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A B S T R A C T

The reduction of visibility adversely affects land, marine, and air transportation. Thus, the ability to skillfully
predict fog would provide utility. We predict fog visibility categories below 1600 m, 3200 m and 6400 m
by post-processing numerical weather prediction model output and satellite-based sea surface temperature
(SST) using a 3D-Convolutional Neural Network (3D-CNN). The target is an airport located on a barrier island
adjacent to a major US port; measured visibility from this airport serves as a proxy for fog that develops over
the port. The features chosen to calibrate and test the model originate from the North American Mesoscale
Forecast System, with values of each feature organized on a 32 × 32 horizontal grid; the SSTs were obtained
from the NASA Multiscale Ultra Resolution dataset. The input to the model is organized as a high dimensional
cube containing 288 to 384 layers of 2D horizontal fields of meteorological variables (predictor maps). In this
3D-CNN (hereafter, FogNet), two parallel branches of feature extraction have been designed, one for spatially
auto-correlated features (spatial-wise dense block and attention module), and the other for correlation between
input variables (variable-wise dense block and attention mechanism.) To extract features representing processes
occurring at different scales, a 3D multiscale dilated convolution is used. Data from 2009 to 2017 (2018 to
2020) are used to calibrate (test) the model. FogNet performance results for 6, 12− and 24 − ℎ lead times are
compared to results from the High-Resolution Ensemble Forecast (HREF) system. FogNet outperformed HREF
using 8 standard evaluation metrics.
. Introduction

Fog is defined as a suspension of very small water droplets in prox-
mity with the earth’s surface that reduces visibility (Glickman, 2000).

distinction is made between fog, which reduces surface visibility to
ess than 1 km, and mist, which does not reduce surface visibility to
he 1 km threshold (WMO, 2020). However, in this study, we will use
he word fog to refer to both mist and fog. The reduction of visibility
dversely affects land, marine, and air transportation owing to the
ssociated human and economic costs. Thus, the ability to accurately
nd skillfully predict fog would provide tremendous utility. In this
tudy, we desire to predict fog by post-processing numerical weather
rediction (NWP) model output using a subset of machine learning
ML) known as deep learning (DL) (Goodfellow, Bengio, & Courville,
016). It has been shown that the future state of a chaotic dynamical
ystem can be skillfully predicted by combining a dynamical model that
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describes the system with ML (Pathak et al., 2018). In addition, given
the nonlinearity of atmospheric processes, the accuracy of atmospheric
prediction will deteriorate rapidly without the incorporation of atmo-
spheric dynamics and physics (Kalnay, 2003; Warner, 2011), further
adding credence to the use of NWP model output. Further, the post-
processing of NWP output can reduce systematic errors, which is also
relevant to the present study since systematic errors can represent a
significant portion of total error, especially near the surface (Hacker &
Rife, 2007; Kleiber et al., 2011; Warner, 2011).

Fog is the result of microphysical processes that govern the for-
mation, growth, and dissipation of cloud particles. In addition, fog
development requires a favorable atmospheric boundary layer (PBL)
structure. The PBL is the atmospheric layer in contact with the earth’s
surface where turbulence is the dominant mechanism responsible for
the vertical transport of heat, momentum, and moisture (Stensrud,
2009; Stull, 1988). However, the accurate and skillful prediction of
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the occurrence, location, and timing of fog within the PBL using oper-
ational NWP models is very difficult. Microphysical processes occur on
the scale of individual aerosols and cloud particles (Glickman, 2000)
which cannot be resolved by operational NWP models. Instead, NWP
models parameterize (use resolved variables to account for the implicit
effects of) these unresolved processes which introduces error (Gul-
tepe, Milbrandt, & Zhou, 2017; Koračin et al., 2014). In particular,
microphysical parameters critical for the accurate prediction of fog in
NWP models include liquid water content (LWC), particle size (r), and
fog droplet number concentration (Nd). Yet, the parameterization of
these microphysical variables combined with the inadequate spatial
resolutions of operational NWP models can result in large uncertainties
in LWC and Nd (Gultepe et al., 2017). Further, the difficulty to predict
these microphysical parameters is compounded by the high variability
of such in nature. For example, the relationship between Nd and aerosol
number concentration (Na) is highly variable (Gultepe & Isaac, 1999).
Finally, aerosols influence r and hence visibility; for a given mixing
ratio, a greater Na results in a larger number of smaller cloud–fog
particles and a corresponding larger surface-to-volume ratio, which
results in greater extinction (lower visibility) (Koračin et al., 2014;
Stoelinga & Warner, 1999). With regard to PBL structure, an adequate
representation of turbulence in the NWP model equations requires
a model grid spacing ≤ 50 m (Stensrud, 2009). Since operational
NWP models (at least within the United States) have horizontal grid
spacings ≥ 4 km, turbulence processes are also parameterized, which
contributes to errors in PBL structure and also to uncertainties in LWC
and Nd (Gultepe et al., 2017).

In addition to errors associated with the microphysical and PBL
parameterizations, the chaotic nature of the atmosphere with extreme
dependence on the initial condition (Lorenz, 1963, 1969), is also prob-
lematic. NWP is an initial value problem and the initial values provided
to the microphysical and PBL parameterizations likely contain er-
rors which lowers practical predictability (Melhauser & Zhang, 2012).
Lastly, fog development occurs on the microscale time and space scales
(< 1 h and < 2 km; Orlanski, 1975) which creates a challenge to
accurate prediction. For example, an Ontario Canada fog event ad-
versely affected 82 motorists, yet dense fog occurred over a spatial
and temporal scale of only a few kilometers and for less than 1 h,
respectively (Pagowski, Gultepe, & King, 2004). Not only are microscale
phenomena not resolvable in the current operational NWP models,
but also the intrinsic predictability of the atmosphere is positively
correlated with spatial scale (Lorenz, 1969).

One state-of-the-art method used by operational forecasters to ac-
count for atmospheric chaos when predicting fog is to utilize an ensem-
ble of NWP model runs to quantify the level of uncertainty inherent
in single NWP model deterministic runs (Leith, 1974). Based on the
performance of individual ensemble members, the probability that
atmospheric variables will reach particular thresholds, or whether spe-
cific atmospheric phenomena will occur, can be generated. Ensemble
prediction systems (EPS) used by operational meteorologists in the
United States National Weather Service (NWS) to assist in the fore-
casting of fog events include the High-Resolution Ensemble Forecast
(HREF) and the Short-Range Ensemble Forecast (SREF) (SPC, 2020).
These ensemble systems provide probabilities of visibility below par-
ticular thresholds based on the performance of the individual ensemble
members. For example, output from the HREF includes parameters for
the probability of visibility less than 1600, 3200, and 6400 m. Studies
have demonstrated the performance enhancement of NWP model en-
sembles over single deterministic runs in predicting fog (Zhou & Du,
2010; Zhou, Du, Gultepe, & Dimego, 2012).

However, as mentioned earlier, Pathak et al. (2018) has demon-
strated that the combination of output from a single dynamical model
that describes a chaotic system (e.g. the atmosphere) with ML can
skillfully predict the future state of the chaotic system. In addition,
post-processing of NWP output via ML can remove systematic errors,
which may be a significant portion of total model error. Furthermore,
2

given that a model ensemble involves running multiple NWP model
runs simultaneously, the development of a predictive fog model by
combining a single dynamical model and ML, that can perform at least
similar to that of a corresponding ensemble system, would represent a
tremendous computational cost savings and hence high utility.

A literature search reveals that ML has been used to predict fog. Fab-
bian, De Dear, and Lellyett (2007) used 8 features from meteorological
observations to develop a MLP artificial neural network with 2 hidden
layers (and with 3 to 20 neurons per hidden layer) to predict fog
occurrence at the Canberra International Airport (YSCB) in Australia,
with 3, 6, 12, and 18 h lead times. Also, Zazzaro, Pisano, and Mer-
cogliano (2010) proposed a cost sensitive classifier using the BayesNet
algorithm in order to develop a binary classifier to predict fog oc-
currence, based on thirteen years of meteorological observations from
1990 to 2002 at the Trapani Milo airport (Italy). In another project
Saurabh and Dimri applied NNs for fog prediction in Delhi, India using
meteorological input data from 1996 to 2015 (Saurabh & Dimri, 2016).
A novel artificial neural network with multi-objective evolutionary
training has been proposed by Durán-Rosal et al. (2018) for binary
fog event classification from meteorological input variables including
temperature, relative humidity, wind speed, wind direction and runway
visual range at Valladolid airport (Spain). Despite these major advances
in the application of fog prediction using ML techniques, the avail-
ability of observations is still insufficient for ML models developed by
post-processing only observations to learn the non-linear interactions
between predictors (features) and fog necessary to predict fog 6 to 24 h
in advance with sufficient skill and in a consistent manner. In our study,
we use numerical weather prediction (NWP) model output as features
to better account for the dynamics of the system and the nonlinear
relationships between the features and fog in order to develop a skillful
fog prediction model.

For decades, conventional machine learning models were limited
to processing raw data. In addition, these pattern recognition systems
required careful engineering and considerable domain expertise to ex-
tract features from the raw data (Goodfellow et al., 2016). But, recently,
Deep Learning (DL) models have demonstrated successes with respect
to predictive skill, and have emerged as state-of-the-art across a broad
range of applications in computer vision, natural language processing,
earth science, and medicine. DL models have shown a powerful ability
to automatically extract hierarchical and nonlinear features from raw
input data. DL models transform the representation from raw input data
into representations at a higher level which results in an understand-
ing of very complex functions. Specifically, for classification, multiple
layers of representation would amplify patterns of the input data that
are important for discrimination.

Convolutional Neural Networks (CNNs) are designed to process data
in the form of multiple arrays such as an image. The input data for
CNNs are in the form of multiple arrays, for example 1D for signal, 2D
for image and 3D for video or volumetric data. Local connection, shared
weights, pooling, and the ability to use many non-linear layers are four
key ideas behind CNN (Goodfellow et al., 2016). Weight sharing in-
creases model efficiency by reducing the number of parameters to learn
in comparison with fully connected neural networks (traditional neural
network) (Goodfellow et al., 2016; Schmidhuber, 2015). Traditional ML
models, including MLP, lose the spatial pattern of input data, while
CNN retains the spatial correlation between pixels and the pattern of
variables.

Over the past four years DL models have been increasingly de-
veloped for environmental and meteorological applications (Chaabani
et al., 2018; Kamangir, Collins, Tissot, & King, 2020; Khaefi, Pramestri,
Amin, & Lee, 2018; Li, Fu, & Lo, 2017; Xiao et al., 2019; Zhou, Zheng,
Li, Dong, & Zhang, 2019). For fog predictions, Kipfer (2017) applied a
2D CNN model to predict fog with 24 h lead time for the Zurich Airport.
The model was built based on 15,000 cases over 1.4 years of observa-
tion and uses seven predictors. To address the skewed balance of their

dataset towards high visibility observations, the authors used a transfer
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Fig. 1. Study area: Coastal Bend of South Texas, Corpus Christi.
learning approach for tackling this problem showing that this can be
accomplished even though the learned features from ImageNet are
different than the ones used for their meteorological observations. Miao
et al. (2020) tested the application of a LSTM model for short term fog
forecasting based on a 3 year time series of meteorological variables
including temperature (TMP), air pressure, wind speed, wind direction,
rainfall, dew point temperature (DPT), relative humidity (RH), visibility
per minute and hourly visibility provided by The Anhui Provincial
Meteorological Bureau up to next four hours.

Prior studies using DL models for fog prediction either did not
validate on a large time series dataset (Kipfer, 2017) or did not account
for vertical structure of the boundary layer (Kipfer, 2017; Miao et al.,
2020). Kipfer (2017) had to use transfer learning to take full advantage
of DL models to benefit from the correlation between several input
variables (represented as images) and fog prediction, which is not ap-
propriate since the feature structure of meteorological data is different
than natural images. In this work, between 288–384 (depending on
the lead time prediction) different atmospheric variables, including
variables that account for the vertical structure of the atmosphere
below 700 mb, for 11 years from 2009–2020 were used which enabled
us to take full advantage of DL models without any need to use
transfer learning or transformation to learn the complexity between
input variables and fog. Accounting for the vertical structure in the
lower atmosphere is critical when predicting fog. Detailed case studies
involving the determination of mechanisms responsible for fog events,
illustrate the importance of analyzing the vertical structure of the
boundary layer (Koračin et al., 2014; Liu, Yang, Niu, & Li, 2011).

In our work, the dataset of model predictors consists of a high
dimensional data cube containing 288–384 different 2D layers of hor-
zontal fields of meteorological (NAM) and oceanic (MUR) variables
predictor maps). The stacking of these fog predictor maps can be
xpressed as 3D images. The dataset represents conditions below the
00 mb vertical pressure level that influence fog development with
ariables selected because of their likely direct or indirect relevance
o the formation of fog (see Table 1).

In order to extract the relevant latent features from the 3D cube
f predictors, a 3D CNN approach was selected. The 3D convolutional
3

network can then simultaneously extract 2D spatial pattern of corre-
lation between individual and also combination of variables based on
their pattern. 3D convolution image processing is increasingly tested
by researchers particularly in the field of Hyper-spectral Image (HSI)
processing, a class of remote sensing images with abundant spectral
bands and spatial information (Alipour-Fard et al., 2020; Cao & Guo,
2020; He, Li, & Chen, 2017; Ma, Yang, Wu, Zhao, & Zhang, 2019;
Roy, Krishna, Dubey, & Chaudhuri, 2019; Song & Choi, 2020; Wang,
Dou, Jiang, & Sun, 2018; Xu, Xiao, Wang, & Luo, 2020). These recent
applications of 3D-CNNs for HSI classification indicate that 3D-CNNs
perform better than 1D-CNNs and 2D-CNNs. 1D-CNNs are too limited
to capture broader spatial characteristics or the spectral structure of
the input data and 2D-CNNs will not be able to create latent features
describing potential correlations between spectral bands (Ma et al.,
2019). In our work, We apply a 3D-CNNs rather than a more com-
monly used 2D CNNs model to enable the potential identification of
multidimensional and multivariate features in the input data, in our
case correlations between meteorological and oceanic variables.

Prior research on HSI classification has revealed that only using
the conventional 3D-CNNs to extract spectral–spatial features results
in too many parameters if the input data has considerable spatial
redundancy (Woo, Park, Lee, & So Kweon, 2018). Yu and Koltun
(2015) proposed a multiscale convolutional filter approach based on
a dilated convolution strategy to extract the contextual features at
different scales and resolution and to reduce the spatial redundancy
while enlarging the receptive field. To enhance the performance of
CNNs, researchers have further investigated three of the models char-
acteristics: depth, width and cardinality (Woo et al., 2018). From
the first convolutional deep model LeNet architecture (LeCun, Bottou,
Bengio, & Haffner, 1998) through the present day, the networks have
become deeper for rich representation. As CNN become increasingly
deep, the networks provide a higher level of representation and better
performance. However, several problems have emerged, including the
gradient vanishing problem, a more time-consuming training process
and the requirement to increase training sample size to avoid over-
fitting. The DenseNet mechanism (Huang, Liu, Van Der Maaten, &
Weinberger, 2017) has been proposed to address the aforementioned
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problems. DenseNet has shown that if a CNN contains shorter connec-
tions between layers close to the input and those close to the output,
the network will become more accurate and efficient to train. DenseNet
alleviates the vanishing gradient problem, increases the global infor-
mation and substantially reduces the number of parameters. As a new
strategy to further explore the discriminative features and enhance
the performance of CNNs, a channel attention module and a spatial
attention module are also adopted to optimize the feature maps and
improve the classification performance (Woo et al., 2018). As will
be further described in the Methodology Section 2.4.4, the attention
mechanism forces the network to focus on important features and
suppress unnecessary ones. The goal of Attention mechanism is to
increase representation power in both channel-wise and spatial-wise
architecture by emphasizing meaningful features along those two prin-
cipal dimensions. Moreover, data augmentation, parametric rectified
linear unit, dynamic learning rate, batch normalization, and regular-
ization (including dropout and L2) methods are all used to increase
classification accuracy and prevent overfitting.

AI and Deep learning are progressing rapidly and making substantial
contributions to the environmental sciences. CNNs in particular have
shown a remarkable ability to create implicit representations of 2D
images facilitating the extraction of predictors. This work builds on
these advances while developing a novel architecture 3D architecture
to take advantage of a large dataset combining numerical weather
predictions and satellite imagery to better predict a high impact event,
coastal fog formation. The novel architecture focuses on capturing air–
sea interaction and 3D atmospheric processes with further novelties
including:

• the use of a more complete feature set created by combining
satellite derived information with NWP model output NW,

• the computation of specific predictors quantifying the air–sea
interaction based on NWP model output and high resolution
satellite imagery,

• the use of Physics based groupings of the predictors (5 groups
in this study), prior to processing by the 3D convolutions of the
parallel branches of the feature extraction,

• the inclusion of dense blocks to address the vanishing gradient
problem and reduce the number of parameters,

• the inclusion of attention mechanisms to improve classification
performance by optimizing feature maps while suppressing weak
predictor fields,

• the comparison of the performance of the new DL model with that
of an operational NWP model ensemble on a 2 year independent
dataset.

In this work, we seek to develop 3D-CNNs to predict fog visibility
categories at the Mustang Beach Airport in Port Aransas, Texas (KRAS)
(USA) (AirNav, 2020). The airport is located on a barrier island near
the Port of Corpus Christi (PCC) ship channel, the fourth largest port
in the US by tonnage (Fig. 1). We use visibility measurements at KRAS
as a proxy for the presence of coastal fog in the PCC ship channel. It is
estimated that fog-related PCC closures total tens of million USD daily.
The 3D-CNN DL model is developed by post-processing NWP model
output, a method that reduces systematic errors associated with NWP
model output (Hacker & Rife, 2007) and has been used to improve
the predictive skill of a model that predicts the future state of a
chaotic dynamical system such as the atmosphere (Pathak et al., 2018).
This study is part of a project with the ultimate goal to skillfully
predict visibility associated with fog at least 24 h in advance, which
requires predictors originating from a dynamical model (e.g. NWP
model) (Warner, 2011). The specific DL model used in this work is a 3D
convolution based on dilated convolution, double-branch dense block
and attention mechanism (hereafter called FogNet). This paper is orga-
nized as follows: Section 2 contains the methodology, which includes
the FogNet model domain, predictor variables (input features), target,

FogNet model structure and development, and the reference model

4

used to assess FogNet performance. Section 3 contains the results and
discussion, which includes FogNet model performance assessment and
comparison to the reference model. Section 4 contains the conclusion.

2. Methodology

2.1. Model domain

The DLNN model domain used in this study is a subset of the
domain used in the operational NAM (Section 2.2. Features), and
is represented as a grid of 32 × 32 points, with a grid spacing of
12 km. The domain includes a portion of both the northwest Gulf of
Mexico and the adjacent Texas coast (Fig. 1). The latitude–longitude
pair of the NE, SE, SW, and NW corners of the domain are 29.00◦N–
4.20◦W/25.20◦N–94.20◦W/25.20◦N–98.01◦W/29.00◦N–98.01◦W, respec-

tively. NAM secondary output variables (and variables derived from
NAM output) served as the source for predictor variables (features)
used to develop the DLNN models. Based on empirical orthogonal
function (EOF) and wavelet analysis of visibility data over South Ko-
rea, Lee, Lee, Park, Chang, and Lee (2010) found that radiation fog
occurs based on meteorological conditions over a time scale of 1 day,
and advection fog is affected by such conditions on a scale of at least 1
week. Meteorological phenomena occurring over daily and weekly time
scales correspond to horizontal scales of around 200 km and greater
than 2000 km, respectively (Orlanski, 1975). Note that the FogNet
domain has a horizontal scale of 12×32 = 384 km. Thus, the domain in
this study would appear sufficient to capture meteorological conditions
associated with radiation fog, yet insufficient to account for advection
fog development. However, fog predictions in this study extend to a
maximum of 24 h, corresponding to the 200 km spatial scale. Thus, the
FogNet domain is sufficient.

2.2. Features

The features chosen for this study originated from the North Amer-
ican Mesoscale Forecast System (NAM) (Environmental Modeling Cen-
ter, 2021) developed by the National Weather Service in the United
States of America. NAM model configuration is depicted in Appendix.
The training, validation, and testing sets were derived from the 2009–202
period of the NAM. During this period, the NAM evolved from the WRF-
NMM (Weather Research and Forecasting Nonhydrostatic Mesoscale
Model) (Janjic, Gerrity, & Nickovic, 2001) (29 June 2006 to 30 Septem-
ber 2011), to the NEMS–NMMB (NOAA Environmental Modeling Sys-
tem Nonhydrostatic Multiscale Model on the Arakawa B-grid) (Janjic
& Gall, 2012) (1 October 2011 to present.) Further, the NAM un-
derwent significant changes to model numerics, data assimilation,
initialization, and to the land surface, radiation, microphysics, and
convective parametrizations (Environmental Modeling Center, 2020b).
A change to model configuration warrants an update to the statistical
relationship between the NWP model-derived features and the target
(e.g. Warner, 2011; Wilks, 2011). However, we do not account for
NAM configuration changes in this study. The assumption is made
that the training of FogNet using data from the frequently changing
NAM will not be detrimental, given the success of Kamangir et al.
(2020) in developing a high-performance deep learning model to
predict thunderstorm occurrence by post-processing NAM output over
the 2004–2006; 2009–2012 period. The NAM uses the following post-
processing algorithm by Stoelinga and Warner (1999) to diagnose
visibility based on extinction caused by various hydrometeors:

𝑣𝑖𝑠 = − ln 𝜖
𝛽

(1)

The parameter 𝜖 is a unitless constant (0.02) provided by Koschmeider
(1924). 𝛽 [km−1] is the extinction coefficient which is determined via an
empirical relationship. The following equation is the extinction due to
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Table 1
DLNN model predictors (features). The number in parentheses to the right of each feature denotes the following: 1 = NAM initialization and predictor variable, 2 = high resolution
sea surface temperature MUR products, 3 = combination of NAM and MUR. NAM refers to the North American Mesoscale Modeling System and MUR refers to Multiscale Ultra
High-resolution products.

Acronym Description (units) Justification as fog predictor

𝐷𝑃𝑇2𝑚 (1) Dew point temperature at
2 meter height (K)

A low dew point depression (TMP–DPT) near the surface is necessary for fog development. Fog
can occur with a higher depression (corresponding to 𝑅𝐻 ≥ 85%) in a polluted environment.
Surface (2𝑚) DPT > SST (sea surface temperature) is essential for advection fog upstream of
the target KRAS (Koračin et al., 2014).

VIS (1) Surface visibility (m) The prediction of surface visibility based on the following equation from Stoelinga and Warner
(1999): 𝑉 𝐼𝑆 = −( ln 𝜖

𝛽
), where 𝜖 (liminal constant) = 0.02, and 𝛽 [km−1] (extinction coefficient)

= 144.7𝐶0.88; 𝐶 [gm−3] (mass concentration of liquid water)
𝑉 𝑉𝐿𝐸𝑉 𝐸𝐿 (1) Vertical velocity [LEVEL = 2 m,

975–700 mb] (ms−1)
Fog occurs during low vertical velocity and the activation of cloud condensation nuclei
(subsequent higher cloud droplet number concentration) is related to vertical velocity (Gultepe
et al., 2017). During radiation and advection–radiation fog events, the vertical structure of
surface layer radiative cooling is controlled by horizontal wind, vertical wind shear, and
vertical velocities (Dupont, Haeffelin, Stolaki, & Elias, 2016).

𝑄𝐿𝐸𝑉 𝐸𝐿 (1) Specific humidity [LEVEL = 2 m,
975–700 mb; 25 mb interval]
(gkg−1)

Wind in combination with specific humidity (Q) infer moisture advection, critical for
generating the unique TMP and RH profiles conducive to radiation, advection, and frontal fog
development (Koračin et al., 2014). Vertical profile of Q a proxy for the determination of PBL
height (Stull, 1988); Luan, Guo, Guo, and Zhang (2018) found a positive linear correlation
between PBL height and visibility.

𝑈𝐿𝐸𝑉 𝐸𝐿, 𝑉𝐿𝐸𝑉 𝐸𝐿 (1) U,V wind [LEVEL = 2 m,
975–700 mb; 25 mb interval]
(ms−1)

Wind in combination with specific humidity (Q) infer moisture advection which influences fog
development (Koračin et al., 2014). Very light surface wind a requirement for radiation fog.
Onshore flow a requirement for advection fog over the target (KRAS). Frontal fog is less
dependent on wind velocity than advection or radiation fog. During radiation and
advection–radiation fog events, the vertical structure of surface layer radiative cooling is
controlled by horizontal wind, vertical wind shear, and vertical velocities (Dupont et al., 2016).

𝑇𝑀𝑃𝐿𝐸𝑉 𝐸𝐿 (1) Temperature [LEVEL = 2 m,
975–700 mb; 25 mb interval] (K)

Radiation, advection, advection–radiation, and frontal fog are strongly related to TMP and RH
vertical structure in the lower levels of the atmosphere. A low dew point depression
(TMP–DPT) near the surface is necessary for fog development. Fog can occur with a higher
depression (corresponding to 𝑅𝐻 ≥ 85%) in a polluted environment. Surface (2𝑚) TMP > SST
(sea surface temperature) is essential for advection fog at the target KRAS (Koračin et al.,
2014).

𝑅𝐻𝐿𝐸𝑉 𝐸𝐿 (1) Relatively humidity [LEVEL =
2 m, 975–700 mb; 25 mb
interval] (%)

Radiation, advection, advection–radiation, and frontal fog strongly related to TMP and RH
vertical structure in the lower levels of the atmosphere. Cooling required for condensation (and
subsequent fog development) inversely related to RH. A low dew point depression (TMP–DPT)
near the surface is necessary for fog development. Fog can occur with a higher depression
(corresponding to 𝑅𝐻 ≥ 85%) in a polluted environment. RH structure can identify the stratus
cloud layer associated with stratus-lowering fog (Dupont et al., 2016).

𝑇𝐾𝐸𝐿𝐸𝑉 𝐸𝐿 (1) Turbulent kinetic energy [LEVEL
= 975–700 mb; 25 mb interval]
(K2)

If the 𝜕𝑄
𝜕𝑧

> 0 condition is violated in the lower levels, turbulent mixing (TKE) of drier air
(lower values of RH or Q) may decrease the chance for fog (Toth et al., 2010). TKE
contributes to stratus-lowering fog (Dupont et al., 2016)

𝑇𝐿𝐶𝐿 (1) Temperature at the LCL (K) With all other factors equal, CNN activation is inversely proportional to 𝑇𝐿𝐶𝐿 (Gultepe et al.,
2017).

𝑆𝑆𝑇 (2) Sea surface temperature from the
MUR SST (K)

𝑇𝑀𝑃2𝑚 > 𝑆𝑆𝑇 and 𝐷𝑃𝑇2𝑚 > 𝑆𝑆𝑇 are essential for advection fog at the target KRAS (Koračin
et al., 2014). Fog occurrence over the sea is most favorable for a particular range of SST
values (Li, Wang, Fu, & Lu, 2016)

FRICV (1) Friction velocity (ms−1) There is a strong relationship between near surface FRICV and radiation fog development (Liu
et al., 2011).

𝐷𝑃𝑇2𝑚 – SST (3) Surface dew point temperature
minus MUR SST (K)

𝑇𝑀𝑃2𝑚 > 𝑆𝑆𝑇 and 𝐷𝑃𝑇2𝑚 > 𝑆𝑆𝑇 are essential for advection fog at the target KRAS (Koračin
et al., 2014).

𝑇𝑀𝑃2𝑚 – SST (3) Surface temperature minus MUR
SST (K)

𝑇𝑀𝑃 2𝑚 > 𝑆𝑆𝑇 and 𝐷𝑃𝑇2𝑚 > 𝑆𝑆𝑇 are essential for advection fog at the target KRAS (Koračin
et al., 2014).

𝑇𝑀𝑃2𝑚 – 𝐷𝑃𝑇2𝑚 (1) Surface temperature minus
surface DPT (K)

A low dew point depression (TMP–DPT) near the surface is necessary for fog
development (Koračin et al., 2014).
cloud liquid water and fog based on an observational study by Kunkel
(1984):

𝛽 = 144.7𝐶0.88 (2)

The parameter C [gm−3] is the mass concentration of the hydrometer in
question generated by the Ferrier–Algo (Aligo, Ferrier, & Carley, 2018)
bulk microphysics parameterization used in the NAM. However, this
microphysics scheme and post-processing algorithm combination can
result in significant visibility prediction errors (Gultepe et al., 2017).
In addition to the mass of liquid water, visibility is also influenced by
cloud droplet number concentration, cloud drop-size distribution, and
aerosol concentration (Gultepe et al., 2017). The NAM microphysics
scheme is single moment with respect to cloud water, thus cloud water
mixing ratio is calculated yet cloud droplet number concentration is
held constant. A double-moment scheme predicts both cloud water
5

mixing ratio and cloud droplet number concentration (Warner, 2011),
which allows for applicability across a wider range of environmen-
tal conditions with varying cloud droplet number concentrations that
occur in nature (Stensrud, 2009). Aerosol concentration affects cloud
droplet number concentration and drop-size distribution, which affects
extinction. In particular, aerosols contribute to a larger number of
smaller cloud droplets, which results in a larger surface-to-volume
ratio, which in turn results in a greater extinction and thus a lower
visibility; this is known as the first indirect effect (Twomey, 1974).
However, the NAM does not account for aerosol contribution to the
cloud microphysics scheme (Eric Rogers, personal communication),
further limiting the ability of the NAM to skillfully predict visibility.
With respect to fog visibility prediction, the NAM is essentially using an
empirical relationship to map cloud liquid water mass to the extinction
coefficient, without accounting for the variation in extinction due to
changes in cloud particle number concentration and cloud drop-size
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distribution caused by aerosols and other factors. Lastly, the NAM has
a horizontal grid spacing of 12 km, too coarse to resolve atmospheric
turbulence and cloud microphysics processes (Kalnay, 2003; Stensrud,
2009) that influence fog development. Thus, the combination of single
moment microphysics with respect to cloud water, the lack of aerosols
in the NAM microphysics scheme, and the mesoscale horizontal res-
olution of the NAM simulation, may result in significant visibility
prediction errors.

Thus, the NAM visibility diagnostic variable cannot be used alone
if highly skillful visibility predictions are desired. In this study, NAM
visibility along with additional NAM predictors (1) are post-processed
via FogNet in an attempt to predict fog visibility categories at skills
exceeding that of predictions from both deterministic NAM and state-
of-the-art NWP model ensembles. As mentioned in the Introduction,
post-processing NWP model output can correct for systematic errors
(potentially a significant portion of total model error) associated with
the NWP model. The additional NAM features were chosen based
on expertise and a literature search for variables that influence the
development of radiation, advection, advection–radiation, frontal, and
stratus-lowering fog over southern Texas and along the adjacent coast.
Radiational fog occurs owing to radiative cooling within an environ-
ment characterized by moist conditions near the surface, dry conditions
aloft, and light or calm wind (Koračin et al., 2014). Along the Texas
coast, advection fog generally develops owing to the onshore advection
of a moist airmass over the cooler sea surface (cold fog example
described in Koračin et al., 2014). Advection–radiation fog is unique to
coastal environments and occurs in response to the increase in near sur-
face moisture due to onshore flow during the daylight hours, followed
by the radiation fog mechanism at night (Bari, Bergot, & Khlifi, 2016).
Frontal fog can be subdivided into the following 3 types, as indicated
in Glickman (2000): ‘‘Warm-front prefrontal fog’’, ‘‘cold-front post-
frontal fog’’, and ‘‘frontal-passage fog’’. The fog formation mechanism
is equivalent for the first 2 types, which involves stratiform rain moist-
ening the shallow cold and stable layer below resulting in fog. Although
rain is not a predictor variable (feature) in FogNet, the vertical structure
of the atmosphere consistent with stratiform rain is captured by FogNet
features. Frontal-passage fog can occur in response to the mixture of the
warm and cold airmasses within the frontal zone. Stratus-lowering fog
occurs when radiatively-cooled air (in response to radiational cooling at
the top of a stratus cloud) mixes vertically-downward and cools the sub-
cloud layer towards saturation, resulting in the lowering of the cloud
base to the surface (Gultepe et al., 2007). Thus, to predict radiation,
advection, advection–radiation, frontal, and stratus-lowering fog, the
modeler must account for high resolution vertical profiles of wind,
temperature, moisture content, and relative humidity in the lower
levels of the atmosphere (Gultepe et al., 2017; Koračin et al., 2014).
We include the relevant variables as features/predictors in FogNet.
Additional features include surface frictional velocity (strongly related
to radiation fog; Liu et al., 2011), vertical velocity (magnitude strongly
related to fog; Gultepe et al., 2017), turbulent kinetic energy (can
decrease chance for fog under certain conditions; Toth et al., 2010), and
lifted condensation level (LCL) temperature (inversely related to the
activation of cloud condensation nuclei, which results in a higher cloud
droplet number concentration; Gultepe et al., 2017). Several features
were also chosen to correct for the limitations of the NAM with regard
to advection fog prediction. Advection fog can occur when the surface
dew point value of near surface air exceeds the corresponding sea sur-
face temperature (SST) (Koračin et al., 2014). However, the NAM does
not utilize SST to predict fog (Eric Rogers, personal communication.)
Thus, the Multiscale Ultra High-resolution (MUR) satellite-derived SST
product (1 km) (Chin, Vazquez-Cuervo, & Armstrong, 2017), and the
NAM surface (2-m height) dew point temperature variable, were com-
bined to generate the feature DPT2meters — SST. Table 1 includes the
features, the justification for use of each feature, and corresponding
references.
6

The FogNet predictors (see Table 1) are arranged into 5 separate
groups whereby each group contains features that possess a simi-
lar physical relationship to fog prior to input into FogNet. Group
1 emphasizes the influence of wind and contains the wind-related
features FRICV SURFACE, U10-METERS, V10-METERS, U975-700, and
V975-700. Radiation fog requires very light or calm wind, whereas
advection fog requires moist onshore flow (Koračin et al., 2014). Fur-
ther, radiational fog is strongly related to frictional velocity (Liu et al.,
2011). Rain-induced frontal fog is less wind dependent than radiation
or advection fog. Group 2 focuses on the influence of turbulence
kinetic energy and contains features TKE975-700 and Q975-700. If
the condition 𝜕𝑄

𝜕𝑧 > 0 is violated in the lower atmosphere, turbulent
mixing (TKE) of drier air (low Q magnitudes) may prevent fog develop-
ment (Toth et al., 2010). Group 3 incorporates the thermodynamic pro-
file of the lower atmosphere and contains the features TMP2-METERS,
TMP975-700, DPT2-METERS, RH2-METERS, and RH975-700. Radia-
tion and advection–radiation fogs that develop within the domain
of this study occur within an environment characterized by moist
air near the surface, and much drier air immediately aloft (Koračin
et al., 2014). Advection fog generally occurs within an atmospheric
profile characterized by both statically stable and nearly saturated
conditions throughout the lower atmosphere (Koračin et al., 2014).
The rain-induced frontal fog cases at KRAS in the dataset were nearly
always characterized by a nearly-saturated strong inversion layer below
500 m (not shown). In addition to vertical mixing, the height of
the stratus layer and the moisture content magnitude tend to control
the formation of stratus-lowering fog (Dupont et al., 2016). Stratus
layer height and moisture content can be inferred from the thermo-
dynamic structure. Group 4 accounts for the influence of atmospheric
moisture and microphysics, and contains surface visibility (VIS) (see
Section 2.2), QSURFACE, TMP2-METERS-DPT2-METERS (dew point
depression), TLCL and VVEL975-700. Low visibility due to fog re-
quires sufficient surface moisture (QSURFACE) and a low dew point
depression corresponding to an 𝑅𝐻 ≥ 85% (Koračin et al., 2014). The
activation of cloud condensation nuclei (which results in higher cloud
droplet number concentrations and thus lower visibilities per Eq. (1)
in Section 2.2) is inversely related to both VVEL and TLCL (Gultepe
et al., 2017). Lastly, Group 5 accounts for the influence of the sea
surface to advection fog, and contains features SST, DPT2-METERS-
SST, and TMP2-METERS-SST. Advection fog tends to occur when SST
values are within a certain range (Li et al., 2016) and requires that the
conditions (DPT2-METERS-SST) > 0 and (TMP2-METERS-SST) > 0 be
atisfied (Koračin et al., 2014).

In this work, FogNet has been applied to predict visibility at 6, 12
nd 24 h lead times. The number of predictors is adjusted depending
n lead time with 288 meteorological variables for 6-hr predictions
ncluding initial NAM, 03- and 06-hour NAM predictions. The predic-
ors for the 12 and 24 h predictions consist both of 384 meteorological
ariables including initial NAM, 03- , 06- and 12-hour NAM predictions
or 12 h lead time and initial NAM, 03- , 12- and 24-hour NAM
redictions for 24 h lead time.

.3. Target

In this study, visibility data was collected from the Mustang Beach
irport in Port Aransas, Texas (KRAS) (United States) during the period
009–2020. A target vector was generated, which contained visibility
easurements at 0000, 0600, 1200, and 1800 UTC each day, correspond-

ng to the times of the 6, 12, and 24 hr predictions of the 0000 and
200 UTC cycles of the NAM. FogNet is designed as a set of binary
lassifiers for different ranges and lead times, and thus the visibility
easurements were converted to categories. Conversion of all visibility

alues ≤ 6400 meters to categories occurred only for those cases
here the KRAS indicated visibility reduction caused by weather codes
G (fog) or mist (BR). Thus, FogNet was trained to predict visibility
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reduction due only to fog or mist. FogNet was trained to predict 3
visibility categories as follows:

𝑇 𝑎𝑟𝑔𝑒𝑡𝑑,ℎ =

{

0 𝑉 𝐼𝑆 ≤ (1600, 3200, 6400)
1 𝑉 𝐼𝑆 > (1600, 3200, 6400)

(3)

Where h and d, are the hour and date (UTC), and VIS is the
orresponding visibility (meters).

.4. Multiscale 3D CNN with double-branch dense block and attention
echanism

FogNet is based on 3D convolution, 3D multiscale dilated convo-
ution, parallel-branch dense block and attention mechanism. In this
ection, these aforementioned fundamental concepts and their impor-
ance to their application to the prediction of coastal fog are discussed
ollowed by a detailed description of the architecture of FogNet.

.4.1. Features extraction with 3D convolution
Convolutional Networks (ConvNet) are composed of several deep

ierarchical convolutional layers in order to extract features quantify-
ng a higher level representation for the input data, such as images. At
resent, there are three main types of Convolutional kernels: 1D, 2D
nd 3D (Ma et al., 2019). 1D ConvNets explore along one dimension,
uch as the correlations among the different layers (spectral) at that
ixel location, 2D ConvNets explore spatial features in the image and
D ConvNets explore combined spatial and spectral features in images.
s discussed in the introduction section, due to the structure of the
tmospheric processes at work during the formation of fog (3D cube
f input data), 3D ConvNet is more suitable for the features extraction
han 2D or 1D ConvNet. 3D convolutions apply a 3 dimensional filter
o the input dataset and moves along the width (w), height (h) and
epth (d) to extract potential patterns within the input data. The 3D
onvolutional layer is calculated using the following expression (Ma
t al., 2019):

𝑥,𝑦,𝑧
𝑙,𝑗 = 𝜙(

∑

𝑛

𝐻−1
∑

ℎ=0

𝑊 −1
∑

𝑤=0

𝐷−1
∑

𝑑=0
𝑤ℎ𝑤𝑑

𝑙𝑗𝑛 𝑜(𝑥+ℎ)(𝑦+𝑤)(𝑧+𝑑)
(𝑙−1)𝑛 + 𝑏) (4)

where 𝑣𝑥,𝑦,𝑧𝑙,𝑗 is the pixel value of position (x, y, z) on the 𝑗th feature
map in layer 𝑙, and 𝐻 , 𝑊 and 𝐷 are the height, width and depth
of the kernel, respectively. The 𝑤ℎ𝑤𝑑

𝑙𝑗𝑛 is the weight value at position
(ℎ,𝑤, 𝑑) connected to the 𝑛th feature in the (𝑙−1)th layer, 𝑜(𝑥+ℎ)(𝑦+𝑤)(𝑧+𝑑)

(𝑙−1)𝑛
represents the input at position (𝑥 + ℎ)(𝑦 + 𝑤)(𝑧 + 𝑑) with (ℎ,𝑤, 𝑑)
denoting its offset to (𝑥, 𝑦, 𝑧), 𝜙 is the activation function, and b is a
bias parameters (Song & Choi, 2020).

2.4.2. Multiscale 3D dilated convolution block
Multiscale feature extraction using ConvNets has been demonstrated

to be effective for classification problems (He et al., 2017; Srivas-
tava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). This is in
part because multiscale convolutions have the power to extract more
complex combined spatial–spectral features. The meteorological data
relevant to the formation of fog includes 3D patterns with different
spatial resolutions which have the potential to be quantified by using
different kernels and receptive fields. Dilated convolution using ex-
pansion of receptive field aggregates multiscale contextual information
without loss of resolution or coverage (Yu & Koltun, 2015). In fact,
dilated convolution modifies the convolution filter in different ways
at different ranges using different dilation factors. In our work, a
multiscale 3D dilated convolution block, based on a dilated convolution
module is proposed, and illustrated in Fig. 2 to learn more complicated
meteorological features.

The block consists of three 3D-convolutional layers with different
dilation factors. Each layer in the block has the same input map with
width (W), Height(H) and Depth (D) dimensions and the size of the

3D convolution filters is the same (3, 3, 3). But, the dilation factor

7

Fig. 2. Multiscale 3D dilated convolution block.

Fig. 3. Dense block with 4 layers, batch normalization and PReLU activation function.

(DF) for each layer is different: 1, 2 and 3 with the receptive field
(virtual filter size) size of (3, 3, 3), (5, 5, 5) and (7, 7, 7), respectively.
We use the ‘‘same padding’’ technique for all filters in the block in
order to have the output with same dimensions as the input. ‘‘F’’ is the
number of filters, and None refer to the input batch or image. Then,
concatenation is applied to aggregate the multiscale features from the
different convolutions.

2.4.3. Dense block
Huang et al. proposed DenseNet as a feature extraction method

based on the residual mechanism (Huang et al., 2017). The key point
in DenseNet is the connection of any hidden layer (H) to all previous
layers. All the previous feature maps of the previous 𝑙−1 layers can be
used to compute the output of the 𝑙th block:

𝑥𝑙 = 𝐻𝑙[𝑓0, 𝑓1,… , 𝑓𝑙−1] (5)

where 𝑓0, 𝑓1,… , 𝑓𝑙−1 are the feature maps of the previous blocks.
Each dense block consists of a batch normalization (BN), activation
layers and convolution layers. As is shown in Fig. 3, each block has
been linked to all previous blocks. As DenseNet combines features by
concatenating them, each function 𝐻𝑙 produces 𝑘 feature maps with the
(𝑙 + 1)th layer having 𝑘0 + 𝑘× (𝑙 − 1) input features, while the output of
the dense block will still be 𝑘 feature maps.

2.4.4. Attention module
Depending on the input data structure and complexity, the impor-

tance of every input variable and the spatial area of the input map
is different while extracting features. Attention mechanism (Xu et al.,
2015) is a new technique that can focus on the most informative part
and suppress other regions’ weights. We apply two attention modules:
variable-wise attention module to focus on informative input variable
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Fig. 4. Structure of variable-wise attention.
Fig. 5. Structure of spatial-wise attention.
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and spatial-wise attention module to extract informative area for each
input variable map. We introduce the two modules in detail.

Variable-Wise Attention Module
In a variable-wise attention module each input feature map can be

seen as a variable predictor. The goal of variable attention is to focus on
the meaningful variables while decreasing the relative contributions of
less important variables. As is shown in Fig. 4, a variable-wise attention
module has two pooling layers: a MaxPooling layer and an AvgPooling
layer to aggregate spatial information with different spatial descriptors:
𝐹 𝑐
𝑎𝑣𝑔 and 𝐹 𝑐

𝑚𝑎𝑥 (Ma et al., 2019). The output features are organized as
a one-dimensional vector with the length of the vector equal to the
number of input features. Then a shared network composed of a 3-layer
perceptron (MLP) with one hidden layer is used to produce the channel
attention map. The hidden layer has 𝐶∕𝐿 units, which is used to reduce
the training numbers and generate more nonlinear mappings, where 𝐿
is the reduction ratio and 𝐶 is the numbers of channel. Note that the
output feature vectors are merged using element-wise summation.

The variable attention map is obtained by using sigmoid functions
and inputs to the feature maps with values in range of (0, 1). The bigger
the value is, the more important the corresponding variable is. Then the
variable attention map multiplies the values of the input features to get
the variable-refined features. Mapping functions are computing using:

𝑀𝑐 (𝐹 ) = 𝜎(𝑀𝐿𝑃 (𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹 )) +𝑀𝐿𝑃 (𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹 ))) =

𝜎(𝑊1(𝑊0(𝐹 𝑐
𝑎𝑣𝑔)) +𝑊1(𝑊0(𝐹 𝑐

𝑚𝑎𝑥)))

where 𝜎 is the sigmoid function, 𝑊0 ∈ 𝐶∕𝐿 × 𝐶 and

𝑊1 ∈ 𝐶 × 𝐶∕𝐿.

Note that the MLP weights are shared for both inputs.

Spatial-Wise Attention Module
The spatial-wise attention focuses on the informative region of the

spatial dimension for each variable map. As is shown in Fig. 5, in
spatial-wise attention, similarly to variable-wise attention, two types of
pooling operations are used to generate different feature descriptors.
The pooling operation in the spatial-wise attention module is along
the channel axis, so the output feature descriptors are fused by a
concatenation operation. Then a convolution layer is applied to the
8

concatenated feature map to generate the spatial attention map. Next,
the input feature is multiplied with the spatial attention map to get
spatially-refined feature maps which focus on the most informative
area. To be summarized, the spatial attention map is computed as:

𝑀𝑠(𝐹 ) = 𝜎(𝑓𝑁×𝑁 ([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹 );𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹 )])) =

(𝑓𝑁×𝑁 ([𝐹 𝑐
𝑎𝑣𝑔 ;𝐹

𝑐
𝑚𝑎𝑥]))

here 𝜎 denotes the activation function and we choose the sigmoid
unction here, 𝑓𝑁×𝑁 represents a convolution operation with filter size
f 𝑁 ×𝑁 .

.4.5. FogNet
To find an optimal prediction model for coastal fog predictions, we

irst designed and tested a sequential 3𝐷−2𝐷 convolution architecture.
he results were not satisfying likely because the 3D ConvNet by itself
as not able to learn informative features from raw input data and the
D (spatial) convolution is not capable of accounting for correlations
etween meteorological variables. To improve the performance of the
equential 3𝐷− 2𝐷 model, we modified the ConvNets architecture and
eplaced the sequential 3D ConvNets with a dense block to directly take
nto account the global information from the raw input data through all
ayers until the last layers and removing the 2D ConvNets. To extract
eatures in different resolutions and scales and to better quantify the
elevant interactions within the input data, a 3D dilated convolution
lock was included. Additionally, an attention mechanism is added
o magnify the importance of the most informative meteorological
redictors and to magnify the most important spatial area(s) in each
eature map. The addition of these three mechanisms to the architec-
ure, dense block, dilated convolution and attention led to significant
mprovements in the performance of the model and are thought to be
ey for the performance of FogNet.

Following the work of Wang et al. (2018), who used 3D ConvNet for
SI classification, we tested an architecture that first quantifies corre-

ations between meteorological predictors (equivalent to the different
ands for HSIs) and then feeds the extracted features into a spatial
ense block to extract the spatial features. However we found that
patial correlations between pixels for each meteorological predictor
ap were removed through the spectral feature extraction and this



H. Kamangir, W. Collins, P. Tissot et al. Machine Learning with Applications 5 (2021) 100038
Fig. 6. Structure of the FogNet network. FogNet has 5 groups of predictors each fed into two parallel feature extraction branches (channels): a variable-wise and a spatial-wise
both with channel attention. The output features from these two branches are used in multiscale 3D dilated convolutions to extract features at multi resolutions before classification.
The depth values for the different groups in this figure is for the 12 hr lead time model.
did not give us performance improvement. Ma et al. (2019) suggested
instead to use spectral and spatial feature extraction in sequence, it is
better to apply them in parallel and concatenate the output features
somewhere before classification. The benefit of this strategy is that the
spectral correlations between different maps and spatial correlations
between pixels for each map are extracted separately, then all the
information for classification is used to label data. Inspired by Ma et al.
(2019), we extract correlation between meteorological variables and
spatial features for each variable in parallel branches.

The FogNet model (shown in Fig. 6) starts with the separate pro-
cessing of each of the five input groups. Each subsection consists of
a double parallel branch dense block feature extraction (spatial-wise
and variable-wise) with attention mechanism. Then, the variable-wise
feature outputs from these 5 groups are concatenated to each other. The
same process takes place for the spatial-wise feature extraction result-
ing in two different types of feature maps, spatial-wise and variable-
wise. In the next step, 3D dilated convolution blocks are used to
9

further process the information within the two types of feature maps
at different resolutions prior to pooling and concatenation and finally
binary classification. Generally, FogNet has 6 sequence steps:

1. Spatial-wise and variable-wise auto-correlation feature extrac-
tion in two parallel branches.

2. Magnification of the most informative feature map and most
informative area in each feature map using double branch at-
tention mechanisms.

3. Concatenation of spatial-wise and variable-wise output feature
maps for each group separately.

4. Extraction of multiscale features using a 3D dilated convolution
block for each feature type from step 3.

5. Extraction of the global information from these two feature types
using global average pooling and concatenating them for the
binary classification task.

6. Binary classification into a fog category (visibility greater than
or less than a threshold: 1600 m, 3200 m, 6400 m).
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The individual processing steps are now described more specifically.

Variable-Wise Branch with Channel Attention
In the variable-wise feature extraction branches, the correlation

between the meteorological variables within each of the five groups
is considered. The input datasets for each group have the same width
and height but different depths depending on the variables of the group,
32×32×𝐷𝑒𝑝𝑡ℎ×1. The variable-wise dense block has four 3D convolution
layers with batch normalization and a kernel size of 1 × 1 × 9 each, with
12 filters used to extract the variable correlation features. In the dense
variable-wise block, the stride is set to (1, 1, 1) and the same padding
method is used to maintain the size of the feature maps. The variable-
wise feature map output size for each group is 32× 32×𝐷𝑒𝑝𝑡ℎ×48. For
example, in Fig. 6 for group 1 including wind-related features for 12 hr
ead time predictions the input size is 32 × 32 × 108 × 1 and the output
ize for the variable-wise dense block is 32 × 32 × 108 × 48. In this step,
y using a 1 × 1 × 𝐷𝑒𝑝𝑡ℎ 3D kernel, the dimension of the input maps
educes to 1 for each group but with the same number of features map
48) so the output is 32×32×1×48. However, the relative importance of

the 48 feature maps will vary. To focus on the most important feature
maps and obtain more discriminative features, a variable-wise attention
block, as illustrated in Section 2.4.4, is applied. After the variable-wise
attention block, the most important feature maps will be highlighted
while the less important feature maps will be suppressed.

The process in the variable-wise branch with channel attention is
the same for all 5 input groups. At the end of this step there are 5
outputs of feature maps with size of 32 × 32 × 1 × 48. In step 3, all five
f the variable-wise feature maps are concatenated to generate new
aps with size 32 × 32 × 5 × 48. In this step, multiscale 3D dilated

onvolution is used to extract variable-wise and spatial-wise features
n parallel at different scales and resolutions. The Multiscale 3D dilated
onvolution blocks include three 3D convolution kernels with 3 × 3 × 3
ize and dilation factors 1, 2 and 3, with the same number of filters (48).
he output for the multiscale block is feature maps with dimensions
2 × 32 × 5 × 144 which in the next step, using global average pooling,
44 features are generated.

patial-Wise Branch with Channel Attention
In the spatial-wise feature extraction branch, the spatial correlation

etween pixels for each variable within each group is considered.
efore applying the spatial-wise dense block, feature reduction is ac-
omplished using a 3D kernel of 1×1×𝐷𝑒𝑝𝑡ℎ for each group to generate
32 × 32 × 1 map which reduces the dimension of the feature maps

nd the number of model parameters. Similar to the variable-wise dense
lock, the spatial-wise dense block has 4, 3D convolution layers with
atch normalization and a kernel size of 3 × 3 × 1 each with 12 filters
48 filters for the block). In the dense spatial-wise block, the stride is
et to (1, 1, 1) and uses the same padding method to maintain the size
f the feature maps. The spatial-wise feature map output size for each
roup is the same as the variable-wise map output 32 × 32 × 1 × 48. To
ocus on the more important and discriminative areas in each feature
ap, the spatial-wise attention block, as illustrated in Section 2.4.4,

s applied. After the spatial-wise attention block, the important areas
nd pixels in each map will be emphasized, while the less important
ixels of the feature maps will be suppressed. Similar to the variable-
ise branch, at the end of this step, there are 5 output feature maps
ith the same size of 32 × 32 × 1 × 48. All the spatial-wise feature maps
re concatenated to generate new maps with dimensions 32×32×5×48.
multiscale 3D dilated convolution block is then applied to generate

2 × 32 × 5 × 144 feature maps, followed by a global average pooling to
enerate 144 spatial features.

patial- and Variable-Wise Fusion for Classification
Through the variable-wise and spatial-wise branches, two different

ypes of features are obtained, including 144 variable-wise features and
44 spatial-wise features. The two sets of features are fused through
oncatenation resulting in 288 features used for the final binary classi-

ication. As the two feature sets where not extracted from the same

10
able 2
yperparameter ranges and the tuned values which gave the best performance on
alidation data for each lead time.
HPs Range of values 6 h 12 h 24 h

Lr 0.0009–0.01 0.0008 0.001 0.0009
d 0.2–0.6 0.2 0.4 0.4
L2 0.00001–0.01 0.001 0.001 0.001

domain, a concatenation is used instead of an add operation. The
final binary classification is obtained by applying a soft-max activation
function to the inputs in the globally average pooling layer.

2.4.6. Fognet hyperparameters tuning
This subsection describes the process used to find the best FogNet

hyperparameters based on a grid search (Section 11.4.3 of Goodfellow
et al., 2016). The grid search approach was performed using the fol-
lowing 3 steps: First, the range of experimental hyperparameters and
associated values were defined (Table 2). Second, FogNet was trained
for each combination of hyperparameter values on the training data and
evaluated on the validation data. Third, the optimal hyperparameter
values were selected based on minimizing the loss on the validation
data. All experiments in this work were trained using the Keras Python
package (Chollet et al., 2018) and the code is availabel on GitHub.1

FogNet training is subdivided into epochs. In each epoch, multiple
batches of training examples are presented to the CNN. The Adam
optimizer (Kingma & Ba, 2014) was used to update the weights after
each epoch in an effort to minimize the loss. In this experiment, FogNet
is trained for 50 epochs, with 32 batches per epoch on 5460 training
amples and 3328 validation samples. These numbers are chosen to be
arge enough such that validation loss always converges to a minimum
efore training is complete. This convergence occurs for FogNet as well,
sually well before the 50th epoch, at which point the classifier begins
o overfit. Early stopping (Prechelt, 1998) was used, with patience 5,
o avoid overfitting.

FogNet has three hyperparameters (HPs) (Table 2) that control
verfitting. Without tuning these parameters, the complex interactions
etween the large number of input meteorological predictor variables
288–384) and fog formation will result in overfitting. The first hyper-
arameter is the learning rate (lr), which is the main control for model
hanges after updating model weights during each epoch. Choosing
ery small values for training rate results in longer training time
ecause it takes longer to reach good weights, whereas too large of a
earning rate may result in an unstable training process as weights can
ump back and forth between local optima. The second hyperparameter
s the dropout rate (d). For each training example and each dense layer,

fraction, 𝑑, of the layer’s outputs are randomly set to zero (Hinton,
rivastava, Krizhevsky, Sutskever, & Salakhutdinov, 2012). This forces
he weights in a given layer to evolve more independently, which
educes overfitting. Dropout is used during training for all dense layers
xcept the last (the last dense layer has only one output, which is the
robability that fog will occur). The third hyperparameter is the weight
ecay, L2, which controls the strength of L2 regularization (Arthur &
obert, 1970). L2 regularization is added to the loss function during

raining, where L2 is the sum of squared weights in all convolutional
ayers. This encourages the model to learn smaller weights. Large
eights can lead to instability in a model, where small changes in

he inputs (predictors) cause sharp changes in the output (prediction).
able 2 shows the hyperparameters that were used to get the best
erformance on the validation for each lead time.

1 https://github.com/conrad-blucher-institute/FogNet

https://github.com/conrad-blucher-institute/FogNet
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Fig. 7. To generate the variables in group 5, which contains SST, DPT2-METERS-SST, and TMP2-METERS-SST, two main preprocessing steps are needed. First, resampling of
PT2-METERS, TMP2-METERS and Surface TMP from 32 × 32 to 384 × 384 is performed and second, missing values in the land areas of the SST maps are filled with Surface

TMP. This figure shows an example of two preprocessing steps on the temperature maps. (a) is the surface temperature at 12 km resolution with 32 × 32 pixels. (b) shows the map
esampled at 1 km resolution using bi-cubic interpolation. (c) is the sea surface temperature map (white represents land). (d) is the resulting temperature map after prepossessing
s complete.
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.4.7. Resampling TMP-2m and DPT-2m
To generate the variables in group 5, which contains SST, DPT2-

ETERS-SST, and TMP2-METERS-SST, two further preprocessing steps
re needed to account for the different resolutions of the products
nd the absence of SSTs on land. The resolution of the MUR SST is
km with 384 × 384 cells and the resolution of DPT2-METERS and

MP2-METERS is 12 km with 32 × 32 cells. First, we resample DPT2-
ETERS, TMP2-METERS and Surface TMP from 32 × 32 to 384 × 384

nd second, missing values in the land areas of the SST maps are
illed with Surface TMP. Surface TMP is the NAM skin temperature,
hich is appropriate when comparing to SST from satellite retrievals

Youlong Xia, personal communication), such as the MUR SST. Bicubic
nterpolation is used to resample and artificially increase the resolution
f DPT2-METERS, TMP2-METERS and Surface TMP to 1 km to match
he MUR SST. For filling the land areas, the corresponding latitude and
ongitude point in the surface TMP maps is selected. For the last step,
PT2-METERS-SST, and TMP2-METERS-SST have been generated by

aking the difference between the two maps. Fig. 7 shows an example
f these preprocessing steps and the resulting feature map for that
xample.

.5. Baseline method-HREF

The CONUS High-Resolution Ensemble Forecast (HREF) is a multi-
odel ensemble of 8 separate NWP model deterministic runs taken

rom the ‘‘High-Resolution Window’’ (HiresW) over the CONUS, and
 a

11
rom the NAM CONUS nest (Environmental Modeling Center, 2020a).
he HiresW consists of the 3.2 km versions of the NEMS–NMMB and
RF-ARW modeling systems, and the NAM CONUS nest is a higher res-

lution (3 km) nest within the 12 km NAM. To clarify, the current 12 km
AM runs the NEMS–NMMB. However, the HiresW NEMS–NMMB uses

he 13 km RAP as the initial condition (IC). The NEMS–NMMB is
he NOAA Environmental Modeling System (architecture model frame-
ork) Nonhydrostatic Multiscale Mesoscale Model (dynamic core) on

he Arakawa B grid (Janjic & Gall, 2012). The WRF-ARW is the Weather
esearch and Forecasting (architecture model framework) Advanced
esearch WRF (dynamic core) (Skamarock et al., 2008). The RAP
Rapid Refresh) is an hourly updated combination assimilation and
odeling system which uses the ARW as the dynamic core (Benjamin

t al., 2016).
The HREF uses the two most recent HiresW WRF-ARW runs, the

wo most recent HiresW NEMS–NMMB runs, the two most recent
iresW ‘‘NSSL-like’’ WRF-ARW runs, and the two most recent NAM
ONUS nest runs. The ‘‘NSSL-like’’ WRF-ARW runs are similar to the
RF-ARW runs, except a different planetary boundary layer (PBL)

arameterization scheme, IC, and lateral boundary condition (LBC)
re used, resulting in a WRF-ARW configuration similar to that run
t the National Severe Storms Laboratory (University Corporation for
tmospheric Research, 2021). Each ensemble differs with respect to
odel dynamic core, numerics, IC, LBC, physics (PBL and microphysics
arameterizations), and/or cycle. Details of the 8 ensemble members
re provided in Table 3. The HREF is considered a state-of-the-art
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Table 3
HREF ensemble members (November 2017). MYJ refers to the Mellor–Yamada–Janjic PBL scheme (Janić, 2001; Janjić, 1994). YSU refers to
the Yonsei University PBL scheme (Hong, Noh, & Dudhia, 2006). WSM6 refers to the WRF single-moment 6-class microphysics scheme (Grasso
et al., 2014). Ferrier–Aligo refers to the Ferrier–Aligo microphysics scheme (Aligo, Ferrier, Carley, Rogers, Pyle, Weiss, & Jirak, 2014).
Member Grid-spacing IC/LBC PBL Microphysics Vertical Levels

HiresW ‘‘NSSL-like’’ ARW 3.2 km NAM/NAM -6 h MYJ WSM6 40
HiresW ‘‘NSSL-like’’ ARW -12 h 3.2 km NAM/NAM -6 h MYJ WSM6 40
HiresW ARW 3.2 km RAP/GFS -6 h YSU WSM6 50
HiresW ARW -12 h 3.2 km RAP/GFS -6 h YSU WSM6 50
HiresW NMMB 3.2 km RAP/GFS -6 h MYJ Ferrier–Aligo 50
HiresW NMMB -12 h 3.2 km RAP/GFS -6 h MYJ Ferrier–Aligo 60
NAM CONUS nest 3 km NAM/NAM MYJ Ferrier–Aligo 60
NAM CONUS nest -12 h 3 km NAM/NAM MYJ Ferrier–Aligo 60
o
l

Table 4
Confusion matrix for calculating scalar performance metrics.

Forecast Yes No Total

Yes a(hit) b(false alarm) a+b
No c(miss) d(correct rejection) c+d
Total a+c b+d a+b+c+d = n

method to predict fog. Section 3 details the performance comparisons
between FogNet and optimized HREF output.

3. Experimental results and discussion

This section presents and discusses the experimental results while
comparing FogNet predictions with those of a current state-of-the-art
operational model.

3.1. Results for 6, 12 and 24 h lead time prediction

FogNet was calibrated, tested and optimized for overlapping binary
classifiers to predict visibility ≤ 1600 m, ≤ 3200 m, ≤ 6400 m and >
6400 m. The predictions are for 6, 12, and 24 hr lead times (9 classifiers
otal). Calibration and testing of the models are based on 8789 visibility
easurements and their related predictors (2009–2017) with 145 cases

or ≤ 1600 m, 201 for ≤ 3200 m, and 483 for ≤ 6400 m. In addition to the
data used for calibration and testing, an additional independent dataset
(2018–2020) with 2229 cases was set aside to further evaluate the model
and compare its performance with the HREF operational model pre-
dictions. The independent dataset consisted of 67 cases with visibility
≤ 1600 m, 94 ≤ 3200 m, and 172 ≤ 6400 m. Since the output of FogNet
is continuous, an optimal threshold was determined for each binary
classification to maximize performance based on the HSS skilled-based
metric. The HREF predictions consist of probabilities that visibility
values will be equivalent to or less than the categories mentioned in
the Target section. The HREF probabilistic output was transformed
to binary predictions by determining the probability threshold that
maximized the HSS skilled-based metric as well. While FogNet and
HREF predictions are compared for the independent dataset, FogNet
thresholds were determined based on the calibration dataset while the
HREF thresholds were determined based on the independent testing
set (HREF output was not available for the same period as that of
the NAM) giving a potential advantage to the HREF performance. (See
Tables 6–8.)

The performance of FogNet is analyzed based on the 9 trained classi-
fiers applied to the independent dataset (2018–2020). The formulation
of the confusion matrix and performance metrics for the FogNet and
HREF-based predictions are shown in Tables 4 and 5, respectively.
The metrics include the pierce skill score (PSS), critical success index
(CSI), Heidke skill score (HSS), odds-ratio skill score (ORSS), among
others. According to Hogan, Ferro, Jolliffe, and Stephenson (2010),
the performance metrics PSS and HSS are truly equitable. Equitability
requires that the performance metric equals zero for constant or ran-

dom forecasts (forecasts devoid of skill.) Hence, reliance on PSS and

12
HSS is warranted when comparing the skill between FogNet and the
HREF binary classifiers. The other metrics are shown for completeness.
See Jolliffe and Stephenson (2003) and Wilks (2011) for a detailed ex-
planation of all metrics. Tables 6–8 depict the performance results of all
9 FogNet and HREF binary classifiers. Both models are in general quite
skillful and a more specific comparison of their respective performance
will be discussed at the end of this section.

The performance of FogNet for 6 h predictions is better than the
performance for 12 h and 24 h predictions for the skill metrics PSS
and HSS and for most of the other metrics Table 6. FogNet PSS and
HSS averaged for the three distances are 0.62 and 0.60 respectively
for 6 h predictions while the same metrics are in the range of 0.51 to
0.56 for 12 h Table 7 and 24 h Table 8 predictions. Similarly POD is
n average 0.65 for 6 predictions as compared to 0.59 for the longer
ead times. While the performance of 6 h predictions is significantly

higher for all metrics as compared to 12 h and 24 h, the performance
for 12 h and 24 h predictions are very similar. The predictive skill
of a NWP model (from which a majority of the FogNet features are
derived) generally decreases with time, which likely explains the more
skillful 6 h FogNet predictions. It is unclear why the 12 h and 24 h
FogNet predictions have similar skill. Possibilities include the ability
to minimize systematic errors in NWP model output by post-processing
with ML (Introduction section), and the ability of FogNet to identify the
salient features responsible for fog at longer lead times. For the HREF
predictions, performance generally decreases with lead time.

When averaging predictions over lead times, 6 h, 12 h and 24 h and
comparing the respective performances for different visibility ranges,
FogNet performs better when predicting if visibility will be ≤ 6400 m as
compared to ≤ 3200 m and ≤ 1600 m except for the metrics F and for a
virtual tie, 0.96–0.97, for ORSS. This improvement is likely in part due
to the larger number of cases, 483, for ≤ 6400 m, as compared to 201 for
≤ 3200 m and 145 cases for ≤ 1600 m as compared to the total number
of cases, 8789, in the calibration dataset. Meteorological conditions
leading to visibility ≤ 6400 m include all forcings leading to reduced
visibility including advection and radiation fog which may facilitate
the clustering in the two categories. The performance for predicting
visibility ≤ 1600 m (145) is higher than for ≤ 3200 m predictions
although by small margins, 0.01 or a tie for five out of the eight metrics.
A possible explanation is that the increase in the number of below
threshold cases when increasing the visibility range from ≤ 1600 m
(145) to ≤ 3200 m (201) is relatively small while the meteorological
conditions leading to the dense fog conditions quantified by a visibility
of ≤ 1600 m may be more straightforward to cluster as compared to
a broader range of conditions leading to a visibility of ≤ 3200 m. The
average performance for the HREF predictions when averaged over lead
times is generally better as the visibility range increases including for
the PSS and HSS metrics increasing from 0.30 to 0.47 to 0.48 and 0.33
to 0.34 to 0.42 for ≤ 1600 m, ≤ 3200 m and ≤ 6400 m. The differences
are not as clear for some of the other metrics with the highest CSS and

ORSS obtained for ≤ 1600 m.
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Table 5
Evaluation metrics used in our analysis.
Performance metric Symbol Equation

Probability of detection [0, 1] POD a/(a+c)
False alarm rate [0, 1] F b/(b+d)
False alarm ratio [0, 1] FAR b/(a+b)
Critical success index [0, 1] CSI a/(a+b+c)
Peirce skill score [−1, 1] PSS (ad−bc)/(b+d)(a+c)
Heidke skill score [−1, 1] HSS 2(ad−bc)/ [(a+c)(c+d) + (a+b)(b+d)]
Odds-ratio skill score [−1, 1] ORSS (ad−bc)/(ad+bc)
Clayton skill score[−1, 1] CSS (ad−bc)/(a+b)(c+d)
w
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t
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Table 6
Results of FogNet versus HREF for 6 h lead-time predictions.

≤ 1600 m ≤ 3200 m ≤ 6400 m

Metrics FogNet HREF FogNet HREF FogNet HREF

POD 0.61 0.36 0.56 0.54 0.77 0.60
F 0.01 0.01 0.01 0.03 0.04 0.05
FAR 0.40 0.64 0.36 0.62 0.42 0.55
CSI 0.38 0.27 0.43 0.29 0.50 0.34
PSS 0.59 0.35 0.55 0.51 0.73 0.54
HSS 0.59 0.42 0.58 0.42 0.63 0.46
ORSS 0.98 0.96 0.98 0.94 0.97 0.92
CSS 0.58 0.51 0.62 0.36 0.56 0.42

Table 7
Results of FogNet versus HREF for 12 h lead-time predictions.

≤ 1600 m ≤ 3200 m ≤ 6400 m

Metrics FogNet HREF FogNet HREF FogNet HREF

POD 0.60 0.25 0.48 0.59 0.70 0.52
F 0.02 0.005 0.02 0.06 0.04 0.06
FAR 0.56 0.43 0.56 0.72 0.43 0.61
CSI 0.34 0.21 0.30 0.23 0.46 0.29
PSS 0.57 0.25 0.45 0.53 0.64 0.46
HSS 0.49 0.34 0.43 0.34 0.60 0.40
ORSS 0.96 0.97 0.94 0.91 0.96 0.88
CSS 0.42 0.55 0.41 0.26 0.54 0.35

Table 8
Results of FogNet versus HREF for 24 h lead-time predictions.

≤ 1600 m ≤ 3200 m ≤ 6400 m

Metrics FogNet HREF FogNet HREF FogNet HREF

POD 0.54 0.34 0.57 0.40 0.67 0.52
F 0.02 0.04 0.03 0.05 0.04 0.06
FAR 0.50 0.80 0.58 0.76 0.41 0.61
CSI 0.35 0.15 0.32 0.18 0.45 0.28
PSS 0.52 0.30 0.54 0.37 0.63 0.45
HSS 0.50 0.23 0.46 0.27 0.59 0.40
ORSS 0.97 0.85 0.95 0.84 0.96 0.88
CSS 0.48 0.18 0.40 0.26 0.56 0.35

3.2. AUCs and ROC curves

A receiver operating characteristic (ROC) curve is a two-
dimensional measure of classification performance and the area under
the ROC curve (AUC) is a scalar measure of performance (Marzban,
2004). Specifically, to assess the quality of forecasting problems, ROC
curve is a parametric plot of the false alarm rate (F, also known
as probability of false detection) on the 𝑥-axis, versus the hit-rate
(also known as probability of detection, POD) on the y-axis where
the decision threshold is varied across the full range of a continuous
forecast quantity (Marzban, 2004). The area under the ROC curve
(AUC) is a scalar measure (Hanley & McNeil, 1982), where AUC = 0.5
represents zero predictive skill and AUC =1 implies perfect skill (Jolliffe
13
& Stephenson, 2003). To evaluate the performance of FogNet, for 6,
12 and 24 h lead times, three ROC curves are used, shown in Fig. 9a,
9b, and 9c, respectively. The AUC values for 6, 12, and 24 h lead time
predictions are all substantially above 0.5, ≈ 0.86, ≈ 0.88, and ≈ 0.89
respectively, indicative of the skillful performance for FogNet.

3.3. Monthly performance of FogNet

The number of example cases varies between 124 for the month
of September to 224 for the month of December (Fig. 8). Up to four
predictions (cases) per day are possible if corresponding visibility mea-
surements exist for each prediction. If there are missing measurements
we remove that example instead of using a data imputation method. For
the two years of the independent dataset, fog cases start in the month
of October with 1, increase to a peak of 21 in February and end in
April with 10. The majority of the cases take place during the period
of February through April with hits larger than both misses and false
alarms for all months and for all lead times except for a lead time of
24 h for the month of April. This is in contrast with the start of the
first part of the fog season, the months of October through January.
The October case was not predicted and false alarms and misses are
higher than hits for these months and lead times except for the 12 h
lead time cases in January for which hits are lower than false alarms
but higher than misses. For the months of November and December 6
out of 8 cases were of radiation and advection–radiation fog; categories
of fog which FogNet does not predict as well yet (see Section 3.4).

3.4. Performance by fog type

The performance of FogNet can be further analyzed by differen-
tiating between the different types of fog. While advection fog was
the dominant fog type affecting the target in the testing set (55∕68),
cases of radiation (7), advection–radiation (3), and frontal (1) fog

ere also present in the dataset. Two (2) cases were classified as
nknown. Differentiation between the modes of fog formation were
etermined by matching the atmospheric conditions at the time of
he KRAS visibility measurement to the corresponding fog type. The
tmospheric conditions were assessed based on the nearest in time 00
TC and 12 UTC SkewT-logp thermodynamic diagrams at the Corpus
hristi International Airport (approximately 41 km west of the target),
nd from official products issued by NWS operational forecasters. (The
etailed analysis necessary to identify stratus-lowering fog was not
erformed). While there was only one frontal fog case, the ten cases of
adiation and advection–radiation fog allow for a differentiate analysis.
or lead times of 6, 12, and 24 hours, only 1, 2, and 1 out of 10 radiation
nd advection–radiation fog events were predicted, respectively. This
s considerably below the hit rates of 37, 36, and 37 out of 55 cases of
dvection fog formation. The ratio of different types of fog formation
re similar in the calibration and independent testing sets. It appears
hat at present, FogNet focuses its calibration on the dominant fog
ormation mode and does not recognize the processes responsible for
adiation and advection–radiation fog formation as well. Methods such
s oversampling radiation and advection–radiation fog cases in the
alibration set, and further modifying the FogNet architecture, could
urther enhance FogNet performance and are left for future work.
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a

Fig. 8. Monthly performance of FogNet for < 1600 m and 6-, 12- and 24 h lead time prediction and the number of cases by month.
Fig. 9. ROC curve and AUC.
We included features that account for the vertical profile of the
tmosphere from the surface (2 or 10-meters) to 700-mb. However,

conditions at the 1000-mb level were not included as features in FogNet
since the 1000-mb pressure level can sometimes fall below the material
surface at KRAS. However, in the radiation and advection–radiation fog
cases, the temperature, wind, relative humidity, and mixing ratio pro-
file can change significantly in the lowest 600 meters (Liu et al., 2011).
Thus, the inclusion of 1000-mb (sans cases where the 1000-mb touches
or falls below the material surface) may provide the additional vertical
resolution necessary to improve radiation and advection–radiation fog
14
prediction. Radiation fog prediction may also be improved by adding
mean sea level pressure (MSLP) as a feature, since radiation fog tends
to occur in the proximity of the surface anticyclone (Gultepe et al.,
2007). Further, the effect of aerosols on fog formation is not accounted
for in FogNet. However, owing to the first indirect effect (Twomey,
1974) mentioned earlier, the inclusion of aerosol concentration may
improve the skill of FogNet with respect to the prediction of all types
of fog. Research is ongoing and we will consider adding these additional

features in future research.
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3.5. Performance comparison of FogNet and HREF

With respect to the skill-based metrics PSS and HSS, all FogNet
predictions outperformed the corresponding HREF classifiers (except
for the 12 h predictions of category ≤ 3200 m with respect to PSS.)
When averaging the performance metrics over the three lead times and
the three visibility ranges, the differences are substantial. For example
averaged PSSs are 0.58 vs 0.42, averaged HSSs are 0.54 vs 0.36 and
average PODs are 0.61 vs 0.46 for FogNet vs HREF. Importantly,
FogNet outperformed the HREF with respect to the category that most
adversely affects marine and aviation transportation, namely, ≤ 1600 m.

he NWS issues marine dense fog advisories when widespread fog of
isibility ≤ 1852 m (1 nautical mile) is occurring, imminent, or is
eemed to have a high probability of occurrence. Fog in this category
recludes maritime travel in and near the Port of Corpus Christi.
urther, visibilities below 805 m (0.5 statute mile) halts airline traffic
o the Corpus Christi International Airport.

These results illustrate that when developing fog prediction models,
he use of ML to post-process single deterministic NWP model output
an result in models that outperform NWP model ensemble output. This
s remarkable when considering the difference in computing resource
equirements. The HREF requires 8 separate and unique deterministic
WP model runs (Table 2) while FogNet utilizes output from only one
eterministic NWP model (the NAM in this study.) Further, FogNet
erformed superior to the HREF even though the horizontal resolution
f the HREF members (3 km grid spacing) is higher than that of
he NAM (12 km grid spacing and the predominate source of the
ogNet features), which allows the HREF members to more accurately
esolve moisture, temperature, and wind variations in the meso-𝛾 scale
2–20 km; Orlanski, 1975) that influence fog development. Finally, the
uperior performance of FogNet over the HREF is remarkable when con-
idering the advantage of the HREF over FogNet during optimization.
ecall that HREF probabilistic output was converted to categorical by
etermining the threshold that optimized performance on the testing
et, while FogNet optimization was restricted to the training set, thus
iving the HREF an advantage when evaluating performance on the
esting set.

. Conclusions

A 3D-CNN, FogNet, was designed and tested to predict the oc-
urrence of coastal fog, more specifically visibility below 1600 m,
200 m, 6400 m with lead times of six to twenty four hours. The 3D-
NN combines numerical weather predictions from the North American
esoscale Forecast System (NAM) and the latest sea surface tem-

eratures measured by the NASA Multiscale Ultra Resolution (MUR)
ataset. The selected features are organized into a 288, 384 and 384

layer data cube for 6, 12 and 24 h lead time predictions with a grid
spacing of 12 km for the 32 × 32 horizontal grid. The study covers the
period 2009–2020. The target data are visibility measurements from a
coastal airport located on a barrier island along the ship channel of the
fourth largest US port by tonnage. The 3D-CNN is designed to extract
information from the spatial patterns of the respective variables but
also the correlations within the vertical profiles of the meteorological
variables and between the different variables including the interaction
between SST and surface atmospheric features such as air temper-
ature and dew point. A dense block and attention mechanism was
used to model and reinforce more specifically the interaction between
model features and altitude. The performance of FogNet exceeded the
performance of the operational HREF ensemble based on 8 standard
evaluation metrics, for nearly all HREF visibility categories including
for PSS, 0.58 vs 0.42, and HSS 0.54 vs 0.36 when averaging these
metrics over all visibility ranges and lead times. While this study did
not investigate predictions for lead times longer than 24 h, the superior
performance of FogNet over HREF at 24 h makes it likely that FogNet

will continue to outperform HREF for longer lead times and warrants a

15
future study to determine the maximum lead time FogNet performance
exceeds that of the HREF. The parallel architecture of FogNet facilitates
the expansion of the number of predictors as the lead time increases.
Further work is needed to better distinguish the relative importance of
the inputs and architecture characteristics that are the most important
for this significant improvement in performance. It is hoped that the
emerging methods of Explainable AI will provide such insights and may
also lead to further performance improvements.

There are several implications related to the discovery that FogNet
performed superior to a state-of-the-art ensemble prediction system
(EPS) used by operational meteorologists to predict fog. First, when
using NWP models to predict the future state of the atmosphere and
associated phenomena, the post-processing of output from a single
deterministic NWP model run using DL represents a valid alternative
to EPS development. As mentioned in the Introduction, an EPS was
developed to account for the uncertainty in the NWP model initial
condition when using NWP models to predict the future atmospheric
state (minor changes to the initial condition can result in dramatic
changes to the future atmospheric state owing to chaos.) The success
of FogNet adds credence to the results of Pathak et al. (2018), who
demonstrated that the prediction of a chaotic system can be improved
by the combination of a knowledge-based model (a dynamical model
that describes the chaotic system) and a ML model. FogNet involves
the post-processing of NWP model (knowledge-based model) output by
a CNN (ML technique) resulting in superior performance over an oper-
ational EPS. This is significant since the EPS strategy has for decades
been the preferred state-of-the-art operational forecasting technique
to account for atmospheric chaos. The second implication relates to
efficiency: A data-driven weather prediction model, more skillful than
an EPS, can be obtained by post-processing output from a single NWP
deterministic model run, which requires much less computer processing
power than that used in generating an EPS. The EPS benchmark used
in this study (HREF) provided probabilistic forecasts of 3 visibility
categories, by post-processing output from 8 separate NWP model runs,
each with a higher spatial resolution (3-km grid spacing) than from
the single NWP model used by FogNet (12-km grid spacing.) The
improvement in fog prediction skill by post-processing output from one
NWP model run over a high-resolution system that post-processed 8
times more NWP model runs is remarkable.
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Appendix. North American Mesoscale (NAM) Modeling System
Configuration as of March 2017 (Environmental Modeling Center,
2017)

Infrastructure NOAA Environmental Modeling
System.

Dynamics Non-Hydrostatic Multiscale Model on
Arakawa B-grid.

Horizontal Resolution 12 km grid spacing.
Vertical Levels 60 levels (27 levels in the 0–3 km

layer).
Number of grid points 𝑋 = 954, 𝑌 = 835.
Map projection Lambert Conformal.
Horizontal grid Arakawa b-grid staggering.
Vertical grid Lorenz staggering.
Vertical coordinate Terrain-following hybrid

sigma-pressure transitioning to pure
hydrostatic pressure near the top.

Microphysics Ferrier–Aligo scheme.
Radiation Rapid Radiative Transfer Model

(RRTM).
Cumulus
parameterization

Betts–Miller–Janjic (BMJ) scheme.

Planetary boundary
layer
parameterization

Mellor–Yamada–Janjic (MYJ) scheme.

Land surface
parameterization

Noah Land Surface Model.

Sea surface
temperature

NCEP 0.125 deg (RTG-SST-HR).

Lateral boundary
condition

Global Forecast System (GFS).

Data assimilation
method

Hybrid ensemble-3DVar incorporated
into the NCEP Grid point Statistical
Interpolation (GSI) Analysis.

Initialization Diabatic Digital Filter.
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