1. Familiarize with the environment using NSHARP, favorable parameters:
 - Long, skinny CAPE (< 1000 J/kg)
 - Moist vertical profile (Low/Mid RH > 70%)
 - Above average PWs (> 75th percentile)
 - Deep warm cloud layer (> 10 kft)
 - Slow “LCL-EL (Cloud Layer)” wind (< 10 kt)
 - Slow Corfidi Up/Down shear vectors (< 15 kt)

2. Familiarize with the antecedent soil conditions and topography
 a. Become familiar with 1-, 3-, and 6-hr FFG values across your CWA
 b. Consider topography and urban areas
 c. Look at FLASH soil moisture to see recently saturated areas; where FFG may be too high

3. Choose your optimal precip source
 a. Find nearest radar and assess Melting Layer to determine confidence in DP QPE
 b. Assess first-guess QPE biases: BIAS/#G-R
 - Legacy biases in STP, DP biases in MPE Misc menu
 - BIAS: > 1: QPE under-estimating, < 1: QPE over-estimating
 - #G-R: num. of gauge-radar pairs used to calculate bias → more pairs = more confidence
 c. Assess QPE biases at gauges: Compare QPE with observations at close to moderate ranges
 - Identify the precip source with the highest instantaneous precip rates
 - Compare 1-hr QPE to METARs (PXXXX = XX.XX inches)
 - NOTE: Time-match QPEs and obs, zoom all the way in before sampling!
 - Compare storm-total QPE to Mesonet gauges (note when Mesonets reset!)
 d. Precip source options
 - DHR (Legacy): use when you want Legacy estimates, single Z-R
 - DPR (DP): good near the radar, use when you want Dual-Pol estimates, high spatial res
 - HPE (DP mosaic): use for DP + mosaic (consider DPR when there’s beam blockage)
 - BHPE (DP mosaic w/ biases applied): use when you want DP and when biases help
 - MRMS (mosaic): unique precip type and Z-R calculations (no DP), high temporal res

4. Analyze heavy rainfall and streamflow signatures in radar, FFMP, and FLASH

<table>
<thead>
<tr>
<th>Dual-Pol product</th>
<th>Values</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>50-60 dBZ</td>
<td>Enhanced reflectivity/rainfall</td>
</tr>
<tr>
<td>ZDR</td>
<td>2.0-5.0 dB</td>
<td>Bigger drop size</td>
</tr>
<tr>
<td>CC</td>
<td>> 0.96</td>
<td>Uniform precip type</td>
</tr>
<tr>
<td>KDP</td>
<td>> 1.0 deg/km*</td>
<td>Increasing liquid water content</td>
</tr>
</tbody>
</table>

*KDP > 4.0 deg/km could indicate water-coated hail, so be wary of rain rates in these areas (use ZDR and CC to diagnose hail)

 a. Use FFMP to diagnose basin threat, coverage, and timing
 - Set-up with “All & Only Small Basins” Layer and “Ratio” product (use County Layer to filter basins)
 - Ratio > 100% to identify areas of flash flooding (w/ consideration of biases found in #3)
 - Diff > 0 in. to assess severity of flash flooding
 - Look at 1-, 3-, and 6-hour durations (for both short-term and training potential)
 - Use All-hour basin trend graph to identify timing, storm training, and optimal durations for analysis
 b. Use FLASH to assess flood threat, precip anomaly → MRMS QPE-to-FFG Ratio, MRMS Precip Return Period
 c. Use FLASH to analyze streamflow and rivers → CREST Unit Streamflow, SAC-SMA Unit Streamflow

5. Issue Flash Flood Warnings with proper criteria and routinely reassess
 a. Duration: no less than 3 hours
 b. Polygon size: small buffer around current threat, extend for threat evolution & couple basins for runoff
 c. Text includes:
 - How much rain has fallen, how much more is expected over the warning duration, cities impacted, reports included, and 1-2 Call-to-Action statements
CREST Max Unit Streamflow

<table>
<thead>
<tr>
<th>Streamflow (cfs mi⁻²)</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 100 cfs mi⁻²</td>
<td>Monitor area for increasing FF potential</td>
</tr>
<tr>
<td>100-200 cfs mi⁻²</td>
<td>Monitor closely; initial threshold for warning consideration</td>
</tr>
<tr>
<td>200-1000 cfs mi⁻²</td>
<td>Higher confidence in warning issuance and impending FF impacts</td>
</tr>
<tr>
<td>> 1000 cfs mi⁻²</td>
<td>Likely a significant FF event</td>
</tr>
</tbody>
</table>

Loading the FFMP Basin Trend Graph:

1. Right-click on basin name in FFMP Basin Table
2. FFMP text legend “editable”, Click menu in FFMP table set to “Basin Trend”, right-click on basin in D2D

Time:
- Rate — hours before current time (<0)
- QPE/Guid — durations (i.e. -3.0 = 3-hr duration)