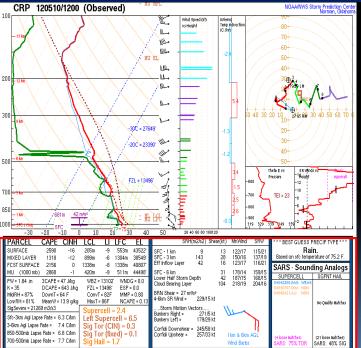
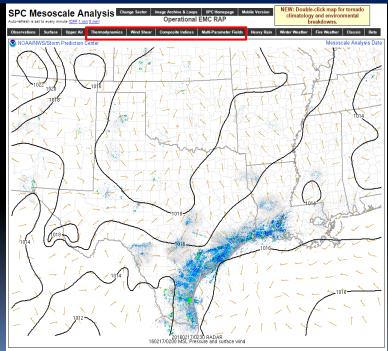


Severe Weather Forecasting Workshop


Utility of Severe Weather Parameters and Indices



Sounding Data/ SPC Meso Analysis / AWIPS Model Forecast Data (Soundings)

References

- A Baseline Climatology of Sounding-Derived Supercell and Tornado Forecast Parameters by E. Rasmussen and D. Blanchard *(Wea. and Forecasting 1998)*
- Refined Supercell and Tornado Forecast Parameters by E. Rasmussen (Wea. and Forecasting, 2003)
- Evaluation and Interpretation of the Supercell Composite and Significant Tornado Parameters at the Storm Prediction Center by R. Thompson, R. Edwards, and J. Hart
- An Update to the Supercell Composite and Significant Tornado Parameters by R. Thompson, R. Edwards, and C. Mead
- Baseline Climatology of Sounding Derived Parameters Associated with Deep Moist Convection by J. Craven and H. Brooks (*National Weather Digest, 2004*)
- A Climatology and Comparison of Parameters for Significant Tornado Events in the United States by J. Grams, R. Thompson, D. Snively, J. Prentice, G. Hodges, and L. Reames (*Wea. and Forecasting, 2012*)

Important Facts of Study

A Baseline Climatology of Sounding-Derived Supercell and Tornado Forecast Parameters by E. Rasmussen and D. Blanchard (*Wea. and Forecasting 1998*)

- Derived from almost 6800 soundings with nonzero CAPE at 00Z during 1992
- Used proximity (within 400 km of event) and inflow (150 degree sector centered on boundary layer mean wind) criteria
- Associate with every lightning flash, hail report greater than 2 inches, or tornado with F2 damage or greater within -3 to + 6 hours of 00Z
- Classified ordinary for non-supercell storms (ORD) with 10 or more CGs, non-tornadic supercells (SUP) for hail > 2" and no tornadoes >F1, or tornadic supercells (TOR) for tornadoes F2 or greater
- Only 51 soundings classified TOR, 119 for SUP, and 2767 for ORD

Important Facts of Study

Baseline Climatology of Sounding Derived Parameters Associated with Deep Moist Convection by J. Craven and H. Brooks (*National Weather Digest, 2004*)

- Derived from over 60,000 soundings at 00Z from 1997-1999
- Used proximity (within 185 km of event) criteria and associated with events within -3 to + 3 hours of 00Z
- Classified general thunder for storms with 2 or more CGs, severe for hail (3/4" to less than 2")/50-64 knot wind gust/wind damage/F0-F1 tornadoes, significant hail/wind for hail 2" or greater and/or wind gusts equal or greater than 65 knots, or significant tornadoes (F2 or greater)
- ~11,300 for thunder, over 2600 for severe, 512 for sig hail/wind, and 87 for sig tor (~28,000 for no thunder/no CAPE and ~17,500 for no thunder/CAPE)

Important Facts of Study

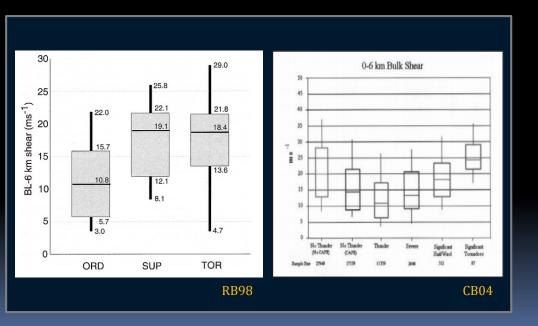
A Climatology and Comparison of Parameters for Significant Tornado Events in the United States by J. Grams and R. Thompson, et. al. (*Wea. and Forecasting 2012*)

- Sample of 448 significant tornado events was collected, representing a population of 1072 individual tornadoes from 2000 to 2008
- Determined seasonal and regional variability and classified by convective mode Discrete cell, Quasi-linear Convective System (QLCS), or Cluster
- Sample of 355 significant hail (2">) and 556 significant wind events (65 knots >) was collected during period from 2003 to 2008 for comparison over three different regions' seasons (Southern Plains spring, Southeast spring, and Northern Plains summer)
- Also looked at data from mandatory pressure levels (850 and 500 mbs wind speed and direction)

Severe Weather Parameters and Indices

Different Types

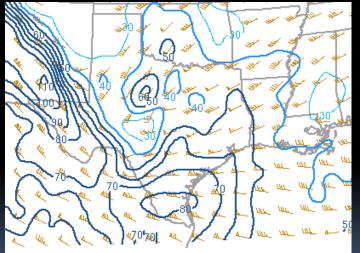
Shear Related Parameters


- □ BL-6 km Shear, BRN Shear, Effective Bulk Shear, 0-1 km Shear
- □ 0-1 km/0-3 km Storm Relative Helicity, Effective SRH

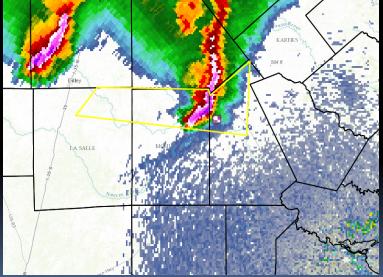
Stability Parameters

- CAPE (Surface-based, Most Unstable, Mixed Layer)
- CAPE below 3 km AGL, Downdraft CAPE (DCAPE)
- Shear-CAPE Combinations
 - Bulk Richardson Number, Vorticity Generation Parameter
 - Energy Helicity Index (EHI), Modified EHI (0-1 km), Craven/Brooks Significant Severe
- Low-Level Thermodynamics
 - LCL , Convective Inhibition (Surface-based, Mixed Layer), 0-3 km Theta-E Differential
- Composite Parameters
 - Supercell Composite Parameter (SCP), Significant Tornado Parameter (STP)
 - Significant Hail Parameter (SHIP), Severe Hazards in Environments with Reduced Buoyancy (SHERB)

Boundary Layer to 6 km Shear



- Magnitude of shear vector between 0-500m mean wind or surface wind and 6 km AGL wind
- RB98 showed utility distinguishing between ORD and SUP/TOR
- No difference between SUP and TOR
- CB04 did show difference for significant tornadoes
- 30-40 knots supercells
- 45-60 knots significant tornadoes



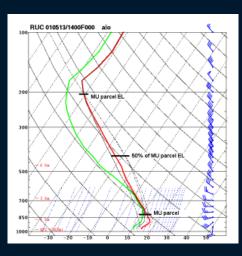
Boundary Layer to 6 km Shear

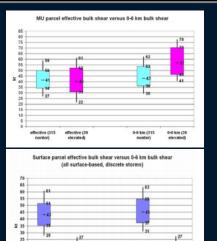
Severe Hail/Winds February 23rd, 2016

160223/0700 Surface to 6 km shear vector (kt)

Quarter-Golf Ball Hail & 60-70 mph Winds

70-80 knots 0-6 km Shear




Bulk Richardson Number (BRN) Shear

- BRN Shear is similar to the BL-6 km Shear
- Denominator of the Bulk Richardson Number
- Uses the bulk vector difference between the low level (0-500 m AGL) mean wind and a density-weighted mean wind through the mid levels (5500-6000 m AGL)
- Values of 40 m2/s2 or greater have been associated with supercells
- Values between 80-100 m2/s2 associated with long lived supercells

Effective Bulk Shear

0-6 km (614

supercells

0-6 km (19)

nonsupercel

effective (196

effective (614

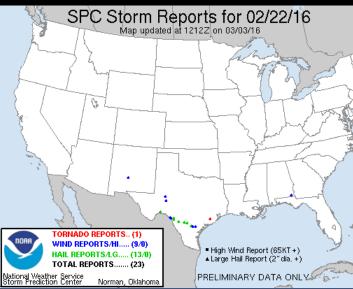
Fixed layer parameter less reliable for environments of very tall storms, short storms, or elevated storms

 \circ

•

- Uses storm layer defined by height of the most unstable lifted parcel in the lowest 300 mb as the inflow base
- More consistent over the range of supercells (0-6 km shear too high for elevated supercells)
- Differentiates between ordinary storms and supercells
- 35-40 knots supercells

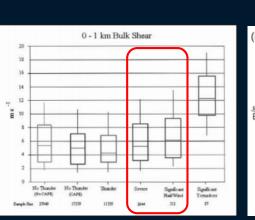
Effective Bulk Shear in Supercell Thunderstorm Environments by R. Thompson, C. Mead, and R. Edwards

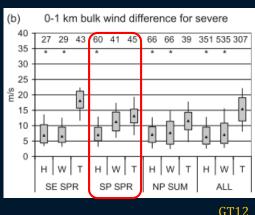


Effective Bulk Shear

Severe Hail/Winds February 23rd, 2016

60-70 knots Effective Bulk Shear

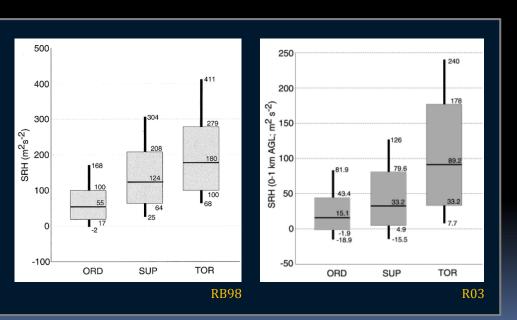



Storm Reports February 22-23, 2016

0-1 km Bulk Shear

CB04

Better results were shown with low level (0-1 km) shear


•

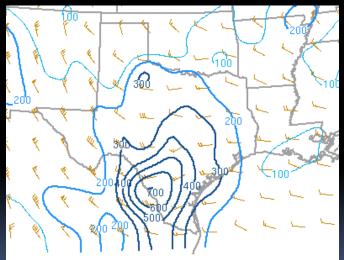
•

- Not much difference between marginal severe and significant severe
- Marked increase seen for significant tornadoes
 - Indicative of the importance of the near-ground layer for tornado formation
- 20 knots the lower bound threshold for tornadic supercells

0-3 km/0-1 km Storm Relative Helicity

$$SRH = -\int_0^h \mathbf{k} \cdot (\mathbf{V} - \mathbf{c}) \times \frac{\partial \mathbf{V}}{\partial z} \, dz$$

- RB98 showed utility distinguishing between tornadic supercells and non-tornadic supercells
- Initial version used 0-3 km layer as inflow layer


•

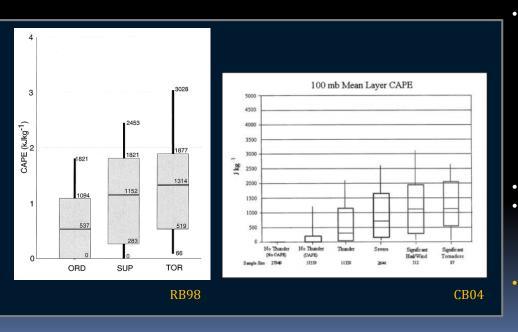
- Changing to near surface layer (0-1 km) showed distinction between tornadic supercells and non-tornadic supercells
- 100 m2/s2 threshold for supercells (0-3 km SRH)
- 80 m2/s2 threshold for significant tornadoes (0-1 km SRH)

0-3 km/0-1 km Storm Relative Helicity

Severe Hail/Winds February 23rd, 2016

160223/0700 0-3 km SRH (m2/s2) and storm motion (kt)

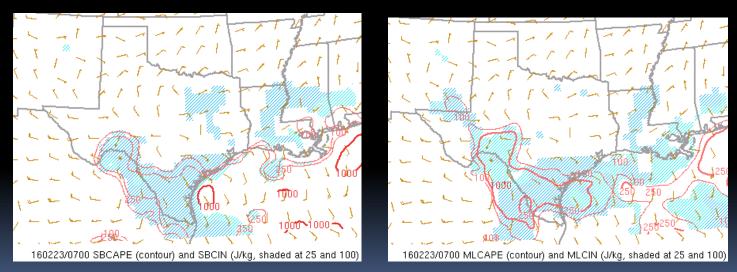
50/50


160223/0700 0-1 km SRH (m2/s2) and storm motion (kt)

200-300 m2/s2 0-1 km SRH

500-700 m2/s2 0-3 km SRH

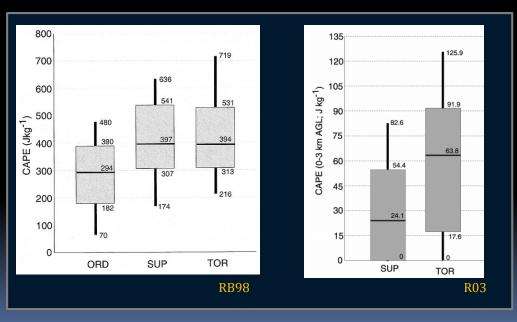
Convective Available Potential Energy (CAPE)



- Integrated "positive area" in J/kg (from the LFC to EL) for the lifted parcel
 - Surface-based (SBCAPE)
 - Mixed-layer (MLCAPE)
 - Lowest 1 km
 - Lowest 100 mb
 - Most Unstable (MUCAPE) within lowest 300 mbs
- Papers used mixed-layer CAPE
- Overlap between the categories but 1100 J/kg threshold between general thunderstorms and severe 1800 J/kg considered extreme for non-tornadic supercells and tornadic supercells

CAPE (Surface Based and Mixed Layer)

Severe Hail/Winds February 23rd, 2016

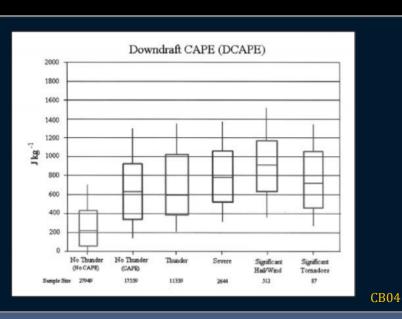


250-500 J/kg MLCAPE

250-500 J/kg SBCAPE

CAPE (Lowest 3 km Above LFC/Below 3 km AGL)

- Looked at distribution of CAPE in the low levels -- low level stretching beneficial for mesocyclone intensification
- RB98 used layer 3 km above
 the LFC


0

•

- No utility indicated with little difference shown between non-tornadic and tornadic supercells
- Larger CAPE occurs closer to the surface, Rasmussen (2003) used the 0-3 km layer for CAPE calculation
- Better ability to discriminate between non-tornadic and tornadic supercells

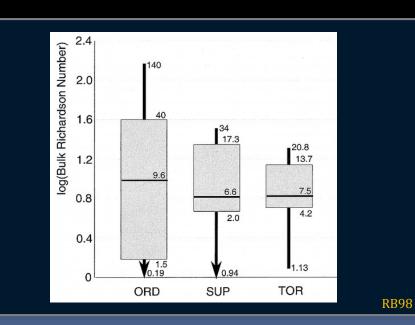
Downdraft CAPE (DCAPE)

DCAPE values greater than 1000 J/kg have been associated with increasing potential for strong downdrafts and damaging outflow winds.

С

•

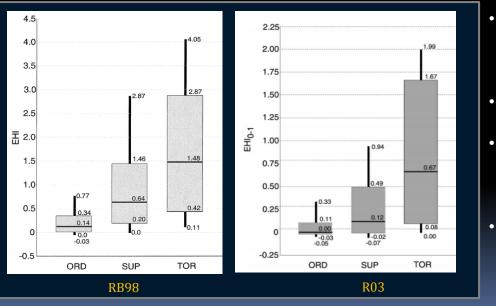
- RB98 found no distinction between the categories
 - Craven/Brooks showed values lower for tornadic supercells compared to non-tornadic supercells
 - Higher DCAPE values result in stronger downdrafts and supercell becoming outflow dominant



Downdraft CAPE (DCAPE) - Limitations

- Analytical process started at an estimated downdraft initiation level, usually around 700 mbs. Choosing a higher (lower) level likely creates larger (smaller) DCAPE.
- Downdraft unsaturated as evaporation not efficient to compensate for adiabatic compressional warming. Downdraft warms more quickly with realized DCAPE weaker.
- DCAPE does not account for negative buoyancy due to precipitation loading. A reflectivity core of 60 dBz or greater could lead to a stronger downdraft than DCAPE would suggest.
- DCAPE does not account for non-hydrostatic downward directed pressure deficits that result from strong mesocyclogenesis. DCAPE will not be an accurate estimate for downdrafts in supercells.

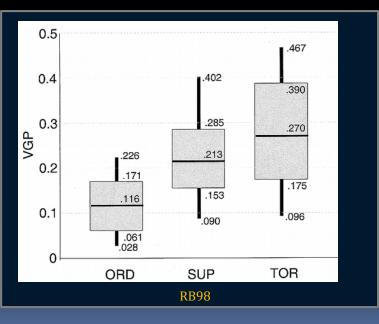
Bulk Richardson Number



- Ratio of buoyancy (MLCAPE) to vertical shear (BL-6 km shear)
- Estimate balance between vertical shear and buoyancy
- Environments with BRN < 50 favored supercells
- BRN > 50 favored multicells
- RB98 confirmed lower values for supercell soundings (75% lower than 17)
- Poor discriminator between
 supercells and non-supercells

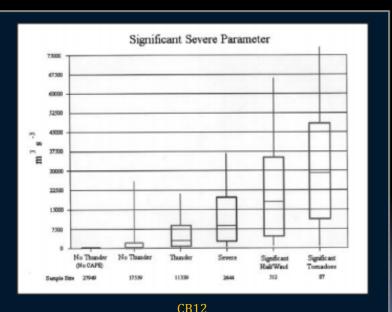
Energy Helicity Index/Modified EHI (0-1 km)

 $EHI = \frac{(CAPE) (SRH)}{1.6 \times 10^5}$



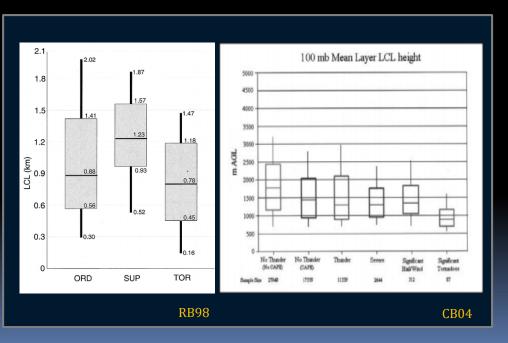
- Based upon idea that storm rotation should be maximized when CAPE and 0-3 km SRH values are large
- Good discriminator between the categories
 - Significant tornadoes occurred with higher EHI (EHI >1.5 being a threshold from non-tornadic to tornadic supercells)
 - Modified using 0-1 km SRH even better (Modified EHI > 0.5 for discriminator between SUP and TOR)

Vorticity Generation Parameter (VGP)


 $VGP = [S(CAPE)^{1/2}]$

- Estimate the rate of tilting of horizontal vorticity
- S mean shear over a layer (hodograph length/depth) [0-3 km]
- S proportional to horizontal vorticity vector
- Square root of CAPE is proportional to vertical velocity
- Mean values of the different categories significantly different
- Higher possibility of tornadic storms with VGP > 0.25 m/s2

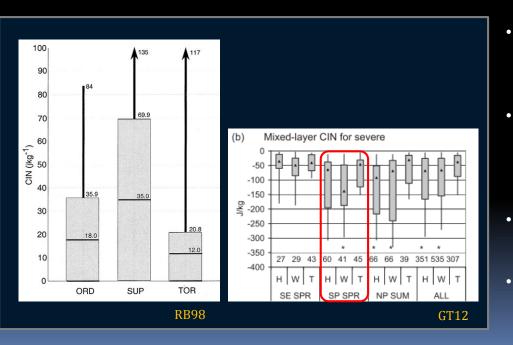
Craven/Brooks Significant Severe Parameter



- Better results considering both instability and shear for discrimination between thunder and severe events
- Product of MLCAPE (lowest 100 mb) and 0-6 km shear
- More discrimination shown between the three severe categories (Note the wide range in Significant Tornado category)
- Lower threshold for
 - Severe 10,000 m3/s3
 - Significant Hail/Wind 20,000 m3/s3
 - Significant Tornadoes 30,000 m3/s3

Low Level Thermodynamics

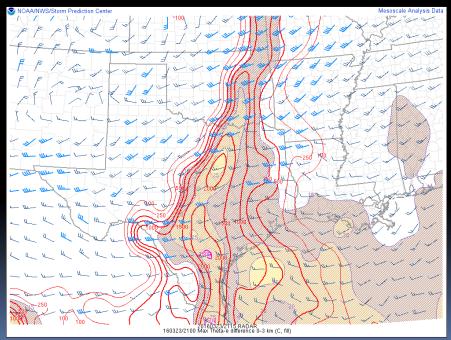
Lifting Condensation Level (LCL)


Level at which a lifted parcel becomes saturated and corresponds to cloud base height for forced ascent

- Higher LCLs → Lower BL humidity → More evaporative cooling → Stronger outflow
- LCLs around 500 meters lower with tornadic supercells than non-tornadic supercells
- LCL around 1000 meters upper threshold

Low Level Thermodynamics

Convective Inhibition (CINH)/ Mixed Layer CIN (MLCIN)



- The negative area that represents the amount of energy needed for a parcel to reach its LFC
- RB98 used surface based CIN while GT12 used CIN calculated from mixed layer for lowest 100 mbs
- Weaker inhibition involved with significant tornado cases
- Larger CIN associated with elevated storms/strongly forced storms

Low Level Thermodynamics

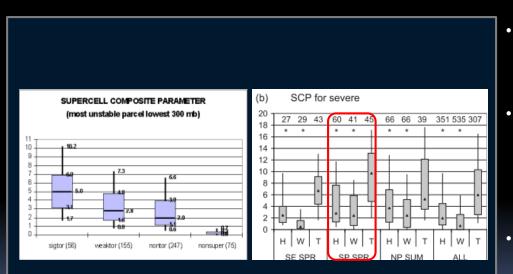
0-3 km Theta-E Differential with 0-3 km Bulk Shear

- SPC highlights area potentially favorable for QLCS mesovortex generation
- Need areas of substantial buoyancy along with line-normal bulk shear 30 knots or greater
- 0-3 km Theta-E differential is shaded for potential strength of the cold pool
- 0-3 km Theta-E differential values
 - 18-25 favorable
 - >25 very favorable

Supercell Composite Parameter (SCP)

SCP = (MUCAPE / 1000 J kg⁻¹) * (0-3 km SRH / 150 m² s⁻²) * (BRN denominator / 40 m² s⁻²)

Thompson, Edwards, Hart - SPC


SCP = (MUCAPE / 1000 J kg⁻¹) * (effective shear / 20 m s⁻¹) * (effective SRH / 50 m² s⁻²)

Thompson, Edwards, Mead - SPC

- Information about instability, shear, and helicity combined (MUCAPE/0-3 km SRH/BRN Shear)
- Each component was normalized to supercell threshold values based on previous studies
- Normalized values give SCP value of 1
- SCP modified to account for the effective storm layer using the EBWD for shear

Supercell Composite Parameter (SCP)

- SCP values commonly above 2 for supercells while much lower for ordinary storms
- Studies showed SCP significantly higher for tornadic supercells compared to non-tornadic supercells or weak tornadoes
- Threshold to distinguish the significant tornadoes from non-tornadic supercells around 5

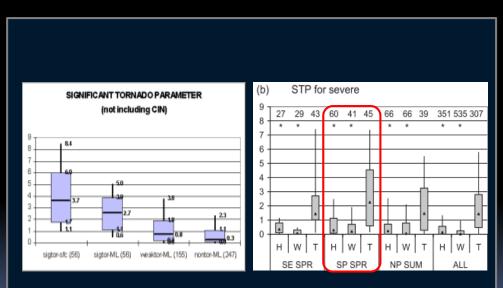
Thompson, Edwards, Hart - SPC

Grams, Thompson, et. al. - 2012

Significant Tornado Parameter (STP)

STP = (MLCAPE / 1000 J kg⁻¹) * (0-6 km vector shear / 20 m s⁻¹) * (0-1 km SRH / 100 m² s⁻²) * ((2000 - MLLCL) /1500 m) * ((150 - MLCIN) / 125 J kg⁻¹)

Thompson, Edwards, Hart - SPC


Sig Tor (CIN) = (MLCAPE / 1500 J/kg) * (ESRH / 150 m2/s2) * (EBWD / 12 m/s) * ((2000 - MLLCL) / 1000m) * ((MLCIN + 200) / 150 J/kg)

Thompson, Edwards, Mead - SPC

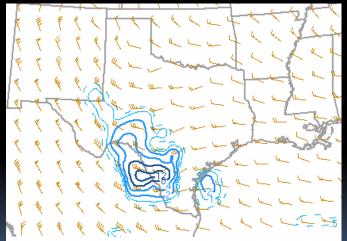
- Information about instability, shear, helicity, LCL, and inhibition combined
- MLCAPE/0-6 km Shear/0-1
 SRH/MLLCL/MLCIN
- Each component was normalized to significant tornado threshold values
- Normalized values give STP value of 1
- STP modified to account for the effective storm layer

Significant Tornado Parameter (STP)

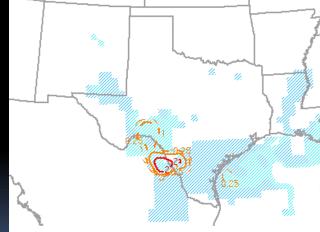
STP values commonly above 2 for tornadic supercells

•

- Studies showed STP significantly higher for tornadic supercells compared to non-tornadic supercells or weak tornadoes
- Threshold to distinguish the significant tornadoes from non-tornadic supercells around 1


Thompson, Edwards, Hart - SPC

Grams, Thompson, et. al. - 2012


SCP / STP

Severe Hail/Winds February 23rd, 2016

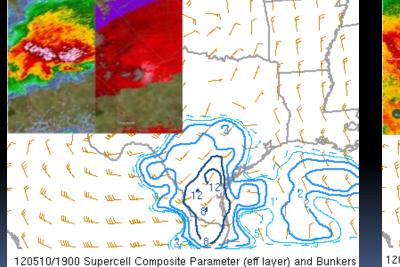
160223/0700 Supercell Composite Parameter (eff layer) and Bunkers storm

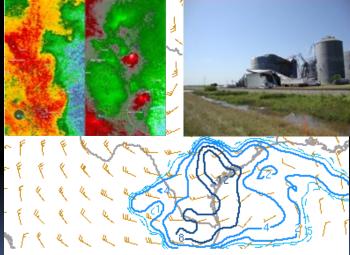
SCP from 2 to 8

160223/0700 Significant Tornado Parameter (eff layer) and MLCIN (J/kg,

STP below 0.5

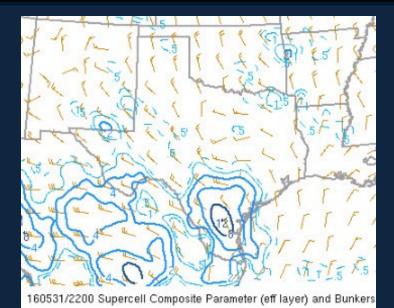
Significant Tornado Parameter


Tornado Outbreak May 10th, 2012



Supercell Composite Parameter

Tornado Outbreak May 10th, 2012


120511/0200 Supercell Composite Parameter (eff layer) and Bunkers

SCP 8-12 at 19 UTC 5/10/12

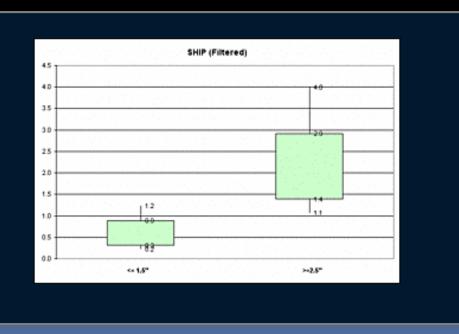
SCP 8-12 at 02 UTC 5/11/12

May 31st 2016 Kleberg County Tornadoes – SCP

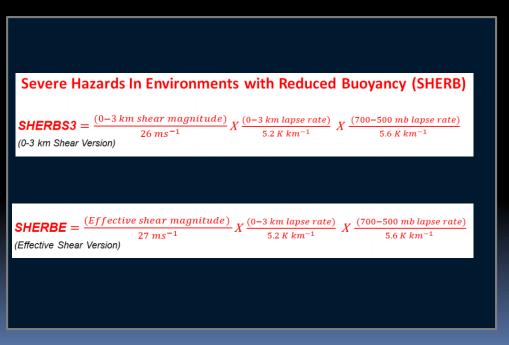

Mixed Layer CAPE ranged from 2500 to 3000 J/kg

 Effective Bulk Shear was 35 to 40 knots

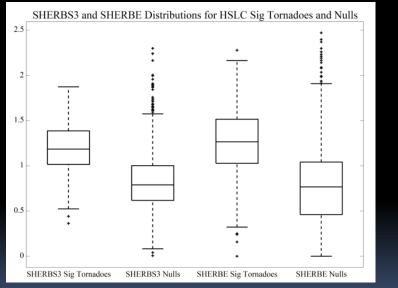
 SCP increased to 8 to 12 from Kleberg County into the Brush Country


May 31st 2016 Kleberg County Tornadoes- STP

- Deep moisture was over the region
- OOZ CRP sounding LCL was below 600 m for most unstable parcel
- Convective Inhibition was minimal
- STP Increased to above 2 west of Kingsville at 22Z

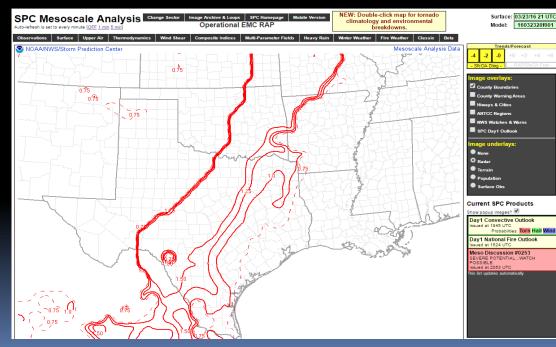

Significant Hail Parameter (SHIP)

- SHIP based on 5 parameters
 - MUCAPE
 - Mixing Ratio of MU parcel
 - 700-500 mb Lapse Rate
 - 500 mb Temperature
 - 0-6 km Shear
- Delineate between large hail (2" or greater) and hail below
 2" diameter
- Threshold to distinguish for significant hail was slightly greater than 1
- Values typically 1.5-2 when significant hail reported


Severe Hazards in Environments w/ Reduced Buoyancy (SHERB)

- Developed with the idea of improving the forecast of tornadoes in high shear/low CAPE environments
- Examine potential to discriminate between tornadic and non-tornadic meso-vortices with QLCS
- High shear in the 0-6 km layer defined as greater than or equal to 35 knots
- Low CAPE (sfc-based) less than or equal to 500 J/kg

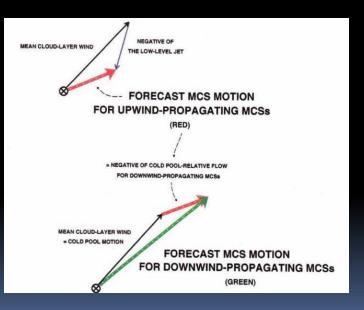
Severe Hazards in Environments w/ Reduced Buoyancy (SHERB)



Improving the Forecasting of High Shear, Low CAPE Severe Weather Environments by K. Sherburn and J. Davis (WDTB Webinar)

- SHERBS3 and SHERBE are optimized for HSLC events at a value of 1
- SHERBS3 is the better
 parameter for HSLC events
 especially when LCL is low
- About 50% HSLC significant severe reports and 75 % of significant tornadoes with SHERBS3/E greater than 1
- 25% of nulls occurred with SHERBS3/E greater than 1

Severe Hazards in Environments w/ Reduced Buoyancy (SHERB)


SHERBE is under the Beta tab on SPC Meso-Analysis Page

SHERBS3 is also available in the AWIPS2 Volume Browser under Misc Field

Forecasting MCS Motion

Corfidi Vectors

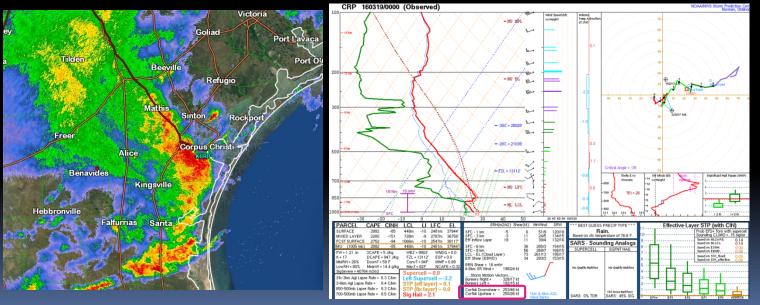
Upwind Propagating MCSs

- Mean cloud layer + negative of low level jet = upwind propagation vector
- Favored along quasi-stationary (mean flow parallel) portions of gust front
- Environment with moist conditions through the low to mid levels

Downwind Propagating MCSs

- Mean cloud layer + upwind propagation vector = downwind propagation vector
- Favored on progressive (mean flow perpendicular) portions of gust front
- Environment comparatively drier at mid levels or sub-cloud layer

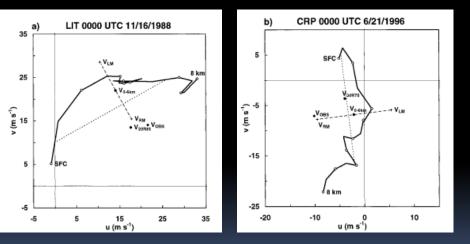
"Cold Pools and MCS Propagation : Forecasting the Motion of Downwind-Developing MCSs" by S. Corfidi (Dec. 2003, W & F)



Forecasting MCS Motion

Corfidi Vectors

Severe Winds March 18th, 2016


Downwind Propagating MCS

Forecasting Supercell Motion

Bunkers Storm Motion

"Predicting Supercell Motion Using a New Hodograph Technique" by M. Bunkers, et al. (Feb. 2000, Weather & Forecasting)

- Similar results to 30 degrees right and 75% of mean wind speed for southwest flow aloft
- Better results in less common flow regimes
- 1) Plot 0-6 km mean wind
- 2) Plot shear vector from 0-500 m AGL mean wind to 5500-6000 m AGL mean wind
- Draw line perpendicular to the shear vector and passes through the mean wind
- 4) Right-moving supercell 7.5 m/s to the right the mean wind along the orthogonal line
- 5) Vice versa for left moving supercell

Parameter Thresholds

Most Valuable Parameters to Distinguish Environments

Ordinary vs. Supercell

Non-tornadic Supercell vs. Tornadic

- BL-6 km Shear 35-40 knots
- Effective Bulk Shear 30-40 knots
- Storm Relative Helicity (0-3 km) 100 m2/s2
- CAPE 1100 J/kg
- Supercell Composite Parameter 2

<u>Null</u>

- CAPE lowest 3 km above LFC
- Downdraft CAPE
- BRN

- BL-6 km Shear 45-60 knots
- 0-1 km Shear 20 knots
- Storm Relative Helicity (0-1 km) 80 m2/s2
- CAPE below 3 km AGL 55 J/kg
- Energy-Helicity Index (0-3 km) 1.5
- Energy-Helicity Index (0-1km) 0.5
- Vorticity Generation Parameter ->0.25 m/s2
- Lifting Condensation Level 1000 m
- Supercell Composite Parameter 5
- Significant Tornado Parameter -- 1