Tsunami Modeling for Apra Harbor, Guam

Kwok Fai Cheung, PhD, PE Professor of Ocean and Resources Engineering University of Hawaii at Manoa

Guam Homeland Security – Office of Civil Defense Agana Heights, Guam

January 16, 2018

Outline of Presentation

National Tsunami Hazard Mitigation Program (NTHMP): Tsunami Model Benchmarking 2015

Maritime Hazard Mapping in Hawaii and American Samoa in collaboration with US Coast Guard District 14

Modeling Strategy for Guam

Validation of Model Setup: The 2011 Tohoku Tsunami at Apra Harbor

Sample Data Products for Apra Harbor

Input from the Maritime Community

2015 NTHMP Benchmark Results

Maritime Hazard Mapping Hawaii

USCG District-14 Responses to Tsunamis

- Integrated plan for Hawaii and American Samoa
- Warning (forecast water-level rise > 1 m): Evacuation of ships and shore personnel
- Advisory (inundation not imminent, but expect strong currents): Severe Weather Plan

Data Products (with community input)

- Offshore currents from Mw 9.3 and 9.6 Aleutian tsunami scenarios for evaluation of safe zones, defined outside the 100-m depth contour
- In-harbor hazard maps of current, surge & drawdown for advisory-level tsunamis

Database of scenarios

- Three major subduction zones
- Earthquake at 0.1 Mw increments up to ~1 m nearshore wave amplitude
- Modeling at the present MSL

Operation modes:

- Earthquake location and magnitude
- Earthquake location and forecast near-shore wave amplitude

Maximum Surface Elevation

Maximum Drawdown

Maximum Current Speed

USCG Summary Tables

Aleutian	Honolulu Ha	rbor: Water Sur	Water Current		
Earthquake	Surge	Drawdown	Cycle Time Range	Speed	Cycle Time Range
Magnitude	(feet)	(feet)	(minutes)	(knots)	(minutes)
7.6	0.6	0.7	9 – 20	0.6	9 – 20
7.7	0.8	0.9	9 – 20	0.7	9 – 20
7.8	1.0	1.2	10 – 20	0.9	9 – 20
7.9	1.3	1.5	10 – 20	1.2	9 – 20
8.0	1.8	2.0	10 – 20	1.6	9 – 20
8.1	2.2	2.4	10 – 20	2.1	10 – 20
8.2	3.0	3.3	10 – 20	2.7	10 – 20
8.3	3.6	4.3	10 – 21	3.5	10 – 21
8.4	4.7	4.7	11 – 21	4.8	11 – 21

Aleutian	Hilo Harb	or: Water Surfac	Water Current		
Earthquake	Surge	Drawdown	Cycle Time Range	Speed	Cycle Time Range
Magnitude	(feet)	(feet)	(minutes)	(knots)	(minutes)
7.5	2.3	2.0	8 - 13	2.7	13
7.6	2.6	2.6	8 - 13	3.5	13
7.7	3.6	3.9	8 - 13	4.5	13
7.8	4.6	4.3	8 - 13	5.2	13 - 20
7.9	6.2	5.2	8 - 13	6.0	13 - 20
8.0	8.2	6.6	8 - 13	7.4	13 - 20
8.1	9.2	8.2	8 - 13	9.3	13 - 20

Computational Domains for Sensitivity Test

Identify Critical Source Regions for Guam

Maximum Sea-surface Elevation offshore of Apra Harbor, Guam From Mw 8.5 earthquakes at Pacific Subduction Zones

Critical Tsunami Sources for Guam

Source characteristics from Global Earthquake Model (Berryman et al., 2015)

Tsunami Source	Convergence Rate (mm/yr)	Preferred Coupling Coef	Preferred Max Magnitude
Marianas*	49	0.2	8.3
Nankai*	44	0.9	8.7
Ryukyu	58	0.2	8.5
New Guinea*	22	0.7	8.8
Manus	9	0.5	8.5
Philippine*	29	0.3	8.5

*Selected for modeling

Nested Grids

Level-1 grids at 2-arcmin (~3600 m) from tsunami sources to Guam.

DEM Sources:

- 30 arcsec (~900 m) GEBCO;
- 2001 USACE SHOALS LIDAR at 4 m resolution;
- 2003 UH SOEST multibeam at 5 m resolution;
- 2007 UH SOEST multibeam at 60 m resolution;
- 2007 USACE LiDAR topography at 0.5 m resolution;

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

1000 m

- 2007 USACE LiDAR bathymetry at 4 m resolution
- 2008 US Navy & NOAA multibeam at 1 m resolution at Apra Harbor
- Digitization of nautical charts for shallow reefs at Apra Harbor

Model Validation

2011 Tohoku Tsunami

- Self-consistent fault-slip model for the earthquake and tsunami (Yamazaki, Cheung, and Lay, JGR Solid Earth, 2018)
- Prior validation with coastal waveform and runup along Japan coast, current measurements in Hawaii, and DART records across the Pacific

Sample Results based on the 2011 Tohoku Tsunami

Tsunami Sources along the Philippine Trench (Advisory level)

Tectonic Structures

 USGS/PMEL seismic source parameters and geometry

Rupture scenarios

- Ye, Lay, Kanamori & Rivera (2016a, b, JGR Solid Earth)
- Scaling relation from Mw 7.0+ megathrust earthquakes from 1990 to 2016
- Dimensions constrained by local subduction zone
- Slip determined from seismic moment with assumed rigidity of 3×10¹⁰ N/m²

Earthquake location

Most direct path of the tsunami to Guam

Input from Maritime Community

Need to identify pile-supported docks and piers in Apra Harbor. LiDAR survey showed structures as terrain by water can freely pass through underneath.

New bathymetry survey data?

Potential data products include

- In-harbor hazard maps of surge, drawdown, and currents for advisory-level tsunami scenarios from four critical source locations.
- Maps of offshore surge and current for preferred maximum tsunamis from the critical source locations

