

## Background

The central Culf Coast region is on e of the most vunereable strecthes of coastine in the United States in regards to tropical




BOTES $=$ Back Of The Envelope Surge Botes is auick assessment model to provide operational forecasters insight on potentidil impacts.

 recursor scheme was the Tableteop First Guess Storm Surge Model (Ricks, 207) Hydrosatic based equation using resesure differential ( $4 Z=$ =-gQP)

The final surge calculution simplifies to $0.28^{*}(1-1 / / / /)^{*} \Delta \rho / 12.28$ of
Surge $(f t-M S L)=0.26775^{*}(1-\mathrm{d} / \mathrm{r}) * \Delta \mathrm{P}$




P1.47

## Methodology

1. Enter elements common to NHC Atlantic tropical cyclone advisory

Latitude, Longitude, Max Wind, Min Central Pressure, Direction/Speed of storm 2. Enter initial ambient pressure field obtained from an objective analysis scheme at coastal forecast locations
3. Temporally interpolate the advisory elements for 1 -hour resolution time steps
4. Compute the wind-pressure relationship equations for each 1 -hour time step

- Kraft \& NHC methods

5. Apply Haversine equation to compute distance of storm center from forecast locations for each time step.
6. Compute the Holland curves and retrieve forecast location pressure corresponding to Haversine distance/bearing
7. Apply Ricks surge equation for each forecast location at each 1 -hour time step. 8. Compute steps $3-7$ for left and right tracks of the NHC seasonal error cone. 9. Generate .csv file of results for particular advisory with left, right and advisory track computed surge values for each forecast location.
8. Using ArcMap with previously obtained QC LIDAR high resolution topographic map of the forecast area, merge the .csv file with the elevation data; subtract surge values from ground elevations to produce inundation maps.
The spreadsheet approach allows for a single page input of the advisory information, with hish lighted cells of required (yellow) and optional (green) input elements. -Input and output tables are concisely placed to produce a one-page printout for briefing purposes. - Individual tabs compute the Haversine, Kraft and Ricks math and associated surge hydrographs. - Annual astronomical tide data are included for each forecast location. - Bathymetric factor can be applied (set to 1.0 for shallow-sloped shores common to the forecast area.)

## Conclusion and Future Development


The short turnaround methodocogy provides an efficient ineerace to torcmAP poltting and computing of storm surge inundation.



BOTES: A Methodology for Quickly Assessing Tropical Storm Surge
Robert J. Ricks, NOAA/NWS, New Orleans/Baton Rouge, LA

## Functionality of BOTES




## Hurricane Isaac (August 28-29, 2012)






Acknowledgements and References






