THE INLAND EXTENT OF LAKE-EFFECT SNOW BANDS

Michael L. Jurewicz, Sr.
NOAA/NWS Binghamton, NY

Joe Villani
NOAA/NWS Albany, NY

Great Lakes Operational Meteorology Workshop
Grand Rapids, MI
August 25, 2015
Outline

- Motivation
- Inland Extent (IE) Forecasting Tool
 - Original Concept
 - Nuts and Bolts
 - Latest Research
- Current and Future Applications
Much collective research has been focused on better understanding/anticipation of Lake-effect Snow (LES):
- Formation/intensity
- Placement/movement
- High-resolution modeling

However, IE is not on this list
- Theories from limited research (Niziol 1995, Evans/Wagenmaker 2000) have pointed to the following potential modulating factors:
 - Mid-level short-waves
 - Low-level convergence boundaries
 - Ambient moisture
 - Strength of mixed-layer flow
Identify the atmospheric ingredients / land-sea interactions that have the greatest influence on IE of LES bands

Used previous research / forecaster suggestions to come up with an initial list of parameters to look at

- Used near-term (0-3 hour) NAM model data at select locations and observed 00z/12z soundings for input
- Original dataset looked at 2006-2010 Lake Ontario single-band cases, with more recent events viewed from 2012-2014
- Compared observed IE with parameter values
Points in and near the LES band

BUF sounding

ALY sounding
Most highly correlated IE parameters

- The existence of a Multi-Lake connection (MLC)
- 850/700 mb lake-air differentials (strong negative correlations)
 - Conditional to low-end moderate instability classes seen as favorable
 - More extreme instability classes generally unfavorable
- 0-1 km Speed Shear
 - 1-3 km Speed Shear had much weaker correlation
- Moisture depths/Mixed-layer dew point depressions
The existence of a MLC seemed to be more important than how many upstream lakes were involved.

Quartiles used to help define different IE categories:
 - Shallow (IE 45 miles or less)
 - Moderate (IE 45-130 miles)
 - Deep (IE greater than 130 miles)
COMPOSITES CONSTRUCTED FOR "TYPE A" (DEEP IE) EVENTS (MSLP, 850 MB, 700 MB, AND 500 MB)

MODEL TRAJECTORY ANALYSES CAN ALSO BE USEFUL
Parameter Values vs. IE

An example of how stability class tends to modulate IE
“TYPE A” SOUNDING - PROMOTES DEEPER IE

“TYPE B” SOUNDING - PROMOTES SHALLOWER IE
Current IE Forecasting Tool

- Functional on AWIPS 1 and 2
- Forecaster inputs certain variables and others are automatically ingested from the latest model data
- Output = IE mileage values over time
 - Mean absolute error for all database events was around 20 miles
 - Application did especially well in Deep IE cases
Example of Current IE Application Interface

Select Values for the Following:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake Temperature (°C)</td>
<td>7</td>
</tr>
<tr>
<td>Capping Inversion (Km)</td>
<td>3.5</td>
</tr>
<tr>
<td>Multi-Lake Connection</td>
<td>Huron + Superior</td>
</tr>
<tr>
<td>Model</td>
<td>nam</td>
</tr>
<tr>
<td>Location</td>
<td>syr</td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Temp (°C)</td>
<td>-3.36</td>
</tr>
<tr>
<td>Mixed Layer Wind Speed (kts)</td>
<td>22.19</td>
</tr>
<tr>
<td>Mixed Layer Wind Direction (deg)</td>
<td>292.74</td>
</tr>
<tr>
<td>850 Temp Difference (°C)</td>
<td>20.36</td>
</tr>
<tr>
<td>700 Temp Difference (°C)</td>
<td>27.06</td>
</tr>
<tr>
<td>0–1 Km Wind Speed Shear (kts)</td>
<td>13.85</td>
</tr>
<tr>
<td>0–3 Km Directional Wind Shear (Deg)</td>
<td>2.43</td>
</tr>
<tr>
<td>Model Time</td>
<td>01/05/11</td>
</tr>
</tbody>
</table>

Inland Extent = 132.11

Severe instability = snow possible (check sfc T)

![Inland Extent Calculator interface](image-url)
The Future

- Better visualization
 - IE graphical interface is being overhauled
 - Hope to have new version ready this coming winter
 - Incorporate this research into BUFKIT
- Do high-resolution models reasonably simulate inland extent?
- Future LES Polygon experimentation?
 - Could be extremely useful in this paradigm
- Similar methodology could be used in other portions of the Great Lakes region
Have length of vector boxes and position of terminus points vary according to IE application output.
REALITY = 65 MILES (SHOWN HERE); IE APPLICATION = 75 MILES
WRF IE = 95 MILES
QUESTIONS?

Joe.Villani@noaa.gov
Michael.Jurewicz@noaa.gov

www.weather.gov/aly
www.weather.gov/bgm