Atmospheric Influences on New Snowfall Density in the Southern Appalachian Mountains, USA

L. Baker Perry¹, Douglas K. Miller², Sandra E. Yuter³, Laurence G. Lee⁴, Stephen Keighton⁵

¹ Appalachian State University, Boone, NC; ² University of North Carolina at Asheville, Asheville, NC; ³ North Carolina State University, Raleigh, NC; ⁴ National Weather Service, Greer, SC; ⁵ National Weather Service, Blacksburg, VA

Introduction and Background

- Variations in new snowfall density have a significant influence on new snowfall totals, as the same liquid equivalent precipitation forecast from numerical model output can yield wide differences in actual snowfall.
- New snowfall density variability and the associated atmospheric influences remain poorly understood, particularly in mountainous regions where orographic effects predominate.
- The research objectives of this poster are to:
 - Analyze the atmospheric influences on snow density and within snowfall events.
 - Summarize new snowfall densities on Pogo Mountain, NC, during a two-year period.
 - Compare new snowfall densities by low-level wind direction and surface temperature.

Field Site, Instrumentation, and Methods

- Snowfall and SWE measurements were taken at 002, 1Z2, and 1Z2 during snow events at 1018 m using a snowboard and a 10-cm diameter precipitation gauge to extract a core.
- Meteorological data were obtained using a portable station at 1137 m while a vertically-pointing Ku-band MicroRainRadar, Parsivel disdrometer, and Pluvio weighing precipitation gauge provided additional data at 1018 m.
- During the 2007-2008 snow season, the research team also released rawinsondes every three hours during snow events from 1018 m.

Surface Analyses for Selected Snowfall Events

Result

- Twenty-four (88%) of the snowfall events during the study period were associated with low-level northwest flow at event maturation, ranging between 270 and 315 degrees.
- Fifteen events (56%) exhibited new snowfall densities between 25 and 75 kg m⁻³, with 8 events (30%) greater than 100 kg m⁻³.
- Surface temperature and new snowfall density are moderately correlated (R = 0.67).
- The mean new snowfall density for all events was 69 kg m⁻³, with cold (< 2 °C) northwest flow events having the lowest (55 kg m⁻³). Both warm (> 2 °C) northwest flow events and the small sample (n = 3) of other synoptic types had the highest new snowfall densities (149 kg m⁻³).

Acknowledgements

Special thanks to the Naval Postgraduate School and Dick Lind for use of a sounding base unit and rawinsondes, Dave Spencer and Daniel Horn for hardware and software support, Ryan Boyles, Aaron Sims, and Mark Brooks for development of a web interface, and Alice Weldon for on-site accommodations. Justin Arnold, Amanda Bower, Daniel Cobb, Greg Cutrell, Daniel Espada, Jake Gentry, Amy Harless, Sarah Jessop, John L’Heureux, Philippe Papin, Chase Perry, Holden Perry, Luke Perry, Patience Perry, Ryan Reynolds, Gerald Satterwhite, Jonathan Sugg, Jonah Waterman, and Kensie Whifield assisted with rawinsonde releases. This material is based upon work supported by the National Science Foundation under Grant No. ATM-0544766 (Yuter) and a grant from the UNC General Administration Research Competitiveness Fund (Perry, Miller, and Yuter).