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ABSTRACT: Artificial neural network (ANN) models were developed to predict thunderstorm occurrence within three
separate 400 km2 regions, 9, 12 and 15 h (±2 h) in advance. The predictors include output from deterministic Numerical
Weather Prediction models and from sub-grid scale soil moisture magnitude and heterogeneity estimates. The feed-forward
multi-layer perceptron ANN topology, with one hidden layer and one neuron in the output layer, was chosen. Two sets of
nine ANN models each were developed; one set was developed after a filtering-based feature selection technique was used
to determine the predictor subset from 43 potential predictors. The other models were developed based on all 43 predictors.
For each of the 18 models, a wrapper technique was used to determine the optimal number of neurons in the hidden layer.
Thunderstorm artificial neural network (TANN) model performance was compared to that of multi-linear regression (MLR)
models, and to human forecasters (NDFD), based on a novel data set. Results reveal that for several of the nine box/prediction
hour combinations with respect to at least one skill-based performance metric, the TANN model’s performance exceeded
that of the MLR models and NDFD. Yet, the performance of both the MLR models and NDFD were superior to that of the
corresponding TANN models in several other cases. Results indicate that the TANN models can provide automated predictions
with skills similar to that of operational forecasters. Comparisons of the two sets of TANN models reveal utility in the use of
feature selection.
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1. Introduction

The literature on atmospheric science is replete with studies
on the development of thunderstorm prediction models, using
a variety of numerical techniques, that include statistics, artifi-
cial intelligence (AI), and Numerical Weather Prediction (NWP).
Statistical methods to predict thunderstorms include the appli-
cation of logistic regression (e.g. Sanchez et al., 2001), model
output statistics (MOS; Reap and Foster, 1979; Schmeits et al.,
2005) and multiple discriminant analysis (e.g. McNulty, 1981).
AI involves the use of a device (e.g. computer) to reproduce
human cognitive processes, including learning and decision
making (Costello, 1992; Glickman, 2000). Specific AI tech-
niques used to predict thunderstorms include the application
of adaptive boosting (e.g. Perler and Marchand, 2009), artifi-
cial neural networks (ANNs) (McCann, 1992; Manzato, 2005;
Chaudhuri, 2010), and expert systems (Colquhoun, 1987; Lee
and Passner, 1993). These statistical and AI models have demon-
strated skills or utility. NWP models provide deterministic
predictions of the future atmospheric state by integrating the
conservation equations of atmospheric water, motion, mass and
heat. With respect to the gridpoint NWP model variety, the
different terms in these equations are approximated via Tay-
lor series expansions and then integrated forward in time (e.g.
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Pielke, 2002). Atmospheric processes resolved by the NWP
model grid scale are termed ‘model dynamics’. Corresponding
sub-grid scale processes (convection, radiation, boundary layer,
hydrological, land/ocean) are parameterized in terms of the grid
scale. Such parameterizations are termed ‘model physics’ (e.g.
Kalnay, 2003). With regard to convective processes, convective
parameterization (CP) involves the formulation of the implicit
statistical effects of sub-grid-scale convection (e.g. Arakawa,
2004). However, if the horizontal grid spacing of the model is
reduced to ≤4 km, an NWP model can explicitly simulate/predict
(rather than simply emulate/parameterize the effects of) the struc-
ture/evolution of mesoscale convective phenomena such as squall
lines (Weisman et al., 1997; Weisman et al., 2008). Although
Fowle and Roebber (2003) and Weisman et al. (2008) demon-
strated the efficacy of using high resolution NWP models to fore-
cast convective occurrence/mode explicitly, yet they had limited
success with regard to thunderstorm location/timing.

This study details the development of an ANN model to predict
thunderstorm occurrence, within 400 km2 South Texas domains,
9, 12 and 15 h in advance, and with a temporal resolution of
4 h (hereafter referred as thunderstorm artificial neural network
or TANN). The objective is to incorporate AI to improve thun-
derstorm prediction skill on these scales. In the United States,
lightning, on average, is responsible for more deaths than torna-
does, high wind and hurricanes (e.g. Curran et al., 2000), and,
therefore, serves as a motivation for this study. Given the con-
straint to predict with high temporal and spatial resolution, one
cannot consider only the synoptic and/or meso-𝛼 scale mois-
ture/instability and familiar triggering mechanisms (e.g. cold
fronts, sea breeze boundaries, upper level disturbances). Rather,
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one must also know the processes responsible for convective ini-
tiation (CI) on the scale of an individual thunderstorm (∼10 km;
Orlanski, 1975). Several studies exist, which provide guidance in
this regard. Wilson and Schreiber (1986) found that CI can occur
in association with radar-identified micro-𝛼 and meso-𝛾 scale
(0.5–5 km in width) boundaries, originating as earlier thunder-
storm gust fronts, and possibility originating from topographic
and thermal gradients. According to Fabry (2006), storm devel-
opment is extremely sensitive to updraft strength and mois-
ture variability on the meso-𝛾 scale. Further, land surface het-
erogeneity (variations in soil moisture, vegetation, soil type
with a length scale ≥10 km contributes to differential surface
heating, which can result in a mesoscale solenoidal circula-
tion pattern in the boundary layer forced by baroclinicity (e.g.
Trier, 2003), especially during weak synoptic conditions (e.g.
Frye and Mote, 2010). The associated low-level convergence
can force surface-based parcels to their level of free convec-
tion (LFC), resulting in CI (Avissar and Liu, 1996; Avissar and
Schmidt, 1998; Emori, 1998; Lynn et al., 2001; Trier, 2003;
Taylor et al., 2007, 2011); this mechanism has a negative feed-
back (convective development over formerly dry soil). Yet, Tay-
lor and Lebel (1998) demonstrated a positive feedback whereby
evaporation over wet soil increases the local boundary layer
moist static energy and subsequent convection. Taylor et al.
(2011) attempted to reconcile both the positive and negative feed-
back by suggesting that the positive feedback occurs with regard
to convection on the order of 100 km, whereas the negative feed-
back is associated with convective cells on the order of 10 km.
Further, Findell and Eltahir (2003a) provide additional informa-
tion with regard to the prediction of CI owing to soil moisture
heterogeneity; they developed a framework using early morning
lower-level moisture and 1–3 km layer thermodynamic structure
that allows for analysing atmospheric controls on the interaction
between soil moisture and the boundary layer. In particular, they
distinguished classes of thermodynamic soundings conducive to
subsequent convection over dry or wet soils, and found that soil
moisture variations can only influence CI when certain thermo-
dynamic structures and lower-level atmospheric moisture value
ranges occur. These results reveal the complexity involved in pre-
dicting the exact location of CI in response to soil moisture con-
tent (SMC) and variations. Further, Khairoutdinov and Randall
(2006) suggest that high convective available potential energy
(CAPE) and low convective inhibition (CIN) are necessary, yet
not sufficient, conditions for surface-based convective develop-
ment. The horizontal scale of convective clouds must increase
to a threshold of around 4 km in order to overcome the dissi-
pative effects of dry air entrainment, and cloud growth requires
sufficient low-level moisture (high moist static energy). These
studies demonstrate the immense complexity involved in CI and
strongly suggests that our thunderstorm prediction model must
incorporate relevant predictors on the storm scale. The thun-
derstorm prediction models discussed earlier contain two seri-
ous limitations. First, several of the studies include predictors
acquired solely from a rawinsonde at a particular point in time
and space (McNulty, 1981; Lee and Passner, 1993; Manzato,
2005; Chaudhuri, 2010), or from NWP analysis only (Perler and
Marchand, 2009). When predicting beyond 3 h, it is important
to include NWP model prediction output or some other means
to predict the future state of the atmosphere (e.g. Wilson et al.,
1998). Second, the spatial scale of the predictor variables was
too coarse to account for processes that actually trigger individ-
ual convective cells (McCann, 1992; Schmeits et al., 2005).The
goal of this work is to develop an ANN model that incorporates
NWP output and that accounts for storm scale processes that can

actually trigger convection. Alternatively, one could explicitly
predict individual convective cells simply by increasing the res-
olution of NWP models to ≤1 km (e.g. Bryan et al., 2003). How-
ever, in addition to the limitations mentioned earlier with regard
to the studies of Fowle and Roebber (2003) and Weisman et al.
(2008), Elmore et al. (2002) have shown that the explicit fore-
casting of convection with a high resolution NWP model may
not provide additional skill. The problems include the extreme
sensitivity of NWP model solution to initial conditions (chaos),
and the extreme sensitivity of model solution to parameterization
trigger thresholds (bifurcation).

Notwithstanding predictability limitations inherent in NWP
models, the authors posit that the ANN AI approach can be
used to ‘learn’ these limitations and generate skillful predictions.
Thus, this study involves the development of an ANN model by
post-processing NWP output (12 km grid spacing) and sub-grid
scale data (4 km grid spacing). Thus, the model combines a deter-
ministic prediction of the future state of the mesoscale environ-
ment with data sufficient to capture processes that can trigger
individual convection cells. TANN models were developed for
prediction times 9, 12 and 15 h ±2 h, relative to 1200 UTC.
Each model was trained (with validation) on a randomized data
set spanning most of the period 2004–2006 and 2009–2013.
ANN binary classifiers were developed by using receiver oper-
ating characteristic (ROC) curves to threshold ANN continuous
output. The performance of the optimized TANN models was
evaluated on a novel data set (2007–2008). TANN model per-
formances were compared to the corresponding performances of
multi-linear regression (MLR) models, and to selected public and
aviation forecasts from the US National Weather Service.

Methodology and model development are discussed in
Sections 2 and 3, respectively. TANN model performance evalu-
ation is presented in Section 4. A discussion and conclusion are
presented in Section 5.

2. Methodology

2.1. Data

2.1.1. TANN domain

The TANN domain is slightly larger than the County Warning
and Forecast Area (CWFA) of the U. S. National Weather Ser-
vice (NWS) Weather Forecast Office (WFO) in Corpus Christi,
Texas (CRP). The latitude/longitude pair of the SW, NW, NE
and SE corners of the domain are 26.91000 ∘ N/100.58000 ∘ W,
29.25613 ∘ N/100.58000 ∘ W, 29.17955 ∘ N/96.05539 ∘ W, and
26.86122 ∘ N/96.15182 ∘ W, respectively. For this study, the
TANN domain is represented as a grid of 13 × 22 equidis-
tant points with a horizontal grid spacing of 20 km. To create
the foregoing domain, the position of each grid point was
determined via the Inverse and Forward computer software pro-
grams provided by the US National Geodetic Survey (National
Geodetic Survey, 2006) and based on the equations in Vin-
centy (1975). These points serve as boundaries/centres for 286
20 km × 20 km (400 km2 ) square regions (hereafter referred as
‘boxes’) (Figure 1). MATLAB® (MathWorks, 2014) software
was used to establish a framework to import the necessary data,
train/validate, test, and further optimize an ANN in each of these
286 boxes. Yet, for this study, TANN models for only three boxes
were trained, which were chosen based on the amount of target
data (discussed below) and the desire to reflect the diversity
of thunderstorm triggering mechanisms, and was based on the
proximity to Terminal Aerodrome Forecast (TAF) locations
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(Appendix S3, Supporting Information). The first box chosen
was located in the northeastern sector of the domain (Box 238),
a region with a relatively high frequency of cloud-to-ground
(CG) lightning strikes, in order to maximize the amount of target
data. Another box chosen was located in the far southwest sector
adjacent to the Rio Grande River that borders Mexico (Box 73),
which climatologically has a much smaller frequency of CG
lightning than the corresponding frequency over the northeastern
section of the TANN domain; thus, the utility of the model with
limited target data could be assessed. The third box chosen was
located near the Gulf of Mexico just west of Corpus Christi
(Box 103). Boxes 103 and 238 were located in the Western
Gulf Coastal Plain region of Texas (Texas Parks and Wildlife,
2011). Much of the thunderstorm activity initiated within the
Coastal Plain is likely to be triggered by coastal processes (e.g.
sea breezes). A fraction of thunderstorms near Box 73 devel-
ops over the Sierra Madre Oriental mountain chain in Mexico
and propagate into the box. Further, South Texas experiences
thunderstorm development in association with synoptic scale
features (fronts, upper level disturbances). However, on sev-
eral occasions, even during synoptically favorable dynamics,
thunderstorm development will occur over Box 238, yet not
over Boxes 73 and 103, due to the development of an elevated
stable layer, possibly in response to the advection of warmer
air (possibly due to compressional heating) from approximately
southwest to northeast downwind from the Sierra Madre Ori-
ental. Thus, the box regions chosen reflect the diversity with
respect to thunderstorm mechanism and frequency.

The strategy is to develop a binary classifier to predict the
occurrence or non-occurrence of thunderstorms in the selected
boxes, based solely on NWP predictions and sub-grid scale con-
ditions within each box. Thus, with regard to the 4 km data used
to assess soil moisture heterogeneity mentioned earlier, Taylor
et al. (2007) and Taylor et al. (2011) used observational data to
demonstrate that the heterogeneity necessary to generate circula-
tion patterns should possess a length scale of at least 10–20 km.
At length scales less than 10 km it is likely that turbulent mixing
magnitudes exceed the pressure gradient force that is essential
for the inducement of heterogeneity-induced mesoscale circula-
tions, as discussed in Avissar and Liu (1996). Thus, the 400 km2

box regions used in this study appear sufficiently large to support
soil moisture heterogeneities of a scale large enough to gener-
ate mesoscale circulations. Further, the spatial resolution of the
predictions in this study is greater than that of the thunderstorm
models featured in the Introduction (Table 1).

2.1.2. TANN target data

In this study, the target refers to the existence, or non-existence,
of thunderstorms (categorical). CG lightning was chosen as the
proxy for thunderstorm occurrence. The CG source data origi-
nated from the National Lightning Detection Network (NLDN)
(e.g. Orville, 2008) (see Appendix S3 for additional information
regarding this data set). The source data are discrete (number of
CG lightning strikes per unit time and location) and are trans-
formed to binary (Section 2.3).

Figure 2 depicts the histogram (mean CG lightning
box−1 day−1 versus hour in UTC) of CG lightning for the
entire TANN domain (Figure 1) for the period 1 January 2003
through 31 December 2011. Note that the majority of thun-
derstorm activity for the domain typically occurs during the
afternoon and early evening hours. These results influenced the
decision to predict thunderstorms only for the 2100–0300 UTC
(±2 h) period.

2.1.3. TANN input data: potential predictor variables

Three primary categories of input data were selected for
the TANN. The first category represents 35 output vari-
ables/parameters from (or derived based on output from) the
1200 UTC cycle of the hydrostatic Eta mesoscale NWP model
(e.g. Rogers et al., 1996) (1 March 2004 to 19 June 2006), the
Weather Research and Forecasting Non-hydrostatic Mesoscale
Model (WRF-NMM) Janjic et al., 2001 (20 June 2006 to 30
September 2011), and from the NOAA Environmental Modeling
System Non-hydrostatic Multiscale Model (NEMS-NMMB).
(October 2011 to December 2012) (Tables 2 and 3). These NWP
models are identified in this study as NAM (North American
Mesoscale) (see Appendix S3).

The choice of NAM input variables/parameters is based on
the recognition that a thunderstorm requires sufficient moisture
to generate necessary hydrometeors, atmospheric instability to
generate updrafts sufficient to carry parcels to heights necessary
to produce ice crystals, supercooled water and graupel sufficient
for the graupel-ice crystal charging mechanism (e.g. Saunders,
1993), and (unless the atmosphere is absolutely unstable) a
mechanism to lift parcels to the LFC. Furthermore, various
dissipative effects must be overcome, such as dry air entrainment,
unfavorable microphysics, and vertical wind shear immediately
above the boundary layer.

The second category of data includes seven parameters that
represent meso-𝛾 scale data (not explicitly accounted for by
the 12 km NAM and, thus, hereafter referred to as sub-grid
scale data) that contribute to CI (Table 5). As discussed in the
Introduction Section, it is essential to account for sub-grid scale
land surface heterogeneity and soil moisture. In this study, our
proxy for surface heterogeneity is restricted to the soil moisture
pattern and variability. The calculation of soil moisture used in
this study is described in Appendix S1. With regard to the SMC
pattern, the spatial autocorrelation (SA) metric Moran’s I is used;
a detailed description of this variable can be found in Appendix
S4. Soil moisture variability is accounted for by SMC gradients
and standard deviations based on calculations applied to the 4 km
grid in each box.

It should be noted that soil moisture has been assimilated into
the NAM via the NOAH land surface model since 31 January
1996 (Mitchell, 2005). However, the 12 km grid spacing of the
NAM cannot resolve the soil moisture patterns and the resultant
mesoscale circulations that develop in the 400 km2 box regions
used in this study. As mentioned earlier, previous studies have
demonstrated that soil moisture heterogeneity, at length scales of
at least 10–20 km, can influence the wind field. At least four grid
points are needed to adequately resolve a feature (Ross, 1986;
Lewis and Toth, 2011). Thus, an NWP model needs to have a
grid spacing of ≤6.7 km to resolve a heterogeneity with a length
scale of 20 km. Yet, the NAM has a 12 km grid spacing. The
SMC gridded data used in this study has a grid spacing of 4 km,
sufficient enough to resolve SMC patterns/resultant circulations
within the 20 km × 20 km box regions.

Figure 4 illustrates the relative position of all data points,
relative to Box 238, for which all predictor variables are extracted
for input to the TANN. (Corresponding information from Boxes
73 and 103 is not shown.)

The third category includes the miscellaneous parameter Julian
day (JD), which is based on the reasoning that TANN’s perfor-
mance can be improved with knowledge of thunderstorm fre-
quency as a function of season (Table 4).
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Figure 1. TANN grid domain. This grid is defined by 286 20 km × 20 km square regions (‘boxes’). Note that each box is assigned an identification
number (labelled inside each box). The authors established a framework to predict whether a thunderstorm will occur within each box 9–15 h in
advance. Yet, for this study the authors developed ANN models to predict thunderstorm occurrence only in Boxes 73, 103 and 238 (identification

numbers in larger font). Figure created by Rick Smith with modifications by Anthony Reisinger (Texas A&M University – Corpus Christi).

Table 1. Comparison of selected thunderstorm models: prediction time and space resolutions.

Peer-reviewed study Verification domain Prediction period (h) Model type

McNulty (1981) 1∘ radius 12 Discriminate analysis
McCann (1992) 1∘ grid 3–7 ANN
Lee and Passner (1993) 100 km radius 12 Expert system
Sanchez et al. (2001) 6825 km2 6–12 Logistic regression
Schmeits et al. (2005) 7200 km2 48 MOS
Manzato (2005) 5000 km2 6 ANN
Perler and Marchand (2009) 729 km2 24 Adaptive boosting
Current study 400 km2 9–15 ANN

2.1.4. TANN input data: dimensionality reduction

The authors seek a subset from the list of predictor candidates
from Section 2.1.3, which will potentially improve model per-
formance beyond that of models that include all predictors. In
other words, the desire is to minimize the size of the input dimen-
sion while retaining variables sufficient to describe the behaviour
of the target (feature selection). Attempts to decrease the num-
ber of predictor variables is important in part due to the curse of
dimensionality (Bellman, 1961), which suggests that the amount
of sample data required to develop a skillful model increases

exponentially as the model dimension increases linearly. Thus,
an attempt to train the TANN using all 43 inputs will increase
the risk that the predictor model may require more model train-
ing data than is available for skillful model performance. Further,
predictor variables that are strong/relevant (contain sufficient
information regarding the behaviour of the output) are preferred.
In addition, predictor variables that are irrelevant or redundant
can result in a model with subpar performance (inability to gen-
eralize); redundant variables can increase the likelihood of con-
vergence on local minima on the error surface during model
training, while irrelevant data can add noise to the model and
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Figure 2. Histogram (mean CG Lightning box−1 day−1 versus hour in UTC) of CG lightning strikes for the TANN domain during the period 1
January 2003 through 31 December 2011. Note that the greatest frequency of CG strikes occurs during the afternoon and evening hours.

Figure 3. Soil moisture content (SMC) (rescaled to 0–60 kg m−2 range for visualization purposes only) patterns for 15 June 2004 (a) and 25 October
2008 (b) for Box 238. The value in the centre of each box is the corresponding GMORANI value. The pattern to the left (GMORANI= 0.80555) is
more conducive to the development of heterogeneity-induced circulation and subsequent convective initiation via negative feedback, than the pattern

on the right (GMORANI= 0.24171).

adversely affect the neural network’s learning process (e.g. May
et al., 2011).

The determination of the subset of the 43 predictors that
provide the greatest information about thunderstorm occurrence
was made by the filtering-based feature selection technique of
correlation-based feature selection (CFS) (Hall and Smith, 1999)
applied to the entire training sample and corresponding target.
CFS uses an heuristic method to access the worth of features.
In particular, CFS uses symmetric uncertainty (information
theory-based metric) to calculate both feature–target and
feature–feature correlations, to access relevance and redun-
dancy, respectively. These correlations are then used to search
the feature subset domain. The search begins with an empty fea-
ture subset then features are added in accordance with a forward
best first search with a stopping criterion of five consecutive
non-improving subsets. The feature subset that maximizes the
metric known as heuristic merit (to achieve maximum relevance
and minimum redundancy) is chosen. CFS is a nonlinear tech-
nique in the sense that it accounts for nonlinear relationships

between the features and the target. The CFS technique was run
using a MATLAB® version provided by the Arizona State Uni-
versity Feature Selection Repository (Arizona State University,
2014).

Table 6 depicts the predictor variables chosen via CFS as a
function of box (73, 103 and 238) and prediction hour (9, 12
and 15 h). Note that the predictors chosen and the number of
predictors in the subset vary for the nine cases; the number of
predictors chosen varied in the range [2,12]. The fact that convec-
tion requires adequate moisture, instability and a trigger mecha-
nism is reflected in the selected predictors. With regard to mois-
ture, the total precipitable water (PWAT) is common to nearly
all cases. Note that DROPOFFPROXY, CTPPROXY, LI or CAPE is
represented as an instability predictor. Further, vertical velocities
VV700, VV925 or VV500 is represented in five of the nine cases and
likely reflects the various trigger mechanisms such as sea breezes
and upper level disturbances. It is noteworthy that the NAM out-
put predictor variable convective precipitation (CP) is common
to all cases. CP is a consequence of the Betts-Miller-Janjic (BMJ)
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Table 2. Description NAM predictor variables/parameters used in TANN for day=D.

Abbreviation Description (units) Justification as thunderstorm predictor

PWAT Total precipitable water (mm) Atmospheric moisture proxy
MR850 Mixing ratio at 850 hPa (g kg−1) Lower-level moisture necessary for convective cell to reach a

horizontal scale of ≥4 km in order to overcome dissipative effects
(Khairoutdinov and Randall, 2006)

RH850 Relative humidity at 850 hPa (%) When combined with CAPE, predictor of subsequent thunderstorm
location independent of synoptic pattern (Ducrocq et al., 1998)

CAPE Surface-based convective available
potential energy (J kg−1)

Instability proxy; the quantity (2CAPE)0.5 is the theoretical limit of
thunderstorm updraft velocity (e.g. Trier, 2003)

CIN Convective inhibition (J kg−1) Surface-based convective updraft magnitude must exceed (CIN)1/2

for parcels to reach level of free convection (e.g. Trier, 2003)
LI Lifted index (K) Atmospheric instability proxy; utility in thunderstorm prediction

Haklander and Van Delden, 2003
ULEVEL,VLEVEL U,V wind components at surface, 850 hPa

[LEVEL= surface, 850 hPa] (m s−1)
Strong wind can modulate or preclude surface heterogeneity-induced
mesoscale circulations (Dalu et al., 1996; Wang et al., 1996)

VVLEVEL Vertical velocity at 925, 700, 500 hPa
[LEVEL= 925, 700, 500 hPa] (Pa s−1)

Account for mesoscale and synoptic scale thunderstorm triggering
mechanisms (sea breezes, fronts, upper level disturbances) that are
resolved by the NAM

DROPOFFPROXY Potential temperature dropoff proxy (K) Atmospheric instability proxy; highly sensitive to CI (Crook, 1996)
LCL Lifted condensation level (m) Proxy for cloud base height; positive correlation between cloud base

height and CAPE to convective updraft conversion efficiency
(Williams et al., 2005)

T_LCL Temperature at the LCL (K) T_LCL≥−10 ∘C essential for presence of supercooled water in
convective cloud essential for lightning via graupel-ice crystal
collisional mechanism (Saunders, 1993)

CP Convective precipitation (kg m−2) Byproduct of the Betts-Miller-Janjic convective parameterization
scheme (Janjić, 1994), when triggered; proxy for when the NAM
anticipates existence of sub-grid scale convection

VSHEARS8 Vertical wind shear: 10 m to 800 hPa layer
(×10−3 s−1)

The combination of horizontal vorticity (associated with ambient
0–2 km vertical shear), and density current (e.g. gust front)
generated horizontal vorticity (associated with 0–2 km vertical shear
of opposite sign than that of ambient shear) can trigger new
convection (Rotunno et al., 1988)

VSHEAR86 Vertical wind shear: 800–600 hPa layer
(×10−3 s−1)

Convective updraft must exceed vertical shear immediately above the
boundary layer for successful thunderstorm development
(Colquhoun, 1987; Crook, 1996)

Table 3. Description of NAM initialization predictor variables/parameters used in TANN for day=D.

Abbreviation Description (units) Justification as thunderstorm predictor

ULEVEL, VLEVEL U, V wind at the surface, 900,800,700, 600,
500 hPa levels [LEVEL= surface, 900, 800, 700,
600, 500] (m s−1)

Thermodynamic profile modification owing to veering of wind
(warming) or backing of wind (cooling); backing (veering) of wind
in the lowest 300 hPa can suppress (enhance) convective
development (Findell and Eltahir, 2003b)

HILOW Humidity index (∘C) Both a constraint on afternoon convection and an atmospheric
control on the interaction between soil moisture and convection
(Findell and Eltahir, 2003b)

CTP proxy Proxy for convective triggering potential
(dimensionless)

Both a constraint on afternoon convection and an atmospheric
control on the interaction between soil moisture and convection
(Findell and Eltahir, 2003a)

VSHEARS7 Vertical wind shear: surface to 700 hPa layer
(×10−3 s−1)

Strong vertical shear in the lowest 300 hPa can suppress convective
development (Findell and Eltahir, 2003b)

VSHEAR75 Vertical wind shear: 700–500 hPa layer
(×10−3 s−1)

Convective updraft must exceed vertical shear immediately above the
boundary layer for successful thunderstorm development
(Colquhoun, 1987; Crook, 1996)

CP scheme. When triggered, the BMJ scheme emulates sub-grid
scale convection and removes excess instability by adjusting the
model thermodynamic sounding to a climatologically-derived
reference profile; the corresponding reduction in model PWAT
results in CP as a byproduct (Bua and Jascourt, 2009). The ubiq-
uity of CP as a survivor of the feature selection process sug-
gests that the triggering of the BMJ scheme within the NAM

is highly correlated with the target. In addition, the selection by
CFS of U800 (0) and U600 (0) for Box 73, U800 (0) for Box 103
and VSFC for Box 238 (when considering the curvature of the
South Texas coast), likely reflects the advection of moist air from
the Gulf of Mexico, which can increase the likelihood for con-
vection). Further, note that predictor VV925 was selected for 9 h
predictions at Boxes 103 and 238, which likely reflects the sea

Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Meteorol. Appl. 22: 650–665 (2015)



656 W. Collins and P. Tissot

Figure 4. Box 238 domain and vicinity. Smaller box region corresponds to the Box 238 domain; plus symbols (+) mark the centre and four corners
of the box. Locations of NAM grid points (grid spacing 12 km) indicated by triangles ( ); the values of the NAM parameters/variables used in this
study are based on bi-linear interpolation at the centre of the box. Small circles ( ) depict the MPE grid points (4 km grid spacing). The airplane
symbol depicts the location of the METAR station at the Victoria Regional Airport while the circle illustrates a radius of 9.26 km (5.00 nm) relative

to the METAR station.

Table 4. Miscellaneous variables/parameters used in TANN for day=D.

Abbreviation Description
(units)

Justification as
thunderstorm predictor

JD Julian day (day) Provide memory to the TANN
regarding thunderstorm
occurrence as a function of
season

breeze which is a primary driver for summer convection around
9 h within the Western Gulf Coast Coastal Plain region (which
includes Boxes 103 and 238). Finally, note that only one of the
nine box/prediction hour combinations (Box 103 9 h prediction)
contained any sub-grid scale features (Table 5) chosen during
the feature selection process. This result suggests that the con-
tribution of soil moisture and surface heterogeneity to convec-
tive development was limited; an alternative explanation is that,
although the sub-grid scale features likely influenced convection
(considering the fact that SMC_MEAN and GMORANI were
chosen as features by CFS for the Box 103 9 h case), for nearly
all cases, the BMJ CP scheme more effectively accounted for
sub-grid scale processes that relate to CI than the sub-grid scale
features.

2.2. The artificial neural network

An ANN is a parallel distributed processor (e.g. Haykin, 1999).
Parallel distributed processing is a framework developed to
explain the theory of human cognition known as connectionism
(e.g. Rumelhart and McClelland, 1986). This theory assumes that
the brain is composed of a network of highly inter-connected
processing units (neurons), and that cognitive processes are man-
ifested as interactions between these units that inhibit/excite each
other in parallel. Thus, knowledge is stored in the form of con-
nection strengths between neuron pairs that are distributed across
this biological neural network. There is a view that the ability of
humans to rapidly solve very complex pattern recognition prob-
lems is related to the foregoing highly inter-connected and par-
allel structure within the human brain (e.g. Beale and Jackson,
1990; Hagan et al., 1996).The ANN is used to process informa-
tion in a parallel distributed fashion in order to solve complex
problems. The two major types of problems that are solved by
ANNs are functional approximation (estimating the functional
relationship that describes the nonlinear input–output mapping)
and classification (the assignment of an input pattern to a partic-
ular category or class).

One can characterize an ANN based on its topology, transfer
function, and learning algorithm (e.g. de Silva, 2000). The topol-
ogy refers to the manner in which the foregoing inter-connections
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Table 5. Sub-grid scale (4 km) predictor variables/parameters used in TANN for day=D − 1 (previous day).

Abbreviation Description (units) Justification as thunderstorm predictor

SMC_MAXGRAD Maximum soil moisture content (SMC)
gradient (kg m−2 km−1)

Soil moisture gradient of length scale ≥10 km can generate a
lower-level mesoscale thermally direct circulation pattern;
associated surface convergence can result in CI (Taylor et al.,
2007; Taylor et al., 2011)

SMC_MEANGRAD Mean SMC gradient (kg m−2 km−1) Soil moisture gradient of length scale ≥10 km can generate a
lower-level mesoscale thermally direct circulation pattern;
associated surface convergence can result in CI (Taylor et al.,
2007; Taylor et al., 2011)

SMC_SD SMC standard deviation (kg m−2) Probability of CI increases as land surface temperature anomaly
standard deviations (correlated with SMC_SD) increase
(horizontal scales≤ 40 km) (Taylor et al., 2011)

SMC_MEAN Mean SMC (kg m−2) Evaporation of soil moisture increases local moist static energy
in the PBL (Madden and Robitaille, 1970; Betts and Ball, 1998)

SMC_MAX Maximum SMC (kg m−2) Evaporation of soil moisture increases local moist static energy
in the PBL (Madden and Robitaille, 1970; Betts and Ball, 1998)

GMORANI Global Moran’s I of SMC (unit less); proxy
for spatial autocorrelation of SMC

Pattern of wet soil (continuous region covering 50% of 400 km2

box) adjacent to dry soil (covering the remaining 50%) is most
conducive to thermally direct circulation pattern and will result in
a GMORANI value of 0.857 (Longley et al., 2005)

NDRY Number of dry days [MPE= 0] since the
previous rain (days)

For NDRY≠ 0, evaporation of soil moisture, which can increase
local moist static energy (Taylor and Lebel, 1998); proxy for
indirect measure of SMC without use of the API model

between the neurons are arranged and how the data flows through
the system. The transfer function is an algebraic function that
facilitates the transfer of information between neurons; in partic-
ular, this function receives input values from neighboring neu-
rons, evaluates the input, and then transfers the function output
to subsequent neurons. The objective of the learning algorithm
is to train the ANN to learn a particular task, which is achieved
by adjusting the connection strengths/weights between neurons
within the network in order to optimize performance. The pro-
cess of adjusting weights and biases is consistent with learning;
there is evidence that when humans learn, the coupling or con-
nection weights between specific neurons are adjusted (Beale and
Jackson, 1990; Hagan et al., 1996). The topology, transfer func-
tion and learning rule are chosen in accordance with the type of
problem. The development of an ANN model involves the for-
mulation of the problem, data processing, training and evaluation
(e.g. Zhang et al., 2003). The modeler first needs to designate the
problem the model is being developed to solve, and then identify
the input parameters/variables that affect the output. Next, during
the data processing phase, the modeler would select the proper
range/sample distribution of data, organize the data into subsets
for training, validation and testing and then pre-process the data
(scaling). After data processing, the ANN is trained and vali-
dated. Finally, the trained ANN is evaluated by assessing model
performance on novel data (the testing set). Subpar performance
on the testing set suggests possible over-fitting whereas good per-
formance similar to that of the training set indicates ability for the
ANN to generalize.

The ANN has advantages over the use of traditional statistical
techniques, such as nonlinear regression and discriminant analy-
sis. Nonlinear regression models require assumptions regarding
the form of the functional relationship between the predictors and
the predictand (e.g. polynomial regression assumes that the rela-
tionship can be described by polymonials). Discriminate analysis
assumes that the probability density functions of the predictors
satisfy a Gaussian distribution. In contrast, ANNs do not require
knowledge or assumptions of the form of the functional rela-
tionship between the predictors and predictand. By adjusting the

number of hidden layers and associated neurons, the optimum
function can be determined. Thus, ANNs are essentially univer-
sal approximators (e.g. Hornik et al., 1989).

2.3. TANN architecture and training algorithm

With regard to TANN topology, the feed-forward multi-layer per-
ceptron (MLP) structure was chosen. Within MLP, the neurons
are arranged in layers. In particular, there is an inter-connection
between the input layer, hidden layer(s), and an output layer,
wherein each layer can have any number of neurons. The nota-
tion X-{Y1, Y2, … YN}-Z is used. The variables X, Y and Z refer
to the number of neurons in the input, hidden and output layers,
respectively. N refers to the number of hidden layers. The TANN
consists of one hidden layer (N = 1), which is sufficient (Section
2.2). Hence, the final notation X-Y-Z is used. It is known from
Section 2.1.4 that X varies within the range [2, 43]. The output
layer consists of only one neuron (Z = 1). The determination of
the optimal number of neurons in the hidden layer is explained
in Section 3.

Feed-forward refers to the one-way transfer of information
from the inputs to the output layer. The feed-forward processing
from input to hidden to output layer within the MLP can be
described as follows: Consider transfer function f , and vectors
x, W and b, corresponding to input, weight and bias vectors,
respectively. Output a from the MLP, with a single hidden layer,
following forward propagation of data through the network is
defined as follows:

a2 = f2
(
W2f1

(
W1x + b1

)
+ b2

)
(1)

where the subscripts 1 and 2 represent the hidden and output
layers, respectively. The transfer functions used in this study
are the log-sigmoid and linear equations used in the hidden
and output layers, respectively. The log-sigmoid function (S) is
defined as

S (x, k) = 1
1 + e−kx

(2)
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with x and k as continuous value and slope parameter, respec-
tively. For x→−∞ to+∞, S(x, k)→ [0, 1]. It has been shown
that an MLP with one hidden layer and with the log-sigmoid and
linear transfer functions used to activate neurons in the hidden
and output layers, respectively, can approximate any continuous
functional relationship (e.g. Hornik et al., 1989), provided a suf-
ficient number of neurons exist in the hidden layer (e.g. Hagan
et al., 1996). The training in this study is supervised. Supervised
training involves the process of providing a set of N training sam-
ple examples

{(
xi, ti

)}N

i=1
where xi represents an input vector and

ti depicts the corresponding desired output (known as the target).
In this study, xi refers to the X predictor variables and ti is actu-
ally a scalar (ti) that represents the thunderstorm binary output as
follows:

ti =

{
0, l = 0

1, l ≠ 0
(3)

where l represents the number of CG lightning strikes per hour
within each 400 km2 box. With regard to the training algo-
rithm/learning rule, recall that ANN learning involves adjusting
network connection weights to optimize performance; optimiza-
tion occurs when the global minimum of the error in weight
space (error surface) is reached. The search for the global
minimum begins with an initial position X0 (generally cho-
sen randomly) in weight space. Subsequent search directions
are updated iteratively in accordance with the relationship of
the form ΔXk = (Xk+ 1 −Xk)= 𝜂kdk ,where the positive scalar
parameter 𝜂k is the learning rate and dk is the search direction; 𝜂k
determines the incremental distance in the search direction (e.g.
Hagan et al., 1996). Various numerical optimization techniques
exist representing different search strategies. First-order tech-
niques assume that the error surface is represented as a first-order
Taylor series expansion about position Xk in weight space, while
second-order methods assume the error surface around Xk is rep-
resented as a second-order Taylor series (quadratic). A first-order
method where the search direction dk is given by the negative of
the local gradients is known as gradient descent. However, the
local gradient and choice of 𝜂 may result in an oscillation of the
search in weight space thus resulting in an inefficient search path
(e.g. Bishop, 2005; Hagan et al., 1996). A second-order method
known as Newton’s method involves the generation of a local
quadratic approximation of the error surface (via second-order
Taylor series expansion) followed by a line search towards the
location of the minimum of the quadratic approximation. How-
ever, this method requires the calculation of the Hessian matrix,
which may become impractical for nonlinear ANNs due to high
computational cost. In this study, a second-order method known
as scaled conjugate gradient (SCG) is used, which searches the
weight space along conjugate directions, makes implicit use of
the second-order terms provided by the local Hessian matrix,
converges more efficiently than gradient descent and avoids prob-
lems associated with line searches (Moller, 1993).

The ANN training, validating and testing were performed
via the MATLAB® Neural Network Toolbox software version
R2014a (MathWorks, 2014). All input data was scaled to the
range [−1, 1] before serving as input to the network. The initial
values in the weight vector W are randomly selected prior to
training via SCG.

3. TANN model development

This study involves the development of 18 TANN models to pre-
dict thunderstorm occurrence within three 400 km2 box domains

(Boxes 73, 103 and 238) and for three prediction hours (9, 12
and 15 h), consisting of two sets of nine models each. In one
set, the predictor variables were chosen via CFS (final selection
depicted in Table 6), hereafter referred to as the TANN X-Y-1
models (recall X-Y-Z topology convection from Section 2.3). The
second set used all 43 predictors (hereafter referred as TANN
43-Y-1 models). This division was generated in part to assess the
utility of feature selection (discussed in Section 2.1.4).

The development of the TANN models began with the determi-
nation of ANN topology. Note from Section 2.1.4 that the number
of predictor variables (X) determined for TANN X-Y-1 models
varies within the range [2, 12]; X = 43 for the nine TANN 43-Y-1
models. Both sets of models possess only one neuron in the out-
put layer (Z = 1). Before discussing the method used to determine
the number of hidden neurons in each model, it is necessary
to clarify the definition of the training, validation and testing
sets used in this study. The terminology is compressed to train-
ing sample and independent testing sample. The training sample
refers to the data for the periods 2004–2006 and 2009–2013.
This training sample is used to calibrate the models, including
the selection of the threshold to transform continuous model out-
put to a binary classifier. The independent testing sample refers to
the data for the period 2007–2008. The independent testing sam-
ple is used to evaluate the performances of the calibrated TANN
models, the corresponding MLR models and human forecasters,
which provide a basis for comparison. The determination of the
optimal number of hidden layers (Y) for each model was deter-
mined as follows. For each model, only the training sample is
used. The training sample is divided into training and validation
data sets at fractions of 0.8 and 0.2, respectively, with random
attribution of the training and validation cases. The training sam-
ple was used to train and validate the model. The output of the
trained model is continuous. As the goal is to develop an ANN
binary classifier, a receiver operating characteristic (ROC) curve
(e.g. Jolliffe and Stephenson, 2003) was created on the training
component of the training sample. The ROC curve is a graphi-
cal measure of skill for binary classifiers and is based on signal
detection theory (e.g. Swets, 1973). The ROC curve was created
by adjusting the decision threshold at an iteration of 1/10 000th

of the ANN output range and calculating the POD and F at each
iteration. The threshold chosen corresponds to the point on the
ROC curve where Peirce skill score (PSS) performance met-
ric is maximized (Manzato, 2007). Figure 6 depicts one of the
set of ROC curves associated with the development and evalua-
tion of the TANN 43-20-1 model (Box 73 15 h). The foregoing
process from training/validating to testing and determining the
maximum PSS within the training sample is repeated 50 times
and a mean PSS and standard error PSS were calculated. This
process was repeated for the [1,100] range of hidden layer neu-
rons to determine the optimum number, defined as the minimum
number of hidden neurons corresponding to a PSS standard error
that overlaps the PSS standard error associated with the maxi-
mum PSS. Figure 5 depicts the Box 73 15 h model development
example. Tables 7 and 8 depict the chosen topologies, including
the number of hidden layer neurons (Y), as a function of box and
prediction hour for the 18 models. Note that 72, 56 and 28% of
the 18 TANN models contain greater than 5, 10, and 20 neurons
in the hidden layer, respectively. The greater number of hidden
layer neurons allow the TANN to explore highly nonlinear rela-
tionships between the predictors and corresponding target.
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Table 6. Variables (Tables 2–5) chosen by the CFS feature selection technique; variables followed by zero depict NAM initialization variables.

Prediction Hour Box 73 Box 103 Box 238

9 h PWAT, CTP_PROXY, LI, CIN,
DROPOFF_PROXY, U800(0),
U600(0), CP, T_LCL, RH850

U800(0), HILOW , CP, VV925, RH850,
MR850 , LI, CIN, SMC_MEAN,
PWAT, CTP_PROXY, GMORANI

CTP_PROXY, CP, VV925, VSFC,
RH850, CAPE, PWAT,
DROPOFF_PROXY

12 h CTP_PROXY, CP, CAPE, PWAT,
T_LCL

CP, VV500 ,VV925, PWAT, RH850,
CTP_PROXY,

CP, RH850, PWAT, LI

15 h CP, VV700 CP, VV925, PWAT CP, PWAT

Figure 5. Determination of the optimal number of hidden layer neurons
for the Box 73 15 h prediction TANN 43-20-1 model. Each point and
corresponding error bar represents the mean Peirce skill score (PSS) and
standard error resulting from 50 iterations with results computed based
on the training portions of the training sample including the generation
of ROC curves based on the same data; the selected thresholds/models
correspond to the maximum PSS along the respective ROC curve. The
number of hidden layer neurons chosen is the least number of hidden
layer neurons with a PSS standard error which overlaps the standard error
corresponding to the maximum PSS. Thus, in this example, 35 hidden
layer neurons correspond to the maximum mean PSS; yet, 20 hidden

layer neurons was chosen as optimal.

Table 7. Topology (X-Y-Z) of TANN X-Y-1 models.

Prediction hour Box 73 Box 103 Box 238

9 10-25-1 12-30-1 8-7-1
12 5-1-1 6-8-1 4-15-1
15 2-5-1 3-12-1 2-2-1

Table 8. Topology (X-Y-Z) of TANN 43-Y-1 models.

Prediction hour Box 73 Box 103 Box 238

9 43-25-1 43-8-1 43-1-1
12 43-5-1 43-30-1 43-15-1
15 43-20-1 43-35-1 43-20-1

4. TANN model performance evaluation

Once the neural network topology determination was complete
(Tables 7 and 8), each of the TANN models, with corresponding
threshold, were applied to the independent data set (2007–2008)
and nine performance metrics are computed. Figure 6 depicts
one of the sets of ROC curves associated with the development
and evaluation of the TANN 43-3-1 model (Box 73 15 h). This

procedure is repeated 50 times to generate median performance
statistics. The confusion matrix convention chosen and the corre-
sponding equations of the specific performance metrics (common
for binary classifiers) used in this study are listed in Tables 9
and 10, respectively. The skill-based metrics used are PSS, crit-
ical success index (CSI), Heidke skill score (HSS), odds-ratio
skill score (ORSS) (otherwise known as Yule Q), Clayton skill
score (CSS) and Gilbert skill score (GSS). Hogan et al. (2010)
demonstrated that the performance metrics HSS and PSS are
truly equitable. Equitability includes the requirement that the
performance metric equals zero for random or constant fore-
casts; this is desirable because a true skill score should equal
zero for forecasts/predictions that require no skill (random or
constant forecasts). According to Hogan et al. (2010), ORSS is
asymptotically equitable (trend towards equitability as the data
sample approaches infinity) and truly equitable for the special
case of the observed frequency [(a+ c)/n, where n= data sample
size] of the condition predicted equals 0.5. See Wilks (2006) and
Jolliffe and Stephenson (2003) for a more detailed description of
the utility of these parameters. TANN model performance was
compared to the performances of MLR models and to the perfor-
mance of thunderstorm forecasts generated by WFO CRP fore-
casters, embodied within aviation and public forecasts. The MLR
models were developed via stepwise forward linear regression
(SFLR) applied to the training sample and corresponding target.
For each MLR model, the SFLR process began with a constant
value (y= 𝛽0.) Next, at each forward step in the SFLR process, a
predictor is added (from the list of 43 predictors in Tables 2–5,
less the predictors already chosen) based on the change in the
value of the Akaike information criterion (AIC) (Akaike, 1973);
this process continues until the AIC is no longer decreased. As
a final step, the method checks if the removal of one or more
of the selected predictors further decreases the AIC and, if so,
removes the predictor. AIC is a commonly used and implemented
model selection process that accounts for the number of predic-
tors and favours parsimonious models. Following Akaike (1973),
the model chosen has the smallest AIC and the process results in
the selection of the predictors and a trade-off between model size
and accuracy as measured on the training data. The MATLAB®
function STEPWISELM was used to perform SFLR to determine
the regression equation coefficients. The resultant MLR models
in this study are of the form:

yi = 𝛽0 +
k∑

j=1

𝛽jxij + 𝜀i (4)

where yi is the ith predictand response, 𝛽 j is the jth regression
coefficient; 𝛽0 is a constant, and xij is the ith observation for
the jth predictor, for j= 1, … , k. Finally, 𝜀i represents error.
Each MLR model was transformed into a binary classifier using
the same method used in ANN classifier development, except
that each MLR model was calibrated on the entire training
sample to determine the coefficients, unlike ANN calibration
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Figure 6. Determination of model threshold example. The curve depicts
one of the 50 sets of ROC curves generated, and corresponding threshold
determination, on the training sample in connection with the develop-
ment and evaluation of the TANN model with 43-20-1 topology (Box 73
15 hour prediction). After the TANN 43-20-1 model was trained and val-
idated, ROC curves are generated. The solid curve is the ROC curve
based on the training portion of the training sample; the centre of the
circle depicts the point on the ROC curve where PSS is maximized. The
threshold chosen corresponds to the point on the ROC curve where PSS
is maximized. The threshold is combined with the trained model to make

predictions on the 2007–2008 independent testing set.

Table 9. Contingency matrix from which scalar performance metrics
(Table 10) are derived.

Forecast Observed
Yes No Total

Yes a (hit) b (false alarm) a+ b
No c (miss) d (correct rejection) c+ d
Total a+ c b+ d a+ b+ c+ d = n

Table 10. Scalar performance metrics to evaluate TANN, TANN-MOS,
TAFs and NDFD.

Performance metric
[value range]

Symbol Equation

Probability of detection [0,1] POD a/(a+ c)
False alarm rate [0,1] F b/(b+ d)
False alarm ratio [0,1] FAR b/(a+ b)
Critical success index [0,1] CSI a/(a+ b+ c)
Peirce skill score [−1,1] PSS (ad − bc)/(b+ d)(a+ c)
Heidke skill score [−1,1] HSS 2(ad − bc)/[(a+ c)(c+ d)+

(a+ b)(b+ d)]
Yule’s Q (odds-ratio skill
score) [−1,1]

ORSS (ad − bc)/(ad + bc)

Clayton skill score [−1,1] CSS (ad − bc)/(a+ b)(c+ d)
Gilbert skill score [−1/3,1] GSS (a− ar)/(a+ b+ c− ar);

ar = (a+ b)(a+ c)/n

which involved the splitting of the training sample into training
and validation data sets. Hence, MLR model calibration had
the advantage of a greater amount of training data than used
in ANN model calibration. The aviation forecaster outputs are
from selected Terminal Aerodrome Forecast (TAF) products
issued by WFO CRP. TAFs are specialized 24 or 36 h forecasts
(at select airport locations) of weather variables/parameters of
critical importance to the aviation community (e.g. Aviation

Weather Center, 2011).The public forecasts are obtained from the
NWS national digital forecast database (NDFD) (Meteorological
Development Laboratory, 2012).

The performance evaluation for the TANN models, the
TAFs (aviation forecasts) and the NDFD (public forecasts)
for the period 2007–2008 is summarized in Tables 11–14.
Tables 11–13 depict the performance results with respect to
the TANN and MLR models, and the forecasters; each TANN
model is compared to the corresponding MLR model and
NDFD (same box and prediction hour). For each skill metric,
the Wilcoxon signed rank test (single sample, two sided) is
performed to determine whether the median of the 50 trial runs
is statistically significantly different (5% significance level) from
the corresponding MLR or NDFD value. Table 14 compares
the performance between the 18 TANN models. For each skill
metric, the two-sided two-sample and no-pairing Wilcoxon rank
sum test (Mann–Whitney) was applied to test whether the loca-
tion of the distributions between corresponding TANN models
(same box and prediction hour) differ by zero (5% significance
level). The Wilcoxon tests were performed via the wilcox.exact
function within the exactRankTests package as part of the R
programming language (R Core Team, 2014). The results are
mixed and are summarized below.

Examination of the Tables 11–14 inclusive, shows that several
key observations are noteworthy. For all three box regions, the
15 h NDFD forecasts were vastly superior to that of the corre-
sponding MLR and TANN model predictions; with respect to the
corresponding differences for the 9 and 12 h predictions, there is
no clear trend. Nevertheless, in 4 of the 9 box h−1 case com-
binations with respect to at least one skill performance metric,
the TANN X-Y-1 models performed superior to the MLR models
(both Box 73 12 h and Box 238 9 and 12 h with respect to ORSS,
and Box 73 9 h with respect to all skill metrics), and in 2/9 of the
cases, the TANN X-Y-1 models exceeded NDFD skill (Box 103
12 h with respect to ORSS, and Box 238 12 h with respect to
PSS and ORSS). In 2/9 of the cases, the TANN 43-Y-1 mod-
els were more skillful than the MLR (Box 73 15 h with respect
to all skill metrics, and Box 238 12 h with respect to HSS and
ORSS), and in only one case (1/9), a TANN 43-Y-1 model was
more skillful than the NDFD (Box 238 12 h with respect to PSS
and ORSS). Note that there is no performance enhancement of
the TANN models beyond the MLR with respect to Box 103; the
same is true for the NDFD, except for case Box 103 12 h. Results
are mixed with respect to the comparison between the TANN
model variants. In particular, in 1/3 of the nine box/prediction
hour case combinations with respect to at least one skill perfor-
mance metric, the TANN X-Y-1 models performance was supe-
rior to that of the TANN 43-Y-1 models (Box 73 9 and Box 103
12 h cases, both with respect to all skill-based performance met-
rics, and Box 238 9 h with respect to ORSS), while in 1/3 of the
cases, the opposite is also true (Box 73 15 h with respect to all
skill performance metrics, and Box 238 both 12 h and 15 h with
respect to CSI, HSS, and GSS). Further, note that for X < 4 with
respect to the TANN X-Y-1 models, performance is generally
worse than that of the corresponding (same box and prediction
hour) TANN 43-Y-1 models; otherwise, performance of the cor-
responding TANN X-Y-1 models is either statistically similar or
superior to that of the TANN 43-Y-1 models. When consider-
ing the influence of the sub-grid scale features, it must be noted
that the Box 103 9 h case was the only case wherein the features
chosen via CFS for the TANN X-Y-1 models included sub-grid
scale parameters. Yet, for the Box 103 9 h case, the TANN mod-
els performed worse than that of the MLR models and NDFD.
However, as noted in Section 2.1.4, the influence of sub-grid
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Table 11. Performance results of TANN X-Y-Z models (Section 3; Tables 7 and 8) for Box 238 for the 2007–2008 independent data set and
corresponding comparisons to the WFO CRP forecasters (NDFD), multi-linear regression (MLR) models (Section 2.1.4), and to the Terminal

Aerodrome Forecasts (TAF) for the Victoria Regional Airport (VCT) issued by WFO CRP forecasters.

POD FAR F PSS CSI HSS ORSS CSS GSS

9 h Model predictions
TANN 8-7-1 0.96 0.82 0.38 0.57c 0.18a 0.20c 0.95a 0.18a 0.11c

TANN 43-1-1 0.91 0.81 0.35 0.56c 0.19a 0.21a 0.90c 0.18a 0.12a

MLR 0.91 0.79 0.32 0.60 0.20 0.23 0.92 0.20 0.13
9 h Operational public forecasts
NDFD 0.94 0.81 0.35 0.59 0.19 0.21 0.93 0.18 0.12
9–12 h Operational aviation forecasts
TAF 0.38 0.83 0.07 0.32 0.14 0.20 0.80 0.15 0.11
12 h Model predictions
TANN 4-15-1 0.81 0.93 0.39 0.43b 0.07c 0.07b 0.76c 0.06 0.04c

TANN 43-15-1 0.81 0.93 0.35 0.43b 0.07 0.08a 0.75c 0.06 0.04
MLR 0.75 0.93 0.33 0.42 0.07 0.07 0.71 0.06 0.04
12 h Operational public forecasts
NDFD 0.67 0.92 0.28 0.39 0.07 0.08 0.67 0.06 0.04
15 h Model predictions
TANN 2-2-1 0.73 0.97 0.52 0.21c 0.03c 0.02c 0.43c 0.02c 0.01c

TANN 43-20-1 0.55 0.97 0.35 0.24c 0.03c 0.03c 0.48c 0.02c 0.01c

MLR 0.82 0.96 0.41 0.41 0.04 0.04 0.73 0.03 0.02
15 h Operational public forecasts
NDFD 0.92 0.92 0.23 0.69 0.08 0.11 0.95 0.07 0.06

Values corresponding to each TANN X-Y-Z model represent the median of 50 separate trial runs of the model (Section 4). The superscript values a, b, and c denote
TANN X-Y-Z median values of skill-based metrics (PSS, CSI, HSS, ORSS, CSS and GSS only) statistically significantly different (based on the Wilcoxon sign rank
tests, two-sided, one sample, 5% significant level) from the corresponding MLR, NDFD, or both (MLR and NDFD) values, respectively.

Table 12. Same as Table 11 except for Box 103 and for Terminal Aerodrome Forecasts (TAF) issued for the Corpus Christi International Airport
(CRP).

POD FAR F PSS CSI HSS ORSS CSS GSS

9 h Model predictions
TANN 12-30-1 0.70 0.89 0.32 0.39c 0.11c 0.11c 0.68c 0.09c 0.06c

TANN 43-8-1 0.70 0.88 0.29 0.40c 0.11c 0.12c 0.70c 0.10c 0.07c

MLR 0.73 0.86 0.25 0.48 0.13 0.16 0.78 0.12 0.09
9 h Operational public forecasts
NDFD 1.00 0.85 0.31 0.69 0.15 0.19 1.00 0.15 0.10
9–12 h Operational aviation forecasts
TAF 0.19 0.93 0.04 0.15 0.05 0.08 0.69 0.06 0.04
12 h Model predictions
TANN 6-8-1 0.90 0.95 0.34 0.52c 0.05c 0.06c 0.87c 0.05c 0.03c

TANN 43-30-1 0.60 0.95 0.28 0.35c 0.04c 0.05c 0.65c 0.03c 0.02c

MLR 0.90 0.93 0.27 0.63c 0.07c 0.09c 0.92c 0.06c 0.05c

12 h Operational public forecasts
NDFD 0.80 0.94 0.24 0.56 0.06 0.08 0.86 0.06 0.04
15 h Model predictions
TANN 3-12-1 0.67 0.97 0.24 0.40c 0.03c 0.03c 0.71c 0.02c 0.02c

TANN 43-35-1 0.50 0.97 0.20 0.37c 0.03c 0.03c 0.69c 0.02c 0.02c

MLR 1.00 0.96 0.27 0.73 0.04 0.05 1.00 0.04 0.03
15 h Operational public forecasts
NDFD 1.00 0.96 0.19 0.81 0.04 0.07 1.00 0.04 0.04

scale parameters on the target is already explained by CP. The
performance of a portion of the TANN models may be explained
by the number of lightning cases available; the vast majority of
the cases involved cases without lightning, suggesting that the
ability to train TANN models that generalize well require a suffi-
cient number of lightning cases. Table 15 depicts an estimate of
the number of CG lightning cases available both for training the
TANN 43-Y-1 models and for evaluation of the trained models
on the novel data set. Note that for the Box 103 15 h case, only
a paucity of lightning cases were available for model training

which may account for the sub-par performance of the TANN
models relative to the MLR model and NDFD.

5. Summary and conclusions

The authors developed a feed-forward multi-layer perceptron
artificial neural network (MLP ANN) to predict thunderstorm
occurrence – within three 400 km2 domains – 9, 12 and 15 h
in advance and with temporal accuracies of 4 h. The model
framework involves the use of predictors that account for both
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Table 13. Same as Table 11 except for Box 73 and for Terminal Aerodrome Forecasts (TAF) for the Laredo International Airport (LRD).

POD FAR F PSS CSI HSS ORSS CSS GSS

9 h Model predictions
TANN 10-25-1 0.91 0.83 0.28 0.62c 0.16a 0.20c 0.92a 0.16a 0.11c

TANN 43-25-1 0.86 0.84 0.28 0.57b 0.16b 0.19b 0.89b 0.15b 0.11b

MLR 0.88 0.85 0.30 0.58 0.15 0.18 0.89 0.14 0.10
9 h Operational public forecasts
NDFD 0.91 0.83 0.26 0.65 0.16 0.21 0.93 0.16 0.12
9-12 h Operational aviation forecasts
TAF 0.47 0.96 0.09 0.39 0.04 0.06 0.81 0.04 0.03
12 h Model predictions
TANN 5-1-1 0.91 0.90 0.39 0.52c 0.10c 0.11c 0.88c 0.09c 0.06c

TANN 43-5-1 0.91 0.90 0.36 0.52c 0.10c 0.11c 0.87b 0.09c 0.06c

MLR 0.86 0.88 0.30 0.56 0.12 0.14 0.87 0.11 0.08
12 h Operational public forecasts
NDFD 0.91 0.86 0.23 0.68 0.14 0.19 0.94 0.14 0.11
15 h Model predictions
TANN 2-5-1 0.42 0.97 0.34 0.11c 0.03b 0.01c 0.23c 0.01c 0.01b

TANN 43-20-1 0.67 0.96 0.33 0.31c 0.04c 0.04c 0.59c 0.03c 0.02c

MLR 0.42 0.96 0.25 0.17 0.03 0.03 0.37 0.02 0.01
15 h Operational public forecasts
NDFD 0.85 0.93 0.24 0.61 0.07 0.10 0.89 0.07 0.05

Table 14. Comparison of optimized TANN X-Y-Z model performances (see Section 2.3 for meaning of X, Y and Z) for the 2007–2008 novel
independent testing set.

POD FAR F PSS CSI HSS ORSS CSS GSS

Box 238: 9 h predictions
TANN 8-7-1 0.96 0.82 0.38 0.57 0.18 0.20 0.95 0.18 0.11
TANN 43-1-1 0.91 0.81 0.35 0.56 0.19 0.21 0.90 0.18 0.12
Box 238: 12 h predictions
TANN 4-15-1 0.81 0.93 0.39 0.43 0.07 0.07 0.76 0.06 0.04
TANN 43-15-1 0.81 0.93 0.35 0.43 0.07 0.08 0.75 0.06 0.04
Box 238: 15 h predictions
TANN 2-2-1 0.73 0.97 0.52 0.21 0.03 0.02 0.43 0.02 0.01
TANN 43-20-1 0.55 0.97 0.35 0.24 0.03 0.03 0.48 0.02 0.01
Box 103: 9 h predictions
TANN 12-30-1 0.70 0.89 0.32 0.39 0.11 0.11 0.68 0.09 0.06
TANN 43-8-1 0.70 0.88 0.29 0.40 0.11 0.12 0.70 0.10 0.07
Box 103: 12 h predictions
TANN 6-8-1 0.90 0.95 0.34 0.52 0.05 0.06 0.87 0.05 0.03
TANN 43-30-1 0.60 0.95 0.28 0.35 0.04 0.05 0.65 0.03 0.02
Box 103: 15 h predictions
TANN 3-12-1 0.67 0.97 0.24 0.40 0.03 0.03 0.71 0.02 0.02
TANN 43-35-1 0.50 0.97 0.20 0.37 0.03 0.03 0.69 0.02 0.02
Box 73: 9 h predictions
TANN 10-25-1 0.91 0.83 0.28 0.62 0.16 0.20 0.92 0.16 0.11
TANN 43-25-1 0.86 0.84 0.28 0.57 0.16 0.19 0.89 0.15 0.11
Box 73: 12 h predictions
TANN 5-1-1 0.91 0.90 0.39 0.52 0.10 0.11 0.88 0.09 0.06
TANN 43-5-1 0.91 0.90 0.36 0.52 0.10 0.11 0.87 0.09 0.06
Box 73: 15 h predictions
TANN 2-5-1 0.42 0.97 0.34 0.11 0.03 0.01 0.23 0.01 0.01
TANN 43-20-1 0.67 0.96 0.33 0.31 0.04 0.04 0.59 0.03 0.02

Each value represents the median of 50 separate model runs on the 2007–2008 independent testing set. The TANN X-Y-Z median values (PSS, CSI, HSS, ORSS, CSS
and GSS only) both statistically significantly different (two-sided, two-sample, no pairing Wilcoxon rank sum/Mann–Whitney test, 5% significance level) and greater
than its counterpart for the same box/prediction hour are denoted in boldface.

the mesoscale environmental conditions conducive to convective
development, and high resolution soil moisture magnitude and
heterogeneity that can trigger individual convective cells, espe-
cially within a synoptically benign environment. Two sets of nine
TANN models each were calibrated, one set using the entire
43 variable predictor set, while each model from the other set

was developed based on a unique subset of predictor inputs
determined based on correlation-based feature selection (CFS)
as a filtering-based feature selection technique. An assessment
of TANN model performance was conducted by comparisons
to operational forecasters, multi-linear regression (MLR) mod-
els, and by inter-comparison amongst the TANN models. For
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Table 15. Number of CG lightning cases used in training (80% of train-
ing sample) of the TANN 43-Y-1 models; corresponding number of CG
lightning cases used computing performance on the 2007–2008 novel

data set in parentheses.

Prediction hour Box 73 Box 103 Box 238

9 74 (33) 109 (30) 138 (47)
12 72 (22) 53 (10) 77 (16)
15 50 (12) 30 (6) 40 (11)

the majority of the 9 box per prediction hour combination with
respect to at least one skill-based performance metric, the MLR
and NDFD were superior to that of the TANN models. In only
one case was a TANN model more skillful than the correspond-
ing NDFD, suggesting that the TANN models did not overcome
the expertise of the human forecasters. Nevertheless, the greater
skill of the TANN models in a minority of cases, and similar per-
formance for several other cases, demonstrates at least some util-
ity and the potential for an automated thunderstorm predictions
method. The utility of the sub-grid scale parameters to thunder-
storm prediction may have been muted by Betts-Miller-Janjic
(BMJ) convective parameterization physics option in the North
American Mesoscale (NAM). Comparison amongst the TANN
X-Y-1 and TANN 43-Y-1 models suggest utility in the use of
the CFS feature selection technique. Yet, the benefit of feature
selection became apparent only when ≥4 features were chosen,
suggesting that CFS may be too aggressive at times in reducing
the number of features. Further, the number of lightning cases in
the model training and evaluation data sets may have been insuf-
ficient in some cases.

These mixed TANN model performance results reflect the dif-
ficulty faced with regard to the development of a skillful data
driven model. Recall that a major constraint was placed on the
TANN classifiers, to predict thunderstorm occurrence in a binary
fashion 9, 12 and 15 h in advance within a somewhat small region
of 400 km2. The desire to predict thunderstorms on these spa-
tial and temporal scales is ambitious given the constraints of
a chaotic atmosphere, which limits predictability. Nevertheless,
adjustments to the design of this study may improve TANN
model performance. In particular, recall that the MLR models
had the advantage of being trained on more data. Although the
MLR was calibrated on the entire training sample, recall from
Section 3 that the TANN models were trained on 80% of the
training sample. Further, although the 43 potential predictor vari-
ables have relevance to the convective initiation (CI) problem, an
expansion to the potential predictor set may be warranted. For
example, it may be beneficial to account for atmospheric condi-
tions in adjacent boxes because convective development in adja-
cent boxes can propagate into a given box in question. Also, the
authors attempted to incorporate aerosol optical depth (AOD) as
a predictor given the relationship between aerosol concentration
and convective updraft magnitude (van den Heever et al., 2006)
and density of cloud-to-ground (CG) lightning strikes (Steiger
et al., 2002). Yet, the sparseness of the data precluded inclusion.

With respect to operational implementation of the TANN, a
given operational forecast entity can generate a forecast grid
(similar to Figure 1) using Geographic Information System (GIS)
techniques. The NAM output is available to both NWS fore-
casters and to the general public with a lag time of ∼3 h. Both
archived and quasi-real time Multi-sensor precipitation estimator
(MPE) data can be obtained from WGRFC in order to perform
the soil moisture content (SMC) calculations (spin-up and daily
adjustments) via the antecedent precipitation index (API) model

(Appendix S1) followed by calculations of the other sub-grid
scale variables; recall that the SMC calculations are based on the
previous day (Table 5) and, hence, would be available. Opera-
tional forecast offices should determine their own set of potential
predictors and then use feature selection to determine the unique
set of high relevance and low redundant predictors. MATLAB®
software can be used to perform feature selection, and then train,
validate, test and implement an operational TANN.

Research is ongoing, including the plan to greatly enhance
the amount of target data by altering the TANN framework to
develop TANN models that will be trained across all 286 boxes
rather than develop one TANN model per box. The authors
speculate that the greater the amount of data, especially lightning
cases, per TANN model will allow for more complex ANN
topologies, or simply decrease the influence of the curse of
dimensionality, to improve TANN model skill.
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