1. Equipment

a) 8" Standard Rain Gage Collector
b) Inner 2" Diameter Measuring Tube
c) Funnel Cap
d) Precipitation Measurement Stick
e) Snow Measurement Stick
f) Snow Board
2. Snow Measurement Techniques
a) Defining Terms \& Measurements
b) Snow Board Placement
c) Measuring Snowfall
d) Measuring Snow Depth
e) Measuring Snowfall Liquid Equivalent
f) Measuring Snow Core
g) Snowfall Myths
3. Special situation such as wind swept areas affected by blowing/drifting, poor Snowfall catch in 8" Collector, Multi-Day Precipitation Accumulation and other "What If?" scenarios.
(a) St

sIlent Snowfall catch in 8 Collector, Multi-Day

$$
\square
$$

$$
1
$$

$$
1
$$

Standard Rain Gage

8" Collector

Snow falls directly into the open 8 "
Collector. The Funnel Cap is removed during the Cold Season. When the snow that falls into the Collector is representative of new snowfall, the observer melts down the new snowfall to liquid and measures the liquid equivalent. This measured liquid value is the precipitation amount for the observation.

When windy conditions do not allow a representative amount of snow to fall into the Collector, the observer will use the Collector to take a "biscuit" from the snowboard to measure the precipitation amount. (Section 3 of this training will address - Special situations, including wind swept areas/drifting/blowing and poor Snowfall catch in the 8" Collector).

Standard Rain Gage

2" Inner Tube

The Inner Tube will hold up to 2.00" of liquid precipitation.

The Inner Tube is removed from the 8 " Collector during the Cold Season.

Standard Rain Gage

8" Funnel Cap for Warm Season

The bottom of the Funnel Cap is inserted into the 2" Inner Tube and placed on top of the 8 " Outer Collector during the Warm Season.

The Cap is removed from the 8" Collector during Cold season.

I

Standard 8" Rain
Cage
Complete 8"
Standard Rain Gage
Set
Measurement
Stick
Standard 8" Rain
Gage
Complete 8"
Standard Rain Gage
Set
Measurement
Stick
Standard 8" Rain
Cage
Complete 8"
Standard Rain Gage
Set
Measurement
Stick
Standard 8" Rain
Cage
Complete 8"
Standard Rain Gage
Set
Measurement
Stick

\square

路

Standard 8" Rain
Cage
Complete 8"
Standard Rain Gage
Set
Measurement
Stick

Standard 8" Rain
Cage
Complete 8"
Standard Rain Gage
Set
Measurement
Standard 8" Rain
Gage $\begin{aligned} & \text { Precipitation } \\ & \text { Measurement } \\ & \text { Standard Rain Gage } \\ & \text { Set }\end{aligned}$
Standard 8" Rain
Gage $\begin{aligned} & \text { Precipitation } \\ & \text { Measurement } \\ & \text { Standard Rain Gage } \\ & \text { Set }\end{aligned}$
Standard 8" Rain
Gage $\begin{aligned} & \text { Precipitation } \\ & \text { Measurement } \\ & \text { Standard Rain Gage } \\ & \text { Set }\end{aligned}$

EQUIPMENT

Standard 8" Rain
Gage
Complete 8"
Standard Rain Gage
Set

Standard 8" Rain
Cage
$\begin{array}{l}\text { Complete } 8^{\prime \prime} \\ \text { Standard Rain Gage } \\ \text { Set }\end{array}$

\square (

Snow Measurement stick
Snow Measurement stick

EQUIPMENT

Snow Board

The white surface of the Snow Board does not absorb incoming radiation from the sun which reduces the amount of melting snow on the Snow Board.

The hard surface allows an accurate measurement of new snowfall that has accumulated.

Training Objective No. $1 f$

MEASUREMENT TECHNIQUES
 $M=A S U R=M$ INT

为 (ane

SNOW

DEFINING TERMS \& MEASUR=M=NIS

Snowfall:

Snowfall is defined as "NEW SNOW" that has fallen over the last 24 hours. Snowfall is measured to the nearest one tenth of an inch on the Snow Board or another hard surface.

DEFINING TERMS \& MEASUR=MENHS

Over Reporting Snowfall:

Snowfall is measured to the nearest one tenth of an inch.
DO NOT round Snowfall "UP" to the nearest whole or one half inch.
For example: We have 5 Snowfall events, and each of these events actually measured identically as $1.5^{\prime \prime}$ Snowfall, BUT were incorrectly reported by rounding "UP" to 2.0" of Snowfall.

We would be over reporting the Snowfall amount for these 5 events by +2.5 ".
Over reporting of Snowfall can make a significant error in the total amount of Snowfall for a season.

DEFINING TARMS \& MEASUR=MENTS

Under Reporting Snowfall:

Snowfall is measured to the nearest one tenth of an inch.

DO NOT round Snowfall "DOWN" to the nearest whole or one half inch.
Additional example: If we under reported each of these same 5 Snowfall events (from example on previous page) by rounding "DOWN" to 1.0 " when the actual Snowfall amount was 1.5"; we would be under reporting the Snowfall amount for these 5 events by $-2.5 "$. Under reporting of Snowfall can also make a significant error in the total amount of Snowfall for a season.

DEFINING TERMS \& MEASUR=M=NIS

Snow Depth:

Snow Depth is defined as the average depth of snow in the representative measurement area, Snow Depth is rounded to the nearest whole inch.

DEFINING TERMS \& MEASUREMENHS

Snow Depth:

Snow Depth is measured to the nearest whole inch. The Snow Depth is measured to the nearest whole inch and is rounded up when Snow Depth measurements equals $0.5^{\prime \prime}$ or greater (>) of any value. Snow Depth is rounded down when Snow Depth is less than 0.5 " of any value.

For example: We measure the Snow Depth at several representative locations and the combined measurements average $2.5^{\prime \prime}$. The $2.5^{\prime \prime}$ should be rounded \uparrow up and reported as 3" Snow Depth.

Additional example: We measure Snow Depth at several representative locations and this time the combined measurements averages 2.4 ". The 2.4 " should be rounded down \downarrow and reported as 2" Snow Depth.

It is important to remember that Snow Depth maps are created from and based upon whole inch values. Over or Under Reporting will give a false representation of Snow Depth.

SNOW MEASNREME
Snow Board Placement
The Snow Board should be
located in an area not subject to
drifting or wind swept areas and
close to the Standard Rain Gage.
Placing a marker near the Snow
Board will help locate the Snow
Board.

- Snow Board Placement
The Snow Board should be
located in an area not subject to
drifting or wind swept areas and
close to the Standard Rain Gage.
- Placing a marker near the Snow
Board will help locate the Snow
Board.
- Snow Board Placement
The Snow Board should be
located in an area not subject to
drifting or wind swept areas and
close to the Standard Rain Gage.
- Placing a marker near the Snow
Board will help locate the Snow
Board.
- Snow Board Placement
The Snow Board should be
located in an area not subject to
drifting or wind swept areas and
close to the Standard Rain Gage.
- Placing a marker near the Snow
Board will help locate the Snow
Board.
- Snow Board Placement
The Snow Board should be
located in an area not subject to
drifting or wind swept areas and
close to the Standard Rain Gage.
- Placing a marker near the Snow
Board will help locate the Snow
Board.
- Snow Board Placement
The Snow Board should be
located in an area not subject to
drifting or wind swept areas and
close to the Standard Rain Gage.
- Placing a marker near the Snow
Board will help locate the Snow
Board.
- Snow Board Placement
The Snow Board should be
located in an area not subject to
drifting or wind swept areas and
close to the Standard Rain Gage.
- Placing a marker near the Snow
Board will help locate the Snow
Board.

- Snow Board Placement
The Snow Board should be
located in an area not subject to
drifting or wind swept areas and
close to the Standard Rain Gage.
- Placing a marker near the Snow
Board will help locate the Snow
Board.
\qquad

\qquad
 -
\qquad

-
\qquad

I
 8)
 to the east of Snow Board.

\[\begin{aligned} \& In this example, the Standard Rain
\& Gage is located approximately 15'
\& to the east of Snow Board. \end{aligned} \]

Snow Board Placement
The Snow Board should be
located in an area not subject to
drifting or wind swept areas and
close to the Standard Rain Gage.
Placing a marker near the Snow
Board will help locate the Snow
Board.

SNOW MEASUREMENT TECHNIQUES A

 -

- Measuring "Snowfall"
measurement from the Snow
Board. The Snow Board outline
can be seen at right.

The observer takes the Snowfall
measurement from the Snow
Board. The Snow Board outline
can be seen at right.

Measuring "Snowfall"
The observer takes the Snowfall
measurement from the Snow
Board. The Snow Board outline
can be seen at right.

.
Measuring "Snowfall"
measurement from the Snow
Board. The Snow Board outline
can be seen at right.

SNOW MEASUREMENT TECHNIQUES

- Measuring "Snowfall"

" k

$$
\begin{aligned}
& \text { - Measuring "Snowfall" } \\
& \text { - Measure new Snowfall as } \\
& \text { soon as possible after it } \\
& \text { ends, before settling and } \\
& \text { melting occur. } \\
& \text { - This does not change the } \\
& \text { time of your observation } \\
& \text { for reporting purposes. } \\
& \text { (Most observers report at 7 } \\
& \text { arm.) }
\end{aligned}
$$

SNOW MEASUREMENT TECHNIQUES

\qquad

\qquad

Measuring＂snowfall＂
the next Snowfall；Clear the Snow
Board by flipping or by tapping
the board with the flat side of the
Snow Stick．
Measuring＂Snowfalls

k
 \begin{abstract} \end{abstract}

 1.5 of Snowfall - measured
on Snow Board

SNOW MEASUREMENT TECHNIQUES

$$
\sigma_{0}
$$

\qquad
SNow weAsurandir

(
 1.5 of Snowfall - measured
on Snow Board

a

S

rage
rage

正

4

\square

Cos er

．

河
 $-$

號

1

Abstract

 \qquad Not Good

\qquad

- For example: Several measurements average to a Snow Depth of 2.9". Round to Depth.
- Another example: An average

Snow Depth of 3.5 " is rounded to 4" , and reported as a 4" Snow Depth.
Training Objective No. 2d

- Another example: An average
 1 ,
$-1-2+10$ -

3", and reported as a 3" Snow
\&

- Measuring "Snow Depth"

IMPORTANT NOTE:

- Report Snow Depth daily, even when no new Snowfall occurs.
- Report Snow Depth daily whenever a Trace (T) or more of Snow is on the ground.

SNOW MEASUR=MENT TECHNIQUES

WxCoder Input

Measuring＂Snowfall Liquid Equivalent＂
（Precipitation）
Take the 8＂Collector with new Snowfall
inside to melt down for a liquid
（precipitation）equivalent． （s）collector with new snowfall
Measuring＂Snowfall Liquid Equivalent＂
（Precipitation）
Take the 8＂Collector with new Snowfall
inside to melt down for a liquid
（precipitation）equivalent．

Training obj

1
\qquad

\qquad $-$格．

Training Obj

SNOW MEASUREMENT TECHNIQUES

 $-$

五

$$
0
$$

\qquad
號

3 Training Objective No．2e

號

Pour in＂measured＂hot
Pour in＂measured＂hot

\qquad

$+$

 ,

.

SNOW MEASUREMENT TECHNIQUES

- Measuring "Snowfall Liquid Equivalent" (Precipitation)

WxCoder Input

Precipitation Amount
1.37 [Total of hot water and melted snowfall]
-1.00 [Hot water added]
0.37
[Liquid equivalent or precipitation amount of new snow. Reported as precipitation]

- Snow Core is an important observation of the total liquid equivalent that is encapsulated in the snow pack.
- The Snow Core measurement is used by River Forecast Centers to model the amount of precipitation that sits on top of the ground in the form of snow!
- Hydrologists use this measurement to aid
in forecasting river levels and/or potential
Flooding or Flash Flooding. in forecasting river levels and/or potential Flooding or Flash Flooding.
- The Snow Core observation is normally taken on Mondays when there is a Snow Depth of 2" or more. (Some observers take this observation on other days, as time allows).

SNOW MEASUREMENT TECHNIQUES

- Measuring "Snow Core"

 the ground in the form of snow! alo

\qquad

 used by
\qquad

nexyayy
\square

. -

,

.
-

\qquad
\qquad

 SNOW MSGR M M M N

 \qquad

\qquad

1

1

|

4

SNOW MEASUREMENT TECHNIQUES

\qquad

 --
號

相

-

[^0]

4
\qquad

SNOW MEASUREMENT TECHNIQUES Measuring "Snow Core"

- Take the 8" Collector with new Snow core
insidetomelt down for aliquid
(precipitation) equivalent. Measuring "Snow Core"
- Take the 8" Collector with new Snow core
insidetomelt down for aliquid
(precipitation) equivalent. Measuring "Snow Core"
- Take the 8" Collector with new Snow core
insidetomelt down for aliquid
(precipitation) equivalent. Measuring "Snow Core"
- Take the 8" Collector with new Snow core
insidetomelt down for aliquid
(precipitation) equivalent. Measuring "Snow Core"
- Take the 8" Collector with new Snow core
insidetomelt down for aliquid
(precipitation) equivalent. Measuring "Snow Core"
- Take the 8" Collector with new Snow core
insidetomelt down for aliquid
(precipitation) equivalent. Measuring "Snow Core"
- Take the 8" Collector with new Snow core
insidetomelt down for aliquid
(precipitation) equivalent.

8" Collector with Snow Core

Training Objective No. 2f

-

[^1]\qquad

\qquad

SNOW MEASUREMENT TECHNIQUES

4

\square
4 -

0

.

SNOW MEASUREMENT TECHNIQUES

Melted down to liquid! "measured" hot

 1 | 1 |
| :---: |

\qquad
\qquad
suring "Snow Core"
the "measured" hot water of 1.00
es into the 8 " collector that has the
v Core inside.
the hot water and snow (from snow
to break up any ice, or until
ything is liquefied.
id
 - Measuring "Snow Core"

- Pour the "measured" hot water of 1.00
inches into the 8 " Collector that has the
Snow Core inside.
Stir the hot water and snow (from Snow
Core) to break up any ice, or until
everything is liquefied. - Measuring "Snow Core"
- Pour the "measured" hot water of 1.00
inches into the 8 " Collector that has the
Snow Core inside.
Stir the hot water and snow (from Snow
Core) to break up any ice, or until
everything is liquefied.
\qquad
Pour in "measured" hot

$$
1
$$

$$
1
$$

\qquad

- Measuring "Snow Core"
- Pour the entire liquefied contents from
the 8 " Collector into the 2" Inner Tube.
.
-

\qquad

SNOW MEASURe
Measuring "Snow Core"
Measure the contents of the 2" Inner Tube with
the Precipitation Measurement Stick.
Snow Core liquid equivalent is measured in
whole inches, tenths \& hundredths (i.e. 1.37)
and then rounded to whole inches and tenths
(i.e. 1.4) for reporting.
Subtract the amount of hot water added!
The remaining value is the liquid equivalent or
the precipitation amount of the Snow Core
sample.
Precipitation Amount
1.37 Total of hot water and melted snowfall]
-1.00 \quad [Hot water added]
0.37 Liquid equivalent of Snow Core is reported in whole
inches and tenths, so this value would be rounded up and
It should be understood that "only" the Snow Core liquid equivalent is reported
in whole inches and tenths! All other forms of precipitation is reported in whole
inches, tenths \& hundredths! (ie. 1.62 ")

SNOW MEASUREMAS

- Measuring "Snow Core"
Measure the contents of the 2" Inner Tube with
the Precipitation Measurement Stick.
Snow Core liquid equivalent is measured in
whole inches, tenths \& hundredths (i.e. 1.37)
and then rounded to whole inches and tenths
(i.e. 1.4) for reporting.
Subtract the amount of hot water added!
The remaining value is the liquid equivalent or
the precipitation amount of the Snow Core
sample.
Precipitation Amount
[Total of hot water and melted snowfall]
[Hot water added]
[Liquid equivalent of Snow Core is reported in whole
inches and tenths, so this value would be rounded up and
0.37 reported as 0.4)]
It should be understood that "only" the Snow Core liquid equivalent is reported
in whole inches and tenths! All other forms of precipitation is reported in whole
inches, tenths \& hundredths! (i.e. 1.62 ")

SNOW MEASUREMENT TECHNIQUES


```
g
```

- 1

-

 5\qquad A
Measuring "Snow Core"
Measure the contents of the 2" Inner Tube with
the Precipitation Measurement Stick.
Snow Core liquid equivalent is measured in
whole inches, tenths \& hundredths (i.e. 1.37)
and then rounded to whole inches and tenths
(i.e. 1.4) for reporting.
Subtract the amount of hot water added!
The remaining value is the liquid equivalent or
the precipitation amount of the Snow Core
sample.
Precipitation Amount
[Total of hot water and melted snowfall]
1.37 \quad [Hot water added]
-1.00 0.37) liquid equivalent of Snow Core is reported in whole
inches and tenths, so this value would be rounded up and
It should be understood that "only" the Snow Core liquid equivalent is reported
in whole inches and tenths! All other forms of precipitation is reported in whole
inches, tenths \& hundredths! (i.e. 1.62 ")

SNOW MEASUREMENT TECHNIQUES

- Measuring "Snow Core"

WxCoder Input
Max temperature $\square \times{ }^{\circ} \mathrm{F}$ help
Min temperature $\square \times{ }^{\circ} \mathrm{F}$ help
At observation $\square \times{ }^{\circ} \mathrm{F}$ help

Precipitation
Precipitation $\square \times . x \times$ in help
Pr: set the
Reminder: set the
accumulation if this
value represents more
value represents mor than on
period.

Precipitation type -Select-

Precipitation A nount

1.37
-1.00
0.37
[Total of hpt water and melted snowfall]
[Hot water added]
[Liquid equivalent of Snow Core is reported in whole inches and venths, so this value would be rounded up and reported as 0.4)]
It should be understood that "only" the Snow Core liquid equivalent is reported in whole inches and tenths! All other forms of precipitation is reported in whole inches, tenths \& hundredths! (i.e. 1.62")

Note: Only enter a Snow Core value on the day that the Snow Core is taken. Make no entry on other days! (i.e. 0.0 is not a valid entry)

The 1081 Myth
DO NOT estimate snowfall by converting the liquid in your rain gage to a snowfall amount!

The adage that one inch of rain equals 10 inches of snow is a myth!
The snow/water equivalent ratio is dependent on many factors,
not just surface air temperature.
The snow/water equivalent ratio is dependent on many factors,
not just surface air temperature.
Snow to water ratios can vary from 8:1 or less to 20:1 or more!
Training Objective No. 2g

SNOWFALL MYTHS
 SNOWFALL MYTHS

-

.
 O ,
-

Windy conditions may create a situation where the amount of NEW Snowfall in the $8^{\prime \prime}$ Collector is not representative of snow that fell on either the Snow Board or the ground.

- In this case, we may need to take a "sample or biscuit cut" from the Snow Board
or another area representative of the average new Snowfall. (Remember: In this or another area representative of the average new Snowfall. (Remember: In this example - we are only trying to determine the liquid equivalent (precipitation) of the NEW SNOWFALL).
- The NEW Snowfall sample is taken using the 8 " Collector to cut a biscuit from the Snow Board or another representative area. This "biscuit" is then melted down and compared to the amount that fell directly into the 8 " Collector.
- If you determine that the sample (biscuit cut) provides a more accurate representation of the actual Precipitation, then report this amount as your 24 Hour Daily Precipitation. Instructions on next page.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

 x
\qquad

 1

$$
\begin{aligned}
& \text { SPGCIAL ShRill } \\
& \text { BROMIC } \\
& \text { - Measuring "Snowfall Liquid Equivalent" } \\
& \text { (Precipitation) by Cutting a Biscuit of the NEW } \\
& \text { Snowfall } \\
& \text { The following technique is used to obtain a liquid } \\
& \text { equivalent (precipitation) when the } 8 \text { collector } \\
& \text { does not receive a representative amount of } \mathrm{NEW} \\
& \text { SNOWFALL from the snow event. } \\
& \text { The Snowfall Liquid Equivalent is the } 24 \text { hour } \\
& \text { precipitation (liquid) that fell in the form of NEW } \\
& \text { SNOWFALL. }
\end{aligned}
$$

PRECIPITATION ACCUMULATION AND OTHER MNHAT IER: SCENARIOS.

Biscuit cut from Snow Board using 8" Collector.

- Measuring "Snowfall Liquid Equivalent" (Precipitation) by Cutting a Biscuit of the NEW Snowfall
- Flip the Snow Board and 8" Collector over at the same time to capture a representative amount of NEW SNOWFALL in the Collector.

$$
=
$$

 z

- Measuring "Snowfall Liquid Equivalent" (Precipitation) by Cutting a Biscuit of the NEW Snowfall
- Take the 8" Collector with NEW SNOWFALL indoors to melt down for a liquid (precipitation) equivalent.

8" Collector with NEW
SNOWFALL obtained from the
Snow Board or other hard surface

surface

Abstract

 f

[^2]

- Measuring "Snowfall Liquid Equivalent"
(Precipitation) by Cutting a Biscuit of the
- Measuring "Snowfall Liquid Equivalent"
(Precipitation) by Cutting a Biscuit of the
- Items needed to properly melt new snow
include:

Items needed to properly melt new snow
include:

- 8" Collector with new Snowfall
- Precipitation Measurement Stick
- Hot Water
include:
\square
\square -
\square
==

Abstract

 ,

\square
-

i

 el $+1$$\square$

\section*{}

 -$1+$

PRIGCIPIATION ACCUMULATION AND OTHER MMHAT IP- SCENARIOS.

- Measuring "Snowfall Liquid Equivalent" (Precipitation) by Cutting a Biscuit of the NEW Snowfall
- Measure out an amount of hot water in
the 2" Inner Tube using the Precipitation
- Measure out an amount of hot water in
the 2" Inner Tube using the Precipitation Measurement Stick.
- A good amount to start with is 1.00 inches subtracted from the total liquid.
- It is necessary to keep track of the added to the new Snowfall.

[^3] NEW Snowfall (Precipitation) by Cutting a Biscuit of the added to the new Snowfall. $+\quad+\quad+2$

S.I-DAY

 (a toll , , , 1

Measuring "Snowfall Liquid Equivalent"

Meas

\square
Men
• Meas
(Precipi
New S

- Measul
the 2"
Measul
A good
of hot
subtra
- It is ne
measul
added

\qquad

- Measuring "Snowfall Liquid Equivalent" (Precipitation) by Cutting a Biscuit of the NEW Snowfall
- Pour the "measured" hot water of 1.00 inches into the 8" Collector that has the new Snowfall inside.
- Stir the hot water and snow to break up any ice, or until everything is liquefied.

2

Pour in "measured" hot water

PRICCIPITATION ACOUMULATION AND OTHER MMHAT IFP" SCENARIOS. - Measuring "Snowfall Liquid Equivalent"
(Precipitation) by Cutting a Biscuit of the
NEW Snowfall NEW Snowfall - Pour the entire liquefied contents from
the 8 " Collector into the 2" Inner Tube. NEW Snowfail
Pour the entire liquefied contents from
the 8 " Collector into the 2" Inner Tube.
I-2

\qquad

Abstract

$$
-
$$

-

PRECIPITATION ACCUMULATION AND OTHER CNHAT IF? SCENARIOS.

- Measuring "Snowfall Liquid Equivalent" (Precipitation) by Cutting a Biscuit of the NEW Snowfall
- Measure the contents of the 2" Inner Tube with the Precipitation Measurement Stick. Precipitation is measured in whole inches, tenths and hundredths. (i.e. 1.37")
- Subtract the amount of hot water added!
- The remaining value is the liquid equivalent or the precipitation amount of
 the new snowfall.

Precipitation Amount

1.37 [Total of hot water and melted snowfall]
-1.00 [Hot water added]
0.37 [Liquid equivalent or precipitation amount of new
0.37 [Liquid equivalent or precipitation
snow. Reported as precipitation]

Precip

-1.00	[Hot water added]
0.37	[Liquid equivalent or precipitation

WHAT IF: Snow melts as it falls and never accumulates?

- Report the precipitation in your gauge (melted) as the Daily Precipitation
- Report a Trace of new snow
- In comments write "Snow melted as it fell"
- If possible measure new Snowfall as practical before it melts

WHAT IF: Snow or sleet is mixed with rain and doesn't actually accumulate on the ground?

- Report the precipitation in your gauge (melted) as the Daily Precipitation
- Report a "T" Trace of new snow
- Make a note as above in your comments such as "Snow and sleet was mixed with rain but melted as it fell" - If possible measure new Snowfall as practical before it melts

WHAT IF: Only a few Snow Flakes fall?

New snowfall of less than a tenth of an inch is reported as a Trace. This could be a few flurries, or a very light dusting of snow. Snow does not have to end up in the rain gauge!

In some situations you might have measurable snow of a couple of tenths, but the snow
in the rain gauge only melts down to a Trace. This can happen when the snow is very dry
In some situations you might have measurable snow of a couple of tenths, but the snow
in the rain gauge only melts down to a Trace. This can happen when the snow is very dry and/or it is windy.
\qquad
-

 blor

WHAT IF: Observer is away for a few days and Snow or Precipitation falls?

The Observer will use the "Multi-day Accumulation."
If the total precipitation observed is for more than a single observing period AND cannot be subdivided into individual observing periods, choose the total number of days for which the precipitation value represents. For example, if you have been away for the weekend (left after the Friday observation and returned on Monday) and have $0.57^{\prime \prime}$ but cannot ascertain whether it fell on Saturday, Sunday, Monday or some combination, select 3 days.

Training Objective No. 3

Thank you for attending this Webinar.

AND - most importantly - Thank You for the volunteer work you do! Your efforts are very much appreciated...

We know that measuring Snow takes time and dedication to be done correctly, Getting ready for work, clearing snow off driveways, sidewalks, cars and then measuring snow takes a dedicated individual. The observations you take are historical records and will be used for many scientific purposes for years to come.

If you would like a copy of these instructions - please let us know.

[^0]: ## 0

[^1]: 8" Collector with Snow Core

 $8^{\prime \prime}$ Coliector with Snow Core

[^2]: 1

[^3]: is

