Runoff Risk: A Decision Support Tool for Nutrient Applications

Current & Proposed Ecosystem IDSS Utilizing NWS Modeling to Help Improve the Nation’s Water Quality

Dustin Goering

National Weather Service
North Central River Forecast Center

26 August 2015
2.2 million farms cover 20% U.S. land area
$200 billion/year industry and employs 1/6 civilian workforce

Significant contributor to non-point source nutrient pollution
- Affecting 50% U.S. streams, 78% coastal areas, 64% shallow wells
- Creating and intensifying harmful algal blooms and hypoxic zones
- Impacting human health, the environment, and the economy
Nutrient Pollution Increasingly Identified as an Ecological Concern

Building a Weather-Ready Nation
Runoff Risk: What is it?

- Decision support tool for agricultural nutrient applicators
- Identifies threat of significant future runoff in both space and time
- Produced multiple times daily while modeling 10 days into future
- Developed in collaboration with states and partners to incorporate state specific application rules and guidelines
- States make an investment (time/website/management) and act as the tool owner and presenter to the public
- Fulfills strong desire/need for web/mobile based decision support tool for short-term application timing
Real-time forecasting makes *NWS uniquely suited* to fill the void and meet the desire for national modeling support.

Timing of nutrient applications matters
- A few large events can carry most nutrients off fields
- These significant events could negate year-long adherence to BMPs

Runoff Risk supplements “Right Time” guidance of 4R’s
- Warn of risk of runoff → delay application → potentially reduce losses
- Provides farmers with second opinion (back-up perspective)

Runoff Risk incorporates factors farmers already use
- Soil moisture, precip, snow water content, warming temps, etc.

Right Source *Right Rate* *Right Time* *Right Place*
Why should NWS help?

- NOAA/NWS strategic plans and WRN address this issue
 - Leverage current capabilities into new IDSS
 - Address water quality issues and economic impacts
 - New partnerships and national/regional/local collaboration
 - Support NOAA and NOS to reduce hypoxic zones and HABs

- Supports the creation of Runoff Risk IDSS as a NOAA/NWS Ecological Forecast Service tool addressing nutrient pollution
Runoff Risk in Wisconsin

- Started in 2009, Live in 2011
- DATCP built, owns, and maintains the website (Public Face)
- First generation tool uses operational lumped model
- Spatial scale has always been a concern
- RRAF conditioned by analysis with observed field runoff
- Important to communicate limitations
Wisconsin’s RRAF

- Runoff Risk Advisory Forecast Updated 3 Times Per Day

Map of Wisconsin showing runoff risk levels and precipitation forecast for the next 3 days. Basin name: LAKE WINNEBAGO OSHKOSH (OSHW3)

3-day spreading risk forecast on Apr 07: Moderate
Earliest runoff expected (after Apr 07): Apr 07

Precipitation Forecast (inches)

Single-Day Runoff Risk

Forecast updated: Apr 7 4:00 PM
Wisconsin incorporated RRAF into state nutrient reduction plan

Mentioned in 2014 Government Accountability Office (GAO) report on freshwater

Other federal agencies are supportive and interested:
- Briefed senior NRCS scientists and federal HTF members

GLRI Priority Watershed Group
- New states engaged (OH and MI)
- Funding development and expansion of 2nd generation tool
Transition from lumped model to distributed (4km x 4km grid)

- Spatial scale was a concern: 300 mi² → 6 mi²
- Requires new model setup, all new analysis
- Collecting more edge-of-field runoff data
Second Generation Mock-up
Proposed Expansion via GLRI

[Map of the United States highlighting states in red, indicating the proposed expansion areas.]
Collaboration Growing & Essential

Established

Starting

Building a Weather-Ready Nation
Key Points

- First-of-its-kind real-time DSS focused on timing of any surface applied manure and fertilizer to reduce ag-field nutrient losses

- Meets numerous initiatives and goals in NOAA/NWS strategic plans

- Multi-agency collaboration with state led working groups and state investment, ownership, and delivery
 - State ownership and delivery required due to state specific rules for applications

- Increasing demand for this type of tool by increasingly sophisticated users and state agencies

- Requires little effort to incorporate into daily farming routine/management could produce positive impact:
 - More efficient fertilizer usage = save money
 - Decrease nutrient loads = improve environment
Wisconsin RRAF

- Google “Wisconsin RRAF”
 - www.manureadvisorysystem.wi.gov/app/runoffrisk

- Background Information
 - NOAA Tech Report NWS 55
 - http://docs.lib.noaa.gov/noaa_documents/NWS/TR_NWS/

Further Questions & Comments

- Dustin Goering (dustin.goering@noaa.gov)
- Steve Buan (steve.buan@noaa.gov)