm blocks until any one of several inputs are available (the
WAIT_ANY form of the algorithm control loop), the input timing types can be any combination
but cannot include RADIAL DATA.

Output Data Limits

Most algorithms with multiple outputs have either all ELEVATION DaTa Or all voLUME_DATA
outputs. pEMAND_DATA is used for data that is not directly related to the volumetric radar data.
An algorithm can output pEMAND DaTa even if there is no request for it.

VOLUME_DATA and ELEVATION_DATA have been mixed and voLUME_DATA and DEMAND_DATA have
been mixed. In both cases the task timing iS VOLUME BASED.

Normally meteorological algorithms do not produce rapzar paTa. However the existing
algorithms that do produce radial data have no other outputs. Theoretically there is
nothing that prevent mixing RADIAL DATA output with ELEVATION DATA Or
VOLUME DATA.

CODE Volume 3 B24.0r1.20 October 2025 Page 184 of 234

Vol 3 Doc 3 Section | - Guidance for the Structure of Algorithms

Input Timing Related To Output Timing

= Normally the timing of the input data must be equal to or less than the timing of the output data.
For example, a voLuME_DATA output could have any input timing with the restrictions noted
above. But an ELEVATION DATA output should not have a voLuMe_paTa input. There are two
unique exceptions to this.
a. SPECIAL CASE: The tdaruprod task and the mesoruprod task. The only reason this
makes sense is that these tasks have other ELEvaTIOoN DaTa inputs and also have a
WAIT_ any type of control loop. In these algorithms the ELEVATION DATA input actually
drives the production of the ELEvaTION DaTa output. The voLuME_DaTa input only
serves to store this data for use in the processing of the elevation data in the next volume
scan.
b. The alerting task which is event driven and the combattr task also mix
ELEVATION DATA and VOLUME DATA inputs but are not exceptions because the output is
VOLUME DATA.

The task initialization function, Recc_task_init, must follow all registrations for input / output data
and adaptation data. The task timing type registered by RPGC_task_init iS normally ELEVATION BASED
if output products are ELEVATION DATA and VOLUME BASED if output products are voLuME_DATA. Task
timing cannot be event Baseb for data driven algorithms.

Control Loop for Event Driven Algorithms

The nature of the events registered affect how the algorithm responds. The following guidance
does not cover all possible situations

Normally an event driven algorithm is not used to create products based upon WSR-88D data. However,
event driven algorithms are used for special applications that either

1. are not synchronized with the internal data flow of WSR-88D data, or

2. do not have product data as an input.

Basic requirements for an event driven algorithm are:
= Event driven algorithms use the Recc_wait_for_event form of the control loop function.
= Event driven algorithms must be registered for at least one event.

There are two classes of event driven algorithms
1. Event driven algorithms that also register for product data inputs must use a task timing
compatible with the input data, for example voLuME BASED.
2. Event driven algorithms that are not registered for product data input must use a task timing of
EVENT_BASED.

Behavior of the Event Driven Control Loop

CODE Volume 3 B24.0r1.20 October 2025 Page 185 of 234

Vol 3 Doc 3 Section | - Guidance for the Structure of Algorithms

Regardless of where the algorithm is, when a registered event is posted, the logic in the callback
function registered for that event is processed immediately. If there is more than one registered event
posted to the event queue, the callbacks are executed sequentially.

If the algorithm is holding in the loop control function (RPGc_wait for event), the callback is
executed and the control function releases for the algorithm to begin processing the logic in the main
loop. If the algorithm is already processing the main loop, when a registered event is posted, the loop is
temporarily interrupted, the callback function is executed, and the main loop continues when the
callback returns.

With event driven algorithms, normally all algorithm logic is contained within the event handler
callback routine rather than within the while loop containing the control function. Note: In addition to
the events explicitly registered, the loop control function (RpGc_wait for event) releases when the
ORPGEVT END ELEV event is posted. Therefore any logic in the main loop of the algorithm is executed at
least every volume regardless of whether a registered event is posted.

Replay Tasks - a special case

The purpose of a replay task is to respond more quickly to a one-time request than the normal real-time
instance of a task can. A replay task is a second instance of an algorithm task which handles the one-
time requests for the output products while the original instance of the task handles the routine requests
for the product. This is handled seamlessly by data driven task but must be handled in the algorithm
code for data driven tasks.

An event driven task is used when there are no product data inputs. The even driven algorithm must
determine which instance of the task it is to register for the appropriate event. The function
RPGC_get_input_stream returns the type stream.
= The replay instance of the task registers for the EVT_REPLAY PRODUCT REQUEST event. The
callback is executed every time a one-time request is received for a product. The product request
list obtained will only include the one-time requests. The task could also register for other events
(for example orPGEVT START OF VOLUME to accomplish processing at beginning of volume).
= The normal real-time instance of the task typically registers for LB notification or
ORPGEVT_START OF VOLUME. The product request list obtained has the routine requests and any
one-time requests not serviced by the replay instance.

Rules for input / output data registration

e Input data to event driven algorithms not derived from WSR-88D base data should be configured
as DEMAND_ DATA.

« If input product data is pEMAND DaTa Or there is no input product data, then the output data must
be configured as DEMAND DATA.

« Eventdriven algorithms must use RePGC_get_inbuf_any t0 read the available data input. More
than one data input can be registered but the algorithm can read only one available input using
the API.

CODE Volume 3 B24.0r1.20 October 2025 Page 186 of 234

Vol 3 Doc 3 Section | - Guidance for the Structure of Algorithms

The task initialization function, Rpec_task_init, must follow all registrations for input / output data
and adaptation data. If the task type is EVENT_BASED, at least one of the event registrations must precede
the task initialization.

Task Timing vs. Data Timing for Data Driven Algorithms

Determining a Product's Data Timing

Input and Output data timing is reasonably straight forward. Data are either RADIAL DATA,
ELEVATION DATA, Of VOLUME DATA based upon how often a product is produced. Usually, but not
always, this corresponds to how much data are needed to produce the product..

o Many volume products do not require a full volume scan of base data but use the first several
elevations (the 4 lowest elevations is common). Since the product is generated once each volume
it is configured as VOLUME_DATA.

e There are a few elevation products that use input data from multiple elevations. They accumulate
information and provide a product updated each elevation (an example is the MESO Rapid
Update product). Since the product is generated once each elevation it is configured as
ELEVATION DATA.

e Normally meteorologlcal algorithms do not produce RADIAL DATA. Radial intermediate
products should only be used in unusual situations, for example a downstream task would
be more efficient if its input data were RADIAL DATA. RADIAL_DATA should never be used
for final products.

The configuration of the output data timing is (almost) always the same as or greater than the input data
timing. For example, it makes no sense to have an elevation product produced entirely from volume
input data.

Determining a Task's Timing

Selecting the appropriate task timing is almost as straight forward. Often the task timing is the same as
the output data timing (a RapIAL_BASED task producing a RapDIAL DATA product and an
ELEVATION BASED task producing an ELEVATION DATA product). However that is not always the case.

The task timing setting only determines what happens if an algorithm must abort product generation and
return to the beginning of the algorithm control loop. If a voLuMe BasED task abort product generation,
the control loop function will not release until the beginning of the next volume and an

ELEVATION BASED task will release at the beginning of the next elevation.

o Normally the task timing is either the same as or greater than the largest input timing and
the same as the output timing. There are several algorithms where this is not the case.
a. SPECIAL CASE: The superob_vel task and the mdaprod task have a task timing of
ELEVATION BASED and the output product is voLuME_DATA. In other words, the volume
product is produced even if there are missing elevations. These are not typical algorithms.

CODE Volume 3 B24.0r1.20 October 2025 Page 187 of 234

Vol 3 Doc 3 Section | - Guidance for the Structure of Algorithms

b. SPECIAL CASE: The several tasks has a task timing of voLuMe_BAsED and the output is
ELEVATION DATA. Most of these are of the Kinematic algorithm type. This configuration
is used if the output products for later elevations in the volume should not be produced if
there is any problem with the lower elevations of input data. In other words the
downstream tasks cannot handle a missing elevation (e.g., they produce voLuME_DATA
products).

e Though not required by the infrastructure, if a task is producing an intermediate product,
the task timing should be set to the greatest output timing of downstream tasks. Typically
this means that if any downstream task produces voLuME_baTa products, it is usually a good idea
to register upstream tasks as voLuMeE_BasED even if only producing ELEVATION DATA. The
preferred method is to not return to the beginning of the control loop until all elevations in the
volume have been processed (and products output) or an abort has occurred. See the topic Read
All Input Data (If not Aborting) in Part D of this document.

Handling Multiple Product Inputs

In the case where the algorithm blocks until a specific input is available (the WAIT_ALL form of the
algorithm control loop), inputs in addition to the "driving" are typically of the same timing
(ELEVATION DATA, VOLUME DATA, DEMAND DATA) Or must be specified as a time-based input. Time
based inputs are not yet supported by the Algorithm API. A mix of timing types is allowed with
restrictions:

* ELEVATION DATA and VOLUME_DATA can be mixed if the driving input iS ELEVATION DATA. In
addition, the programmer must assure that the voLuMe DaTa being input is from the same
volume as the driving input. One way to accomplish this is to read the volume input after reading
all elevation inputs needed.

= |tis possible to mix RADIAL DATA and ELEVATION DATA inputs in the same manner (has been
tested in Sample Algorithm 4). The driving input must be rap1aL_baTta. When obtaining the
ELEVATION DATA input, the programmer must be sure it is asked for after the acquisition of the
first radial of the expected elevation/volume and before the acquisition of the first radial of the
next elevation/volume.

In the case where the algorithm blocks until any one of several inputs are available (the WAIT_ANY
form of the algorithm control loop), the timing types do not have to be the same.

= Care must be used with the WAIT_ANY form. While the algorithm may produce more than one

output product, any product produced can only require one of the registered inputs. Attempting
to synchronize multiple inputs will not work

Handling Multiple Product Outputs
With data driven tasks producing multiple outputs, the algorithm must determine which of the outputs

has been requested. With data driven tasks using the WAIT_ANY form of the control loop, the
algorithm must determine whether a product is requested even if only one product is produced.

CODE Volume 3 B24.0r1.20 October 2025 Page 188 of 234

Vol 3 Doc 3 Section | - Guidance for the Structure of Algorithms

For tasks producing products not using customizing parameters in the product request message, the
function RPGC_check_data_by name Can be used to determine whether a product has been requested. If
this function is not used, the function that obtains the output buffer (ReGc_get outbuf by name) will
return an ‘opstatus’ other than RPGC_NORMAL if there is no request for the product.

For tasks producing final products using the customizing parameters in the request message the requests
must always be obtained. The function ReGC_get_request_by name determines how many requests (if
any) there are for the specified product and returns the customizing parameters for each request. There
is no need to call RPGC_check data by name.

The above can also apply to event driven algorithms.

Task Timing vs. Data Timing for Event Driven Algorithms

The guidance for event driven algorithms is very general. The nature of the events registered
affect how the algorithm responds. The following guidance does not cover all possible situations.

Determining a Task's Timing

The task timing for event driven algorithms is EveNt Baseb for tasks with no product inputs. For tasks
with product data inputs, the timing is appropriate to the type of data input, typically voLuME _BaSED.

Determining a Product's Data Timing

If an event driven algorithm has product input data, it should be either ELEVATION DaTa Or
VOLUME_DATA, NOt RADIAL DATA. Currently the outputs of event driven algorithms are DEMAND DATA.

Since event driven algorithms must use RPGC_get inbuf_any t0 read input buffers, the output product
can only use one input at a time, unless the data are stored locally.

Handling Multiple Product Outputs

If the output product is pEMaND DaTa, Which is typically the case, there is no need to determine whether
there is a request for that product.

One case where the output may not be pEManp paTa could be an algorithm producing timed output data
having no product inputs. In this case the task must activate on an event. The output products could be
either EVENT_DATA O VOLUME_DATA.

CODE Volume 3 B24.0r1.20 October 2025 Page 189 of 234

Vol 3 Doc 3 Section | - Guidance for the Structure of Algorithms
Part D. Basic Algorithm Structure

The typical reason an algorithm is aborted is an inability to read input data or input data that are
out of sequence. All algorithms must do one of the following:

1. Successfully output a product, or

2. Call the appropriate abort function.

Data driven algorithms must always return to the beginning of the control loop (both WAIT_ALL and
WAIT_ANY) upon successful product output and when output is not successful (product abort).

With event driven algorithms, the same principles apply. Event driven algorithms typically have all of
the algorithm logic in the event handler function. In this case the event handler function must return
upon successful product output and when the output is not successful (product abort) and the algorithm
control loop function ReGC_wait_for_event is placed in a continuous loop.

The guidance provided for basic algorithm structure apply to both data driven and event driven
algorithms that produce product data.

Read All Input Data (If not Aborting)
When successfully completing a product (no sequence error or other problems):

o An algorithm reading base data (or any RapIAL DaTa input) and producing ELEVATION DATA
output must read until the actual end-of-elevation even if data only up to pseudo end-of-
elevation are needed. Do not read beyond the actual end-of-elevation.

o An algorithm reading base data (or any rap1aL_paTa input) and producing VOLUME DATa output
must read until the actual end-of-volume even if data only up to pseudo end-of-volume are
needed. Do not read beyond the actual end-of-volume.

e An algorithm reading ELEVATION DATA input and producing a voLUME_DATA output must read all
elevations produced for that volume by the upstream task, even if fewer elevations are actually
used in constructing the product.

The need to read all elevations / radials produced can be avoided only in algorithms that produce a
VOLUME_DATA output and have a task timing of voLume_Baseb. The function
RPGC_abort_remaining volscan Can be used to accomplish this. This must be used with the
WAIT_ALL form of the loop control rather than with WAIT_ANY.

SPECIAL CASE: There are tasks (most related to tornado detection and mesocyclone detection) that have
a task timing less than the output. These tasks are voLuME_BASED but output ELEVATION DATA products.
Currently some of these tasks read all input data for a volume scan before returning to the control loop.
This is the preferred method and requires reading inputs for each elevation and outputting the elevation
product for each elevation before returning to the control loop (unless an abort occurs).

Release All Acquired Buffers

CODE Volume 3 B24.0r1.20 October 2025 Page 190 of 234

Vol 3 Doc 3 Section | - Guidance for the Structure of Algorithms

o Before returning to the control loop (or returning from the event handler), all input buffers
successfully obtained must be released with RPGC_rel inbuf (Or RPGC_rel_all_inbufs) and
all output buffers successfully obtained must be released with RpGc_rel outbuf (Or
RPGC_rel all outbufs). Note: Attempting to release an output buffer that was not obtained,
while using a disposition of FORWARD, will cause the algorithm task to be terminated (in other
words, attempting to output a product with no output buffer will crash the algorithm).

» With successful product construction ReGC_rel_outbuf is called with the rForwarp flag and
when product construction is not complete the pesTroY flag is used. In addition, in the case of
incomplete product construction one of the abort functions must be called.

o The function RPGC_cleanup_and_abort is a convenient method of releasing all input and output
buffers before returning to the algorithm control loop. Any output buffer that is open will be
released with a disposition of DESTROY.

Call Required Abort Services

This guidance is based upon changes in the ORPG algorithm abort services introduced after
the ORPG was initially deployed. Some algorithms have a different pattern of usage based
upon the legacy FORTRAN algorithms (which were not completely consistent).

The typical reason an algorithm is aborted is an inability to read input data or input data that are
out of sequence. All algorithms must do one of the following:

1. Successfully output a product, or

2. Call the appropriate abort function.

If all products cannot be successfully completed, at least one abort service must be called. The
appropriate abort function is called after releasing the appropriate open output buffer (if any) and prior
to returning to the loop control function.

The current guidance is to use ReGC_abort When possible. This basic function can be used if the failure
is due to the inability to obtain either an input or output buffer and the task only produces one product.
In the following situations, the only function available requires an abort code parameter.

« With algorithms producing more than one product type, RPGC_abort dataname because IS
used when unable to complete the specified product type but able to continue the generation of
other products.

e With algorithms producing products that use customizing data from the product request message,
RPGC_abort_request iS used when unable to complete generation of a product for a specific
request message but able to continue the generation of that product for other requests.

» The convenience function RPGC_cleanup_and_abort Ccan be used in situations where no
remaining requested products can be completed. .

WARNING: The function RPGC_cleanup_and_abort has caused task failures in some cases.
Until the cause has been determined and resolved, it is recommended that other abort
functions be used along with functions releasing appropriate input and output buffers.

CODE Volume 3 B24.0r1.20 October 2025 Page 191 of 234

Vol 3 Doc 3 Section | - Guidance for the Structure of Algorithms

A reason code must be passed when the applicable abort function requires a code and when aborting for
reasons other than the failure to obtain an input or output buffer. The correct reason code to be passed is:

Typical Algorithms (those NOT producing RADIAL DATA)

o

If the abort is because of an inability to get a buffer with get_inbuf or get_outbuf, the
opstatus returned is used as the reason code.
If the abort is because not all required base data moments are enabled (in the case where
the RPGC_what_moments test was used), PGM_DISABLED MOMENT is the reason code
passed. Note: The above test is not required if the required moments are registered (see
RPGC_reg_moments) .
Beginning with Build 12, peM_DIsaBLED MOMENT iS also used if a needed advanced data
field (Dual Pol in the generic moment structure) is not available.
If the abort is because of the failure to obtain memory via malloc Or calloc,
PGM MEM LOADSHED IS passed.
If there is some algorithm unique reason for being unable to complete product generation,
then
= Use the pGM_1NPUT DATA ERROR COde if problem is generally related to the nature
of the input data.
= Use the pgM_1NvaLID REQUEST code if the problem is related to the nature of the
product request parameters.
DEFAULT: If the reason for aborting the product generation does not clearly fall into one
of the above cases, PGM_INPUT DATA ERROR iS a safe default reason code that can be
used.

Algorithms producing RADIAL DATA

o

The only time an algorithm producing rapzar_pata aborts is for the failure to obtain an
input buffer or output buffer. The status returned by the API function is used as the abort
reason so RPGC_abort is used if the radial output is the only output.

For other conditions (disabled basic moment, an advanced Dual Pol data missing, etc.)
the radial is passed along. See Special Instructions for Radial Producers below.

Some abort functions permit continued processing while others do not

After either RPGC_abort, RPGC_abort because Of RPGC_cleanup and abort are called,

processing (reading input, writing output, etc.) must not continue. The algorithm must
accomplish any necessary cleanup and return to the loop control function.

After RPGC_abort dataname because iS called, processing of other registered output products

(if any are requested) may continue.

After RPGC_abort_request iS called, processing of additional requests for that product (if any)

may continue.

Special Instructions for Radial Producers

As discussed above, the only time an algorithm producing rRapzar_pata aborts is for the failure to
obtain an input buffer or output buffer and the reason code is the status of the get_inbuf / get_outbuf
function. With other problems the radial is passed along either with or without processing. The
downstream tasks must be aware of this possibility.

CODE Volume 3 B24.0r1.20 October 2025 Page 192 of 234

Vol 3 Doc 3 Section | - Guidance for the Structure of Algorithms

When passing along a radial having a data problem (missing needed data moment for example) the
producing task has two options.

1. Check the value of the basedata header field pbd_alg_control field and make sure it is not O.
Here is sample code:

bdh = (Base data header *) obuf ptr;
if (bdh->pbd alg control == 0)
bdh->pbd alg control = PBD ABORT INPUT DATA ERROR | PBD ABORT FOR NEW VV;
RPGC_rel outbuf (obuf ptr, FORWARD | RPGC EXTEND ARGS, size);
This is accomplished when the next downstream task is not a radial producer and is not expected

to handle special situations. The downstream task will get a non-normal status from the get_inbuf
function and therefore abort.

2. Pass the radial and rely on all downstream tasks to be able to make the appropriate decision
whether to produce their output. This is accomplished when the next downstream task is a radial
producer or when the non-radial producer is expected to handle the special situation.

Resource Cleanup

o All resources / allocated memory must be freed prior to returning to the beginning of the control
loop. This requirement also applies to the memory allocated by RpGc_get customizing data.

o Failure to obtain resources (e.g., memory with mal1oc) must be tested for and handled gracefully
following all rules for returning to the beginning of the control loop.

NOTE: Not all CODE sample algorithms comply with this item in that not all previously
allocated memory is freed before calling abort and returning to the loop control function.

Templates for Basic Algorithms

The flow charts contained in Appendix A illustrate the guidance currently provided in this guide. Many

legacy algorithms have not been updated to reflect the changes in abort services. The following flow
charts are provided:

1. An algorithm reading base data (radial based) and outputting an elevation based product. This
chart provides a framework for Sample Algorithm 1 - Digital Reflectivity algorithm, Sample
Algorithm 2 - Radial Reflectivity algorithm, and the first task in Sample Algorithm 3 - Multiple
Task algorithm.

2. An algorithm reading an elevation based product and outputting a volume based product. This
chart provides a framework for the second task in Sample Algorithm 3 - Multiple Task algorithm

3. An algorithm reading base data (radial based) and outputting a volume based product. (No
sample algorithm at this time).

CODE Volume 3 B24.0r1.20 October 2025 Page 193 of 234

Vol 3 Doc 3 Section | - Guidance for the Structure of Algorithms
Part E. Additional Topics

Algorithms Producing More Than One Product

With more than one registered output all algorithms must determine which of the registered outputs are
requested.

e For tasks producing products not using customizing parameters in the product request message,
the function RPGC_check data by name Can be used to determine whether a product has been
requested. If this function is not used, the function that obtains the output buffer
(RPGC_get_outbuf_by name) Will return an 'opstatus' other than RPGC_NORMAL if there is no
request for the product. Using RPGC_check data_ by name is recommended in two situations:

o For data driven algorithms producing more than one output having a driving input (the
WAIT_ALL control loop), the function is used to determine which outputs have been
requested.

o For data driven algorithms that can proceed with only one of the several registered inputs,
the WAIT_ANY control loop releases when any one of the inputs is available. In this
case, it is possible for none of the registered outputs to be requested.

e For tasks producing final products using the customizing parameters in the request message,
RPGC_get request by name determines how many requests (if any) there are for the specified
product and returns the customizing parameters for each request. There is no need to call
RPGC_check data by name.

With more than one registered output, multiple output buffers may be opened as long as there is only
one buffer of each type open at any given time.

Algorithms with Customized Products

For algorithms whose product depends upon the contents of the product dependent parameters in the
request message (customizing information), up to 10 unique requests can be made for that product type.
RPGC_get_customizing_data Obtains this information along with the number of requests, but is limited
to algorithms having only one product output. For algorithms producing more than one product,
RPGC_get_request_by name (added in Build 10) must be used to obtain request information.

RPGC_get outbuf by name for_ req Must be used to obtain the output buffer (one of the input
parameters contains the request information for that individual product request).

The output buffers must be obtained and released sequentially since only one output buffer for a given
product type can be open at any given time.

CODE Volume 3 B24.0r1.20 October 2025 Page 194 of 234

Vol 3 Doc 3 Section Il - Sample Algorithms

Vol 3. Document 3 -
WSR-88D Algorithm Structure and Sample Algorithms

Section Il Sample Algorithms

(NOTE: As of Build 21, CODE sample algorithms are no longer
supported. The current RPG contains sufficient examples of
these algorithms as part of the operational software.)

CODE Volume 3 B24.0r1.20 October 2025 Page 195 of 234

Vol 3 Doc 3 Section Il - Sample Algorithms

CODE Volume 3 B24.0r1.20 October 2025 Page 196 of 234

Vol 3 Doc 3 Section I1 -Writing Product Data Fields

Vol 3. Document 3 -
WSR-88D Algorithm Structure and Sample Algorithms

Section 111 Writing Product Data Fields
Part A. Introduction

Issue 1: ORPG Infrastructure Byte-Swapping

The standard format of WSR-88D product messages is Big Endian format. This is a result of the Legacy
RPG and the initial deployment of the ORPG using a Big Endian hardware architecture. An
infrastructure byte-swapping mechanism was implemented when the ORPG was ported to a Little
Endian platform in part to avoid modification of all of the algorithms. The ORPG infrastructure
accomplishes necessary byte-swapping of the product before it is written to the product data base.
However, the data must be written into the final product in a specific manner in order for the byte
swapping to be successful.

WSR-88D final products consist of four types of data fields:

e 4-byte integer data

e 4-byte floating point data

e 2-byte integer data

e 1-byte integer data

NOTE: Currently, there is only one floating point data field used by several base data products which is
being phased out. Future algorithms can define floating point data (in the header) if placed into two
consecutive halfwords within the product dependent parameters portion of the product description block.

The nature of the byte-swapping of data fields is primarily a result of the implementation of the original
product algorithms in which the method of writing data fields was not accomplished in an entirely
consistent manner. The infrastructure and all algorithms were modified to provide a consistent method
of reading and writing 4-byte integer and floating point data fields. The swapping of 2-byte data fields in
the header portions of the product (not the data packets) is accomplished in a consistent manner.

There are approximately 30 data packet types defined for use in WSR-88D products. The byte-swapping
accomplished on the 2-byte and 1-byte data fields in these packets requires specific guidance for writing
each data packet type.

Issue 2: User-Defined Structure Alignment

Interface Control Documents (ICDs) specify the structure of WSR-88D messages down to the position
of individual bytes. The messages are in Big Endian, or 'network’, format. The original algorithms
written in FORTRAN used offsets into a buffer to write individual data fields. With C, it is convenient
to use structures to access the individual data fields by name. This works if the structures are "aligned".

CODE Volume 3 B24.0r1.20 October 2025 Page 197 of 234

Vol 3 Doc 3 Section I1 -Writing Product Data Fields
Part B. Final Product Byte-Swapping

Writing Product Data Fields

As a result of ORPG Byte-Swapping of Final Product Data Fields: For an algorithm to work on
both a Big Endian and a Little Endian Machine:

1. The functions RPGC_set_product_int and RPGC_set_product float Must be used to
correctly write 4-byte data fields to the final products. Subsequently, the functions
RPGC_get product int and RPGC_get product float Can be used to read these 4-byte fields.

2. The algorithm API helper functions provided for construction of the message header block
(MHB) and the product description block (PDB) portions of the product should be used. These
functions utilize the "set_product_int" function to correctly write 4-byte fields.

3. Ingeneral, product data fields represented by a 2-byte halfword are written as a short rather than
individual bytes. This is true for all header fields (including the MHB, PDB, and the headers for
the symbology block, symbology layers, GAB, GAB pages, and the TAB).

4. However, there is no general rule that can be stated for writing 2-byte or 1-byte data fields at the
data packet level. The individual data packets used within the symbology block, the GAB, and
the TAB are not written in a completely straight forward manner and the guidance provided in
the next paragraph must be followed.

Instructions for Writing WSR-88D Data Packets

The Legacy algorithms wrote data packets in a consistent fashion; each packet type was always written
in the same manner. Most data are written as shorts (halfwords) but there is no simple rule for describing
the exceptions. It would be convenient if all 2-byte data were written as a short (a halfword) and all 1-
byte data written in individual bytes. This is not the case. In some cases 1-byte data are written as a
halfword (a short) and there are even cases where 2-byte data are written as individual bytes.

The structure of all data packets is provided in the Interface Control Document (ICD) for the RPG to
Class 1 User. A copy of this document is provided with Volume 2 of the CODE Guide.

The table below contains guidance for writing WSR-88D data packets and can be summarized as
follows.

1. The majority of WSR-88D data packets require that all of their data fields be written as shorts
(halfwords). In some cases this includes 1-byte data.

2. The following data packets include some data fields that must be written as individual bytes: 1,
8,12, 15, 21, 26

3. Data packet 28 is unique in that helper functions are used for all but the packet ID. Functions are
provided to aid in assembling the packet and for writing integer, float, and string parameters.

4. A helper function is provided to write the radial portion of data packet 16 (this permits the radial
data values to be processed as individual bytes). Helper functions for the run-length encoded
(RLE) data in packets AF1F, BAOF, and BAOQ7 are provided beginning with Build 9. CODE
sample algorithm 1 & 2 use these functions.

CODE Volume 3 B24.0r1.20 October 2025 Page 198 of 234

Vol 3 Doc 3 Section I1 -Writing Product Data Fields

Packet

Number Description Instructions for writing data fields

1 Text (No Value) Character data are written as individual bytes. All other data
written as shorts (halfwords).

2 Special Symbol (No All shorts (halfwords), including the character / symbol data.

Value)

3 Mesocyclone All shorts (halfwords).

4 Wind Barb All shorts (halfwords).

5 Vector Arrow All shorts (halfwords).

6 Linked Vector (No Value) JAll shorts (halfwords).

7 Unlinked Vector (No All shorts (halfwords).

Value)

8 Text (Uniform Value) Character data are written as individual bytes. All other data
written as shorts (halfwords).

9 Linked Vector (Uniform |All shorts (halfwords).

Value)
10 Unlinked Vector All shorts (halfwords).
(Uniform Value)

11 3D Correlated Shear All shorts (halfwords).

12 TVS Symbol The header portion is written in shorts (halfwords). This
looks strange but, the 2-byte (halfword) I-position and J-
position data fields are written as individual bytes.

13 Hail Positive Packet no longer used.

14 Hail Probable Packet no longer used.

15 Storm ID The header portion is written in shorts (halfwords). This
looks strange but, the 2-byte (halfword) I-position and J-
position data fields are written as individual bytes. The two-
character Storm Id is written as individual bytes.

16 Digital Radial Data Array |All shorts (halfwords), including the 8-bit data fields.
RPGP_set packet 16_radial should be used to write the
radial portions of this data packet. This permits using a byte
array (char*) while processing the data and then avoiding a
byte swap on a Linux platform.

17 Digital Precipitation All shorts (halfwords), including the run-length encoded data.

Data Array

18 Digital Rate Array All shorts (halfwords), including the run-length encoded data.

19 HDA Hail Data All shorts (halfwords).

20 MDA Data All shorts (halfwords).

21 Cell Trend Data The two-character cell ID is written as individual bytes. The
remainder of the product is written as shorts (halfwords).
Note that the trend data contains two-character Storm 1Ds
that must be written as a short.

CODE Volume 3

B24.0r1.20

October 2025 Page 199 of 234

Vol 3 Doc 3 Section I1 -Writing Product Data Fields

22 Cell Trend Volume All shorts (halfwords).

Scan Times

23 SCIT Past Data All shorts (halfwords).

24 SCIT Forecast Data All shorts (halfwords).

25 STI Circle All shorts (halfwords).

26 ETVS Symbol The header portion is written in shorts (halfwords). This
looks strange but, the 2-byte (halfword) I-position and J-
position data fields are written as individual bytes.

27 Superob Data All shorts (halfwords).

28 Generic Product Format | The packet ID is written as a short (halfword).

Data RPGC_set_product_int must be used for the 4-byte length
field. Several helper functions were added in Build 8 that
should be used to construct this data packet. Functions are
provided to aid in assembling the packet and for writing
integer, float, and string parameters. These functions are
listed in CODE Guide Volume 3, Document 2, Section II.

AF1F |Radial Run-Length All shorts (halfwords), including the run-length encoded data.

Encoded Data Currently product 137 (ULR) does not follow this pattern and
should not be used as an example.
RPGC_run_length_encode Should be used to pack the data
array into the data packet.

BAOF/ |Raster Run-Length All shorts (halfwords), including the run-length encoded data.

BAO7 |Encoded Data RPGC_raster_run_length Should be used to pack the data
array into the data packet.

CODE Volume 3

B24.0r1.20

October 2025 Page 200 of 234

Vol 3 Doc 3 Section I1 -Writing Product Data Fields
Part C. User-Defined Structures

The CODE documentation generally avoids covering basic C language programming topics.
However, structure alignment is covered because it is related to the successful construction of
final products.

What is 'alignment'?

Defining C structure alignment is not straight forward. The short answer is that data structure alignment
is implementation dependent (compiler / operating system / CPU combination). With the CODE ORPG
environment the description of alignment can be fairly well defined.

User Defined C Structures

With C, it is convenient to use structures to access individual data fields by name. C language structures
must be used carefully if used to write data into (or read from) final product messages. It is imperative
that alignment of 1-byte, 2-byte, and 4-byte data fields be followed.

1. The starting position of 8-byte fields (int or £1oat) must be offset from the beginning of the
structure by a number of bytes evenly divisible by 8. If not, the structure will be padded to
accomplish this.

2. The starting position of 4-byte fields (int oOr £1oat) must be offset from the beginning of the
structure by a number of bytes evenly divisible by 4. If not, the structure will be padded to
accomplish this.

3. The starting position of 2-byte fields (short) must be offset from the beginning of the structure
by a number of bytes evenly divisible by 2. If not, the structure will be padded to accomplish
this.

4. 1-byte fields (char) must be used in pairs. The first 1-byte field in a series of 1-byte fields must
be offset from the beginning of the structure by a number of bytes evenly divisible by 2. If not,
the structure will be padded to accomplish this.

5. Padding is sometimes added at the end of the structure even if all of the fields are aligned
according to items 1 - 4 above. This sometimes (not always) occurs if the total size of the data
fields is not divisible by 4. The only way to reliably determine this is to use the sizeof operator
and look at the results.

If items 1 - 4 are not true, data fields will not be written in the expected location in the product buffer.

The memory block containing the C structure will be padded wherever needed to place the 1-byte, 2-
byte, and 4-byte data at the aligned offset from the beginning of the memory block.

CODE Volume 3 B24.0r1.20 October 2025 Page 201 of 234

Vol 3 Doc 3 Section I1 -Writing Product Data Fields

If item 5 is not true, the result of the sizeof operator may or may not be correct. The memory block
containing the C structure could be padded at the end force the size of the total structure to be evenly
divisible by 4. The only way to reliably determine this is to use the sizeof operator and look at the
results. See End of Structure Padding at the end of this section.

Using Structures with the Final Product Message

It should be noted that the structure of the final product message, described in Volume 2, Document 3, is
only partially aligned (from the perspective of 4-byte integers). This results in having logical or
repeating portions of a product that cannot be represented by a C structure.

a. There are no 8-byte data fields in the final product message.

b. The product message follows items 3 and 4, which results in 2-byte and 4-byte data beginning at
byte offsets evenly divisible by 2.

c. Item 2 is not followed. The 4-byte fields may not begin with a byte offset evenly divisible by 4.
This is partially a result of the Legacy product definition dividing 4-byte integers into two 2-byte
integers called halfwords. However, the individual C structures defined for various portions of
the product comply with this alignment requirement.

d. Item 5is not followed (currently not a problem in the CODE ORPG environment). The total size
of the product is not required to be evenly divisible by 4. .

e. There is no alignment required for the serialized data portion of data packet 28, the generic
product data packet. Specified C structures must be used when creating or reading the serialized
data.

ORPG Pre-defined C Structures

Most of the C structures related to product message content that are defined in the basic ORPG include
files are fully aligned. A few are aligned with the exception of item 5, the sum of the size of the data
fields is not evenly divisible by 4. However, only one of these (Graphic_alpha block) is padded at the
end causing an invalid result from the sizeof operator.

Here is a brief summary of predefined structures that can be used in construction of the final product.
Only one structure representing the GAB header requires special handling as a result of the value
returned by the sizeof operator.

Base Data Headers
The structure Base_data_header (defined in basedata.h) representing the header portion of the
internal radial base data message is partially aligned. The structure must be used to read the header

fields. The ‘sizeo£’ operator must be used if skipping over the header because this structure is subject
to change.

CODE Volume 3 B24.0r1.20 October 2025 Page 202 of 234

Vol 3 Doc 3 Section I1 -Writing Product Data Fields
The structures supporting the elevation base data message are defined in basedata elev.h. Both

structures, Compact_radial and Compact_basedata_elev, are completely aligned.

Internal Header

The structures representing the internal 96-byte header are completely aligned. These are

Prod gen_msg and Prod header which are defined in prod gen msg.h.

Product Headers MHB & PDB

A structure Graphic_product (defined in product.h) representing the combined MHB and PDB is
completely aligned.

Symbology Block Header

A structure symbology block (defined in product.h) representing the combined symbology block
header and first layer header is completely aligned.

The GAB Header

A structure Graphic_alpha_block (defined in product.h) representing the combined GAB header and
first page header does not comply with item 5. Currently, the sizeof operator returns a value that is 2-
bytes larger than the sum of the data fields.

The TAB Header

A structure Tabular_alpha_block (defined in product.h) representing the first 8 bytes of the TAB is
completely aligned.

Text Packet 1

Structures defined in packet_1.h supporting the construction of text packet 1 are completely aligned.
These are: packet_1_hdr_t, packet_1_data_t, and packet_1_t.

Text Packet 8

Structures supporting the construction of text packet 8 are defined in packet_8.h. Structure

packet 8 hdr_t is completely aligned and structure packet 8 data t and packet 8 t do not
comply with item 5 but this currently is not an issue.

Vector Packet 10

CODE Volume 3 B24.0r1.20 October 2025 Page 203 of 234

Vol 3 Doc 3 Section I1 -Writing Product Data Fields

Structures supporting the construction of vector packet 10 are defined in packet_10.h. The structure
packet 10 hdr_t does not comply with item 5 but this currently is not an issue. The structure
packet 10 data_t is completely aligned.

Storm ID Packet 15

Structures supporting the construction of data packet 15 are defined in packet 15.h. Structure
packet 15 hdr_t is completely aligned and structure packet 15 data_t and packet_15_t do not
comply with item 5 (currently this is not an issue).

Packet 16 - Digital Radial Data Array

Structures supporting the construction of radial data packet 16 are defined in packet_16.h. Both
structures, Packet_16_hdr_t and Packet_16_data_t 0o not comply with item 5 (currently this is not
an issue).

Point Feature Packet 20

Structures supporting the construction of point feature packet 20 are defined in packet 20.h. All
structures, packet_20_hdr_t, packet_20_point_t, and packet_20_t, are completely aligned.
Packet AF1F - RLE Radial Data

Structures supporting the construction of radial data packet AF1F are defined in packet_af1f.h. The

structure packet_aflf hdr_t does not comply with item 5 which is currently not an issue. The
structure packet_aflf data_t is completely aligned.

End of structure Padding

It is difficult to predict when the sizeof operator will return an incorrect value for a structure that
completely aligned except the sum of size of all fields is not evenly divisible by 4 (that is, the compiler
padded the end of the structure). For example:

The expression sizeof (Graphic_alpha block) returns 12 instead of 10.

typedef struct {
short divider;
short block_id;
int block_len;
short n_pages;

} Graphic_alpha block;

CODE Volume 3 B24.0r1.20 October 2025 Page 204 of 234

Vol 3 Doc 3 Section I1 -Writing Product Data Fields

But the expression sizeof (packet 15 data_t) correctly returns 6.

typedef struct

{
short pos i;
short pos_j;
char charl;
char char2;

} packet_ 15 data_t;

The answer may be that if the structure is otherwise completely aligned (items 1-4 followed), if the
structure contains a 4-byte data element, the total length of the structure must be evenly divisible by 4
(item 5). Otherwise it is sufficient for the total length to be evenly divisible by 2.

If Item 5 was a factor as with the struct Graphic_alpha_block, the easiest approach is to subtract the
appropriate number of bytes from the result of sizeof.

A struct_t “*my struct;

a. If allocating space for a structure in order to use in writing temporary data, the results
of the sizeof function must be used, for example. my struct =
malloc(sizeof (A_struct t));

b. The result of sizeof (A_struct_t)cannot be used as an offset into a large memory
block representing a final product in order to skip over the data contained in the data
fields represented by that structure.

c. If copying data from an internal data structure, my struct, into a block of memory
representing the final product, the result of sizeof (A_struct_t) should not be used to
represent the number of bytes copied. If sizeof (A_struct_t) is used, the additional
padded data is also copied.

CODE Volume 3 B24.0r1.20 October 2025 Page 205 of 234

Vol 3 Document 4. Special Topics

Volume 3. WSR-88D Algorithm

Programming Guide

Document 4. Special Topics

This document contains miscellaneous topics that have not been placed in other documents. As this type
of information increases, a reorganization of documentation will be considered.

Section | Topics Related to Using the Development Environment

Section Il Topics Related to Reading Radial Base Data

Section |11 Topics Related to Writing Algorithms

CODE Volume 3 B24.0r1.20 October 2025 Page 206 of 234

Vol 3 Doc 4 Section | - Topics Related to Using the Development Environment

Vol 3. Document 4 -
Special Topics

Section | Topics Related to Using the Development Environment

Part A. Algorithm Error Messages

Writing Error Messages to the Log File

First, it should be pointed out that standard output and standard error should be used only for debugging
purposes. After an algorithm is implemented, if there is a desire to capture error or information
messages, the ReGC_log msg service should be used. If using standard print statements, the
unbuffered standard error (stderr) via £print£ must be used. Standard output (stdout) will not
appear in the configured output file.

Location of Error Messages

When running algorithms that are integrated into the ORPG, neither standard output (stdout) nor
standard error (stderr) appear at the console. This is the case if the algorithm task is started by the
ORPG launch process. There are special error log files for every ORPG task located in the log directory.
This directory is defined by the environmental variable Le_pIrR EVENT and by default is set to a
directory 1ogs under the configured ORPG data directory ($orpGDIR). Each task has two files named
according to the task_name. The file <task_name>.output contains stderr (it does not contain
stdout). The file <task_name>.1log contains the output of the ORPG Log Error (LE) library message
calls used in the ORPG infrastructure software and the output of Recc_1og msg used by algorithms.

If the algorithm is started from the command line rather than with the ORPG start command, the
standard output and standard error messages appear at the console and the LE messages (including those
resulting from rRpGC_1log_msg) are not written to the . 1og file. Note, even when starting algorithms from
the command line, the product _attr_ table and task_attr_ table configuration files must be
modified for the algorithm task to launch.

Reading the Log File

The contents of the log file <task_name>.1og cannot be read my most text editors. A utility is
provided. While the ORPG is running, at the command line in a terminal window, execute

lelb mon <task name>

The contents of the log file is continuously updated until ctr1-c is pressed or the terminal window is
closed.

CODE Volume 3 B24.0r1.20 October 2025 Page 207 of 234

Vol 3 Doc 4 Section | - Topics Related to Using the Development Environment

Part B. Algorithm CPU Usage

The following Guide for measuring an algorithm's CPU usage is provided by the ROC in the file:

~/doc/mon_cpu_use.doc.

Measuring Process CPU Utilization On The RPG

1. Overview:

To measure the CPU utilization of a task in the RPG environment, use the mon_cpu_use tool. This
tool provides CPU time and utilization on an elevation by elevation scan basis. Output from this
tool will be used by the ROC to estimate RPG resource impacts well before the algorithm becomes
available operationally.

2. How to use mon_cpu_use:

To use the mon_cpu_use tool, one needs to know the Process ID (pid) of the process you want to
monitor. There are several ways to get the pid. The easiest method is to use rpg_ps:

rpg_ps | grep taskname
where taskname is the task in question. For example,
rpg_ps | grep recomb

recomb 6931 2680m 28M 19h recomb -1 1000

The pid is the number in the second column and appears just after the task name. In the above
example, the pid for recomb is 6931.

The mon_cpu_use command line is of the following form:
mon_cpu_use [options] pid
mon_cpu_use supports the following options:

-V Specifies the number of volume scans to montior. By default, the tools runs until the
user kills the tool (i.e, Ctrl-C, Ctrl-C).

-C Specifies the CPU capability number. This number is the value output from
use_resource -t.

A complete listing of command line options and information related to these options can be
obtained by running the tool using the -h option, i.e., mon_cpu_use -h.

CODE Volume 3 B24.0r1.20 October 2025 Page 208 of 234

Vol 3 Doc 4 Section | - Topics Related to Using the Development Environment

mon_cpu_use produces output similar to the following example:

>>>> mon_cpu_use: CPU Use Monitoring Tool for RPG Applications <<<<

CMD LINE: recomb -1 1000
CPUs: 2

UTILIZATION SCALE FACTOR: 1.013

Date/Time El# Elapsed Time (s) Utilization (%) Est (%)
10/24/08 15:19:11 1 20 0.00 0.00
10/24/08 15:19:31 2 19 0.00 0.00
10/24/08 15:19:50 3 14 0.04 0.04
10/24/08 15:20:04 4 17 0.06 0.06
10/24/08 15:20:21 5 19 0.03 0.03
10/24/08 15:20:40 6 19 0.03 0.03
10/24/08 12:20:59 7 14 0.07 0.08
1024/08 15:21:13 8 18 0.00 0.00
10/24/08 15:21:31 9 19 0.03 0.03
10/24/08 15:21:50 10 14 0.00 0.00
10/24/08 15:22:04 1 18 0.00 0.00
10/24/08 15:22:22 12 17 0.03 0.03
10/24/08 15:22:39 13 14 0.04 0.04
10/24/08 15:22:53 14 17 0.00 0.00
10/24/08 15:23:10 15 23 0.00 0.00
10/24/08 15:23:33 16 13 0.00 0.00
10/24/08 15:23:46 17 20 0.00 0.00
10/24/08 15:24:06 18 13 0.08 0.08
10/24/08 15:24:19 19 13 0.04 0.04
10/24/08 15:24:32 20 22 0.04 0.04

Totals: 20 343 0.02 0.02

The CMD LINE line of the output specifies the command line used to invoke the process being
monitored. In the example, the CMD_LINE shows the process being monitored was
use_resource —c 10. The next line, # CPUs, specifies the number of CPUs detected on the
machine where the process is being monitored. In this example, the machine used to monitor the
use_resource process had an Intel Dual Core processor (2 CPUs). The third line, UTILIZATION
SCALE FACTOR, is a scaling factor used by mon_cpu_use to estimate what the processor
utilization would be on baseline RPG equipment.

CODE Volume 3 B24.0r1.20 October 2025 Page 209 of 234

Vol 3 Doc 4 Section | - Topics Related to Using the Development Environment

For each volume scan monitored, the volume start date and time, VCP number and volume scan
number are specified. Following this header, information about each elevation cut in the VCP is
listed: start of elevation time, elevation number, elevation scan duration (secs), CPU time (secs)
and CPU utilization (%).

At the end of a volume scan, volume scan totals are listed: accumulated elapsed time for the
volume scan (sec), accumulated CPU time for the volume scan (sec) and average utilization for the

volume scan (%).

3. Measuring CPU Utilization:

To provide CPU utilization for a process, one first needs to run the use_resource tool. This tool
will provide a estimate of the CPU capabilities of the machine being used. The output of this tool
will be used by the mon_cpu_use tool to estimate the processing load of the process in question on
baseline RPG equipment.

Step 1:

Run use_resource -t from the command line. This command should be run when the RPG is
not busy. Ideally it should be run when the RPG is not processing radar data.

The output of use_resource will be a 5 minute average CPU capability value. It is a measure of
the number of times a set of complex code can be executed per second. The higher the value,

the higher the capability.

This number will be written to the screen and also to a hidden file in the SHOME/cfg directory,
.CPU_capability. (For more information on the use of use_resource, invoke the command
using the -h switch.)

Step 2:
Start the RPG using mrpg -p startup. In a terminal window, start script mon_cpu_use.out
Step 3:
Start the mon_cpu_use tool, specifying the number of volume scans to monitor (10) and
optionally, the CPU capability number (Note: If the SHOME/cfg/.CPU_capability file exists,
the CPU capability number will be read from this file by mon_cpu_use. Otherwise, this number

will need to be specified on the command line using the -C option. If the file does not exist and
a value is not specified on the command line, the UTILIZATION SCALE FACTOR defaults to

1.0).
A typical command line for invoking this tool is:
mon_cpu_use -V 10 <pid>

where <pid> is the process ID of the process you are monitoring.

CODE Volume 3 B24.0r1.20 October 2025 Page 210 of 234

Vol 3 Doc 4 Section | - Topics Related to Using the Development Environment

Step 4:
Start playback the full load data set (this data set will be specified elsewhere).
Step 5:

After ten (10) volume scans, the mon_cpu_use tool will stop. End the terminal logging by
script using CTRL-D. Note: Ten (10) volume scans is generally sufficient to get a clear
picture of CPU utilization. However some algorithms may require longer monitoring periods.
For example an algorithm that produces output based on clock time, the monitoring period
needs to

encompass the time when the output is produced.)

4. What The Numbers Mean and How Are They Used:

Many factors determine the CPU utilization of a process. One cannot simply compare the clock
speeds between processors unless the PC architecture between different machines are identical in
all respects expect the clock speed. Instruction architecture, cache size, bus speed, compiler
optimization (there are many others) affect how fast a process executes on a particular machine.
For this analysis, we use a simple technique to provide an estimate of the CPU needs for the
process being monitored as if this process were being measured on the actual baseline hardware.
We assume a good estimate of process utilization on baseline RPG hardware can be obtained by
scaling the process utilization on the development hardware by:

(CPU Capability(hardware) / CPU Capability(RPG)) * (# CPUs (development) / # CPUs (RPG))

The output from mon_cpu_use provides the CPU utilization of a process on an elevation by
elevation basis as well as an estimate of the CPU cost as if the process were running on an actual
fielded RPG. This information will be used ROC to determine the impacts of this algorithm on
processing load before the algorithm is integrated into the baseline software. The ROC uses this
information to determine if the processing reserve of an RPG can support the new algorithm. The
ROC can also provide feedback to the developer/implementer concerning the need for possible
efficiency improvements to make better use of the RPG shared resource.

CODE Volume 3 B24.0r1.20 October 2025 Page 211 of 234

Vol 3 Doc 4 Section | - Topics Related to Using the Development Environment

Part C. Algorithm Memory Usage

The following Guide for measuring an algorithm's Memory usage is provided by the ROC in the file:
~/doc/mon_mem use.doc.

Measuring Process Memory Utilization On The RPG

1. Overview:
To measure the memory footprint of a task in the RPG environment, use the mon_mem_use tool.
This tool provides private and shared memory utilization used by a process. Output from this tool

will be used by the ROC to estimate RPG resource impacts well before the algorithm becomes
available operationally.

2. How to use mon_mem_use:

To use the tool, one needs to know the Process ID (pid) of the process in question. There are
several ways to get the pid. The easiest method is to use rpg_ps:

rpg_ps | grep taskname
where taskname is the task in question. For example,
rpg_ps | grep tvsprod

tvsprod 8159 Om 4488K 144s tvsprod

The pid is the number in the second column and appears just after the task name. In the above
example, the pid for tvsprod is 8159.

The mon_mem_use command line is of the following form:
mon_mem_use [options] <pid>

where mon_mem_use supports the following options:
-l produces memory utilization summary and detailed listing of utilization
-r specifies a periodic update rate: the default rate is 0 or “one and done”
-m specifies a monitoring period: the default period is 0 or “one and done”.
Note: The -r and -m command line options are intended to be used together.

A complete listing of command line options and information related to these options can be
obtained by running the tool using the -h option, i.e., mon_mem _use -h.

CODE Volume 3 B24.0r1.20 October 2025 Page 212 of 234

Vol 3 Doc 4 Section | - Topics Related to Using the Development Environment

mom_mem_use <pid> produces out similar to the following example:

CMD LINE: tvsprod
VMSIZE: 6432 kB

RSS: 2668 kB total
SHARED: 2068 kB total

PRIVATE:600 kB total

The first line of the output specifies the command line used to invoke the process being monitored.
In this example the command line was tvsprod.

The second line of the mon_mem_use output is the Virtual Memory SIZE. (Note: 1 kB = 1024
bytes). The virtual memory size is reported by many tools including top and ps. This number is
mostly meaningless because it does not represent the actual memory needs of a process. It is
included here for completeness. For those interested in seeing a map of the virtual address space of
a process, use the -I command line option (see Section 5).

The third line of the mon_mem_use output is the Resident Set Size. This important measure gives
the size of process address space physically in RAM. This size however includes address space
private to the process and address space shared by other processes (e.g., shared library text segment
... 1.e., code). It does not give a complete picture of the memory footprint of a process. This will
be discussed more in detail later.

In the absence of memory paging activity owing to a lack of physical memory to support all
application needs, the RSS represents the process's working set. The working set is the address
space referenced by processes during processes execution. If the working set size is smaller than
the resident set size, page faults occur. The process at this point can do no useful work until the
referenced pages are in physical memory. For systems short on physical RAM, loading pages into
RAM requires the replacement of (or paging out) pages used by some other process. Frequent
page replacement is referred to as thrashing.

If the working set size matches the RSS, the RSS value should remain nearly constant. If the RSS
changes over time, paging activity may be occurring along with performance degradation.

The fourth line (SHARED) of the mon_mem_use output is the amount of the RSS shared by other
processes. Memory shared by other processes is generally shared library code (executable
instructions) but may also include data within shared memory segments.

Shared libraries can be viewed as consisting of two (2) parts: text (code) and data. The text part
consists of the executable instructions. The data part consists of the data on which the code
operates. The code can be shared among processes since the code is not writable (can only be

CODE Volume 3 B24.0r1.20 October 2025 Page 213 of 234

Vol 3 Doc 4 Section | - Topics Related to Using the Development Environment

read). The data portion of shared libraries (e.g., calculations performed on the processes behalf
when calling a shared library routine) cannot be shared.

The last and final line (PRIVATE) of the mon_mem_use output is the amount of the RSS that is
private to the process. This includes process code and data as well as the data portion of shared
libraries.

The PRIVATE size is the best measure of the memory footprint of a task running in the RPG
environment.

3. Measuring Memory Utilization:

To provide memory utilization for a process, one needs to run the mon_mem_use for a period of
time. The amount of time will depend on when and how often the process produces output. For
elevation-based and volume based product generators, running for a period of 20 minutes (-m
1200) and a periodic update rate of 1 minute (-r 60) is sufficient.

The following steps describe how to measure memory utilization.

Step 1:
Start the RPG using mrpg -p startup. In a terminal window, start script mon_mem_use.out

Step 2:
In a different terminal window, start playback of the full load data set (this data set will be
specified elsewhere).

Step 3:
Start the mon_mem_use tool in the terminal window specified in Step 1, specifying the
monitoring period (1200) and the update rate (60). A typical command line for invoking this
tools is:

mon_mem_use -m 1200 -r 60 <pid>
where <pid> is the process ID of the process your are monitoring.
Step 4:

After the mon_mem_use tool has stopped monitoring, end the terminal logging by script using
CTRL-D.

4. What The Numbers Mean and How Are They Used:

As specified in Section 2, the information most important to the ROC for sizing information are the
Resident Set Size (RSS) and Private sizes. The mon_mem_use tool will be used by the ROC to
determine the memory footprint of the process. This information will also been used to access
whether optimizations should be investigated in the footprint is too large.

5. Additional Information:

CODE Volume 3 B24.0r1.20 October 2025 Page 214 of 234

Vol 3 Doc 4 Section | - Topics Related to Using the Development Environment

PRIVATE MAPPINGS:

For a more detailed listing of the memory mapping, use the long-listing (-) option. The following
shows example output.

The long-listing shows both the private and shared mappings of the task. This information is derived
from file /proc/<pid>smaps. The rss clean and rss dirty columns specify the amount of mapped
memory that is actually memory resident broken down to the amount that is clean (hasn't been
modified) and the amount that is dirty (has been modified). Should swapping out of process memory
become necessary, the dirty resident pages are candidates for writing to the swap device. Clean
resident pages are simply discarded.

You might notice some special file names. Files marked as anon are memory pages allocated by
malloc, and vdso is a Virtual Dynamic Shared Object — a single page created by kernel that contains
the actual implementation of the system call entry/exit mechanism. Every user process will contain a
vdso mapped entry. Although the following example does not show this, files beginning with SYSV
are Interprocess Control (IPC) shared memory segments. These will correspond to shared memory
LBs. Algorithms that access base data will likely show a SYSV entry.

vmsize rss clean rss dirty file
4 kB 0 kB 4 kB lexport/home/orpgl/lib/Inux_x86/libadaptcomblk.so
56 kB 0 kB 36 kB lexport/home/orpgl/lib/Inux_x86/librpgcm.so
8 kB 0 kB 8 kB lexport/home/orpgl/lib/Inux_x86/libinfr.so
8 kB 0 kB 8 kB lexport/home/orpgl/lib/Inux_x86/liborpg.so
76 kB 0 kB 28 kB [anon]
124 kB 0 kB 8 kB lexport/home/orpgl/lib/Inux_x86/librpg.so
608 kB 0 kB 12 kB [anon]
24 kB 24 kB 0 kB lexport/home/orpgl/bin/inux_x86/tvsprod
264 kB 0 kB 180 kB [anon]
4 kB 4 kB 0 kB lexport/home/orpgl/data/kinematic/tvsprod.lb
20 kB 16 kB 0 kB lexport/home/orpgl/data/logs/tvsprod.log
16 kB 0 kB 16 kB [anon]
84 kB 0 kB 20 kB [stack]
SHARED MAPPINGS:
vmsize rss clean rss dirty file
76 kB 8 kB 0 kB lexport/home/orpgl/lib/Inux_x86/libadaptcomblk.so
56 kB 16 kB 0 kB lexport/home/orpgl/lib/Inux_x86/librpgcm.so
4 kB 4 kB 0 kB [vdso]
272 kB 216 kB 0 kB lexport/home/orpgl/lib/Inux_x86/libinfr.so
388 kB 160 kB 0 kB lexport/home/orpgl/lib/Inux_x86/liborpg.so
124 kB 116 kB 0 kB lexport/home/orpgl/lib/Inux_x86/librpg.so
CODE Volume 3 B24.0r1.20 October 2025 Page 215 of 234

Vol 3 Doc 4 Section | - Topics Related to Using the Development Environment

508 kB 128 kB 0 kB lusrl/lib/libgfortran.so.1.0.0
44 kB 12 kB 0 kB /lib/libgcc_s-4.1.2-20080102.s0.1
896 kB 356 kB 0 kB lusr/lib/libstdc++.50.6.0.8
4 kB 4 kB 0 kB /export/home/orpgl/data/kinematic/tvsattr.lb
4 kB 4 kB 0 kB /export/home/orpgl/data/pdist/prod_request.lb
16 kB 16 kB 0 kB lexport/home/orpgl/data/msgs/prgenmsg.lb
4 kB 4 kB 0 kB /export/home/orpgl/data/storm/trfrcatr.lb
4 kB 4 kB 0 kB lexport/home/orpgl/data/msgs/scan_summary.lb
4 kB 4 kB 0 kB lexport/home/orpgl/data/msgs/gen_stat_msg.lb
4 kB 4 kB 0 kB lexport/home/orpgl/data/adapt/adapt_data.lb
380 kB 108 kB 0 kB lexport/home/orpgl/data/pdist/product_data_base.lb
16 kB 4 kB 0 kB lexport/home/orpgl/data/mngrpg/tat.lb
4 kB 4 kB 0 kB lexport/home/orpgl/data/mngrpg/pat.lb

CODE Volume 3 B24.0r1.20 October 2025 Page 216 of 234

Vol 3 Doc 4 Section Il - Topics Related to Reading Radial Base Data

Vol 3. Document 4 -
Special Topics

Section Il Topics Related to Reading Radial Base Data

BUILD 12 CHANGES:

o Modified as required to update the procedure for determining maximum radial array size.
Changes were made to improve clarity and safety.

o Updated the description of determining the number of radials to reflect the final definition of
the msg_type Dit SUPERRES_TYPE.

o Updated the description of determining the maximum number of bins to reflect the new
msg_type Dit HIGHRES REFL TYPE.

e Updated Testing for End of Elevation / Volume for clarity.

e Added discussion on how to safely handle elevation restarts by the RDA.

BUILD 11 CHANGES:

Renamed and completely reorganized this section.

Completed the topic of reading and using the Dual Pol fields in the generic moment structure.

Improved the topic of reading and using the Basic Moment fields in the base data radial.

Minor corrections / clarification to the description of determining the size and number of

radials.

= Modified the guidance for testing for end of elevation and end of volume. The future RDA
(with the AVSET mod) may not always produce the number of elevations in the defined VCP.
This guidance affects algorithms reading radial data and producing volume data and
algorithms reading elevation data and producing volume data.

= Documented a Build 11 issue with the output of the recombination algorithm.

Part A. Testing for End of Elevation / Volume

Algorithms Reading Radial Data

Actual End of Elevation / Volume

The last radial in an elevation is flagged with end-of-elevation except for the last elevation in a volume
where it is flagged end-of-volume. Therefore, to test for end of elevation, either an end-of-elevation flag
or an end-of-volume flag must be present. To test for end of volume, the end-of-volume flag must be
present.

CODE Volume 3 B24.0r1.20 October 2025 Page 217 of 234

Vol 3 Doc 4 Section Il - Topics Related to Reading Radial Base Data
Pseudo-End of Elevation / Volume

The WSR-88D RDA can produce radials in a scan that overlap the first radial(s). In the original WSR-
88D there were normally one or two extra radials in each elevation. Beginning with Build 10, the
recombination algorithm (which reduces the increased radial resolution back to the original 1 degree
spacing) can produce an overlapping radial. Because of this overlap, the last one or two radials were not
needed to get 360 degrees coverage. The last radial with no overlap is flagged either pseudo end of
elevation or pseudo end of volume (last elevation in the volume).

Most algorithms would normally eliminate this overlap by not using radials after the pseudo-end of
elevation / volume.
For proper operation of an algorithm:
1. All radials in an elevation or volume must be read even if not using radials after pseudo end.
2. If the algorithm needs to eliminate overlapping radials, it must test for pseudo end to eliminate

the overlap.

The flag that carries this information is the status field (the 16th short) in the base data header. The
flag values of the status field are defined in a309.h.

#define GOODBEL 0x00 (good) beginning of elevation
#define GOODBVOL 0x03 (good) beginning of volume
#define GENDEL 0x02 (good) end of elevation
#define GENDVOL 0x04 (good) end of volume

#define GOODINT 0x01 (good) intermediate radial
#idefine PGENDEL 0x08 (good) pseudo end of elevation
#define PGENDVOL 0x09 (good) pseudo end of volume

One example of a test for the end of elevation is:

The following gets the base data radial:

basedataPtr = (Base _data_radial*)RPGC_get inbuf by name ("BASEDATA",
&opstatus) ;

The following reads the radial status flag in the header at the beginning of the radial:
radial status = basedataPtr->hdr.status & OxF;

The following tests for Pseudo end of elevation:
if (radial_ status==PGENDEL || radial_ status==PGENDVOL)

The following tests for actual end of elevation:

if (radial status==GENDEL || radial_ status==GENDVOL)

CODE Volume 3 B24.0r1.20 October 2025 Page 218 of 234

Vol 3 Doc 4 Section Il - Topics Related to Reading Radial Base Data

The future RDA may not always process all elevations in a volume scan so any
algorithm reading radial data and producing a volume product must always test for
end of volume.

The following tests for actual end of volume:

if (radial_status==GENDVOL)

When assigning the value to radial_status a mask of oxr is used because the high order bit can be set
to indicate a "bad" radial. Look at the contents of a309.h and you will find that there is a "bad"
beginning of elevation and a "bad" intermediate radial, etc. After masking, we only need to test for
"good" radials. Note: Don't ask what "bad" radials are; just make the tests as indicated.

Handling an Elevation Restart from the RDA

Many of the existing algorithms do not look for or handle elevation restarts. The legacy algorithms in
FORTRAN) do. This results in using the new radial messages for that elevation rather than aborting.
NOTE: Currently the sample algorithms do not handle elevation restarts.

This technique only applies to algorithms that read base data radial messages and produce elevation data
or volume data. Since the opstat of the get_inbuf function does not report this condition, the radial
status must be used to detect this condition.

To test for an elevation restart:

1. If the radial status reports a beginning of an elevation before the pseudo-end or actual end of
elevation / volume (last elevation in the volume), an elevation restart has probably occurred.

2. To be safe, also test the rpg_elev_ind field of the basedata header. If it is the same as the
partial elevation read an elevation restart has occurred.

Once a restart is detected, the algorithm discards the existing radial data collected for that elevation and
reaccomplishes any data initialization required.

Algorithms Reading Elevation Data

Algorithms reading elevation data and producing volume data need to determine the last elevation of a
volume. In the past the number of elevations defined in a volume scan could be used. However, the
future RDA may not always process all elevations in a volume scan so any algorithm reading
elevation data and producing volume must use the function ReGc_is_buffer from_last_elev.
Because the RDA will determine the last elevation dynamically, this function must be called once
each elevation. When this RDA modification is deployed, existing algorithms will be modified to
comply with this guidance.

CODE Volume 3 B24.0r1.20 October 2025 Page 219 of 234

Vol 3 Doc 4 Section Il - Topics Related to Reading Radial Base Data
Part B. Determining the Number of Elevations & Radials

NOTE: This explanation takes into account all possible cases. In some existing algorithms where only
Legacy resolution data is used and specific constraints have been placed on the product size, the logic
observed will differ from that presented here.

Initially, an algorithm may allocate internal data arrays based upon the maximum size of the polar array
of the input basedata. This is accomplished by determining the maximum number of radials that can be
produced by the RDA (Part B.) and the maximum number of data elements in each radial (Part C.).

Determining the number of Elevations

The number of elevations in a VCP can be obtained with the rpg_elev_cuts field in the scan_summary
structure or the num elev cuts field in the vol_stat gsm_t structure. This could be used for sizing.
However, the future RDA may not always process all elevations defined in a VCP. When this RDA
modification is deployed, existing algorithms will be modified to comply with the following guidance.

Algorithms reading elevation data inputs and producing volume data outputs need to know the
real number of elevation cuts being produced. Since the RDA dynamically determines when to
terminate processing elevation cuts in a volume scan, the function
RPGC_is_buffer from last_elev Must be called once each elevation when reading elevation
input data.

For algorithms reading radial data and producing volume data outputs, the radial status flag must
be tested for end of volume.

Determining Maximum number of Radials

When reading one of the Legacy resolution data types the maximum number of radials is
BASEDATA MAX RADIALS (currently 400).

Determining the maximum number of radials when reading one of the Super Resolution data types is
straight forward. Rather than always using BasepaTa mMax sR_RaDIALS (currently 800), resources
could be reduced by determining the maximum value for each elevation. If the value of the basedata
header field azm_reso is 2, the maximum number of radials is BASEDATA_Max RaDIALS (currently 400).
If azm_reso iS 1, the maximum is BASEDATA MAX SR _RADIALS (currently 800) This field should be
tested on the first radial of each elevation.

With Build 12, the function RPGc_check_radial type Can be used to test the radial type bits of the
msg_type field for supERRES_TYPE to determine the maximum number of radials (400 or 600).

CODE Volume 3 B24.0r1.20 October 2025 Page 220 of 234

Vol 3 Doc 4 Section Il - Topics Related to Reading Radial Base Data
Part C. Determining Radial Array Sizes

NOTE: This explanation takes into account all possible cases. In some existing algorithms where only
Legacy resolution data is used and specific constraints have been placed on the product size, the logic
observed will differ from that presented here.

Initially, an algorithm may allocate internal data arrays based upon the maximum size of the polar array
of the input basedata. This is accomplished by determining the maximum number of radials that can be
produced by the RDA (Part B.) and the maximum number of data elements in each radial (Part C.).

Algorithm Restraints on Range

The algorithm may constrain the data by having a product range that is less than the range of the input
data. For example, some existing products use a 230 KM range even though the reflectivity data is
provided to 460 KM. So at this stage, an algorithm could have a variable (the following example uses
max_num bins) that has been set based upon the data type being read and any desired constriction on
product range.

Altitude Constraints

The current radar produces no useful data above 70,000 feet MSL. A helper function is provided that
can be used to further reduce the size of the internal data structure allocated.

num bins 70k = RPGC_bins to_ceiling(radial pointer, rad hdr ptr-
>dop_bin_size);

if (bins_to_70k < max_num bins)
bins to process = bins_to_70k;
else
bins_to process = max num bins;

It should be noted that even if using ReGc_bins_to_ceiling, the basedata header field representing the
number of good bins still must be checked when using the data in the radial. See next paragraph.

C-1. Basic Moment Data (reflectivity, velocity, spectrum width)

In addition to determining the size and number of radials, it is critical that the algorithm does not
read and use data that exceed the limits of the first and last "*good™ bin. See Part D. If the
algorithm internal arrays or product arrays are larger than this, they should be padded with *0".

CODE Volume 3 B24.0r1.20 October 2025 Page 221 of 234

Vol 3 Doc 4 Section Il - Topics Related to Reading Radial Base Data
Determining Maximum Array Size

When reading one of the Legacy resolution data types the maximum size of the reflectivity array is
BASEDATA REF_ SIZE (currently 460) and the maximum size of the velocity and spectrum width arrays is
BASEDATA VEL_SIZzE (currently 920).

When reading one of the Super Resolution data types (sR_coMBBASE, etc.) or dual polarization types
(DUALPOL_COMBBASE, €fC.), it is safe use Max BASEDATA REF SIzE (currently 1840) as the maximum
size for reflectivity arrays and BasepaTa pop_sizk (currently 1200) as the maximum size for the
velocity and spectrum width arrays.

Due to the design of the VCPs, the maximum Doppler array size is different at higher and lower
elevations. The simplest solution would be to assume the extended 300 km range (1200 bins). With
the current VCP definitions, at some elevation for each VCP the array size is reduced to the original
Doppler range of 230 km (920 bins).

With Build 12, the function RPGC_check radial type Can be used to test the radial type bits of the
msg_type field for HIGHRES_REFL_TYPE to determine the horizontal resolution of the surveillance
data. 250 m resolution would correspond to 460 bins. 1000 m resolution would correspond to 1840
bins.

If statically allocating memory at the beginning of each elevation, resources could be reduced by testing
the number of data bins in the first radial of the elevation. However the following method fails if the
first radial is spot blanked and the number of bins set to o, and therefore is not recommended.

Determining Array Type

The Basic Moment arrays in the base data radial message are of type unsigned short..

First Data Element

When processing basic moment radial base data the first "good" data element in the radial array should
be determined. The first good or usable data element is determined directly from the contents of the
basedata header.

Please note that the index calculated for the first good bin (in the following examples this is
first_bin_index) isa C array index. That is the first data element is at index 0.

The basedata header field surv_range states the index for reflectivity and the field dop_range states the
index for radial velocity and spectrum width. This index is valid for an index system beginning with 1.
Therefore 1 must be subtracted from this number to provide an index for a C array (an index with 0 as
the first element).

CODE Volume 3 B24.0r1.20 October 2025 Page 222 of 234

Vol 3 Doc 4 Section Il - Topics Related to Reading Radial Base Data

rad _hdr ptr = (Base_data header *) radial pointer;

first bin index = rad hdr ptr->dop range - 1;

Note: The value of surv_range and dop_range appear to always be 1. Some current algorithms assume
this to always be the case, which would simplify some of the remaining code examples. However, until
ROC Engineering confirms this is always the case, these fields should be tested to determine the first
good bin.

Last Data Element

When processing basic moment radial base data the last "good" data element in the radial array must be
determined. The last good data element is determined by several factors. Please note that the indexes
calculated for the first good bin and last good bin (in the following example these are first bin_index
and 1ast_bin_index) are C array indexes. That is the first data element is at index 0.

If reading an array from a basedata radial, the basedata header field n_surv_bins states the number of
reflectivity data elements and the field n_dop bins states the number of velocity and spectrum width
data elements. This is considered the number of "good" data elements. These fields must be read and
evaluated for each radial. The C array index for the last data element is calculated as follows.

rad hdr ptr = (Base_data header *) radial pointer;

last_bin_index = first bin index + rad hdr ptr->n dop bins - 1;

Even though the number of bins to process may have been constrained by using the
RPGC_bins_to_ ceiling function, the 1ast bin_ index as determined by the fields n_surv _bins and
n_dop_bins must be evaluated for each radial. There are several reasons for this.
1. The function RPGC_bins_to_ceiling does not consider the antenna height when calculating the
number of bins to 70,000 ft.
2. The RDA for some reason may not provide the expected number of bins.
3. This radial may be spot blanked with n_surv_bins set to 0.

Range of Data Elements

The range (actually slant range) of the data elements are determined by the size of the range bin
represented by each data element. The basedata header field surv_bin_size specifies the size of each
reflectivity bin and the field dop_bin_size the size of the velocity and spectrum width bins. Both are in
meters. The range (in meters) to the beginning of the first good data element is given by the base data
fields range_beg_surv and range_beg_dop.

CODE Volume 3 B24.0r1.20 October 2025 Page 223 of 234

Vol 3 Doc 4 Section Il - Topics Related to Reading Radial Base Data
C-2. Generic Moment Data Fields (future Dual Polarization Data)

In addition to determining the size and number of radials, it is critical that the algorithm does not
read and use data beyond the last bin. If the algorithm internal arrays or product arrays are
larger than this, they should be padded with *0".

Determining Maximum Array Size

The Dual Pol data fields available to algorithms are either 1200 or 1840. The maximum number of data
bins in each type of array are:

1200 for ZDR, RHO, PHI, KDP, SDP
1840 for SNR, SMzZ, SDz (related to number of Z gates)
1200 for SMV (related to number of V gates)

Currently it is unclear whether in Build 12 the number of gates could be 900 instead of 1200 and
460 instead of 1840. This could occur at higher elevations or if "‘Super Resolution® is turned off at
the RDA. If preallocating arrays use 1200 or 1840 as appropriate.

Even though the following are defined in basedata.h, as you can see this list is not complete.

BASEDATA_RHO_SIZE 1200 Size of the DRHO Correlation Coefficient array (shorts)
BASEDATA _PHI_SIZE 1200 Size of the DPHI Differential Phase array (shorts)
BASEDATA_SNR_SIZE 1840 Size of the DSNR Signal to Noise Ratio array (bytes)
BASEDATA ZDR_SIZE 1200 Size of the DzDR Differential Reflectivity array (bytes)
BASEDATA_RFR_SIZE 240 Ignore for now.

Determining Array Type
The Dual Pol fields in the generic moment structure can be of several types (unsigned char, unsigned

short, unsigned int, float). The generic moment field data word size is used to determine the type of
data array (currently all are either 8 for unsigned char or 16 for unsigned int).

First Data Element

For the Dual Pol data fields in the generic moment structure, the first element in the array is always
good.

Last Data Element

When processing generic moment radial Dual Pol data the last data element in the radial array must be
determined. The last data element is determined by several factors. Please note that the index

calculated for the last bin (in the following example this is the 1ast_bin_index) is a C array index.
That is the first data element is at index 0.

CODE Volume 3 B24.0r1.20 October 2025 Page 224 of 234

Vol 3 Doc 4 Section Il - Topics Related to Reading Radial Base Data
The generic moment structure field no_of gates states the number of the valid data array elements

If reading an array from a basedata radial, the generic moment structure field no_of_gates states the
number of the valid data array elements. This field must be read and evaluated for each radial.
The C array index for the last data element is calculated as follows.

s_data = (short *) RPGC_get radar data((void *)radial, RPGC_DRHO, &gen_ moment) ;

last_bin_index = gen_moment.no_of gates - 1;

Even though the number of bins to process may have been constrained by using the
RPGC_bins_to ceiling function, the 1ast bin_index as determined by the field no_of gates must
be evaluated for each radial. There are several reasons for this.
1. The function RPGC_bins_to_ceiling does not consider the antenna height when calculating the
number of bins to 70,000 ft.
2. The RDA for some reason may not provide the expected number of bins.
3. This radial may be spot blanked. In this case either the generic moment does not exist or the field
no_of gates is0.

Range of Data Elements

The range (actually slant range) of the data elements are determined by the size of the range bin
represented by each data element. The generic moment structure field bin_size specifies the size of
each bin in meters. The range (in meters) to the center of the first data element is given by the generic
moment structure field first gate_range.

CODE Volume 3 B24.0r1.20 October 2025 Page 225 of 234

Vol 3 Doc 4 Section Il - Topics Related to Reading Radial Base Data
Part D. Radial Processing Example

Please note that the indexes calculated for the first good bin and last good bin (in the following examples
these are first bin_index, last bin_index, and last_bin product_index) are all C array indexes.
That is the first data element is at index O.

Case 1: Limited by the number of bins (or gates) in the radial message avoid using "*bad bins"
(n_dop_bins Or n_surv_bins for basic moment data or no_of_gates for generic moment data):

It is the algorithm's responsibility to not use data before or after the "good" data bins.

Case la: Bins before the first good bin. (Basic Moment Data only)

Since the first bin is usually the first 'good"* data bin (some algorithms assume this), you normally
do not see this compensated for. The algorithm would either set the data elements before the first
good bin to 0 or not use an array index before the first good bin.

Case 1b: Bins after the last good bin.

The algorithm should not read or process any data beyond the last "'good"* data element. The
internal array size exceeding the number of good bins, can be handled in two ways.

METHOD 1: is to set the values of the internal array data elements after the last "good" bin to 0 and
process the entire array. The advantage of this method is all algorithm internal radial arrays are the
same size. The final product radial data arrays should be the same size.

METHOD 2: is reducing the number of bins in the internal data array to not exceed the location of the
last good bin in the input data. The final product radial data arrays should be the same size. The
following two examples are logically equivalent.

if((last _ bin_index - first bin index + 1) < bins_to_process)
num_bins_in product = last_bin_index - first bin index + 1;
else
num bins in product = bins_to_process;

if(bins_to_process > (last bin_index - first bin index + 1))
num bins in product = last bin _index - first bin index + 1;
else
num bins_in product = bins_to_process;

The input parameter representing the number of bins for the original packet 16 helper function,
RPGP_set packet 16 radial (), must reflect the reduction above if METHOD 2 is used.

Case 2: Limited by internal array size - reduce the last bin index:

CODE Volume 3 B24.0r1.20 October 2025 Page 226 of 234

Vol 3 Doc 4 Section Il - Topics Related to Reading Radial Base Data

If the algorithm's internal data array never uses all of the available "good" data bins in the radial, the
originally calculated index for the last bin must be corrected before being used as an input parameter for
several helper functions. The following two examples are logically equivalent.

if (bins_to_process < (last_bin_index - first bin index + 1))
last_bin product_index = bins_to_process - first bin_index - 1;
else
last bin product_index = last bin index;

if(last bin index > (bins_to process - first bin index - 1))

last bin product_index = bins_to process - first bin index - 1;
else

last_bin_product_index = last_bin_index;

This correction must be made for the end index parameter for both run-length encoding functions:
RPGC_run_length encode () and RPGC_run length encode byte () and the new packet 16 helper
function: RPGC_digital_radial data_array().

NOTE: There is a minor error in applying this correction in several existing algorithms:
cpc007/tsk013/bref8bit.c, cpc007/tsk014/bvel8bit.c, cpc007/tsk015/superes8bit.c

APINOTE: If using one of the three helper functions to read a basic moment array (for example:
RPGC_get_vel_data), the second parameter returns the first good bin and the third parameter
returns the last good bin. However, these values have already been corrected for a 0 based C array.

CODE Volume 3 B24.0r1.20 October 2025 Page 227 of 234

Vol 3 Doc 4 Section Il - Topics Related to Writing Algorithms

Vol 3. Document 4 -
Special Topics

Section 111 Topics Related to Writing Algorithms

This guide is a work in progress. Suggestions for improvement are welcome.

CODE Volume 3 B24.0r1.20 October 2025 Page 228 of 234

Volume 3 Appendices

Volume 3. WSR-88D Algorithm

Programming Guide

Appendices

Appendix A. Algorithm Structure Templates

Appendix B. Algorithm Tasks Recently Ported to C

CODE Volume 3 B24.0r1.20 October 2025 Page 229 of 234

Vol 3 Appendix A - Algorithm Structure Templates

Vol 3. Appendices

Appendix A. Algorithm Structure Templates

These flow charts illustrate the guidance currently provided in this guide. Many legacy algorithms have
not been updated to reflect the changes in abort services. NOTE: The logical structures contained in
these charts represent just one method of complying with all required structure rules. They are not the
only way an algorithm can be structured.

The following flow charts are provided:

1. An algorithm reading base data (radial based) and outputting an elevation based product. This
chart provides a framework for Sample Algorithm 1 - Digital Reflectivity algorithm, Sample
Algorithm 2 - Radial Reflectivity algorithm, and the first task in Sample Algorithm 3 - Multiple
Task algorithm.

2. An algorithm reading an elevation based product and outputting a volume based product. This
chart provides a framework for the second task in Sample Algorithm 3 - Multiple Task algorithm

3. An algorithm reading base data (radial based) and outputting a volume based product. (No
sample algorithm at this time).

Many of the named activities in these flow charts correspond to specific API services. For example, the
flow chart for the elevation product can be compared to the source code of the digital reflectivity sample
algorithm. Comment labels have been placed in the source code as an aid in relating the source code to
the flow chart.

If the sample algorithms are not installed, existing operational algorithms can be used as examples.

Sample
Logic Demonstrated Algorithm Operational Algorithm

Producing a 256 level elevation product from radial Sample 1 | cpc007/tsk013/ bref8bit

basedata. cpc007/tsk014/ bvel8bit
cpc007/tsk015/ superes8bit

Producing al6-level RLE elevation product from Sample 2 | cpc007/tsk001/ basrflct

radial basedata. cpc007/tsk002/ basvcty

Producing a volume product from elevation basedata. | None cpc013/tsk003/ epre

A multiple task algorithm with elevation intermediate | Sample 3 | cpc017/tsk009/ tda2d3d

products and volume final product. cpc018/tsk005/ tdaprod

A multiple task algorithm with final task using the Sample 4 | cpc004/tsk006/ recclalg

WAIT_ANY form of control loop cpc004/tsk007/ recclprods

An event driven task. None future build

CODE Volume 3 B24.0r1.20 October 2025 Page 230 of 234

Vol 3 Appendix A - Algorithm Structure Templates

One Product Algorithm

Radial_Based Input

EG_INIT
@egistration / Initializatio@

SUCCESSFUL

Elevation_Based Output

UNSUCCESSFUL

—>(_ Algorithm Flow Control)<
#BEGIN_PROCESSING

EAD FIRST RAD!

Vv
Get Output Buffer
For Product

Unsuccessful

)

Z |0
U

i :PROCESS_RAD iV
I

Read First Base
Data Radial
Get Input Buffer

Unsuccessful

...................... >

G{equired Moments EnabletD

<>N. I

4
Release

Input Buffer

4

Last Radial
in Elevation?

CODE Volume 3

Release Output Y _
uffer - FORWARD/ ~

Process =
Individual Radial

Release Output
Buffer - DESTROY

%
(ROt e

Release
Input Buffer

A\

Release Output 1 . > Abort Because
uffer - DESTROY Moment Disabled

N

Updated April 2006

Read Next Base
Data Radial i
Get Input Buffer i
Elevation !
- 1
Processing ;
Segment

Assemble
ICD
Product

Unsuccessful
S

B24.0r1.20

included in sample algorithm source code

October 2025

e T
“ \Buffer - DESTROY. > Abort

Page 231 of 234

Vol 3 Appendix A - Algorithm Structure Templates

One Product Algorithm

Radial_Based Input

EG_INIT
@egistration / Initializatio@

SUCCESSFUL

Volume_Based Output

UNSUCCESSFUL

—>(_ Algorithm Flow Control)<

#BEGIN_PROCESSING

\2

Get Output Buffer
For Product

td

Unsuccessful

EAD FIRST RAD!

Read First Base
Data Radial
Get Input Buffer

Unsuccessful

G{equired Moments EnabletD

N

.................... >

Input

N CaaD
/

Release Output
Buffer - DESTROY

v
(Abort e

Release
Buffer

Release Output
Buffer - DESTROY

Updated April 2006

> Abort Because
Moment Disabled

Release Output i !
uffer - FORWAR ! EIevatlpn I
A i Processing™;

Last Elevation i Segment i

in Volume or
Last Elevation
to be Processed?

Process
Multiple
Elevations

...................................

Assemble
ICD

Release
Input Buffer

No

Beginning of
Elevation?

(Release Output >
uffer - DESTROY.
A

Unsuccessful

Read Next Base

Product

Unsuccessful

Data Radial
Get Input Buffer

o)

\

Abort

C

CODE Volume 3 B24.0r1.20

included in sample algorithm source code

October 2025

. Release Output
“ \QBuffer - DESTROY

Page 232 of 234

Vol 3 Appendix A - Algorithm Structure Templates

One Product Algorithm
Elevation_Based Input

EG_INIT
@egistration / Initializatio@

SUCCESSFUL

UNSUCCESSFUL

Volume_Based Output

Updated April 2006

—>(_ Algorithm Flow Control)<

:BEGIN_PROCESSING;

Vv
Get Output Buffer) CAB

For Product

Unsuccessful

rdiel
U

'READ_FIRST ELEV!

{ "READ NEXT ELEV !

CODE Volume 3

Release Output Y\ _
uffer - FORWARD/ ~

Read
Elevation
Get Input Buffer]

—>

Unsuccessful

< ip((ERSE OUR
uffer - DESTROY.

i :PROCESS ELEV i\

Process
Individual Elevation

Vv

Release
Input Buffer

Last Elevation
in Volume or
Last Elevation
to be Processed?

YES | e

Process
Multiple
Elevations

Y __ [ASSEMBLE |
Assemble
ICD
Product

Unsuccessful

(Abort)

B24.0r1.20

’ :LABEL { included in sample algorithm source code

October 2025

~.(Release Output
< \QBuffer - DESTROY

Page 233 of 234

Vol 3 Appendix B - Algorithm Tasks Recently Ported to C

Vol 3. Appendices

Appendix B. Algorithm Tasks Recently Ported to C

The ROC is currently porting all Legacy algorithms from FORTRAN to ANSI-C. All new algorithm
development should be accomplished in C. There is no firm time table in accomplishing this. If
modifying an existing FORTRAN algorithm, the ROC Engineering Branch should be contacted to
coordinate development activities.

Location (cpc/tsk) task executable name | Notes
cpc007/tsk001 basrflct
cpc007/tsk002 basvlcty
cpc007/tsk003 basspect
cpc007/tsk004 cmprflct
cpc007/tsk006 itwsdbv
cpc007/tsk013 bref8bit
cpc007/tsk014 bvel8bit
cpc008/tsk001 alerting
cpc008/tsk003 combattr
cpc008/tsk004 basvgrid
cpc014/tsk003 hybrprod
cpc016/tsk002 srmrmrv
cpc017/tsk007 tdald

During the ported process the ORPG source code will contain unused code. This will typically occur at
large task numbers (e.g., cpc007/tsk044, cpc008/tsk022, cpc016.tsk22). This temporary ‘dummy’ code
can be confirmed by looking at the cpc level makefile to see if this task subdirectory is included.

CODE Volume 3

B24.0r1.20

October 2025

Page 234 of 234

