The Ontario Winter Lake-effect Systems (OWLeS) Project
Influences of Upwind Lakes

David Kristovich, Luke Bard, Leslie Stoecker

University of Illinois at Urbana-Champaign
Recent Lake-Effect Field Projects

Univ. Chicago Lake Snow Project
 Braham and Kelly (1982)
 1970s and 1980s

Lake Ontario Winter Storms
 Reinking et al. (1994)
 1990

NWS Lake Effect Snow Study
 e.g., Gurka (NWA, 1997)
 Mid-1990s

Lake-Induced Convection Experiment
 Kristovich et al. (2000)
 1997-1998

Great Lakes Ice Cover – Atmospheric Flux Experiment
 Gerbush, Kristovich, Laird (2005)
 2004

Long-Lake Axis Parallel
 Steiger et al.
 2010-2011
OWLeS – Ontario Winter Lake-effect Systems Field Efforts
OWLeS Principle Scientists

Millersville Univ.
Rich Clark
Todd Sikora

Univ. of Illinois
Jeff Frame
Dave Kristovich

Univ. of Wyoming
Bart Geerts

University of Alabama
Kevin Knupp

Ctr Severe Weather Research
Karen Kosiba
Josh Wurman

Hobart & William Smith Coll.
Neil Laird
Nick Metz

State Univ. of New York – Albany
Justin Minder

State Univ. of New York – Oswego
Scott Steiger

Univ. of Utah
Jim Steenburgh

Pennsylvania State Univ.
George Young
Univ. Illinois Soundings

Photo by S. Kristovich

Univ. Illinois, Univ. Delaware, St. Louis Univ., SUNY-Oswego
Lake-to-Lake Lake-effect Cloud Bands

TWO FOCUS POINTS

• What are the effects of upwind lakes?

• Process by which the influence occurs

Rodriguez, Kristovich, and Hjelmfelt (2007)
OWLeS January 28, 2014
Lake-to-Lake Lake-effect Cloud Bands

TWO FOCUS POINTS

- What are the effects of upwind lakes?
- Process by which the influence occurs

Rodriguez, Kristovich, and Hjelmfelt (2007)
OWLeS January 28 2014

King Air N2UW Flight Track

Open Water
OWLeS January 28 2014
OWLeS January 28 2014

WCR Radar Reflectivity (dBZ)
(WCR vertical velocity)2 (m2/s2)
Lake-to-Lake Lake-effect Cloud Bands

TWO FOCUS POINTS

• What are the effects of upwind lakes?

• Process by which the influence occurs

Rodriguez, Kristovich, and Hjelmfelt (2007)
Summary and Findings

- Plume of air modified by Lake Erie
- Observed Influences of Plume
 - Clouds formed more quickly
 - Increased snowfall rate
 - Increased vertical mixing
- Subsidence near shoreline
- Influences
 - Reduced upwind stability
 - Cloud-scale circulations
 - Potential Seeding
Acknowledgements

- OWLeS PIs and participants
- UWKA pilots, crew and project managers!
- NWS Support
- Bart Geerts, Sam Haimov (U. Wyo)
- National Science Foundation, Physical and Dynamic Meteorology Prog., AGS 12-59004
- University of Illinois Sounding Team
Look for our article in BAMS!

Courtesy of Bart Geerts
Summary and Findings

- Plume of air modified by Lake Erie
- Observed Influences of Plume
 - Clouds formed more quickly
 - Increased snowfall rate
 - Increased vertical mixing
- Subsidence near shoreline
- Influences
 - Reduced upwind stability
 - Cloud-scale circulations
 - Potential Seeding
Spatial Evolution of Lake-effect Snow

Flight Leg 13, Flight Stack B, 818 m AGL average
The red line indicates the shore line.
Locations of vertically-consistent updrafts