Severe Weather Warning Techniques

Michael Buchanan

Science and Operations Officer National Weather Service Corpus Christi, Texas

Severe Hail

Severe Hail Indicators

- Donavon Technique
- MRMS Products:
 - MESH
 - Reflectivity at -20 °C (60 dBZ)
- TBSS
- Dual-Pol Products
- Storm-Top Divergence
- WER/BWER
- Lemon Technique

Donavon Technique

• A proxy for updraft strength and 1"+ hail development.

 Relationship between the Melting Level (ML) and the height of the 50 dBZ echo.

• The Higher the ML, the Higher the 50 dBZ echo height needs to be.

Donavon 2010 (Updated for 1" hail) Previous research in 2007 focused on ¾" hail

Donavon (2010) Hail Criteria

	0.75" in Critorian	1 in Critorian	1 75 in Critorion
• <u>MDepth(AGL)</u>		<u>1 in Criterion</u>	<u>1.75 in Criterion</u>
•6000 ft	15176 ft	17116 ft	19800 ft
•6500 ft	16000 ft	17850 ft	20907 ft
•7000 ft	16903 ft	18666 ft	22272 ft
•7500 ft	17900 ft	19563 ft	23663 ft
•8000 ft	18916 ft	20542 ft	25077 ft
•8500 ft	19980 ft	21602 ft	26516 ft
•9000 ft	21214 ft	22745 ft	27979 ft
•9500 ft	22580 ft	23969 ft	29465 ft
•10000 ft	23798 ft	25274 ft	30976 ft
•10500 ft	25180 ft	26661 ft	32511 ft
•11000 ft	26667 ft	28130 ft	34070 ft
•11500 ft	28020 ft	29680 ft	35654 ft
•12000 ft	29821 ft	31312 ft	37261 ft
•12500 ft	31500 ft	33025 ft	38893 ft
•13000 ft	33261 ft	34820 ft	40549 ft
•13500 ft	35000 ft	36697 ft	42229 ft
•14000 ft	36987 ft	38665 ft	43933 ft
•14500 ft	39000 ft	40695 ft	45661 ft
•15000 ft	40998 ft	42819 ft	47413 ft

Cavanaugh & Schultz (2012) Hail Criteria

Donavon values

• Heights generally higher than the Donavon study.

	50 dBZ height					
Melting Leve	e <mark>l 2</mark>	25th Percentile	10th Percentile			
6500	17850	22000	21600			
7000	18666	23000	22300			
7500	19563	24000	23000			
8000	20542	24900	23700			
8500	21602	25900	24400			
9000	22745	26900	25100			
9500	23969	27900	25800			
10000	25274	28800	26600			
10500	26661		27300			
11000	28130		29800			
11	29680		30600			
.00	31312	00000	31500			
12500	33025	01000	32400			
13000	34820	00000	33300			
13500	36697	00000	34200			
14000	38665	0/000	35000			
14500	40695	38800	35900			
Max dBZ at -20	°C M	ax dBZ at -20°C	Max dBZ at -20°C			
Mean dBZ: 63	3 25	oth Percentile: 60	10th Percentile: 56			

One step further...

• Calculate the difference between the actual 50 dBZ echo height and the 50 dBZ echo height needed to produce 1" hail.

• Use MRMS 50 dBZ echo height for the actual height.

- MRMS 50 dBZ echo height Donavon 50 dBZ echo height =
 Positive values indicate 1"+ hail likely.
 - Negative values indicate the Donavon criteria not met.

2 AWIPS Fields Required to Perform this Subtraction

MRMS 50-dBZ Echo Tops for Donavon

- Baseline is 0.00 kft.
- Original MRMS 50 dBZ echo height Baseline is "No Data".

• 50 dBZ Hgt for 1 in. Svr Hail for MRMS

- Units are in kft.
- Original 50 dBZ Hgt for 1 in. Svr Hail is in feet.

May 31, 2016 Baseball Size Hail in Ricardo: Hail Parameters will not always line up perfectly.

Maximum Estimated Size of Hail (MESH)

MESH

• Largest hailstone possible.

- Underestimate with:
 - Highly-tilted storms
 - Left-moving Supercells
 - Large BWER (shows up as a MESH hole)
 - Low density, dry hailstones

MESH Tracks

- Assess storm intensity trends.
- Assess storm motion.
 - Deviant motion

60 dBZ Reflectivity at the -20 °C level

- Favored Hail Growth Zone (-10°C to -30°C).
- Great indicator of 1"+ hail.
 Usually Golfball or larger.
- Z ≥ 60 dBZ at any level or 50 dBZ at -20°C suggests hail of any size.

Three-Body Scatter Spike (TBSS)

- Mie Scattering produces TBSS.
- Z < 25 dBZ; CC < 0.5; ZDR extreme positive transitioning to lower positive or negative.
- Presence of Severe Hail is likely.
- If Z ≥ 5 dBZ, then Golfball size or larger hail is present.
 - "Pronounced TBSS"

Correlation Coefficient (CC)

- A measure of uniformity among horizontal and vertical pulses.
- Most consistent indicator of hail near the surface.
- $0.70 \ge CC \le 0.97$ for hail.
 - CC < 0.85-0.90 equates to larger than golfball size.

Beware of Non-Uniform Beam Filling!

Differential Reflectivity (ZDR)

• Difference between horizontal and vertical reflectivity factors $(ZDR = Z_H - Z_V)$.

Major Axis Diameter (mm)	Image	ZDR (dB)
< 0.3 mm		~ 0.0 dB
1.35 mm	e	~ 1.3 dB
1.75 mm	ø	~1.9 dB
2.65 mm	Ð	~2.8 dB
2.90 mm	0	~3.3 dB
3.68 mm	0	~4.1 dB
4.00 mm	0	~4.5 dB

Differential Reflectivity (ZDR)

- ZDR -0.5 to 1.5 dB due to tumbling motion of hail.
- ZDR ~ 0 dB along with high Z means hail is occurring.
- ZDR ≤ 0 dB along with high Z and CC < 0.85-0.9 means > 2" hail.

Specific Differential Phase (KDP)

- Change in Differential Phase Shift (Φ_{DP}).
 - $-\Phi_{DP}$ is the difference between horizontal and vertical 2-way propagation phase shifts.

 $\Phi_{\rm DP} = \Phi_{\rm H} - \Phi_{\rm V}$

Specific Differential Phase (KDP)

- Can vary significantly.
 - Dry Hail, KDP < 1 °/km</p>
 - Hail mixed with Rain, KDP > 0.5 °/km
 - Melting Hail, KDP > 1.5-3 °/km

KDP not computed when CC < 0.90.
 Good indicator of golfball or larger hail.

"Classic" Hail (1-1.75") Mixed with Rain Dual-Pol Signature

- Z > 55 dBZ
- ZDR ~ 1-2 dB
 - Lower with pure hail.
- CC ~ 0.93 0.97
 - Higher with pure hail.
- KDP > 0.5 °/km

Can be lower with pure hail.

Significant (≥ 2") Hail Dual-Pol Signature

- Z > 55 dBZ
- ZDR ~ 0 dB or lower
- CC < 0.90
- KDP not computed

Storm-Top Divergence: | V_{inbound} | + | V_{outbound} | at storm summit

Witt and Nelson 1991 Study

- $\Delta V = 100$ kts : 50% chance of $\frac{1}{4}$ " hail $\Delta V = 100$ kts : ~Golfball size hail \bullet
- $\Delta V = 130$ kts : 50% chance of golfball hail $\Delta V = 117-171$ kts : 4" size hail \bullet
- $\Delta V = 200$ kts : 50% chance of baseball hail

Blair et al. 2011 Study

WDTD Recommended Storm-Top Divergence Severe Hail Warning Criteria

Storm-Top Divergence

Peak ∆V(kts)	Max Hail Size (in.)
70-102	Quarter (1")
103-134	Ping Pong (1 1/2")
115-147	Golf ball (1 ¾")
130-162	Hen Egg/Lime (2")
159-192	Tennis Ball (2 ½")
174-207	Baseball (2 ¾")
233-267	Grapefruit (4")

WER/BWER

- Region above WER/BWER is an area of rapid hail growth.
- Wide persistent WER/BWER enhances hailstone growth.
- If BWER present, then high likelihood of ≥ 2" hail.

Mesocyclone

- Strong, persistent mesocyclone can be an indicator of severe hail.
- Supercells produce a high percentage of ≥ 2" hail.
- Supercells produce most $\geq 4''$ hail.

Left-movers can be prolific hail producers.

Lemon Technique for SVR Issuance

- 1). 50+ dBZ echo at 27+ kft AGL.
- In the absence of #1, then ALL must occur:
 - Z ≥ 46 dBZ 16-39 kft AGL.

- WER extending ≥ 3.2 nm beyond the outer-edge of the low-level Z echo.
- Highest echo top located on the storm flank possessing the overhang AND be above the low-level Z gradient between the echo core and echo edge or lie above the overhang itself.

Severe Wind

Severe Wind Indicators

- Bowing segment/line
 - Rear Inflow Notch (RIN)
 - Bookend Vortices
- WER/BWER
- "MARC" signature
- Descending core

• Diverging winds near the surface

Multicell/Linear (Squall Line) Conceptual Model

Houze et al. 1989

Quasi-Linear Convective System (QLCS) Structure

Balanced Cold Pool and Shear

- "Slab-like" lifting.
 - Deepest convection

Damaging winds will be the strongest.

• Mesovortices very possible.

• Maintains itself longer.

Other aspects of a severe bow echo

- Strong Z gradient along leading edge.
 Location A
- Gust front speed matches system speed.
 Location A
- Stronger winds at Location A.
- Cold pool and shear are in balance at Location A.

Shear-dominant

- More discreet cells possible.
 - Possible supercells

Damaging winds possible.

• Mesovortices possible.

Cold-pool dominant

• More broken convection.

• Gust front outruns convection.

• Damaging wind possible but not as intense.

• Mesovortices much less likely.

Bowing Segment or Line (Bow Echo, LEWP)

June 2, 2010 Double Squall Lines – 80-90 mph winds across Corpus Christi

Severe Bow Echo (Top 5 Severe Wind Event for Corpus Christi Int'l Airport)

Goliad Port Lavaca liden Port O Beeville Refugio Mathis Sinton Rock Corpus Christi Benavides Kingsville Hebbronville Falfurrias Sarita

Bow Echo March 18-19, 2016

Rear-Inflow Notch (Widespread 55-70kts)

Rear Inflow Notch & Bookend Vortices

- RIN indicates the location of the RIJ.
 - "Evaporatively cooled" from dry air aloft.
 - Increased negative buoyancy.
 - Multiple RINs possible with larger systems.
 - Greater potential for strong winds.
- Presence of Bookend Vortices can enhance the RIJ.
 - Potential for stronger winds.

WER/BWER

- Can sometimes occur with mature systems when deep shear is present.
- Enhanced potential for damaging winds.
- Usually a tight low level Z gradient present.

WER just north of Bow Echo Apex – March 19,2016 Effective Bulk Shear 40-50 kts

Mid-Altitude Radial Convergence (MARC) Signature

 Precursor to descent of Rear Inflow Jet.

Persistent convergence > 50 kts at 3-7 km AGL.

MARC Signature from KCCX on 2030 UTC 27 May 2012

MARC Signature from January 9, 2011 QLCS

MARC Signature from March 18, 2016 Bow Echo

MARC Signature from Feb 20, 2017 QLCS

Descending Core – Single Cell

- Negative buoyancy due to:
 - Precipitation loading
 - Evaporative cooling
 - 0-3km layer $\Delta \theta_e > 25 \text{ °C}$
 - Maximum $\Delta \theta_e > 20 30$ °K
 - Melting/Sublimation

Vertical Extent of DRC with MAB-a 12 10 8 Height (km) Minimum 4 ---Maximum 2 Ο ٥ 23:58:13 23:56:08 23:51:10 23:41:35 23:A2:35 23:43:35 23:44:31 23:45:39 23:46:42 23:48:48 23:51:56 23:52:59 23:59:16 23:40:36 23:47:45 23:50:53 23:49:51 59 13:54:02 13:55:05 Time (UTC)

Evolution of the 65 dBZ isosurface associated with the severe downburst. The red line shows the maximum height (MSL) of the 65 dBZ isosurface, while the blue line shows the minimum height. X marks the initial sampling time of the near surface divergent signature, while the O marks the sampling time of the maximum base velocity (0002 UTC). Kuster et al. (2014)

Diverging Near-Surface Winds

- Downburst/Microburst spreading out as it encounters the surface.
- Little to no lead time.

70+ mph east of Petronila – 4/22/15

Rear Flank Downdraft from a Supercell

67 mph wind gust at KCRP on 3/6/08

NEXRAD LEVEL-III BASE VELOCITY KCRP - CORP CHRISTI, TX 03/06/2008 19:37:28 GMT LAT: 27/47/02 N LON: 97/30/39 W ELEV: 142 FT MODE/VCP: A / 12

ELEV ANGLE: 1.30 ° MAX NEG: -109 KT MAX POS: 84 KT

Legend: KT (Category)

RF (15) + 64 (14) + 50 (13) + 36 (12) + 26 (11) + 20 (10) + 10 (9) 0 (8) - 1 (7) - 10 (6) - 20 (5) - 26 (4)

"Wake Low" Severe Winds

- Two main theories:
 - Adiabatic Warming/Drying due to Subsidence.
 - Gravity Wave Formation.
- Maximized on trailing edge of stratiform pcpn.
- Falling pressures produce the strong winds.
 Usually 35-50 mph winds.
 - Can reach severe levels.

Coastal Bend "Wake Low" High Wind Event – April 24, 2015

61 mph wind gust at KCRP

KCRP Z at 505 AM showing rapid drying

KCRP V at 446 AM showing 60-70 mph winds just above the surface

Sinton

Gregory

Portland

Corpus Christi

90 mph winds several hundred feet above the surface at the peak of this event!

Pressure falls 5-7 mbs.

Tornado

Tornado Indicators

- TVS/TS
- TDS
- Hook Echo/BWER
- QLCS Mesovortices
- Bookend Vortices
- Tropical Cyclone Tornadoes

Corpus Christi EF-2 Tornado on October 24, 2002

Low Level Rotational Velocity (LLRV)

$$V_{rot} = (|V_{in[max]}| + |V_{out[max]}|) / 2$$

To determine rotational velocity, add the absolute value of the highest inbound and outbound velocity values in the couplet, and then divide by 2.

Mesocyclone Criteria

- Core diameter typically < 5 nm.
- LLRV exceeds minimal mesocyclone strength.
- Persistence > 10 min.

Mesocyclone Evolution

Mesocyclone Lifecycle

- Starts in mid levels.
- At Mature Stage:
 - Low-level convergence
 - Mid-level pure rotation
 - Upper-level divergence

Tornadic Vortex Signature (TVS)

Tornado Signature (TS)

kddc 0.5 Reflectivity (dEZ) 8bit Sat 00:53Z 24-May-08

kddc 0.5 Storm Rel Vel 8bit (kts)

Sat 00:53Z 24-May-08

MRMS Rotation Tracks (0-2km, 3-6km AGL)

- Azimuthal Shear
- Intensity and Coverage Trends
- Great for detecting supercells.
- Detect smaller-scale circulations such as mesovortices.

• Great for damage surveys.

Tornado Impact-Based Warnings (IBW)

Peak 0.5° LLRV vs. EF-Scale

for \leq 10k ft within 101 mile radius

Smith et. al. 2015

First, Identify a valid velocity circulation

Is the CC below 0.90?

Collocated Z above 20 dBZ?

adds confidence

Tornadic Debris Signature (TDS)

- Identify a valid velocity circulation.
- CC < 0.90 collocated with the circulation.
- Sufficient reflectivity > 35 dbZ collocated.
- ZDR near 0 or below.

Entremont et. al.

TDS Height vs. Tornado Intensity

Entremont et. al.

Lemon Technique for Tornado Warning: BWER and Hook Echo

QLCS Mesovortex Tornadoes and the 3 Ingredients Method

1.) Locate the Balanced or Slightly Shear Dominant section of the QLCS.

- Define the Updraft Downdraft Convergence Zone (UDCZ)
 - Coincident with gust front.

Schaumann and Przybylinski 2012

2.) Find Line-Normal 0-3 km Bulk Shear ≥ 30 kts

• Important in the creation of horizontal shear vorticity.

Schaumann and Przybylinski 2012

NSEA Digital Cursor Readouts Tool

NSEA

NSEA Local AWIPS App (RAP/LAPS)

3.) Look for Surges or Bows in the Line

- A RIJ or enhanced outflow are likely candidates to cause a surge or bowing.
- Use both SRM and V.
- When all 3 items are colocated, there is an increased likelihood of tornadoproducing mesovortices.

Schaumann and Przybylinski 2012

Jan 9, 2011 EF-1 Mesovortex Tornado: First ever Torndao recorded in January!

May 15, 2015 Multiple EF-0 Tornadoes: Gregory and Flour Bluff

1805Z

1810Z

May 24, 2015 Brief EF-1 Tornado: Downtown Corpus Christi

May 10, 2012 Multiple Tornadoes (Not all pictured)

Waterspout over Aransas Bay: Feb 14, 2017 ~800 AM

March 29, 2018 Seadrift EF-1 Tornado

March 29, 2018 Holiday Beach EF-0 Tornado

March 29, 2018 Woodsboro EF-0 Tornado

EF-0 Mesovortex Tornado: Twiggs County, Georgia on 1/21/17

EF-1 Mesovortex Tornado: Bleckley County, Georgia on 1/21/17

Mesovortex Tornado: Fort Bend County TX 2/14/17

Fort Bend County Tornadic Mesovortex

SRM at 1419Z

V at 1421Z

Local & Regional Civic Warmings Local & Regional Civic Warmings Local & Regional Civic Warmings Local & Regional SVR Warmings

20

-100

-0+

45

oling-Iago

Eàst

"Broken-S" Signature

- QLCS Mesovortex
- Mostly Cool Season
- High shear/Low Cape
- Mainly Southeast U.S.

Broken "S" Mesovortex Tornado: Monroe County, Georgia on 1/21/17 ~Noon

Bookend Vortex Tornado

Bookend Vortex Tornado: Natchez MS, 5/8/1995

Tropical Cyclone Tornado Techniques

Tropical Cyclone Center-Relative Plots of Tornadoes

- A) All Tropical Cyclones
- B) Hurricanes
- C) Tropical Storms
- D) Tropical Depressions, Remnant Lows, and TC remnants.

Events plotted with respect to north-relative azimuth. Reference frame is with respect to north.

Radar Recommendations

• VCPs 12 or 212.

• Look at both V and SRM.

 Modify default storm motion given the varying motions around the center of the storm.

- Comparison of KDP and ZDR.
 - "Sorting"

Tropical Cyclone Tornado Guidance (WDTB, 2014)

Range from Radar	LL V _{rot}	LL Shear	Circulation Contracting	Inflow Notch or Hook	ZDR/KDP Displacement	Mesocyclonic VES
0-39 nm	20+ kts	≥ 0.01 s ⁻¹	~	~	🖌 < 1	of 2 🔿 🗸
40-70 nm	15+ kts	X	<	X	🖌 🔶 1	of 2 🔸 🗸
>70 nm	12+ kts	X	×	×	×	×

Identifying Mesocyclonic VES

"Velocity Enhancement Signature" – enhanced radial velocities of <u>30+ knots</u> between 7,000 and 14,000 feet AGL on the right flank of a mesocyclone

- Occurs when storm motion deviates from mean flow, leading to an asymmetric mesocyclone velocity pattern.
- Located above low-level inflow and vertically co-located with the lowlevel mesocyclone and hook signature.
- WDTB analysis showed about 85% of tornadic events had this signature while about 42% of non-tornadic events did.
- Max values generally 1-4 volume scans before the tornado.

Horizontal Displacement of ZDR/KDP

- Implies size sorting of hydrometeors from increased directional shear within the storm due to strong mesocyclone development.
- Maximum KDP values displaced left of the maximum ZDR values relative to the mean storm motion.
- · Can be detected in storms greater than 40 nm from radar.

Most occur in right

front quadrant of

the TC and within

300mi of center.

80% occur from

350° to 120°

 WDTB analysis: 70% of tornadic events had this signature while about 58% of non-tornadic events did.

> J. S. TOTALS OF TC TORNADOE BY TIME OF DAY, 1995-2010

> > 111

Mid-afternoon

peak (19-21Z).

TC peak. More

than non-TC.

earlier than non-

nighttime events

INGREDIENTS

- · 200mb jet streak NE of cyclone
- Organized, large, directionally
- symmetric wind field at 850mb • Reduced RH at 700-500mb
- · Baroclinic boundaries.

- Mid-level RH should not be too dry, limiting convection
- 0-1km SRH generally above 170 m²/s² (supercell tors).
- 25th and 75th %-ile MLCAPE is 320 and 870 j/kg (supercell)

Produced by Alex Lamers, NWS TLH

Tropical Storm Debby – June 25, 2012 0004Z EF-2 Tornado in Polk County east of Tampa Bay

Hurricane Emily's 13 Tornadoes – July 20, 2005

2 of Hurricane Emily's Tornadoes

EF-1: 8 miles N of Alice – 1621ZEF-0: 3 miles SW of Anna Rose – 1542ZLLRV ~ 40 ktsLLRV ~ 22 kts

Side Lobe Contamination

Side Lobe

- Side lobes are small amounts of radiation that emanate from the radar.
- This weak signal is often masked by the returned energy from the main lobe.
- However, there are times when the energy returned from the side lobe can be larger than the main lobe.

• This is called "side lobe contamination".

Side Lobe

- In tilted storms:
 - Side lobe can interact with the higher core aloft.
 - Main lobe can interact with the reflectivity-free area beneath the overhang.
- If the difference exceeds 54 dB, then velocity data from side lobe gets incorrectly mapped to the lower elevation of the main lobe.

Side Lobe

• False low level couplet, displaced by several miles to the SE of the low level reflectivity.

• Spectrum width values \geq 16 kts can be helpful in diagnosing.

• Low CC values and inconsistent ZDR values may also be helpful.

Radar and Forecast Aids Sections: SOO webpage

All Hazards Decision Chart

Using Radar to Estimate Hail Size

All Hazards Decision Chart

Tornado	Severe Hail	Severe Wind	Flash Flood
Mesocyclonic		Individual Cell Downbursts	Individual Cell
Near Storm Environment Effective Bulk Wind Difference (EBWD) > 40 kt, effective SRH >150 m ² s ² , MLLCL < 1000 m, MLCAPE > 1500 J/kg, MLCIN < 50 J/kg within lasthour	Near Storm Environment: 0-6 km Bulk Wind Difference (BWD) \geq 27 kt, MUCAPE \geq 2000 J/kg, 700-500 mb lapse rate $>$ 8.5°C/km, Depth of hail growth zone (-10° to -30C°) (THK ₁₆₂₂) \geq 2700 m, Sfc to Equilibrium Level (EL) Bulk Shear (Shear _{EL}) \geq 58 kt, Direction diff between winds at the EL & in 3-6 km layer (GRW _{00FEL}) \geq 15°, Direction diff between storm-relative wind in 3-6 km and 0-1 km layers (SNeare) \geq 90°	Near Storm Environment: Wet Microburst: 0-3 km max $\Delta \delta_{s} > 25^{\circ}$ C, DCAPE > 1250 J/kg, SBCAPE > 1000 J/kg, 0-3 km laps rate > 7°C/km, MLLCL > 1000 Dry Microburst: Inverted-V sounding (midlevel based), MUCAPE > 0 J/kg, MLLCL height> metting level, weak 0-6 km shear, weak boundary layer winds, 0-3 km laps rates ~ dry or superadiabatic Storm Characteristics: Strong elevated precip core	Near Storm Environment: High PW & RH (>70%) in convective layer, warm doudlayer > 10 kft, weak convective-layer wind < 10 kt Storm Characteristics: Slow motion < 10 kt, Z > 50-60 dBZ (45-55 dBZ trop. env), low echo centroid, CC > 0.96, ZDR $= 2-500$ dB (0.5-3.0 dB trop. env), KDP > 1%m
Storm Characteristics: Supercell, strengthening		rapidly forms, descending core bottom, MARC (0°C to	Multicell
updraft, acceleration & convergence into a strong low-level meso, TVS. TDS means tornado is likely		LCL) $\Delta V > 15$ kt, wet hall signature (TBSS, CC ~ 0.93-0.96, KDP > 3°C/km), low-level V > 30 kt within 20 nm of radar, fast storm motion Note. Beware of low 2 cells whigh LCLs at 0 \odot and/or strong wind in mixing layer.	Near Storm Environment: High PW & RH (>70%) in convective layer, LLI transporting high moisture, slow MBE motion, slow (<15 kt) motion of forcing mechanism, upwind instability Storm Characteristics: Intra-storm seeding, collisions; slow motion; training / backward propagation <15 kt, leading, parallel, or adjoining stratform MCS
occurring		Rear Flank Downdraft (RFD)	
Non-mesocyclonic Near Storm Environment: 0-1 km lapse rate > 9°C/km, 0-3 km MLCAPE > 100 J/kg, MLCIN < 25 J/kg, sionificant surface vertical	Storm Characteristics:	Near Storm Environment: 0-6 km shear ≥ 30 kt, low LCL, large CAPE, steep sub-cloud adiabatic lapse rate	
	\ge <u>1</u> ⁺ : Strong updraft, WER, 50 dBZ thickness above the melting level ≥ 16 kt, Z ≥ 60 dBZ C = 0.93-0.97, storm-top divergence (STD) ΔV > 70-102 kt, TBSS, MESH > 1 ⁺	Storm Characteristics: Meso w/MDA rank5+ (Vr > 30 k/), developing large hook echo (>50 dB2), DCZ > 10 kft (> 15-20 kft optimal), fast motion	
vorticity associated with a slow moving wind shear boundary.		MCSs/Horizontally-Driven Wind Near Storm Environment: Widespread lift, DCAPE >	drainage, saturated soil (recent rain, snowmelt, etc.), sloping terrain (mtns, canyons, hills, etc.)
Storm Characteristics: Lookfor strong, rapidly growing updrafts via development of reflectivity core at -10° C, TVS. TDS means tornado is likely occurring	MESR ≥ 1 ≥2": Supercell, BWER, updraft lasts > 10 min, 60 dBZ above -20°C, 50 dBZ above the EL, CC = 0.7-0.9, ZDR ≈ 0 dB, STD ΔV > 130- 162 kt, MESH ≥ 2" ≥4": Updraft lasts > 20 min, STD ΔV > 233-267 kt	980 J/kg, 0-6 km mean wind > 16 kt, MUCAPE > 2000 J/kg, 0-6 km bulk wind difference > 20 kt. Storm Characteristics: Strong leading 2 gradient, bow echo, Rear Inflow Jet (RU), MARC AV > 50 kts at 3-5 km AGL, Deep Convergence Zone (DC2) > 10 ktt (> 15-20 kt is optimal), gustfront speed matches system speed, linear WER along leading edge, fast storm motion Mote: A mesovortex w/RU produces strongest wind.	Precipitation Accumulation Does rainfall meetflash flood thresholds? 1. Pick your optimal precip source: Dual-Pol, legacy DHR, HPE, Bias HPE, MRMS a. Assess radar QPE biases b. Compare QPE with observations 2. Use FFMP for decision making a. Ratio > 100%, diff > 0° b. Looka 1-3.3. and 6-hour durations

Version FY17.1

Radar Estimated Hail Type/Size

Storm-Top	Divergence	DUAL-POL RADAR HAIL SIGNATURES				
Peak ∆V(kts)	Max Hail Size (in.)		<u>Z</u> :	ZDR:		
70-102	Quarter (1")		45-59 dBZ = Hail poss ≥60 dBZ = Hail likely	-0.3 to 1 dB ≈ Dry or large hail > 1 dB ≈ More liquid		
103-134	Ping Pong (1 1/2")		<u>CC</u> :	KDP:		
115-147	Golf ball (1 ¾")		0.93 - 0.97 ≈ 1-2" hail 0.70 - 0.90 ≈ <u>></u> 2" hail	<1º/km ≈ Mostly dry hail >3º/km ≈ Rain/hail combo or melting hail		
130-162	Hen Egg/Lime (2")					
159-192	Tennis Ball (2 ½")	Hail Event Type	Signature			
174-207	Baseball (2 ¾")	Severe Hail	Z > 55 dBZ	ZDR < 1 dB		
233-267	Grapefruit (4")	(with little rain)				
		(,	CC ≈ 0.95-0.97	KDP < 1°/km		
TBSS <u>></u> 0.8″ Hail*		Severe Hail Mixed	Z > 55 dBZ	ZDR ≈ 1-2 dB		
		w/Rain	CC ~0.93-0.96	KDP > 0.5°/km		
V CC KOP		Sub-Severe Dry Hail	Z ≈ 45-55 dBZ	ZDR ≈ 0 dB		
			CC > 0.98	KDP ≈ 0°/km		
		Sub-Severe Melting	Z > 55 dBZ	ZDR > 2 dB		
		Hail	CC ≈ 0.92-0.96	KDP > 4-5°/km		
		Significant (≥2") Hail	Z > 55 dBZ (>45 dBZ)	ZDR \approx 0 dB or lower		
			CC < 0.9 (possibly 0.7)	KDP not displayed		

*Valid for S-band radar only

The End

NEXRAD LEVEL-II KCRP - CORP CHRISTI, TX 05/08/2005 21:03:55 GMT LAT: 27/47/02 N LON: 97/30/39 W ELEV: 45 FT VCP: 12 REFLECTIVITY ELEV ANGLE: 0.49 Legend: dBZ 70 65 55 40 35 20 15 10 5 0 -5 -10 -15 -20 -25 RF

