Evolution of the 30 June 2014 Double Derecho Event in Northern Illinois & Northwest Indiana

Eric Lenning, Matthew Friedlein, & Richard Castro NOAA/National Weather Service – Chicago, IL

Anthony Lyza & Kevin Knupp

Atmospheric Sciences Department, University of Alabama in Huntsville

23rd Great Lakes Operational Meteorology Workshop: August 24-27, 2015

Outline & Takeaways

- Quick event summary
- Brief synoptic and mesoscale evolution
- Why was second derecho more intense, and a prolific QLCS tornado producer?
 - What from the first MCS actually helped?
 - Storm scale factors

Severe Storm Reports on June 30th

- Tornado
- Hail
- Wind Gust
- Wind Damage

First Derecho

Time: 1:45 pm – 7:30 pm CDT

Wind: 112

Tornadoes: 2

Hail: 28

Second Derecho

Time: 8 pm - 2 am CDT

Wind: 119

Tornadoes: 29

Hail: 3

Timeline across Chicago CWA

21-02 UTC and 02-04 UTC

The Synoptic Environment of 30 June 2014: 500 mb

The Synoptic Environment of 30 June 2014: MSLP 1010 140630/2300 MSL Pressure and surface wind

The Synoptic Environment of 30 June 2014: MSLP & 2h Change

The Synoptic Environment of 30 June 2014: ILX Sounding

The Synoptic Environment of 30 June 2014: MSLP & Theta-E

Mesoscale Environment of 30 June 2014: Effective SRH

The Synoptic Environment of 30 June 2014: Effective SRH

Motion of Tornadic Section of 2nd QLCS

850-300mb Mean Wind vs Storm Motion

VPZ Time Series

Bore Observations & Dynamics

TEMPERATURE: Steady or rising

MIXING RATIO: Steady or decreasing

PRESSURE: Rapid rise

Destabilization of Boundary Layer

- Common consequence of bores
- Raise inversion height
- Mix warmer, drier air to surface

Temperature rise just ahead of QLCS arrival

Speed of Density Current (shallow, with drag)

$$c = k \left[gh \frac{\rho 1 - \rho 0}{\rho 0} \right]^{\overline{2}}$$

Speed of Gravity Wave

$$C_{gw} = \left[g \left(\frac{\Delta \theta v}{\theta v} \right) h_0 \right]^{\frac{1}{2}}$$

Speed of Bore

$$C_{bore} = C_{gw} \left[\frac{1}{2} \frac{h_1}{h_0} \left(1 + \frac{h_1}{h_0} \right) \right]^{\overline{2}}$$

Markowski and Richardson 2010

Figure 6.12

Generation of a bore of depth h_1 , by an advancing density current of depth D, intruding into a stable layer of depth h_0 . Shading indicates the density of the fluid, with darker shading indicating denser fluid. (Adapted from Rottman and Simpson [1989].)

System Motions thru VPZ Area

	1 st QLCS	2 nd QLCS
Actual Speed	17 m/s	25 m/s
Theoretical Cold Pool Speed	16-30 m/s	9-17 m/s
Theoretical Bore Speed	n/a	26 m/s

Bore-Driven Enhancement of SRH

- SRH large even with cold-pool propagation speed
- Faster bore-related movement substantially increased environmental SRH
- Result: SRH was extreme for this QLCS

KLOT Close-up View of QLCS Tornado

Overall Effect of Bore-Driven Motion

- Ingest of surface or near-surface parcels via:
 - Low-level destabilization
 - Vertical motion associated with bore
- Lifting of parcels to top of stable layer
- Extreme SRH from veered/faster storm motion

