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Artificial Intelligence (AI) and Artificial Neural Networks (ANN)  

The ANN is a form of Artificial Intelligence (AI) 

 

What is Intelligence? 

Intelligent systems tend to possess one or more of the following:  
1. Sensory perception 

2. Pattern Recognition 

3. Learning and knowledge acquisition 

4. Inference from incomplete information 

5. Ability to deal with unfamiliar situations 

6. Adaptability to new, yet related situations (through expectational knowledge) 

7. Inductive Reasoning 

8. Common Sense 

9. Display of Emotions 

10. Inventiveness 

 

de Silva, C. W., 2000: Intelligent Machines: Myths and Realities. CRC Press LLC  



Artificial Intelligence (AI) and Artificial Neural Networks (ANN)  

The ANN is a form of Artificial Intelligence (AI) 

 

What is AI? 
1. “The collective attributes of a computer, robot, or other mechanical 

device programmed to perform functions analogous to learning and 
decision making” 

Costello, R. B., 1992: Random House Webster’s College Dictionary. New York: Random 
House, Inc.  

 

 2. “Multidisciplinary field encompassing computer science, neuroscience, 
philosophy, psychology, robotics, and linguistics, and devoted to the 
reproduction of the methods or results of human reasoning and brain 
activity” 

Glickman, T. S., 2000: Glossary of Meteorology. 2nd Edition, American 
Meteorological Society, Boston. 855p  



Artificial Intelligence (AI) and Artificial Neural Networks (ANN) 

The ANN is a form of Artificial Intelligence (AI) 

 

What is AI? 
 3. “Artificial intelligence is the science of making machines do things that 

would require intelligence if done by men” 

 de Silva, C. W., 2000: Intelligent Machines: Myths and Realities. CRC Press LLC  



Artificial Neural Network (ANN) 

“…A neural network is a massively parallel distributed processor made up of 
simple processing units, which has a natural propensity for storing experiential 
knowledge and making it available for use. It resembles the brain in two 
respects: 

1. Knowledge is acquired by the network from its environment through a 
learning process. 

2. Interneuron connection strengths, known as synaptic weights, are used to 
store the acquired knowledge…”  

Haykin, S., 1999: Neural Networks: A Comprehensive Foundation, 2nd Edition, Prentice-
Hall, Inc.  
Haykin adapted the foregoing ANN definition from Aleksander and Morton (1990) who viewed the 
ANN as an adaptive machine.  

Aleksander, I., and H. Morton, 1990: An Introduction to Neural Computing, London: Chapman and Hall. 

 



Artificial Neural Network (ANN) 

What is Parallel Distributed Processing (PDP)? 

 

“…information processing takes place through interactions of large 

numbers of simple processing elements called units, each sending 

excitatory and inhibitory signals to other units…"  

 
Rumelhart, D. E., J. L. McClelland, and the PDP Research Group, 1986:  Parallel 

Distributed Processing: Explorations in the Microstructure of  Cognition. Volume 1: Foundations. MIT 

Press: Cambridge, MA. 



Artificial Neural Network (ANN) 

What is Parallel Distributed Processing (PDP)? 

PDP Model General Framework 
1. A set of  processing units 

2. A state of  activation 

3. An output function for each unit 

4. A pattern of  connectivity among units 

5. A propagation rule for propagating patterns of  activities through the 

network of  connectivities 

6. An activation rule for combining the inputs impinging on a unit with the 

current state of  that unit to produce a new level of  activation for the unit 

7. A learning rule whereby patterns of  connectivity are modified by 

experience 

8. An environment within which the system must operate 

Rumelhart, D. E., J. L. McClelland, and the PDP Research Group, 1986:  Parallel Distributed Processing: 

Explorations in the Microstructure of  Cognition. Volume 1: Foundations. MIT Press: Cambridge, MA. 



Artificial Neural Network (ANN) 

Parallel Distributed Processing in Biological Neural Networks 

 

• Densely interconnected network of   ~1011 neurons, each connected, on 

average, to 104 others. 

 

• The fastest neuron switching times:  ~10-3 seconds; computer switching speeds: 

~10-10 seconds. 

 

• Humans  render complex decisions, surprisingly quickly.  (e.g. ~10-1 seconds 

required to visually recognize your mother.) 

 

• Speculation based on foregoing  information-processing abilities of  

biological neural systems must follow from highly parallel processes operating 

on representations that are distributed over many neurons.  

 

• A motivation for ANN systems  capture this kind of  highly parallel 

computation based on distributed representations 

Mitchell, T. M, 1997: Machine Learning, McGraw Hill Companies, Inc. (Section 4.1.1; page 82) 



Artificial Neural Network (ANN) 

Parallel distributed processing versus serial processing 

Parallel distributed processing most 

efficient to resolve the following: 

Serial processing most efficient to 

resolve the following: 

Beal R. and T. Jackson, 1990: Neural Computing: An Introduction, Institute of  Physics Publishing. 

 X4
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Artificial Neural Network (ANN) 

Serial Processing Example:  𝑥4𝑁
𝑥=1  

cat speed-of-serial.ksh 

#!/bin/ksh 

# Initialize x 

x=0 

N=1000000 

# Compute the sum of x after N iterations 

time for ((i = 1; i <= $N; i += 1)) 

do 

x=$((i**4)) 

done 

# The answer 

echo The sum of the 4th power of integers 

1 through $N is $((x+1)) 

echo $? 

 

./speed-of-serial.ksh 

 

real    0m6.07s 

user    0m6.04s 

sys     0m0.02s 

The sum of the 4th power of integers 1 

through 1000000 is 9.99999999999999983e+23 

0 



Artificial Neural Network (ANN) 

ANN versus the Biological Neural Network: Biological Neuron Model 

Adjust synaptic weights  “Learning” (e.g. Hagan et. al. 1996)   



Artificial Neural Network (ANN) 

ANN versus the Biological Neural Network: Single Artificial Neuron 
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Artificial Neural Network (ANN) 

ANN versus the Biological Neural Network: 3- Layer Feed-forward 

Multilayer Perceptron (MLP) Artificial Neural Network 

Source http://www.mathworks.com/help/pdf_doc/nnet/nnet_ug.pdf 



Artificial Neural Network (ANN) 

Feed-forward MLP ANN: A Universal Approximator 

1. Statistical techniques such as non-linear regression and discriminate analysis 

are parametric 

2. Non-linear regression requires assumptions regarding form of functional 

relationship between predictor/predictand 

3. Discriminate analysis assumes that probability density function of the 

predictors is Gaussian 

4. ANNs are non-parametric; they don’t require assumptions regarding 

functional relationship between predictor/predictand 

5. The optimal functional relationship can be obtained after adjusting the 

number and size of hidden layers and associated neurons 

6. An ANN with 1-hidden layer, with sigmoidal units in the hidden layer, can 

approximate any continuous function with a finite number of discontinuities 

Hornik, K., M. Stinchcombe, and H. White, 1989: Multilayer Feedforward Networks are 

Universal Approximators. Neural Networks, 2, pp. 359-366. 

 

Hornik, K. M., Stinchcombe, and H. White, 1990: Universal approximation of an unknown 

mapping and its derivatvies using multilayer feedforward networks. Neural Networks, 3, pp 

551-560 



Artificial Neural Network (ANN)  

Characterization (de Silva, 2000) 

Topology: Manner in which interconnections between neurons are arranged and 

how data flows through the system (e.g. Feed-forward Multilayer Perceptron) 

Transfer Function: Algebraic function to transfer information across network 

Learning Rule: Algorithm to update weights and biases connecting neurons 

(train the ANN to perform a task) (e.g. Back-propagation) 

de Silva, C. W., 2000: Intelligent Machines: Myths and Realities. CRC Press LLC  

 

Image adapted from: Hagan, M. T., H. B. Demuth, and M. Beale, 1996: Neural Network Design, 

International Thomson Publishing Inc. 



Artificial Neural Network (ANN)  

Feedforward Topology: Neurons connected in forward/unidirectional path 

starting from input to each layer and finally to the output layer. 

 

URL http://www.mathworks.com/help/toolbox/nnet/ 



Artificial Neural Network (ANN)  

Recurrent Topology: Allow for feedback connections amongst various 

neurons. 

 

URL http://www.mathworks.com/help/toolbox/nnet/ 



Artificial Neural Network (ANN)  

Transfer Functions: Input weighted sum of inputs from other neurons and 

apply a nonlinear mapping 

 

URL http://www.mathworks.com/help/toolbox/nnet/ 



Artificial Neural Network (ANN)  

Learning Rule Categories 

 Supervised Learning 

1. Provide input (x)/correct output (t) to the network {x1,t1} ,{x2,t2}..{xN,tN} 

2. Adjust connection weights to minimize error between target and ANN 

output 

 Unsupervised (Self-Organized) Learning 

1. Input data presented to system 

2. Connection weights adjusted based on network inputs 

3. Similar to clustering 

 Reinforcement Learning 

1. Similar to supervised learning, yet instead of target given, a grade is 

assigned based on ANN performance for a given set of inputs    

 de Silva, C. W., 2000: Intelligent Machines: Myths and Realities. CRC Press LLC  

 

Image adapted from: Hagan, M. T., H. B. Demuth, and M. Beale, 1996: Neural Network Design, 

International Thomson Publishing Inc. 



Artificial Neural Network (ANN)  

Basic Learning Rules  

 

 Error-Correction Learning 

Widrow-Hoff (Delta) Rule  minimize cost function 𝜉 =
1

2
𝑒𝑘

2, where 𝑒𝑘 = 𝑡𝑘 − 𝑦𝑘 

 Memory-based Learning 

Explicit memorization of training data  

 Hebbian Learning 

Hebbian synapse  “uses a time-dependent… mechanism to increase synaptic efficiency as a 

function of the correlation between presynaptic and postsynaptic activities “ 

 Competitive Learning 

Competition to determine which neuron becomes active 

 Boltzmann Learning 

Stochastic learning based on statistical mechanics 

 

Haykin, S., 1999: Neural Networks: A Comprehensive Foundation, 2nd Edition, Prentice Hall. 



Artificial Neural Network (ANN)—Taxonomy with respect to ANN 

Topology   

Karayiannis, N. B., 1993: Artificial Neural Networks: Learning Algorithms, Performance Evaluation, and 

Applications. Kluwer Academic Publishers, Boston 
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Artificial Neural Network (ANN)—Taxonomy with respect to Input 

Data Type and ANN Learning Rule Category   

Lippmann, R. 1987: An Introduction to Computing with Neural Nets, IEEE ASSP Magazine. pp 4-22.  
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Artificial Neural Network (ANN)—Back-propagation Learning/ 

Training Algorithm  

Beal R. and T. Jackson, 1990: Neural Computing: An Introduction, Institute of  Physics Publishing. 
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Beal R. and T. Jackson, 1990: Neural Computing: An Introduction, Institute of  Physics Publishing. 

Artificial Neural Network (ANN)—Back-propagation Learning/ 

Training Algorithm  



Bishop, C. M,  1995: Neural Networks for Pattern Recognition, Oxford University Press. 

Back-propagation training algorithm/learning rule with respect to a multilayer perceptron (MLP)  

1. Apply input vector 𝑿𝑝  to the network and perform forward propagation through the 

network via  𝒏𝒆𝒕𝒑𝒋 =  𝒘𝒊𝒋𝒐𝒑𝒊𝒊 (𝟐) and 𝒐𝒑𝒋 = 𝒇𝒋 𝒏𝒆𝒕𝒑𝒋  (𝟑) which obtains activations of all 

hidden and output neurons 

2. Compute  𝜹𝒌 for all output neurons using 𝜹𝒑𝒌 =  −𝒇 𝒋 𝒏𝒆𝒕𝒑𝒌  𝒕𝒑𝒌 − 𝒐𝒑𝒌   (𝟏𝟐)  

3. Back-propagate all 𝜹𝒌 via 𝜹𝒑𝒋 =  𝒇 𝒋  𝒏𝒆𝒕𝒑𝒋   𝜹𝒑𝒌𝒘𝒋𝒌𝒌  (𝟏𝟗) in order to obtain 𝜹𝒋 for each 

hidden neuron within the network 

4. Update weights 𝒘𝒊𝒋 on input layer via 𝚫𝒑𝒘𝒊𝒋 =  𝜼𝜹𝒑𝒋𝒐𝒑𝒊 (𝟖)  

5. Continue until convergence 
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Artificial Neural Network (ANN)—Back-propagation Learning/ 

Training Algorithm  
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Artificial Neural Network (ANN)—Back-propagation Learning/ 

Training Algorithm: Problem with Back-propagation  



Artificial Neural Network (ANN) Variations on Back-propagation: A 

Solution to Back-propagation Problem 
  

 Heuristic Back-propagation Modifications 

1. Momentum 

2. Variable Learning Rates 

 Numerical Optimization Techniques 

1. Conjugate Gradient 

2. Levenberg-Marquardt Algorithm  

Hagan, M. T., H. B. Demuth, and M. Beale, 1996: Neural Network Design, International Thomson Publishing Inc. 



 Artificial Neural Network (ANN): Model Development Process   

Zhang, Q.J. K.C. Gupta, and V.K. Devabhaktuni, 2003: Artificial neural networks for RF and 

microwave design: from theory to practice, IEEE Trans. Microwave Theory Tech., 51, pp. 1339-1350 
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1. Formulate the problem and identify input/output parameters 

2. Choose an architecture (topology, transfer function, training algorithm) 

3. Data processing (organize data to train/validate/test; preprocess data) 

4. Train/validate the model on the training/validation data sets 

5. Assess model performance/skill on novel data (testing set) 

6. If model performs well on both training and testing sets, the model is 

said to generalize well 

7. If model performs well on training set yet subpar performance on testing 

set, overfitting is likely occurring. 

8. Minimize overfitting via validation during training, use of selected 

learning algorithms, etc.  

Zhang, Q.J. K.C. Gupta, and V.K. Devabhaktuni, 2003: Artificial neural networks for RF and microwave 

design: from theory to practice, IEEE Trans. Microwave Theory Tech., 51, pp. 1339-1350 

 Artificial Neural Network (ANN): Model Development Process  



Pattern Association1 (Associative Memory) 

Autoassociation  store patterns and recall correct pattern given incomplete version of 

pattern (unsupervised) 

Heteroassociation  paired input/output patterns (supervised) 

Pattern Recognition1 (Input pattern/signal  Class/Category) 

Input Feature Extraction (unsupervised)  Classification (supervised)  

Input  Feature Extraction (supervised MLP)  Classification 

Function Approximation1 (Approximate nonlinear input-output mapping)  

Control (Maintain a system/process in a controlled condition) 

Feedback control system 

Filtering1 (Extract information about quantity of  interest from noisy data) 

Beamforming1 (Spatial filtering; distinguish between signal and noise) 

Haykin, S., 1999: Neural Networks: A Comprehensive Foundation, 2nd Edition, Prentice Hall. 

 Artificial Neural Network (ANN):  Applications/Learning Tasks  



• Aerospace (aircraft component fault detectors) 

• Automotive (warranty activity analyzers)  

• Banking (credit application evaluation) 

• Defense (facial recognition) 

• Electronics (process control) 

• Entertainment (market forecasting) 

• Financial (currency price prediction) 

• Insurance (policy application evaluation) 

• Manufacturing (paper quality prediction) 

• Medical (EEG and ECG analysis) 

• Oil and Gas (Exploration) 

• Robotics (vision systems) 

• Speech (speech recognition) 

• Securities (automatic bond rating) 

• Telecommunications (real-time spoken language translation) 

• Transportation (vehicle scheduling) 

Hagan, M. T., H. B. Demuth, and M. Beale, 1996: Neural Network Design, International Thomson Publishing 

Inc. 

 Artificial Neural Network (ANN):  Selected Application Examples  



• Efficiency of atmospheric model physics parameterizations 
Krasnopolsky, V. M., M. S. Fox-Rabinovitz, and D. V. Chalikov, 2005: New Approach to Calculation of 

Atmospheric Model Physics: Accurate and Fast Neural Network Emulation of Longwave Radiation in a 

Climate Model, Monthly Weather Review, 133, 1370- 

• Efficiency of Internet Search Engines 
S. Bo, and S. Kak, 1999: A neural network-based intelligent metasearch engine, Information Sciences, 120, 

1-11. 

• Efficient Clustering of World Wide Web Documents in accordance with 

inquirer’s s needs 
M. S. Khan, and S. W. Khor, 2004: Web document clustering using hybrid neural network, Applied Soft 

Computing, 4, 423-432. 

• Recognize Copper Cable Theft 
http://www.newscientist.com/article/dn21989-ai-system-helps-spot-signs-of-copper-cable-theft.html 

 

 Artificial Neural Network (ANN):  Assortment of  Recent (1999-
2012) Applications 
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Artificial Neural Network (ANN)—Function Approximation Example 1: 
𝒚 𝒙 = 𝟏 + 𝐬𝐢𝐧 𝟐𝝅𝒙 

Topology: Feed-forward MLP [1,1,1]  

Transfer Functions: [log-sigmoid, linear] 

Training Algorithm: TRAINLM 

Topology: Feed-forward MLP [1,5,1]  

Transfer Functions: [log-sigmoid, linear] 

Training Algorithm: TRAINLM 

Training Set Training Set 



Topology: Feed-forward MLP [1,7,1]  

Transfer Functions: [log-sigmoid, linear] 

Training Algorithm: TRAINLM 

Topology: Feed-forward MLP [1,7,1]  

Transfer Functions: [log-sigmoid, linear] 

Training Algorithm: TRAINLM 

Artificial Neural Network (ANN)—Function Approximation Example 1: 
𝒚 𝒙 = 𝟏 + 𝐬𝐢𝐧 𝟐𝝅𝒙 

Training Set Training Set 



Topology: Feed-forward MLP [1,1,1]  

Transfer Functions: [log-sigmoid, linear] 

Training Algorithm: TRAINLM 

Topology: Feed-forward MLP [1,10,1]  

Transfer Functions: [log-sigmoid, linear] 

Training Algorithm: TRAINLM 

Artificial Neural Network (ANN)—Function Approximation Example 2: 
𝐲 𝐱 = 𝐀 𝐞−𝛂𝐱 𝐬𝐢𝐧 𝛃𝐱, 𝛂 ≪ 𝛃 

Training Set Training Set 



Topology: Feed-forward MLP [1,20,1]  

Transfer Functions: [log-sigmoid, linear] 

Training Algorithm: TRAINLM 

Topology: Feed-forward MLP [1,30,1]  

Transfer Functions: [log-sigmoid, linear] 

Training Algorithm: TRAINLM 

Artificial Neural Network (ANN)—Function Approximation Example 2: 
𝐲 𝐱 = 𝐀 𝐞−𝛂𝐱 𝐬𝐢𝐧 𝛃𝐱, 𝛂 ≪ 𝛃 

Training Set Training Set 



Topology: Feed-forward MLP [1,40,1]  

Transfer Functions: [log-sigmoid, linear] 

Training Algorithm: TRAINLM 

Topology: Feed-forward MLP [1,40,1]  

Transfer Functions: [log-sigmoid, linear] 

Training Algorithm: TRAINLM 

Artificial Neural Network (ANN)—Function Approximation Example 2: 
𝐲 𝐱 = 𝐀 𝐞−𝛂𝐱 𝐬𝐢𝐧 𝛃𝐱, 𝛂 ≪ 𝛃 

Training Set Testing Set 



Artificial Neural Network — Classification (Yang et al 2000)  

Yang, C.C., S.O. Prasher, J.A. Landry, H.S. Ramaswamy, and A. Ditommaso, 2000: Application of  artificial 

neural networks in image recognition of  crop and weeds, Canadian Agricultural Engineering Vol. 42, 147-

152  

Application of artificial neural networks in image recognition of crop and weeds 

Fig. 2. The ANN structure for Type 1 output 

Fig. 3. The ANN structure for Type 2 output 

Fig. 1. Examples of 100x100 

cropped images. 



Yang, C.C., S.O. Prasher, J.A. Landry, H.S. Ramaswamy, and A. Ditommaso, 2000: Application of  artificial 

neural networks in image recognition of  crop and weeds, Canadian Agricultural Engineering Vol. 42, 147-152  

Type Corn Weeds 

1-A Output > 0.5 
When the output did not 

match the condition in the left 

column 1-B 
Output > Average value of all 

outputs 

Application of artificial neural networks in image recognition of crop and weeds 

 Table I. The output types of ANNs and the threshold of classification 

• Image: KDC (756x504) -> BMP (100x100)-> RGB (100x100) 

• RGB (0-255) -> RGB (0-1) 

• ANN: 10000-1-1; log sigmoid in hidden layer 

• 70 to 300 PE (neurons) in hidden layer 

• Training: 40 weed and 40 corn images 

• Back-propagation training algorithm 

• Training stops at 2000 epochs unless 1X10-5 SSE achieved 

• Testing: 10 other weed and corn images 

Artificial Neural Network — Classification (Yang et al 2000)  



Yang, C.C., S.O. Prasher, J.A. Landry, H.S. Ramaswamy, and A. Ditommaso, 2000: Application of  

artificial neural networks in image recognition of  crop and weeds, Canadian Agricultural Engineering 

Vol. 42, 147-152  

Table II.   Success classification rate for Type 1 ANNs 

PEs in the 

hidden layer 

Brier Score Type 1-A Type 1-B 

Corn (%) Weeds (%) Corn (%) Weeds (%) 

70 0.23 80 60 70 70 

80 0.17 90 60 80 70 

90 0.23 80 40 60 80 

100 0.17 80 80 70 80 

110 0.15 100 60 80 70 

120 0.19 80 50 70 80 

130 0.21 70 70 60 70 

140 0.25 60 50 60 70 

150 0.20 90 60 70 60 

160 0.27 80 50 80 50 

180 0.19 90 60 90 70 

200 0.24 90 40 90 50 

220 0.21 90 60 90 70 

230 0.17 90 60 90 70 

240 0.24 90 50 90 60 

260 0.22 90 50 80 60 

280 0.21 90 60 80 60 

300 0.19 90 70 90 70 

Application of artificial neural networks in image recognition of crop and weeds 

Artificial Neural Network — Classification (Yang et al 2000)  



Thunderstorm Artificial Neural Network (TANN) 

1. Motivation 
2. Design/Framework 
3. Model Development/Optimization Strategy 
4. Most recent Results/Conclusions 
5. Operational TANN 



Thunderstorm Artificial Neural Network (TANN) 

Thunderstorm Prediction Models 

Statistical 

Logistic regression (Sanchez et. al. 2001) 

Relate the probability of one element of a binary outcome to a linear combination of 

predictor variables, using a non-linear logistic function; fit regression parameters using 

method of maximum likelihood (e.g. Wilks, 2006) 

 𝐟 𝐳 =
1

1+e−z
 ;  z =∝ +  βjxj ;  

K
j=1  if 𝐟 𝐳  { ≥𝜃, 𝑠𝑡𝑜𝑟𝑚

<𝜃, 𝑛𝑜 𝑠𝑡𝑜𝑟𝑚
 

Model Output Statistics (MOS; Reap and Foster 1979; Schmeits 2005) 

“Statistical relationships between model-forecast variables and observed weather 

variables, used for either correction of model-forecasts variables or prediction of 

variables not explicitly forecast by the model” (Glickman, 2000) 

    yt = fMOS(xt)  for both development and implementation (Wilks, 2006) 

Motivation 

Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd Edition, Elsevier, Oxford. 



Thunderstorm Artificial Neural Network (TANN) 

Thunderstorm Prediction Models 

Statistical 

Multiple Discriminant Analysis (e.g. McNulty 1981) 

Discrimination: Estimate functions of the training data set (xi) that best describe the 

separation of the known group (G) membership of each xi 

Discriminate Analysis (G=2): Determine a linear function [Fisher’s Linear 

Discriminant] of the K elements of the observation vector x that best allows for future 

K-dimensional observation vector to be classified as belonging to either G=1 or G=2  

Multiple Discriminant Analysis: Application of Fisher’s linear discriminant for G >2.  

Motivation 

Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd Edition, Elsevier, Oxford. 



Thunderstorm Artificial Neural Network (TANN) 

Thunderstorm Prediction Models 

Artificial Intelligence (AI) 

Artificial Neural Networks (McCann 1992; Chaudhuri 2010) 

Discussed in previous section 

 

Expert Systems (Colquhoun 1987; Lee and Passner 1992) 

Knowledge-based system, containing a knowledge base [human 

knowledge/understanding], data base, inference engine [receive observation, traverse 

the knowledge base, identify possible outcomes or conclusion(s)], and machine/human 

interface; used by non-expert to improve problem-solving abilities; used by experts to 

provide support/corroboration during the decision making process (de Silva, 2000)  

Motivation 



Thunderstorm Artificial Neural Network (TANN) 

Thunderstorm Prediction Models 

Numerical Weather Prediction (NWP) 

“The integration of the governing equations of hydrodynamics by numerical methods 

subject to specified initial conditions” (Glickman, T. S., 2000) 

Mesoscale convection systems (Weisman et. al 1997; Weisman et. al. 2008) 

Motivation 



Thunderstorm Artificial Neural Network (TANN) 

Limitations of previous studies 

Predictors acquired solely from Rawinsonde output at particular time/location 

Chaudhuri 2010, Lee and Passner 1992, McNulty 1981 

Predictors acquired solely from NWP Analysis 

Perler and Marchand 2009 

(Use of NWP model predictions essential when predicting beyond 3 hours (Wilson et. al, 1998)) 

Predictors acquired from NWP predictions yet too coarse to account for processes that 

trigger individual storms 

McCann 1992, Schmeits 2005 

High resolution (4-km) NWP models successful predicting thunderstorm 

occurrence/mode, yet not location/timing.  

Fowle and Roebber 2003, Weisman et. al. 2008 

Higher resolution (≤1-km) NWP models may not provide additional skill owing to 

extreme sensitivity of model output to initial condition, parameterization trigger 

thresholds, predictability limits of NWP models 

Elmore et. al. (2002)  

Motivation 



Thunderstorm Artificial Neural Network (TANN) 

  Incorporate selected variables/parameters from the 12-km Eta and WRF-

NMM NWP model output (hereafter, NAM) related to Convective Initiation 

  Incorporate sub-grid scale (4-km) surface heterogeneity (soil moisture patterns, 

gradients, and variability) related to CI via negative feedback (synoptically benign 

environments) 

  Incorporate sub-grid soil moisture magnitudes related to CI via positive 

feedback 

  The foregoing serves as input into a supervised feed-forward multi-layer 

perceptron ANN 

  NAM output provides information to assess whether larger mesoscale 

environment is conducive to CI, while sub-grid scale data may identify locations 

where CI is most likely to occur.  

  By using AI, the TANN will learn from the less than optimal NAM output.  

Model Design/Framework  



Thunderstorm Artificial Neural Network (TANN) 

 Domain: Grid of 13 x 22 equidistant points; 20-km grid spacing. Grid points 

serve as boundaries for 286 20-km x 20-km square regions (“boxes”). Area 

slightly larger than WFO CRP Area of Responsibility. 

(400-km2 box regions are sufficiently large enough to support soil moisture 

heterogeneities of a scale large enough to generate mesoscale circulations. Taylor 

et. al, 2007; Taylor et. al, 2011) 

 For each box, train an ANN using selected NAM and soil moisture data 

 Interpolated 12-km NAM output at the center of each box. 

 4-km soil moisture for each grid cell (HRAP grid) within each box computed 

using the Antecedent Precipitation Index (API) with the WGRFC MPE (4-km) 

as source data.  

 National Lightning Detection Network (NLDN) CTG lightning data serve as 

thunderstorm proxy during supervised training, validation, and testing.  

Model Design/Framework 



Thunderstorm Artificial Neural Network (TANN) 

Predict thunderstorms at a higher spatial resolution relative to previous studies  

Study Verification Domain      Prediction Period (h)     Model Type  

McNulty (1981) 1o  radius                           12                              Discriminate Analysis 

McCann (1992) 1o  grid                              3-7                              ANN  

Lee and Passner  (1993) 100-km  radius                  12                               Expert System 

Sanchez et. al. (2001)  6825 km2                           6-12                           Logistic Regression   

Schmeits et. al. (2005) 7200 km2                           48                               MOS 

Manzato (2005)                 5000 km2                           6                                 ANN 

Perler and Marchand (2009) 729 km2                             24                               Adaptive Boosting 

Current Study 400km2                              12                               ANN 

    

Model Design/Framework 



Thunderstorm Artificial Neural Network (TANN) 

Model Design/Framework 

Input latitude-longitude values: Inverse and Forward computer software (United States 

National Geodetic Society) Output: GIS software run by Rick Smith (TAMUCC)  



Thunderstorm Artificial Neural Network (TANN) 

Model Design/Framework  

Box 238 (smaller box region); (+) center and four corners of the box. Locations of 

NAM grid points (12-km) (▲); values of NAM parameters/ variables based on bi-

linear interpolation at box center. (●) MPE grid points (4-km). Airplane symbol 

depicts location of VCT METAR; circle depicts 9.26 km (5.00 nm) radius relative 

to VCT. Figure credits: Sergei Reid, Julien Clifford (TAMUCC) 



Thunderstorm Artificial Neural Network (TANN) 

TANN Input Variables/Parameters: NAM Predictions 

Abbreviation Description (Units) 

PWAT Precipitable water (mm) 

MR850 Mixing ratio at 850-hPa (gkg-1)  

RH850 Relative humidity at 850-hPa (%) 

CAPE Convective Available Potential Energy (surface-based parcel) (Jkg-1) 

CIN Convective Inhibition (Jkg-1) 

LI Lifted Index (K) 

Uxxx,Vxxx  U,V wind components at the surface and at 850-hPa (ms-1) 

VVxxx Vertical velocity at 925, 700, and 500-hPa (Pas-1) 

Dropoff Proxy Proxy for Potential Temperature Dropoff (K) (Crook, 1996) 

LCL Lifted Condensation Level (m) 

LCL_T Lifted Condensation Level Temperature (K) 

CP Convective Precipitation (kgm-2) 

VShearS8 Vertical wind shear in the surface to 800-hPa layer (x10-3 s-1) 

VShear86 Vertical wind shear in the 800 to 600-hPa layer (x10-3 s-1) 

Model Design/Framework 



Thunderstorm Artificial Neural Network (TANN) 

TANN Input Variables/Parameters: NAM Initialization  

Abbreviation Description (Units) 

Uxxx,Vxxx U,V wind components at the surface and at the 900,800,700, 

600, and 500-hPa levels (ms-1) 

HIlow Humidity Index (oC) (Findell and Eltahir, 2003b) 

CTP Proxy Proxy for Convective Triggering Potential (dimensionless) 

(Findell and Eltahir, 2003a) 

VShearS7 Vertical wind shear in the surface to 700-hPa layer (x10-3 s-1) 

Abbreviation Description (Units) 

JD Julian Day (0-366) 

TANN Input Variable/Parameter: Miscellaneous 

Model Design/Framework 



Thunderstorm Artificial Neural Network (TANN) 

Sub-grid Scale (4-km) Variables/Parameters used in TANN  

Abbreviation Description (Units) 

SMC_MAXGRAD Maximum Soil Moisture Content (SMC) Gradient (kgm-2km-1)  

SMC_SD Soil Moisture Content (SMC) Standard Deviation (kgm-2) 

SMC_MEAN Mean Soil Moisture Content (SMC) (kgm-2) 

SMC_MAX Maximum Soil Moisture Content (SMC) (kgm-2) 

GMORANI Global Moran’s I of Soil Moisture Content (SMC) (unit less) 

NDRY Number of dry days [MPE=0] since the previous rain day (days) 

Model Design/Framework 



Thunderstorm Artificial Neural Network (TANN) 

Model Design/Framework -- Computation of SMC 

Cheng, W. Y. Y., and W. R. Cotton, 2004: Sensitivity of  a Cloud-Resolving Simulation of  the Genesis of  

a Mesoscale Convective System to Horizontal Heterogeneities in Soil Moisture Initialization. Journal of  

Hydrometeorology, 5, pages 934-958. 



Thunderstorm Artificial Neural Network (TANN) 

Model Design/Framework -- Computation of SMC 

Comparison of  mean soil moisture content (SMC) from the API model (solid 

black line) to that from the Land Surface Microwave Emission Model 

(LSMEM; gray) based on TRMM (Tropical Rainfall Measuring Mission) 

Microwave Imager 10.65 GHz (X-band) radiometer (Gao et. al, 2006), for Box 238. 



Thunderstorm Artificial Neural Network (TANN) 

Soil Moisture Heterogeneity 

 

1. Variability 

SMC_MAXGRAD: Maximum Soil Moisture Content (SMC) Gradient 

(kgm-2km-1) [MATLAB Gradient Function] 

SMC_SD: Soil Moisture Content (SMC) Standard Deviation (kgm-2) 

 

2. Pattern  

GMORANI: Global Moran’s I of Soil Moisture Content (SMC) (unit 

less) 

Model Design/Framework—Computation of Soil 
Moisture Heterogeneity  



Thunderstorm Artificial Neural Network (TANN) 

Model Design/Framework—Global Moran’s I (GMORANI) 

Fischer, M. M., and A. Getis (eds.), 2010: Handbook of  Applied Spatial Analysis: Software Tools, 

Methods and Applications, Springer-Verlag Berlin Heidelberg, DOI 10.1007/978-3-642-03647-

7_14,  



Thunderstorm Artificial Neural Network (TANN) 

GMORANI Derivation continued: 

Model Design/Framework—Global Moran’s I (GMORANI) 

 

Global Moran’s I (GMORANI): Mean of all local Moran’s I values 

computed at each grid point within the 20-km x 20-km box region 

i ≠ j  

Fischer, M. M., and A. Getis (eds.), 2010: Handbook of  Applied Spatial Analysis: Software Tools, 

Methods and Applications, Springer-Verlag Berlin Heidelberg, DOI 10.1007/978-3-642-03647-

7_14,  



Thunderstorm Artificial Neural Network (TANN) 

Model Design/Framework—GMORANI: Idealized Examples 

Longley, P. A., M. F. Goodchild, D.J. Maguire, and D. W. Rhind, 2005: Geographic Information 

Systems and Science, 2nd Edition, John Wiley & Sons, Ltd., 517pp. 

I= -1.000 I= -0.393 

I=0.000 

I=+0.393 
I=+0.857 



Thunderstorm Artificial Neural Network (TANN) 

Model Design/Framework 

Source: Avissar, R., and Y. Liu. 1996. Three-dimensional numerical study of  shallow convective clouds and 

precipitation induced by land surface forcing. J. Geophys. Res. 101, 7499-7518. 

Convective Initiation via negative feedback involving surface heterogeneity 



Thunderstorm Artificial Neural Network (TANN) 

Model Design/Framework—SMC/Heterogeneity TANN 
Input Parameters: Example (TANN Domain Box 238) 

SMC Day 532/3287 Parameter (Units) SMC Day 2125/3287

0.81 GMORANI 0.24

2.61 SMC_MAXGRAD 1.66

1.50 SMC_MEANGRAD 0.35

5.96 SMC_SD 1.07

17.98 SMC_MEAN 6.04

32.59 SMC_MAX 9.39

1.00 NDRY 1.00

(𝑘𝑔𝑚−2)

(𝑘𝑔𝑚−2)

(𝑘𝑔𝑚−2)

 𝑘𝑔𝑚−2𝑘𝑚−1)

 𝑘𝑔𝑚−2𝑘𝑚−1)



Thunderstorm Artificial Neural Network (TANN) 

Model Design/Framework—TANN Topology, 
Transfer Function & Learning Rules 

• Topology: Feed-forward, multi-layer perceptron, 1-hidden layer 

• Transfer Function: log-sigmoid (hidden layer), linear (output layer) 

• Learning Rule/Training Algorithm: Scaled conjugate gradient  

• Training Category: Supervised 

• Inputs: NAM (Eta,WRF-NMM), JDay, Sub-grid scale SMC parameters 

• Data preprocessing: Transform inputs to range (-1,1) 

• Target: NLDN 



Thunderstorm Artificial Neural Network (TANN) 

 (A) Model “Optimization”: 

 Data: 3/1/2004 – 12/31/2006 & 1/1/2009 – 12/31/2011 

 Randomly divide data in training /validation/testing sets [ 0.4,0.2,0.4] 

 Train/validate model 

 Develop Relative (or Receiver) Operator Characteristic (ROC) curve 

based on testing set 

 Use ROC curve to (1) assess model skill and (2) select decision 

threshold that optimizes model performance 

 (B) “Optimized” Model Evaluation: 

  Data: 1/1/2007 – 12/31/2008  

 Comparison with NDFD, TANN-MOS, and TAF 

Model Development/Optimization Strategy 



Thunderstorm Artificial Neural Network (TANN) 
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Model Development/Optimization Strategy 



Thunderstorm Artificial Neural Network (TANN) 

Most Recent Model Performance Results: Metrics 

Scalar Performance Metrics 

Performance Metric [Value 

Range] 
Symbol Equation 

Probability of Detection [0,1] POD a/(a+c) 

False Alarm Rate [0,1] F b/(b+d) 

False Alarm Ratio [0,1] FAR b/(a+b) 

Critical Success Index [0,1] CSI a/(a+b+c) 

Peirce Skill Score [-1,1] PSS (ad-bc)/[(b+d)(a+b)] 

Heike Skill Score [-1,1] HSS 2(ad-bc)/[(a+c)(c+d)+(a+b)(b+d)] 

Yule’s Q (Odds Ratio Skill Score) 

[-1,1] 
ORSS (ad-dc)/(ad+bc) 

Clayton Skill Score [-1,1] CSS (ad-bc)/[(a+b)(c+d)] 

Gilbert Skill Score [-1/3,1] GSS (a-ar)/(a+b+c-ar);  ar=[(a+b)(a+c)]/n 



Thunderstorm Artificial Neural Network (TANN) 

6-9 hour Forecasts 
  POD FAR F PSS CSI HSS YuleQ CSS GSS 

TAF 0.54 0.79 0.08 0.46 0.18 0.26 0.86 0.19 0.15 

9 hour Predictions/Forecasts 
TANN 0.92 0.79 0.36 0.57 0.21 0.22 0.90 0.20 0.13 

TANN-MOS 0.94 0.80 0.37 0.54 0.20 0.20 0.90 0.19 0.11 

NDFD 0.96 0.78 0.34 0.62 0.22 0.25 0.96 0.21 0.14 

9-12 hour Forecasts 

TAF 0.38 0.83 0.06 0.32 0.14 0.20 0.80 0.15 0.11 

Box 238: 9-12 hour Prediction Performance Results: Scalar Metrics (2007-2008) 

12 hour Predictions/Forecasts 
TANN 0.96 0.88 0.40 0.54 0.11 0.12 0.92 0.11 0.07 

TANN-MOS 0.88 0.89 0.38 0.48 0.11 0.12 0.83 0.10 0.06 

NDFD 0.73 0.88 0.27 0.46 0.12 0.14 0.76 0.10 0.07 

Performance: TANN (43-1-1), TANNMOS (36-1-1), TAF, NDFD  



Conclusions (Box 238) 

• TANN, TANN-MOS, and NDFD demonstrate comparable skill 

for forecast/prediction hours 3, 6, 9, and 12 

• TANN, TANN-MOS demonstrate greater skill than NDFD for 

forecast/prediction hour 12, yet only with regard to Yule Q and 

Pierce Skill Score.  

• Sub-grid scale data did not provide significant improvement within 

TANN   

• In the context of  Random Forest variable importance output, the 

sub-grid data is important (discussed later) 

Thunderstorm Artificial Neural Network (TANN) 



Current Operational TANN (Older version) –18 June 2012 Case 

AWIPS Text Product: CRPWRKANN (Since 4 March 2009) 

Thunderstorm Artificial Neural Network (TANN) 

ANN Predictions for onset of Thunderstorms for Box 103

********************************************************

Predictions for 12Z cycle of Jun 18, 2012 : 3 6 9 12 hour Predictions

Model trained based on data from June 1, 2004 to October 31, 2007

The data was split in 3 sets - learning/validation/testing.  The 

thresholds were set

to optimize performance based on the ROC curve (POD vs. FAR) on the 

testing set.

Result of ANN thunderstorm for   3 hour prediction = 0.015

The threshold for this model is 0.030

The occurence of thunderstorms for box 103 is therefore not predicted 

in  3 hours 

Result of ANN thunderstorm for   6 hour prediction = 0.056

The threshold for this model is 0.115

The occurence of thunderstorms for box 103 is therefore not predicted 

in  6 hours 

Result of ANN thunderstorm for   9 hour prediction = 0.053

The threshold for this model is 0.025

The occurence of thunderstorms for box 103 is therefore predicted in  

9 hours 

Result of ANN thunderstorm for  12 hour prediction = 0.047

The threshold for this model is 0.085

The occurence of thunderstorms for box 103 is therefore not predicted 

in 12 hours 

---------------LEGEND----------------

Box 101 [ALI ASOS Included]

Box 103 [RBO AWOS Included]

Box 190 [BEA AWOS Included]

Box 238 [VCT ASOS Included]

3 hour prediction valid 13-17 UTC

6 hour prediction valid 16-20 UTC

9 hour prediction valid 19-23 UTC

12 hour prediction valid 22-02 UTC



Thunderstorm Artificial Neural Network (TANN) 

Ze: 1905 UTC 18 June 2012 Ze: 1908 UTC 18 June 2012 

CTG: 1910 UTC 18 June 2012 

Current Operational TANN (Older version) –18 June 2012 Case 

Box 103 



Project #2: “Improved Convective Initiation Forecasting in the Gulf of 
Mexico Region” 

 
NASA-funded project proposal submitted to the NASA ROSES 2009 Gulf of 

Mexico solicitation (NNH09ZDA001N,A40) 

• NASA Research Opportunities in Space and Earth Sciences (ROSES) funded project 

 

•  Principal Investigators:  

      John Mecikalski, University of  Alabama in Huntsville (UAH) 

      John Williams, National Center for Atmospheric Research (NCAR) 

      Philippe Tissot, Texas A&M University-Corpus Christi (TAMUCC) 

 

• Others: David Ahijevych (NCAR), Nathan Bledsoe (UAH), Waylon Collins (NOAA), 

Chris Jewett (UAH), Wayne MacKenzie (NOAA), Whitney Rutledge (TAMUCC), 

Mathew Saari (UAH), John Walker (UAH). 

  



Project #2: “Improved Convective Initiation Forecasting in the Gulf of 
Mexico Region” 

Models developed/improved to be evaluated by WFO CRP forecasters and others 

 

Feasibility study. If  successful, will lead to improvements in the Convective 
Nowcast Oceanic (CNO; Kessinger et al. 2009) and Global Turbulence decision 
support systems (Williams et al. 2009) (currently under development with NASA  

funding) for use in the World Area Forecast System (WAFS). WAFS was initiated  

in 1982 by the World Meteorological Organization (WMO) and the International 

Civil Aviation Organization (ICAO) for provision of  international aircraft operations- 

related weather guidance 

Williams, J.K., R. Sharman, C. Kessinger, W. Feltz, A. Wimmers, and K. Bedka, 2009b: Global turbulence 

and convection nowcast and forecast system. 1st AIAA Atmospheres and Space Environments Conference, AIAA 

and Amer. Meteor. Soc., San Antonio, TX, 22-25 June 2009.  

Kessinger, C., H. Cai, N. Rehak, D. Megenhardt, M. Steiner, R. Bankert, J. Hawkins, M. Donovan, and 

E.R. Williams, 2009: The oceanic convection diagnosis and nowcasting system. 16th Conf. Satellite Meteor. 

Ocean., Amer. Met. Soc., Phoenix, AZ, 12-15 Jan. 2009.  



Project #2: “Improved Convective Initiation Forecasting in the Gulf of 
Mexico Region” - SATCAST (SATellite Convection AnalySis and Tracking) 

Algorithm Methodology 

Walker, J. R., W. M. MacKenzie Jr., J. R. Mecikalski, 2011: An Enhanced Geostationary Satellite-based 

Convective Initiation Algorithm for 0-2 Hour Nowcasting with Object Tracking, Submitted: Journal of  

Applied Meteorology and Climatology (DRAFT)  

1. Acquire satellite data (GOES visible, 3.9, 6.5, 10.7 and 13.3 µm) 

2. Mesoscale Atmospheric Motion Vectors (MAMV) derivation (GOES) 

3. Convective Cloud Mask (CCM) generation (pre-convective/immature clouds) 

4. Cloud Object Tracking (OT) (via MAMVs and CCM) 

5. Interest Field (IF) (Spectral & Temporal differencing tests) calculations  

6. CI prediction (≤ 2h) determination (threshold: 5/6 IF critical thresholds met)  

CI Interest Field Critical Value 

10.7 µm BT 0℃ 

10.7 µm BT time trend 
≤  

−4℃

15 𝑚𝑖𝑛
  

6.5-10.7 µm BT difference −35 ℃ 𝑡𝑜 − 10 ℃ 

13.3-10.7 µm BT difference −25 ℃ 𝑡𝑜 − 5 ℃ 

6.5-10.7 µm BT time trend 
>  

3℃

15 𝑚𝑖𝑛
  

13.3-10.7 µm BT time trend 
>  

3℃

15 𝑚𝑖𝑛
  

 



Project #2: “Improved Convective Initiation Forecasting in the Gulf of 
Mexico Region”  

Objective 1: SATCAST Convective Initiation (CI) Algorithm Improvement 
 

SATCAST output (including interest field parameters) into Random Forest (RF) framework 

to determine most important interest field parameters correlated to CI; use results to develop 

a more robust CI algorithm.  

 

Objective 2: RF Analysis to Enhance over Ocean CI prediction 
 

Input SATCAST output, NWP variables, other satellite fields, radar data; use RF to rank 

variables in terms of  importance to CI; train/calibrate ensemble of  decision trees to predict 

CI. 



Project #2: “Improved Convective Initiation Forecasting in the Gulf of 
Mexico Region”  

Objective 2: Example (Dr. John Williams & David Ahijevych, NCAR)  



Project #2: “Improved Convective Initiation Forecasting in the Gulf of 
Mexico Region”  

Objective 3: TANN Improvement 
 

Performance enhancement of  TANN envisaged via the following: 

 

• Utilize RF to determine relative importance of  TANN input variables; easier comparison 

to NCAR RF models (objective 2) 

 

• Modify TANN-MOS to include SST data as input (TANN-MOS-SST). Compare TANN-

MOS and TANN-MOS-SST performance 

 

• Modify TANN-MOS framework above to input SATCAST output (SATCAST validation 

dataset used to determine target) 



Project #2: “Improved Convective Initiation Forecasting in the Gulf of 
Mexico Region”  

What is a Random Forest?  (Breiman, 2001) 

 

• A Forest of  Decision Trees 

• Objective: Reduce instability (instability: small changes in training data large changes in 

classifier performance), and thus variance and prediction error, of  decision trees  

• Bootstrap Aggregation (“Bagging”) is used to reduce the instability/variance of  the final 

classifier/estimator 

Breiman, L., 2001: Random Forests, Machine Learning, 45, pp. 5-32. 



Project #2: “Improved Convective Initiation Forecasting in the Gulf of 
Mexico Region”  

What is a Random Forest?  (Breiman, 2001) 

 

Algorithm 
• Consider data set [X,Y] X=Input (features) Y=Target 

• Draw Z bootstrap samples from a random subset of  original data set 

• For each bootstrap sample q generate a decision tree 

• For each node in the decision tree, choose random subset m of  M features 

• At each node, determine the optimal split of  each variable based on subset m 

• The foregoing results in a decision tree based on bootstrap sample q 

• Repeat for every bootstrap sample, thus creating a forest of  decision trees 

• To create the classifier, apply input vector X down the Q trees in the forest 

• For each input case, each tree votes for the class 

• We classify each input instance into the class with the most votes over all trees Q 

Breiman, L., 2001: Random Forests, Machine Learning, 45, pp. 5-32. 



Project #2: “Improved Convective Initiation Forecasting in the Gulf of 
Mexico Region”  

What is a Random Forest?  (Breiman, 2001) 

 

Determining the importance of  each feature/variable m 

• Calculate performance on the instances not used in the q-th decision tree (out-of-bag data 

set) (A) 

• Randomly permute the m-th feature in the out-of-bag dataset, then apply to the q-th 

decision tree again (B) to calculate performance 

• Calculate A-B and then average over all decision trees that contain feature m (to obtain raw 

importance score) and standardize.  

Breiman, L., 2001: Random Forests, Machine Learning, 45, pp. 5-32. 



Project #2: “Improved Convective Initiation Forecasting in the Gulf of 
Mexico Region”  

Objective 3: Example   



The End. For those still awake, Questions??? 


