MÉTÉO-FRANCE STATUS RECENT OPERATIONAL CHANGES AND SHORT TERM PLANS

26TH NAEDEX AND 14TH APSDEU DATA EXCHANGE MEETINGS

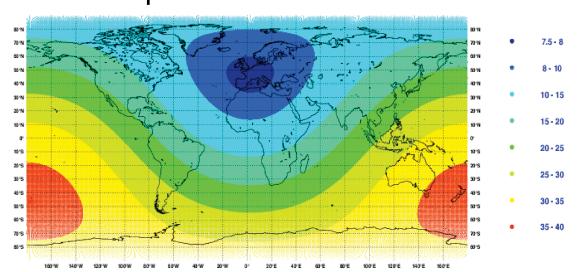
MONTRÉAL (CANADA) – 6 OCTOBER 2015

Outline

- Computing platform
- Model configurations
- Use of observations
- Recent operational changes
- Ongoing developments and future plans

Recent changes at Météo-France

- New HPC computers at Météo-France since mid-2013 : **BULLX 710DLC**
- Two clusters (research and operations)
- About 50 000 Intel processors (Ivy Bridge) 1 Pflops (peak peformance)

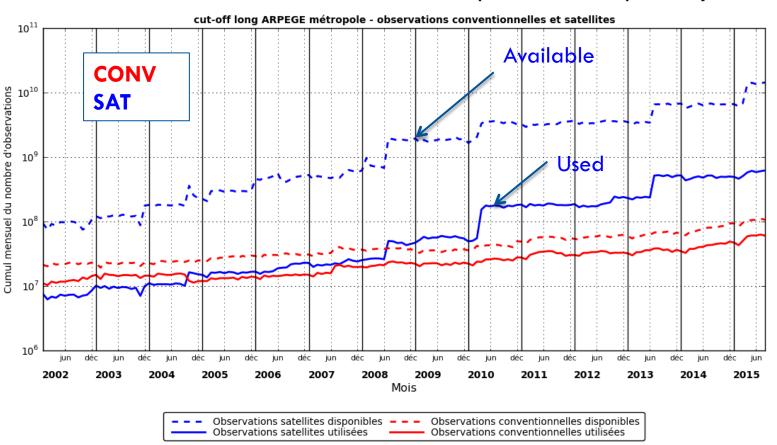

14 January 2014: Migration of the Numerical Weather Prediction (NWP) suites on the new HPC

13 April 2015: Significant upgrade of the NWP suites: increases in horizontal and vertical resolutions of the models + changes to the data assimilation systems + more observations

Global model ARPEGE

Spectral model with variable resolution : $T_L 1198c2.2L105$ (resolution from 7.5 km to 36 km, 105 levels from 10 m to 0.1 hPa) Forecasts up to 104 hours

Previous configuration: $T_L798c2.4L70$ 4D-Var 1 hour time slots Minimisation (25/25) EDA: 6 members


4D-Var assimilation (6-h window and 30 min time-slots):

- 2 loops of minimization: $T_L 149c1L105$ (40 iterations) + $T_L 399c1L105$ (40 iterations)
- Background error variances and correlation lengths from an Ensemble Data Assimilation system (4D-Var at lower resolution: T₁479/T₁149) with 25 members

Observations in ARPEGE 4D-Var

Evolution des cumuls mensuels de nombre d'observations disponibles et utilisées pour l'analyse

Sounding radiance usage

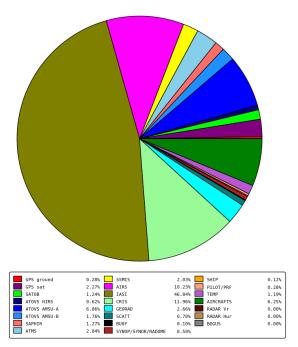
Satellite	HIRS	AMSU-A ATMS	AMSU-B/MHS ATMS	AIRS/IASI/ CriS
NOAA15	×	~	×	Θ
NOAA18	×	~	~	Θ
NOAA19	×	~	~	Θ
AQUA	Θ	~	Θ	~
MetOp-A	~	~	~	~
MetOp-B	×	~	~	~
Suomi-NPP	Θ	Y	~	~

⊖ : not relevant

X : not available

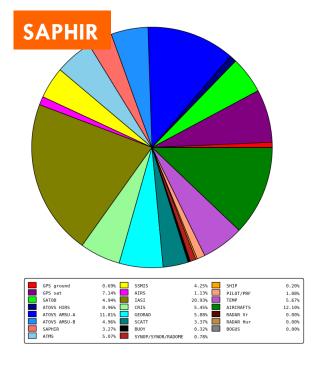
X : received but blacklisted

✓ : used

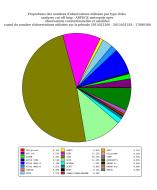

Local acquisitions

- Lannion
- EARS
- RARS

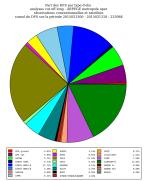
Information content in ARPEGE



cumul du nom

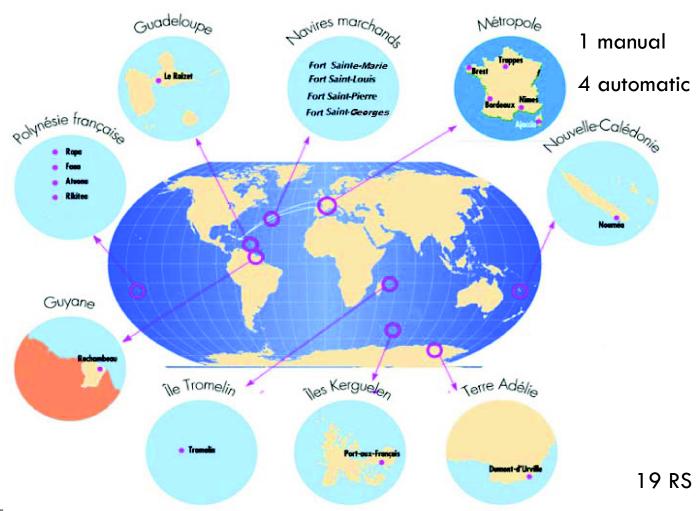


After 04/2015

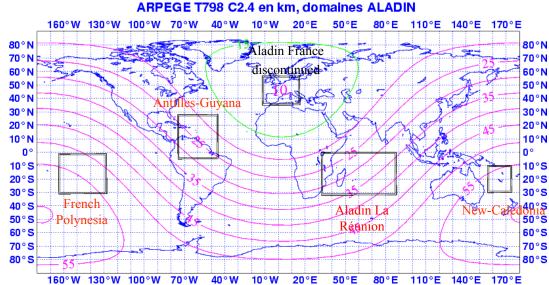


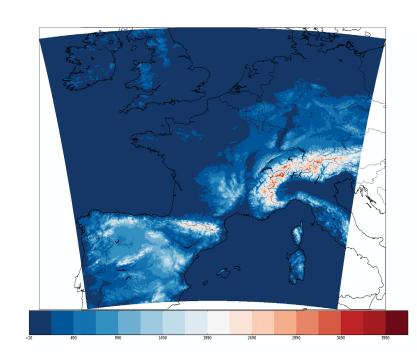
Number of observations

Before 04/2015


Information content
DFS=Tr(I-AB⁻¹)

The MF upper air network (2015) METEO


EUMETNET-ASAP


- Spectral limited area model: E199x199L70
 - 105 levels from 10 m to 0.1 hPa, horizontal resolution 7.5 km
- 3D-Var assimilation (6h window):
 - Same data as ARPEGE plus wind bogus
- Current operational domains:

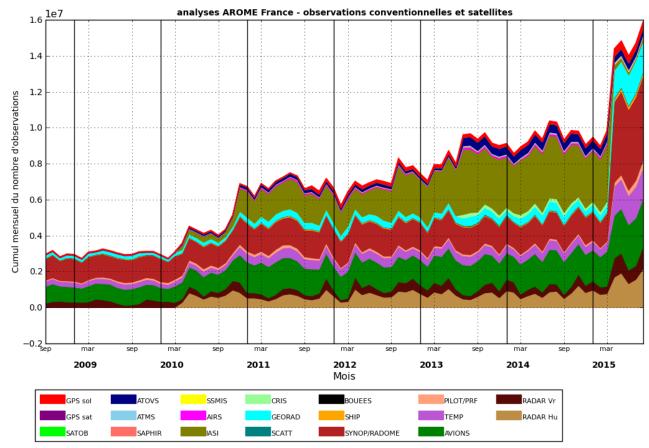
Regional model AROME

- Spectral limited area non-hydrostatic model
 with explicit moist convection (since 12/2008)
- □ Horizontal resolution : 1.3 km
- 90 vertical levels (from 5 m up to 10 hPa)
- □ 3D-Var assimilation (1-h window)
- Observing system: same as ARPEGE (+) 5
 SEVIRI/MSG radiances (with Ts inversion) (+)
 radar DOW and Z (RH) (-) GNSS RO (+) IR
 and MW sounders with a different set of
 channels
- Coupling files: hourly forecasts from global model ARPEGE
- Forecast range : up to 42 hours

Previous configuration:

2.5 km resol. and L60 top at 1 hPa 3D-Var with 3-h assimilation window

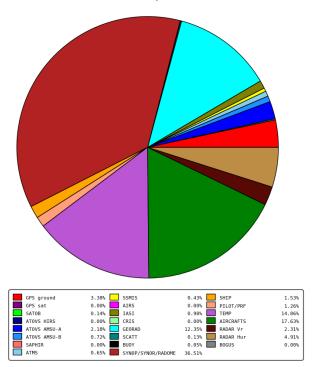
Observations in AROME 3D-Var


IASI AIRCRAFTS SURFACE

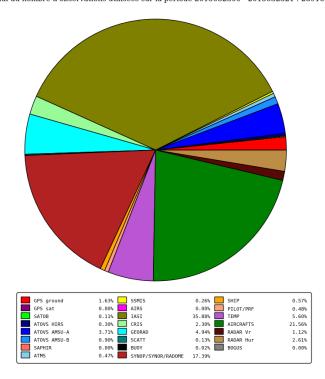
RADARS

SEVIRI ATOVS

TEMP


Evolution des cumuls mensuels de nombre d'observations utilisées par type d'observation

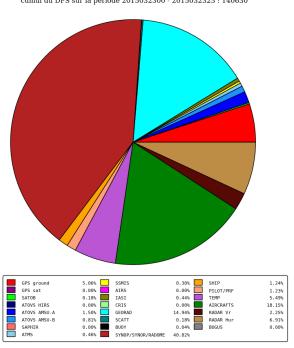
Number of observations in AROME METEO FRANCE


Proportions des nombres d'observations utilisées par type d'obs analyses cut-off AROME - AROME France dbl observations conventionnelles et satellites cumul du nombre d'observations utilisées sur la période 2015032300 - 2015032323 : 428623

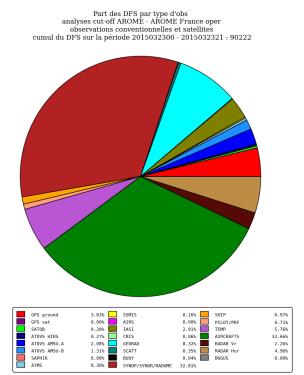
Since 04/2015

Dry day => few radars

Proportions des nombres d'observations utilisées par type d'obs analyses cut-off AROME - AROME France oper observations conventionnelles et satellites cumul du nombre d'observations utilisées sur la période 2015032300 - 2015032321 : 289162

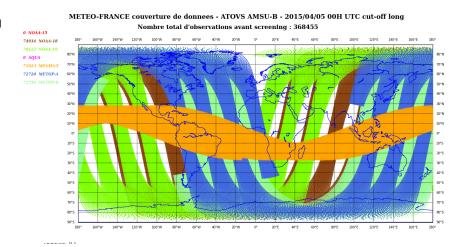


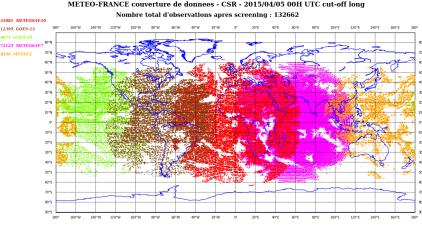
Before 04/2015


Information content in AROME

Part des DFS par type d'obs analyses cut-off AROME - AROME France dbl observations conventionnelles et satellites cumul du DFS sur la période 2015032300 - 2015032323 : 140630

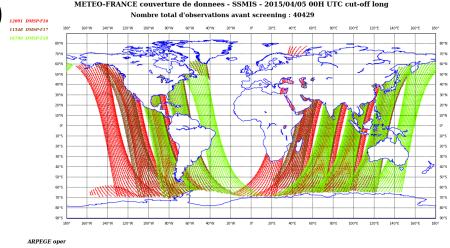
Since 04/2015

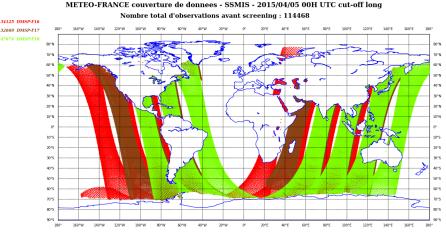

Before 04/2015


Dry day => few radars

Recent scientific changes (1)

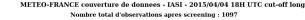
- ARPEGE 4D-Var assimilation: 6-h assimilation window with 30 minute time-slots (instead of 1 hour) => more observations for IASI, AMSU-A, AMSU-B/MHS, profilers, surface, ground based GPS
- Satellite observations (ARPEGE / ALADINs) New instruments :
 - SAPHIR: microwave humidity sounder (AMSU-B/MHS like instrument with 6 channels) on board MEGHA-TROPIQUES (CNES/ISRO)
 - Tandem-X: GPS-RO instrument (similar to TerraSar-X)
 - Clear-sky radiances (1 WV channel) from geostationnary satellites: METEOSAT-7, MTSAT-2

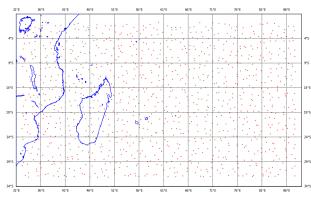



ARPEGE dbl

Recent scientific changes (2)

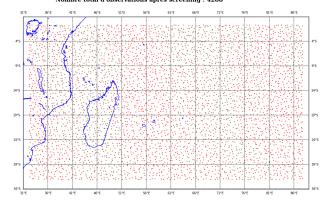
- Satellite observations (ARPEGE / ALADINs)
 - Increased usage of existing instruments:
 - Input to the « screening » : radiances x
 2 => 10 % more for assimilation
 - SSMI/S: data thinning at 125 km (instead of 175 km), sounding channels (55 and 183 GHz) from F17 and F18 (with a new predictor for VarBC)
 - Additional channels from IR
 hyperspectral sounders: CrIS/NPP
 (over sea and land, with revised σ_o)
 and IASI/METOP-A and B





Recent scientific changes (3)

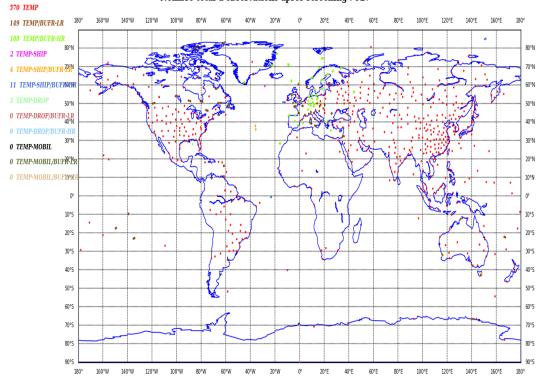
- Satellite observations (ARPEGE / ALADINs) Increased usage of existing instruments :
 - Use of GPS-RO bending angles up to 50 km (instead of 46 km) with revised σ_o
 - Additional ATMS radiances at the edge of scan lines
 - Thinning of IASI radiances at 70 km in ALADIN models (instead of 125 km)
 - Early delivery data: ATMS and CriS from Lannion, EARS ASCAT from METOP-B, RARS ATOVS from METOP-B (important for AROME nowcasting with 10 min cut-off)
- Monitoring of new observations : Dual METOP winds + AMVs from METOP-B
- Ground based GPS: additional stations and processing centres (NOAA, METG, IGE2)



ALADIN Reunion oper

METEO-FRANCE couverture de donnees - IASI - 2015/04/04 18H UTC cut-off long Nombre total d'observations apres screening : 4288

2218 METOP-A 2070 METOP-B


Technical changes (TAC2BUFR)

ARPEGE oper

- Use of SYNOP Land data in BUFR format since 04/11/2014 in all operational DA systems
- Use of aircraft data in BUFR format to accommodate the E-AMDAR changes in Nov. 2014 (New BUFR WIGOS template)
- Preparation to the use of radiosounding in BUFR format:
 - Additional information: space and time location of the measurement during the ascent, more measurement points (up to 4000) thining at Δz=75 m
 - Difficulty: need to accommodate the diversity of messages (TEMP ASCII, BUFR LR, BUFR HR) => possible duplications

METEO-FRANCE couverture de donnees - TEMP - 2015/09/24 00H UTC cut-off long Nombre total d'observations apres screening : 927

TAC (ASCII) - BUFR LR - BUFR HR

Planned short term evolutions (1)

- Increased thinning of radar data in AROME: 8 km (instead of 15 km) with a revised tunning of the Bayesian inversion
- \square Use of RTTOV-11 with internal interpolation (54/101 levels)
- Assimilation of ocean surface winds from RapidScat/ISS (Ku band scatterometer)
- Assimilation of HIMAWARI-8 AMVs (x4) (and CSRs)
- Assimilation of 5 WV channels from CrlS
- Use of oceanic observations in BUFR format (BUOY, BATHY, TESAC)
 depending on availability from data producers
- Monitoring of GMI/GPM-Core radiances (very short timeliness!)
- Use of IASI radiances available from the GTS (500 channels)
- Use of « OSI SAF » sea-ice concentration product instead of in-house algorithm based on SSM/I F15 radiances

Planned short-term evolutions (2)

- New NWP suites for ARPEGE, AROME, ALADINS, AEARP, PEARP with CY41T1: operational by the end 2015
- Nowcasting version of AROME (3D-Var with 1-hour assimilation but no cycling): operational by the end of 2015
- □ Upgrade of Météo-France HPCs : 1st quarter of 2016 then 3rd quarter of 2016 (CPU power increase : x 3)
- □ Ensemble Prediction system at convective scale (PEARO)
- □ Replacement of ALADIN-OMs models by AROME-OMs : finer resolution (8 km -> 2.5 km) but smaller domains
- Involvement in code developments with ECMWF: OOPS project (data assimilation) and COPE (observation pre-processing)

Longer term evolutions

- Preparation to the use of radar data from OPERA: use of a specific decoder to read ODIM/HDF5 and ODIM/BUFR issue on the availability of raw reflectivities from data producers for QC (Z+DOW from NL, GB, D, B)
- Assimilation of MODE-S data in AROME (ftp site from KNMI)
- New instruments: SSMI/S DMSP F19 (need for data from UPP), MWTS/ MWHS on FY-3C (EUMETCast), DPR on GPM Core (validation), Ku band scatterometer on HY-2A (timeliness issues), ADM-Aeolus (need for NRT HLOS from L2B processor)
- Additional RARS stations: South America (quality to be assessed)
- Use of VarBC for ground based GPS and aircraft measurements
- Satellite products for land data assimilation : ASCAT, SMOS, SMAP soil moisture
- Preparation to the use new hyperspectral IR instruments (MTG/IRS and IASI-NG/EPS-SG): radiances in principal components and inter-channel error correlations
- □ IR radiances over land + IR and MW all-sky radiances

References to recent papers

- □ **Assimilation of radar data in AROME**: Wattrelot E., O. Caumont, and J.-F. Mahfouf, 2014: Operational implementation of the 1D+3D-Var assimilation method of radar reflectivity data in the AROME Model. Mon. Wea. Rev., **142**, 1852–1873.
- Assimilation of SAPHIR data in ARPEGE: P. Chambon, L.-F. Meunier, F. Guillaume, J.-M. Piriou, R. Roca and J.-F. Mahfouf (2014): Investigating the impact of the water-vapour sounding observations from SAPHIR on board Megha-Tropiques for the ARPEGE global model, Quart. J. Roy. Meteor. Soc., DOI: 10.1002/qj.2478
- FSO impact study during CONCORDIASI: N. Boullot, F. Rabier, R. Langland, R. Gelaro, C. Cardinali, V. Guidard, P. Bauer and A. Doerenbecher, 2014: Observation impact over the southern polar area during the Concordiasi field campaign. Quart. J. Roy. Meteor. Soc., DOI: 10.1002/qj.2470
- Impact study on assimilation of GPS ZTD in AROME: Mahfouf, J.-F., F. Ahmed, P Moll and N.F. Terfele, 2015: Assimilation of zenith total delays in the AROME France convective scale model: a recent assessment. *Tellus A*, 67, DOI: 10.3402/tellusa.v67.21016
- Description of the near-real time 3D-Var AROME-WMED system during HYMEX: Fourrié, N., Bresson, É., Nuret, M., Jany, C., Brousseau, P., Doerenbecher, A., Kreitz, M., Nuissier, O., Sevault, E., Bénichou, H., Amodei, M., and Pouponneau, F.: AROME-WMED, a real-time mesoscale model designed for the HyMeX Special Observation Periods, Geosci. Model Dev. Discuss., 8, 1801-1856, doi:10.5194/gmdd-8-1801-2015, 2015.

Observation usage summary

Datatype	Contact	Operations	Tests
AMSU/MHS	Florian.suzat@meteo.fr	NOAA 15,18,19,	GMI
ATMS/SAPHIR	philippe.chambon@meteo.fr	NPP Aqua Metop	
SSMI/S	Florian.suzat@meteo.fr	F16, F17, F18	F19
Geosat. winds	christophe.payan@meteo.fr	GOES, Meteosat, MTSAT	HIMAWARI-8
Polar winds	christophe.payan@meteo.fr	AVHRR/NOAA	Dual METOP
		MODIS/Aqua, Terra	VIIRS-NPP
Winds : active	christophe.payan@meteo.fr	ASCAT	RapidScat/ISS
instruments			ADM-AEOLUS
Geosat radiances	patrick.moll@meteo.fr	Meteosat-10, 7	HIMAWARI-8
		GOES 13, 15, MTSAT-2	
GPS	patrick.moll@meteo.fr	ZTD	VarBC
		RO	
AIRS/IASI	nadia.fourrie@meteo.fr	Aqua,	More channels
CrIS	vincent.guidard@meteo.fr	Metop-A and B, Suomi NPP	PC scores

THANK YOU FOR YOUR ATTENTION!

