Impact-Based Decision Support Services for the National Airspace System

FEB 24, 2023

Joe (Joey) Carr National Aviation Meteorologist

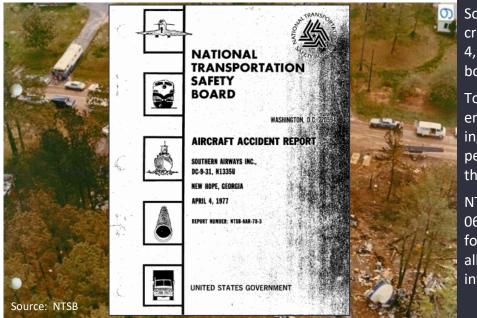
BACKGROUND

Born in NOLA - grew up in Metairie, LA 1987 – Graduated Riverdale High School right across the river 1987-1989 – Attended University of New Orleans 1989-1991 – Graduated Florida State University

Summer 1990 ... NWSFO New Orleans (Slidell) - Summer Intern

Mar 1992 - Mar 1995 ... NWSFO Raleigh-Durham - Intern/Fire Weather Forecaster

Mar 1995 – Oct 2004 ... WPC (Weather Prediction Center) Formerly HPC (Hydro-meteorological Prediction Center)


- Development and Training Meteorologist

Oct 2004 – July 2014 ... NCEP Central Operations (NCO)

- Senior Operations Specialist (Supercomputer Operations)
- Senior Duty Meteorologist
- Senior Duty Meteorologist Team Lead
- Production Management Team Lead
- Dataflow Team Lead
- Senior Duty Meteorologist Team Lead

July 2014 – Current ... Aviation Weather Center (AWC) - National Aviation Meteorologist (NAM)

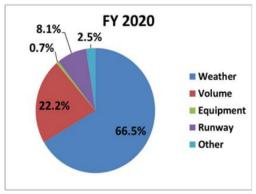
Why Are Meteorologists at CWSU's?

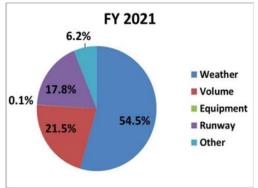
Southern Airways Flight 242 crash in New Hope, GA on April 4, 1977...72 souls lost (22 onboard survived)

Total loss of thrust from both engines due to damage from ingest of water/hail while penetrating an area of severe thunderstorms

NTSB recommendation A-77-068 to formulate procedures for the timely dissemination of all available severe weather information by controllers

One year later (1978) FAA had 3 NWS meteorologists in 13 ARTCCs; August 1981 - FAA had 4 NWS meteorologists in all 21 ARTCCs Partnership continues to this day!


Brief History of the NAMs


- Pre-1995
 - NWS Meteorologists at ATCSCC
- Post-1995
 - FAA Weather Specialists at ATCSCC
- May 2012
 - NWS Returned to ATCSCC (2 Meteorologists)
- August 2014
 - 1 Meteorologist & 1 Manager Added
- July 2016
 - 2 Meteorologists Added
- January 2019
 - Last FAA Specialist Retires
- NOW
 - 1 Manager (Vacant) (Meteorologist), 5 Meteorologists

Causes of National Airspace System Delays

Delays by Category

The two charts below show the sources of delays at Core 30 airports by type of delay.

Note: System impact delays are delays assigned to causal facilities in OPSNET and are composed of delays due to TMIs, departure delays, and airborne delays. System impact delays are also the basis for delays by class and delays by cause in OPSNET. (http://aspmhelp.faa.gov/index.php/OPSNET_Reports: Definitions of Variables)

Source: Federal Aviation Administration, Air Traffic Organization, Office of Performance Analysis (AJR-G), Operations Network (OPSNET), March 7, 2022.

As much as 67% of the delay in the NAS can be attributed to weather, resulting in US economic losses of roughly 23,000,000,000 USD annually.

Multi-Million Dollar Losses to Aviation

18,411 Cancellations

1/22-1/25 2016 - Winter Storm and **Thunderstorms**

211,226 Min of Delay

8/20/15 - Thunderstorms

322 Diversions

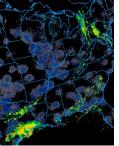
6/15/15 Thunderstorms

~\$8K Loss / Flight

(variable per flight/aircraft type)

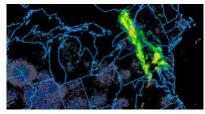
TS Impacting:

ORD - DFW


DFW - IAH

ORD - NY/PHL/DC

~\$8K Loss / Flight (variable per flight/aircraft type)



AM & PM TS EWR. LGA. JFK & PHL (Routes Blocked)

AM TS $IAH \leftrightarrow DFW$ (Routes Blocked & TS at Terminal)

~\$74 Loss / Minute

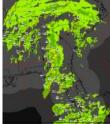
Types of Losses Airline Crew (timeout) Missed connection Missed meeting/vacation Hotel (airline/passengers)

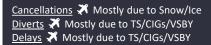
Reimbursing Tickets Food

Taxis

Rental Cars

Fuel (airlines & passengers)


Maintenance (airlines) Lost demand (passenger uses other means)


GDP reduced

Tarmac rule (> 3 hours)

\$27,500 per passenger (paid to Trans Dept)

Cancel/Divert/Delay Data Provided by: MTRE

Cost Data provided by:

Source: Eckert, 2017

*Some airlines

build divert

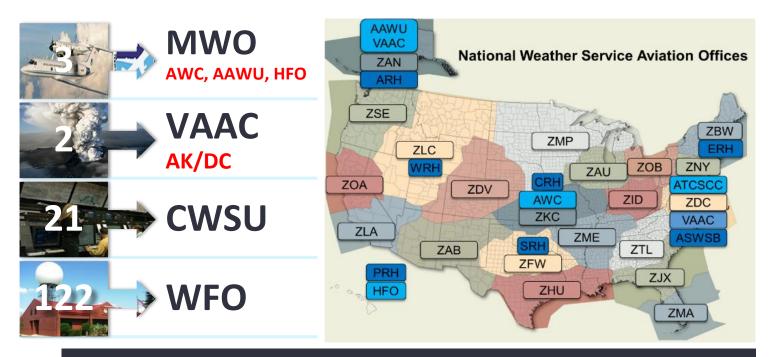
costs into

budgets

NOAA/NWS Aviation Program

122 Weather Forecast Offices

21 Center Weather Service Units


3 Meteorological Watch Offices

2 Volcanic Ash Advisory Centers

NWS Meteorologists provide embedded Impact-Based Decision Support Services at the ATCSCC as well as the 21 ARTCCs

NOAA/NWS Aviation Program

NWS Meteorologists provide embedded Impact-Based Decision Support Services at the ATCSCC as well as the 21 ARTCCs

Aviation Weather Center

The Aviation Weather Center, located in Kansas City, MO, shares a facility with National Weather Service **Central Region** Headquarters, as well as the NWS Training Center.

This is Our Mission

AWC Mission

The Aviation Weather Center's highly skilled people deliver global operational aviation weather products and services essential to safe and efficient flight, and economic well-being.

NAM Mission

Ensure the safe and efficient operation of the National Airspace System through the provision of timely, relevant, accurate and consistent environmental information to decision makers.

Key Aviation Stakeholders

Federal Aviation Administration (FAA)

National Transportation Safety Board (NTSB)

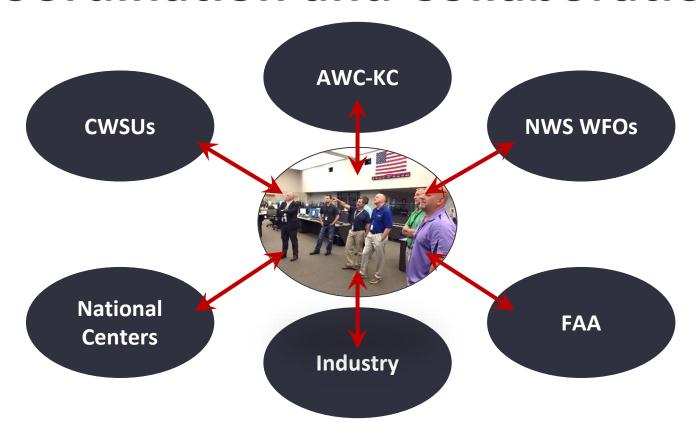
Airlines For America (A4A)

International Air Transportation Association (IATA)

National Business Aviation Association (NBAA)

General Aviation Community

Aircraft Owner and Pilot Association (AOPA)



International Meteorological Service Providers

International Civil Aviation Organization (ICAO)

Coordination and Collaboration

NWS Support to ATCSCC

Improve safety, efficiency, and decision making for the National Airspace System

Support Collaborative Decision Making

Balance air traffic demand with system capacity

Fully Integrated and Embedded IDSS

Our goal is to paint a cohesive national weather picture to the Command Center to improve safety, efficiency, and decision making.

Impact-Based Decision Support Services

"Information is cheap. Meaning is expensive."

- George Dyson, Science/Technology Historian

Weather information is voluminous. This can lead to "paralysis by analysis."

Experience, training, interpretation and insight

= keys to aiding in smart, safe, & effective decision making!

"We don't care where your forecasts are correct or have the highest confidence ... tell us where you could be wrong ... because that is where all the planes are going" – Retired FAA Controller

"NAM forecasters are meteorologists, but more importantly, we are risk managers who assess weather risk and communicate that risk in a manner which allows users to make decisions."

Impact-Based Decision Support Services

Decision support includes, but not limited to:

- Real-time assessments of current & forecast weather
- Collaboration with NWS and airline meteorologists
- Planning outlooks out to 4 days including PERTI
- Post-event forecast reviews and debriefings
- Meteorological insight supporting traffic management initiatives
- And much, much more...

Daily Products and Briefings

- Customized TAF Updates: 05, 07, 09, 11, 13, 15, 17, 19, 21 (Local)
- TCF Collaboration 06, 0730, 10, 12, 14, 1530, 18, 20 (Local) (March October)
- 4-Day Terminal Outlook 0730 Local
- NWS HQ Standup Briefing 0745 Local
- ATCSCC Standup Briefing 0800 and 1600 Local
- Caribbean/Snowbird Outlook 0815 (Apr-Oct, Fri; Nov-Mar, Fri-Sun)
- AWO Update #1 0830 Local
- NAS Weather Outlook Graphics (up to Day 8) 0930 Local
- TCF Daily Review on NSR 1000 Local (Mon-Fri)
- SysOps Director VTC (8-Day Outlook) –1030 Local (Tue)
- PERTI Outlook 1030 Local
- PERTI Webinar Pre-Brief 1300 Local
- PERTI Planning Webinar 1430 Local
- AWO Update #2 1530 Local
- Day 2 NAS Weather Outlook Update (PERTI) 2015 Local (Mon-Fri)
- Scheduled and Ad-hoc ATCSCC briefings: ~15 to 20 per day
- Space Weather (SWPC), Ozone & Volcanic Ash -- as needed
- Ad-hoc Telecon Briefings/NWS Chat for coordination/collaboration
- Special weather packages ... Winter Weather, Tropical systems, 5G ... etc

TAF Impacts Board

Potentia	d Imna	act None	Slight	Moderate	High			Val	id at: 10	000 117	C 07 Fel	2020	1		٦
						07/447	07/457							07 (007	
Time @TOPE	OBS	07/102	0//112	0//122	07/132	07/142	07/152	07/162	0//1/2	07/182	07/192	07/202	2 07/212	07/22Z>>	
KBOS	CIG	CIG	CIG	CIG	CIG	CIG	CIG	CIG	CIG	WSpd	WSpd	WSpd	WSpd	WSpd	
KCLE	WX	WX	WX	WX	WX	WX	WX	WX	WX	WX	WX	WX	WX	WX	
KLGA	VIS	VIS	VIS	VIS	VIS	WX	WGst	WSpd	WSpd	WSpd	WSpd	WSpd	WSpd	WSpd	
KEWR	CIG	VIS	VIS	VIS	VIS	WX	WSpd	WGst	WGst	WGst	WGst	WSpd	WSpd	WSpd	
KJFK	VIS	VIS	VIS	VIS	VIS	CIG	CIG	WX	WGst	WGst	WGst	WGst	WGst	WGst	
KPIT	WX	WX	WX	WX	WX	WX	WX	WX	WX						1
KPHL	VIS	VIS	VIS	VIS	VIS	CIG	CIG	WGst	WGst	WGst	WGst	WGst	WGst	WGst	
KBWI	VIS	[VIS]			WGst	WGst	WGst	WGst	WGst	WGst	WGst	WGst	WGst		
KIAD	VIS	VIS			WGst	WGst	WGst	WGst	WGst	WGst	WGst	WGst	WGst		1
KDCA	CIG	CIG	CIG	CIG	CIG	WGst	WGst	WGst	WGst						
KCLT	WGst	WGst	WGst	WGst	WGst	WGst	WGst	WGst	WGst	WGst	WGst	WGst	WGst		
KATL															1
кмсо															
KTPA													Potei	ntial i <u>m</u>	pacts noted are
KFLL		WX	[WX]												
KMIA		WX	[WX]	WX									<u>airpo</u>	rt-spec	i <u>fic</u> , based on
@TOPC													Aviat	ion Wy	Impacts Catalo
KMSP	WX	WX	WX	WX	WX	WX	WX						Aviut	IOII VVA	impacts cutulo
KDTW	WX	WX	WX	WX	WX										
KORD	WX	WX													
KMDW	WX	WX	WX												
KCVG	WX	WX	WX	WX	WX	WX	WGst	WGst	WGst	WGst	WGst	WGst	WGst		
KSTL	WX	WX	WX												
KMEM	WX														
KDFW															1
KIAH															
@TOPW															
KSEA	VIS	VIS	CIG	CIG	CIG	CIG	CIG	CIG	CIG	CIG	CIG	CIG	CIG	CIG	
KPDX	WSpd	WSpd	WSpd												
KSLC															1
KDEN	VIS	[WX]	WX	WX	WX	WX	WX	WX	WX	WX	WX	WX	WX	WX	1
KSFO				VIS	VIS	[CIG]	[CIG]	[CIG]	[CIG]						
KLAS															
KLAX					CIG	CIG	CIG	CIG	CIG						
КРНХ															
KSAN													İ		
Time														07/22Z	1

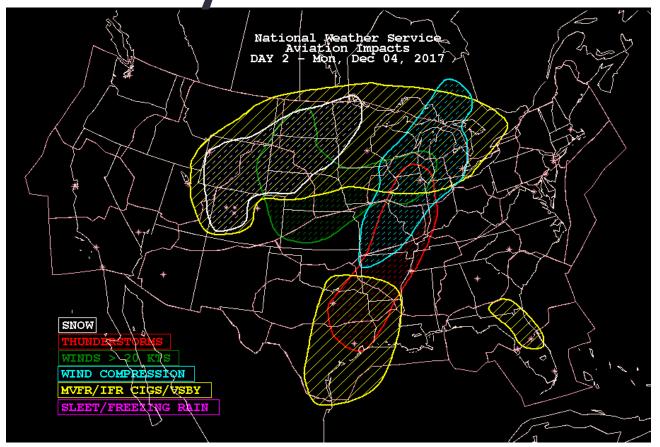
Aviation Weather Impacts Catalog

	WINDS (wind speed or gusts triggers category) [(>= WDIR1 & <= WDIR2) AND ((> WSPDmin & <= WSPDmax) OR (> WGSTmin & <= WGSTmax))]					CIG (if coupled with wind, then both are needed to meet CAT), otherwise needs to meet CAT on its own. & [(>= CIGmin & < CIGmax)]				VSBY - (If coupled with wind, then both are needed to meet CAT), otherwise needs to meet CAT on its own & [(>= VISmin & < VISmax)]				WEATHER (Independent of Wind)					
Airport	>= WDIR1	<= WDIR2 >	WSPDmin	<= WSPDmax	> WGSTmin	<= WGSTmax	CAT	Wind Notes	>= ClGmin	< ClGmax	CAT	CIG Notes	>= VISmin	< VISmax	CAT	VIS NOTES	wx	CAT	WX NOTES
ANY	000	360	0	999	0	999	0		000	999	0		0	0.55	3	Generic; see airport criteria	SN	3	
ANY	000	360	0	999	0	999	0		000	002	3	Generic; see airport criteria	0	999	0		FZRA	3	
ANY	000	360	0	999	0	999	0		000	999	0		0.55	0.8	2	Generic; see airport criteria	FZDZ	3	
ANY	000	360	0	999	0	999	0		000	999	0		0.8	1.55	1	Generic; see airport criteria	IP	3	
ANY	000	360	0	999	0	999	0		002	005	2	Generic; see airport criteria	0	999	0		TS	3	
ANY	000	360	0	999	0	999	0		005	008	1	Generic; see airport criteria	0	999	0				
ANY	000	360	29	999	34	999	3	Generic; see airport criteria	000	999	0		0	999	0				
KBOS	20	170	20	999	25	999	3		000	999	0		000	999	0		RA	1	
KBOS	20	170	0	20	0	25	0		000	999	0		0	1	3	2	SHRA	1	
KBOS	20	170	0	20	0	25	0		000	999	0		1	5	2	2	DZ	1	
KBOS	20	170	0	20	0	25	0		000	005	3	AAR=28	000	999	0	,	FU	1	
KBOS	20	170	0	20	0	25	0		005	015	2	AAR=32	000	999	0		BLDU	1	
KBOS	20	170	0	20	0	25	0		015	035	1	AAR=38	000	999	0		VCFG	1	
KBOS	180	10	0	17	22	25	0		000	005	3	7044-30	0	999	0		BCFG	1	
KBOS	180	10	0	17	22	25	0		005	009	2		0	999	0		BUFG		
KBOS	180	10	0	17	22	25	0		009	031	1	AAR=38	0	999	0	2			
KBOS	180	10	0	17	22	25	0		000	999	0	AAR=38	3	4	1	r			
KBOS	180	10	0	17	22	25	0		000	999	0		1	3	2				
KBOS	180	10	0	17	22	25	0		000	999	0		0	1	3				
KBOS	180	10	17	999	25	999	3	AAR=30-32	000	999	0		0	999	0				
VROS	100	10	17	999	25	999	•	AAK=30-32	000	999	U			999					
KLGA	280	350	11	17	17	23	1	04/22 X-WIND	000	999	0		0	999	0		RA	1	
KLGA	280	350	17	20	23	30	2	04/22 X-WIND	000	999	0		0	999	0		SHRA	1	
KLGA	280	350	20	999	30	999	3	04/22 NOT USED; AAR=28-30	000	999	0		0	999	0		DZ	1	
KLGA	360	90	6	12	16	20	2		000	999	0		0	999	0		FU	1	
KLGA	360	90	12	999	20	999	3		000	999	0		0	999	0		BLDU	1	
KLGA	100	160	11	17	17	23	1	04/22 X-WIND;	000	999	0		0	999	0		VCFG	1	
KLGA	100	160	17	20	23	30	2	04/22 X-WIND;	000	999	0		0	999	0		BCFG	1	
KLGA	100	160	20	999	30	999	3	04/22 NOT USED;AAR=28-30	000	999	0		0	999	0				
KLGA	170	270	6	12	16	20	2		000	999	0		0	999	0				
KLGA	170	270	12	999	20	999	3		000	999	0		0	999	0				
KLGA	10	360	0	999	0	999	0		000	999	0		3	5	2				
KLGA	10	360	0	999	0	999	0		000	999	0		0	3	3				
KLGA	10	360	0	999	0	999	0		010	032	1		0	999	0				
KLGA	10	360	0	999	0	999	0		000	003	3	AAR=32	0	999	0				
KLGA	10	360	0	999	0	999	0		003	005	2	AAR=34	0	999	0				
KEWR	110	160	11	15	16	20	2	04/22 CROSSWIND	000	999	0		0	999	0		RA	1	
KEWR	110	160	15	999	20	999	3	04/22 CROSSWIND									SHRA	1	
KEWR	170	260	11	15	15	20	1	11 NOT USED	000	999	0		0	999	0		DZ	1	
KEWR	170	260	15	29	20	34	2												
KEWR	270	330	11	15	15	20	1												

TAF Updates – Every 2 hours or as needed

	Z FRI 02/07/20
BOS	01006KT 68M -RA BR OVC005 FM071500 13011g20KT 15M -RA BR OVC003 FM071800 21021G35KT 45M BR BKN010 WS020/20050KT FM072100 24027G46KT P6SM OVC020 WS020/22055KTLLWS ends 00Z
N90	08006KT 28M -RA OVC005 W8020/20035KT FM071300 13008KT 28M -RA OVC006 W8020/17040KT FM071400 16010KT 55M -RA OVC007 W8020/17045KT FM071500 2001729KT 55M -RA BKN012 BKN026 W8020/21055KT FM071500 24022639KT 55M -RA BKN019 BKN045 W8020/20050KTG45KT 17Z
PHL	VRB05KT 18M BR OVC004 TEMPO 0710/0712 1/4SM PC VV002 FM071300 17009KT 4SM BR OVC008 WS020/16040KT FM071400 2302025KT 5SM BR OVC009 WS020/19045KT FM071400 2602263PKT 6SM -SHRA BKN015VFR at 192.
DC	16005KT 1/4SM -RADZ FG BKN002 OVC008 (IFR at DCA) FM071100 18010G17KT 5SM -SHRA BKN008 OVC050 FM071300 27016G38KT 5SM -SHRA BKN015 OVC050 FM071600 28016G38KT P6SM BKN05015G30KT at 18Z.
CLT	24020G32KT P6SM SCT050 FM072200 28012G21KT P6SM SCT200
ATL	TEMPO 0710/0712 -RA BKN015
TPA	/MCO NSW
MIA	/FLL 21015625KT PÉSM VCTS BRN040CB OVC060 TEMPO 0711/0712 24020g35KT 48M TSRA BRN015CB OVC025 FM071300 30012622KT 65M SBRA OVC025VFR at 162.
	36008KT 3SM -SN BR OVC015 Less than 1" snow FM071 400 34013G20KT P6SM OVC025 VFR at 192.
	34009KT P6SM -SHSN FEW015 SCT025 BKN035NSW at 11Z.
MSP	VRB02KT 3SM -SN BR OVC035 TEMPO 0710/0711 2SM -SN OVC025 FM07 1100 34004KT P6SM -SN OVC035Snow ends 16ZLess than 1/2"
DFW	/IAH/SLC/SAN/LAS/PHX NSW
DEN	25012KT P6SM VCSH SCT010 OVC050 TEMPO 0710/0711 5SM -SN BR BRN015 FM071100 21006KT 5SM -SN BR SCT015 OVC024 TEMPO 0712/0716 2SM -SN BR BKN012 FM071700 18007KT 55M -SN BR SCT010 OVC0251" snow
SEA	FM071100 24012KT 4SM -DZ BR OVC004 FM071900 18009KT P6SM VCSH OVC010
	FM071200 00000KT 5SM BR FEW003
SFO	FM0/1200 00000RT SSM BK FEW003 TEMPO 0714/0718 BRN004 FM0/1800 VRB03KT 6SM HZ FEW004NSW at 22Z.

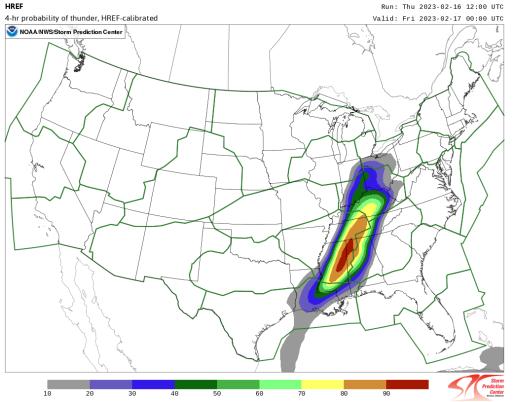
```
10Z SKI COUNTRY
                                                   FRI 02/07/20
ASE 00000KT 1 1/2SM -SN BKN021 OVC027 WS020/31045KT
    FM071300 30009KT 1SM -SHSN OVC008 WS020/30040KT
    FM071500 30010G20KT 3/4SM -SHSN OVC009
    FM080000 30009KT 3SM -SHSN BKN011
                                         5-11" Through Afternoon
EGE 23010KT 3SM -SHSN OVC027
    FM071200 25008KT 1 1/2SM -SN BR OVC015
    FM072000 25015G23KT 5SM -SHSN OVC028.... 2-4" total snow
RIL 26008KT 2SM -SHSN OVC024
    FM071800 26010KT 4SM -SHSN OVC030
    FM072000 26010KT 6SM -SN OVC040 ...2-4" total snow
JAC 22007KT 1 1/2SM -SN SCT005 OVC015
    FM071200 24015G25KT 1 1/2SM -SN BLSN OVC015
    FM080000 23014G20KT 3SM -SN SCT015 BKN030 3-7" total snow
SUN NSW
BZN VRB06KT 4SM -SN BR SCT015 OVC040
    TEMPO 0710/0711 1SM -SN OVC015
    FM071100 VRB06KT 1 1/2SM BR SCT007 OVC015
    TEMPO 0711/0715 3/4SM -SN BR OVC007
    FM071700 VRB06KT 3SM -SN OVC020 2-4" total snow
    FM071800 VRB06KT P6SM VCSH BKN035
                             FOR INTERNAL USE ONLY
```

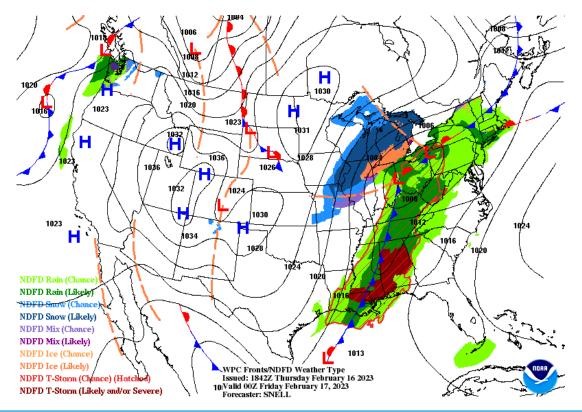

4-Day Terminals Outlook

ATCSCC MAJOR AIRPORTS FORECAST

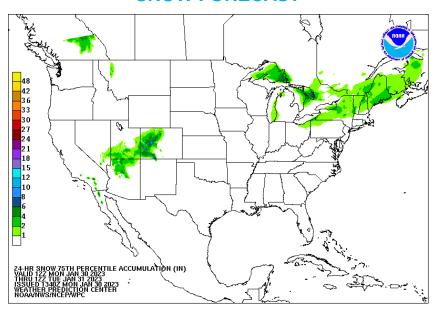
Tuesday, January 24, 2023

ARPT	WED JAN 25	THU JAN 26	FRI JAN 27	SAT JAN 28
BOS	PM MVFR/IFR/SN (1")→ RASN EVE COMPRESSION	AM MVFR/IFR/RA PM WSW 20G30KT	NSW	NSW
NYC	MVFR/IFR PM E15G25KT AM SN (0.5")/PM RA PM COMPRESSION	AM MVFR PSBL WSW 20G30KT	NSW	NSW SW 10-15KT
PHL	MVFR/IFR PM E 10-15KT AM SN (<0.5")/PM RA PM COMPRESSION	NSW W 20G30KT	NSW	NSW
DC	MVFR/IFR AM RASN→RA / PM RA PM COMPRESSION	NSW W 20G30KT	NSW	NSW
CLT	MVFR/IFR/RA S 15G25KT	NSW	NSW	NSW
ATL	AM MVFR/IFR/SHRA/ ISOLD TS SSW 15G25KT	NSW WNW 15G25KT	NSW	NSW
CFL	AM MVFR/IFR PM SHRA/ISOLD TS	AM MVFR/IFR	NSW	NSW
S FL	NSW	PM CHC SHRA	NSW	NSW
DTW	MVFR/IFR/SN (3-5") PM NE 15G25KT	AM MVFR	PM MVFR/CHC SN SW 15G25KT	MVFR/AM IFR PSBL
ORD	MVFR/IFR/SN (2-4") PM NE→N 15G25KT	MVFR/CHC SN (0.5")	MVFR/CHC SN SW 15G25KT	EVE MVFR/CHC SN
MSP	MVFR/IFR/CHC SN (1")	NSW	AM MVFR/CHC SN	NSW
MEM 02Z-08Z	MVFR	NSW	NSW	MVFR/IFR/RA
DFW	AM MVFR/IFR	NSW	NSW	MVFR PSBL/ISOLD SHRA
IAH	NSW	NSW	NSW	MVFR/PM SHRA
DEN	MVFR PSBL/AM CHC SN (0.5")	NSW	NSW	MVFR PSBL/PM CHC SN
SLC	NSW	NSW	NSW	AM MVFR/CHC SN
SEA	AM MVFR/IFR	AM MVFR/IFR	MVFR/IFR/CHC RA	MVFR/IFR/CHC RA EVE CHC RASN
SFO	NSW	NSW	NSW	AM MVFR
LAX	NSW	NSW AM NE 10-15KT	NSW	NSW
SAN	NSW	NSW	NSW	AM MVFR/IFR PSBL
LAS	NSW	NSW	NSW	NSW
PHX	NSW	NSW	NSW	NSW

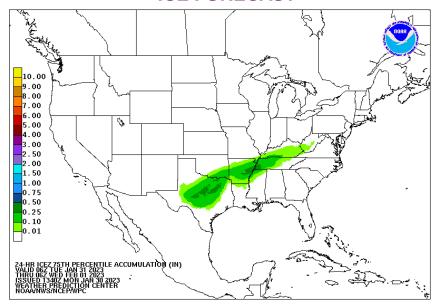

NAS Daily Weather Outlook


SPC THUNDERSTORM OUTLOOK

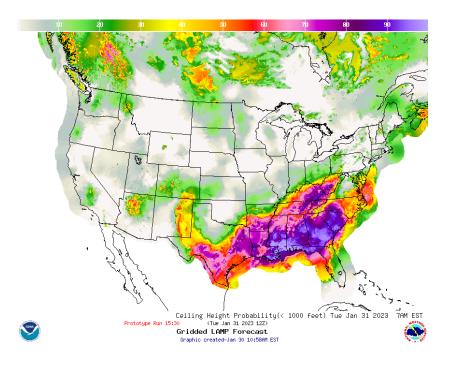
HREF 4-HR PROBABILITY OF THUNDERSTORMS - CALIBRATED

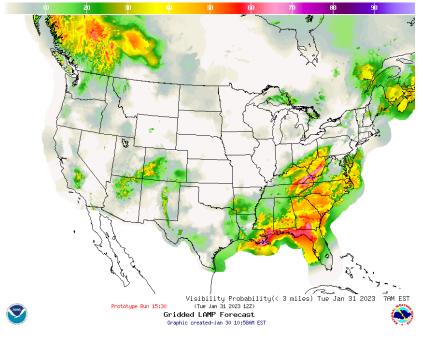


WPC FORECAST GRAPHICS



WPC WINTER WEATHER GRAPHICS


SNOW FORECAST



ICE FORECAST

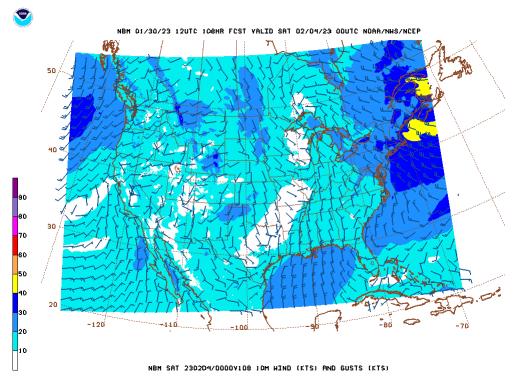
MDL GRIDDED LAMP FORECAST - CEILINGS/VSBY

COMPRESSION OUTLOOKS - ZNY

COMPRESSION ... WHAT IS IT? UNFAVORABLE WIND AT MULTIPLE VERTICAL HEIGHTS LEADS TO A STACKING OF AIRCRAFT ATTEMPTING TO LAND.

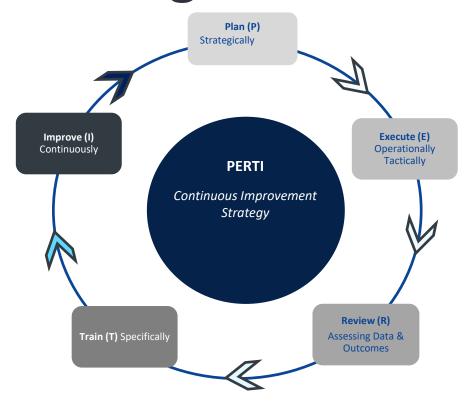
CONFIGURATION DEPENDENT – NOT LLWS

EXAMPLE:


- 75 KT TAIL WIND (SOUTHWESTERLY AT FL030)
- 15 KT HEAD WIND (SOUTHWESTERLY AT SFC)
- RESULTS IN 90 KT OF COMPRESSION
- DESCENDING AIRCRAFT FORWARD SPEED ACCELERATES WITH TAIL WIND ... THEN THEY FACE AN ABRUPT HEAD WIND RESULTING IN DECELERATION.

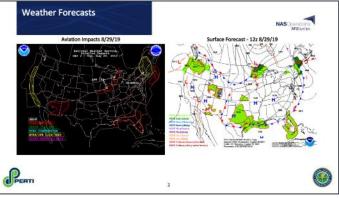
RESULT:

 CONTROLLERS MUST ALLOW FOR ADDITIONAL SPACING BETWEEN AIRCRAFT ... DELAYS!!


SURFACE WIND FORECAST

PERTI Planning


What is PERTI?


- NAS-wide initiative, part of the Continuous Improvement Strategy
- Involves resources, processes, and analytics
- Advanced Planning window with an outlook ranging from 2-8 days
- Development of strategic plans and Critical Decision Window timing and goals for the operational "day of"

PERTI Planning

QC Assessments – On Demand/As Needed - Let's look back How did we do?

Seattle Low IMC Fog Event - 11/20/18

Overview: A period of low instrument meteorological conditions occurred at Sea-Tac International Airport from approximately 10502 to 18302 on Tuesday, November 20, 2018. During this period, ceilings lowered to 100ft AGC with an indefinite reling reported for up to an hour at times. Visibility was reduced to less than 1/16 mile with periods of Runway Visual Range as low as 300ft. A brief period of Improvement occurred between 1348-14352, with visibility 45M and no ceiling, however, LIMC conditions returned and peristed until the end of the period.

Forecast: Discussion Monday emphasized continued high pressure in place across the region, with patchy fog likely overnight Monday into early Tuesday morning, and areas of IMC fog possible. Near surface moisture, with drylstable air above it, was forecast, with light southerly winds aloft. This supported conditions favorable for radiation fog development, particularly near moisture sources and vallets, but typically not widespread or long duration.

Forecast confidence in a LIMC fog event increased Monday evening, as lowland fog began to develop earlier than anticipated. DCC weather, NWS and DAL all began forecasting a low or very low IMC fog at Sea-Tac early fuesday morning, with a larger coverage area.

Northeast Winter Storm - 11/15/18

Oversidest_low pressure developing along the coucheastern U.S. coast moved north late the Mid-Atlantic and northeastern U.S. A variety of precipitation occurred with mostly snow inland and a mixture of snow, sleet, freezing rain and rain along and east of the 195 corridor.

Model forecasts, from November 13*-3.4*, were mostly favoring the rain/pinew line moving west of the I-SS compler Thursday morning in the DC area, with PHA, and NOB airports furring event or not undrung the afformone. The rain/proving westward much slower than anticipated, and resulted in a more lengthy period of heavier snow and sleet than originally

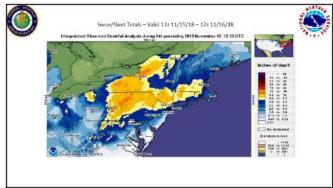
DEZ TAFs were used, due to the fact that they were based on the OOZ model guidance. Early morning decisions were being made on the overright TAFs. After 12z the TAFs were frequently amended to better fit the ongoing weather situation(s) at the individual situation.

Verification: The High Resolution Rapid Refresh model (HRRR) seemed to resolve the rain/show line position and increment much better than other guidance for this event in the DC to PHL corridor. The HRRR was too quick with the change to rain from the total to the control of the total to the change to rain from the change to rain from the change to the change to the change to rain from the change to rain from the change to the change to rain from the change t

images included:

24 hour snow/ice accumulation analysis

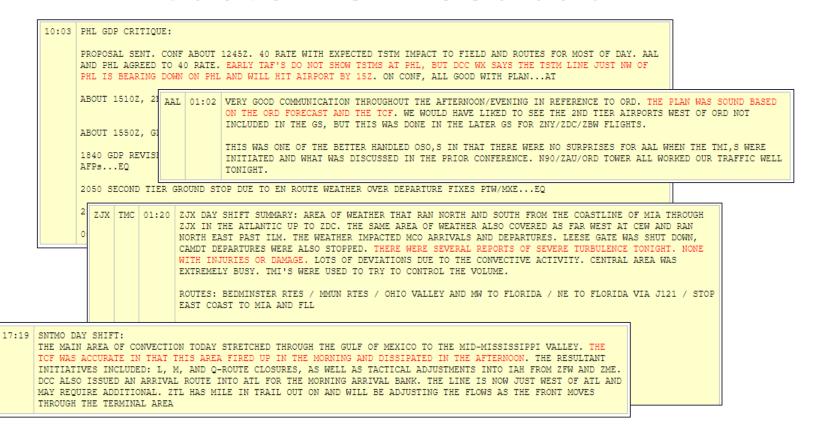
11/15/18 - 00Z HRRR (High Resolution Rapid Refresh) forecasts of precipitation type valid 12z, 15z, 18z, 21z & 00z


icy Data included

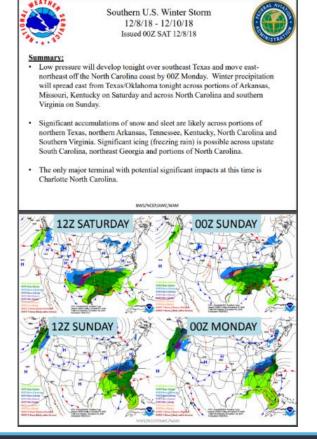
- 06Z NWS TAFs for DCA, IAD, BWI, PHL, EWR, LGA & JFK
- D67 DAL TAPS for DCA, LGA & JFK
 D67 UAL TAPS for IAD & FWR
- O6Z UAL TAFS for IAD & EWR
 O7Z AAL TAF for DCA. PHL & IFK
- . Key METARS for DCA, IAD, BWIL PHIL EWIL LOA & JPK

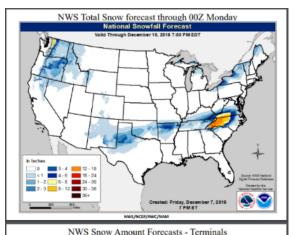
Both NWS and DAL TAFs begin forecasting potential for LIFR Ceilings Tuesday morning the day prior with similar start and end times. DAL TAF is slightly more aggressive, with cig/vis lower and longer.

EM210000 15004KT PISSM BKN200



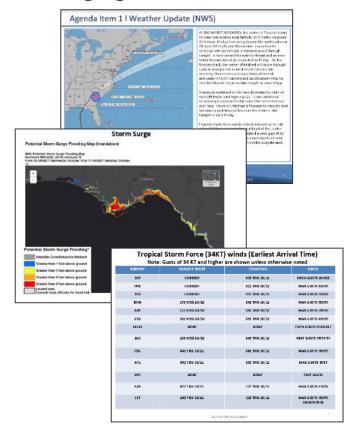
NATIONAL AVIATION METEOROLOGISTS


TEMPO 2012/2016 15M BR BKN002


FM201600 05005KT SSM BR SCT005 SCT200 FM201800 34006KT P65M SCT200 FM202100 35006KT P65M SCT350 BKN200

Customer Feedback

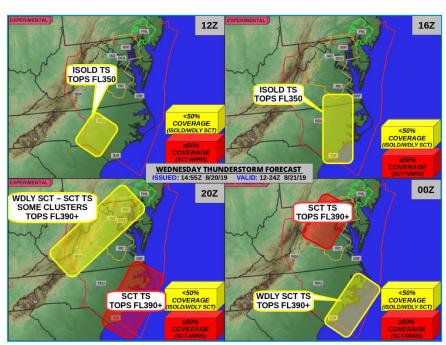
Significant Event Updates – Winter Weather Event

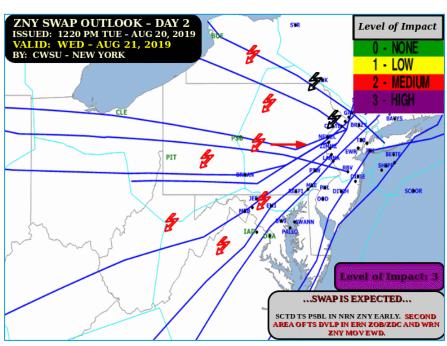


AIRPORT	SAT	SAT NGT	SUN	SUN NGT
окс	Sleet/Snow. 1-2"	Flurries	NSW	NSW
TUL	Sleet/Snow. <1"	Flurries	NSW	NSW
ROA	NSW	Snow after midnight, 1"	Snow. 3-5"	Snow, 1"
LYH	NSW	NSW	Snow, 2-4"	Snow, 1"
RIC	NSW	NSW	Snow, <1"	Snow, <1"
RDU	NSW	Sleet/Snow, <1"	Sleet/Snow. 2-4"	Rain/Sleet/Snow. <1"
CLT	NSW	Snow/Sleet/FRZA, 2-4"	Snow/SleenFRZA, 3-5*	Snow/SleesFRZA. <1"

JATOC/J-CAT Support

What is the JATOC Crisis Action Team?


- Part of the Joint Air Traffic Operations Command's (JATOC) Incident Command System
- NAMs provide support during J-CAT activation similar to NWS support to State/Federal Emergency Operations Centers
- Activation triggered by a wide spectrum of events, from civil unrest to natural disasters
- Routine support to ATO Watch Officer (AWO) continues when J-CAT not active (Twice per day updates)


Severe Weather Avoidance Plan (SWAP)

- A formalized program developed for areas susceptible to disruption in air traffic flow due to thunderstorms (provides the least disruption to the NAS) Note: This is not the same definition the NWS uses for severe weather
- Each facility (ARTCC) develops its own strategy for managing severe weather events (some develop joint plans with adjacent facilities) and alternatives to minimize/mitigate airspace impacts
- Facility plans (SWAP statements) are delivered to the ATCSCC and may become part of the daily NAS Operations Plan (SWAP advisories)
- Responses are tailored to meet forecast/actual weather events: Planned Routes (open/closing highways), Control Air Flow space by limiting the number of aircraft over a given time in a defined region

SWAP Outlook (ZNY/ZDC)

https://www.weather.gov/images/zdc/DAY1 IMPACTS.png

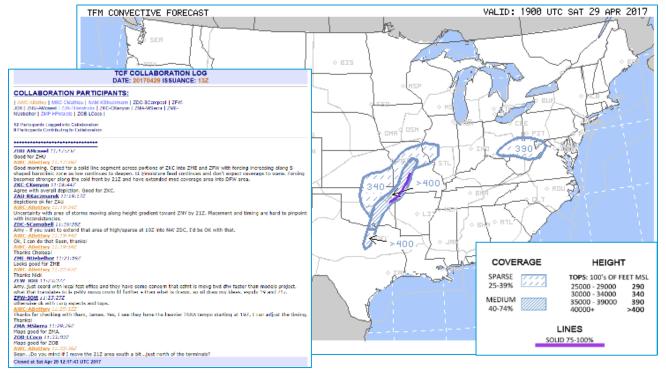
https://www.weather.gov/zny/SWAP 1

Traffic Flow Management Convective Forecast (TCF)

Collaborated forecast issued every 2 hours, 24/7
Forecast lead times of 4, 6, and 8 hours **High Confidence** areas only...Does **NOT** account for lightning

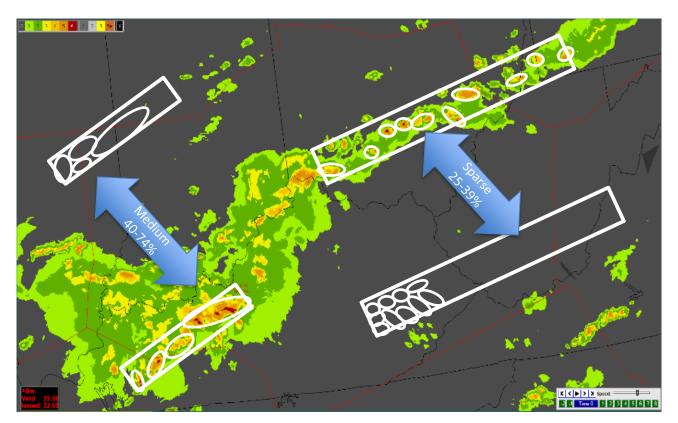
Available on internal FAA systems and web (www.aviationweather.gov/tcf)

- Areal coverage >25% sparse, >40% medium
- Linear coverage >75%, >100NM
- <u>></u>40dBz Reflectivity
- Echo Tops >FL250


First Issuance: 1 March 0230 EST

Last Issuance: 31 October 1830 EDT

(Southern Ontario/Quebec: 1 Apr-30 Sep)

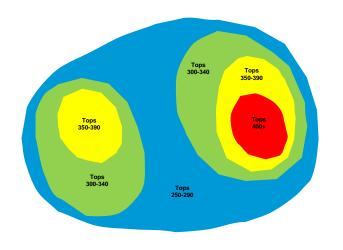

*Automated TCF continues Nov-Feb

Traffic Flow Management Convective Forecast (TCF)

Collaboration is vitall TCF is the primary convective guidance for the FAA to determine Traffic Management Initiatives.

TCF Coverage Example

TCF Echo Top Forecast

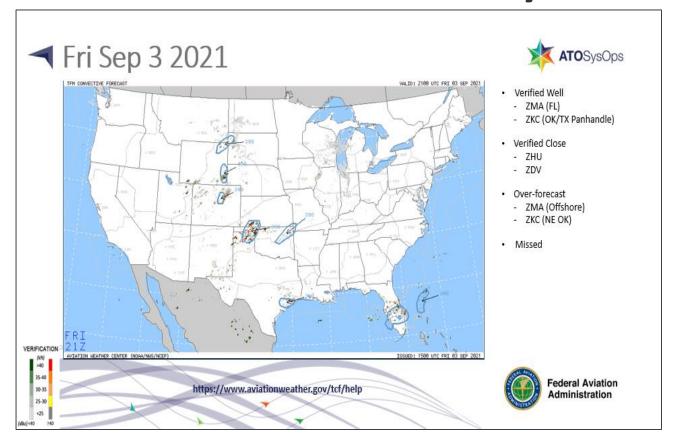

Does not represent maximum echo top height!

Represents the highest tops with coverage at least 25% within the polygon... some tops could be higher.

TCF Echo Top Forecast

Start at highest tops and work down

	Height	Total Area	
	400+	10% total area	
	350-390	= 20% total area = 30% total area	
	300-340	30% = 40% total area	
<u></u>	250-290	40%	



What is the first instance of \geq 25% total area?

Echo tops forecast is 340

Per FAA feedback, FL320 is a critical level for operations. Focus is given to this threshold while forecasting tops during the collaborative sessions.

TCF Verification and Daily Review

Key Aviation Weather Websites

- <u>https://www.weather.gov/aviation/</u>
 NWS Aviation Weather Services Homepage
- <u>https://www.aviationweather.gov/</u>
 Aviation Weather Center Homepage
- <u>https://www.aviationweather.gov/trafficflowmgmt/portal</u>
 Traffic Flow Management Portal
- https://www.weather.gov/###
 Center Weather Service Units (### is ARTCC...e.g. zdc)\
- <u>https://mobile.weather.gov/</u>
 Mobile browser friendly page
- <u>@NWSAWC</u>
 AWC Social Media (Facebook & Twitter)

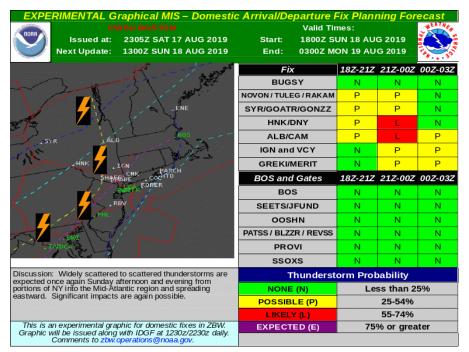
"First, it should be understood that forecasts possess no intrinsic value. They acquire value through their ability to influence the decisions made by users of the forecast."

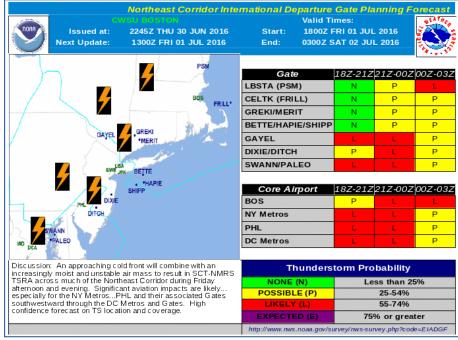
- Allan H. Murphy, Weather and Forecasting (June 1993)

"Weather is intertwined with nearly every decision we make."

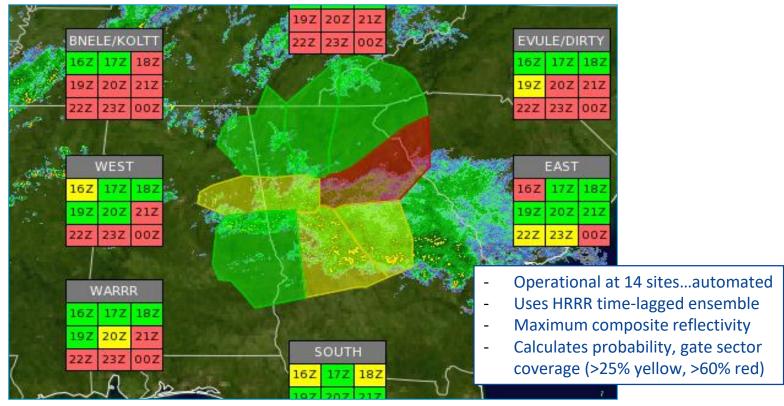
- Bryan Beck, ATCSCC National Operations Manager

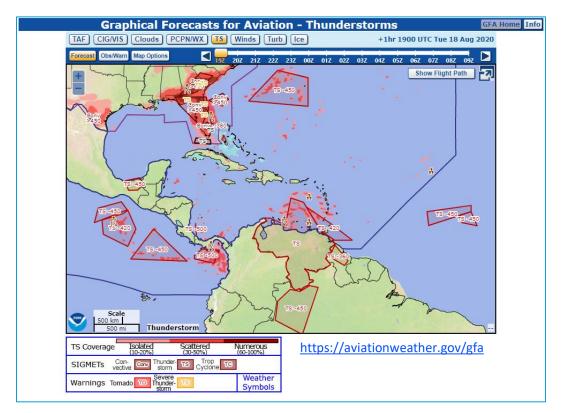
Questions?


NWS Thunderstorm Products


Convective Outlooks Issued by SPC (Out Through Day 8)

Days 1-2 Probability Outlooks for Tornado, Wind and Hail https://www.spc.noaa.gov/products/outlook/


Arrival/Departure Gate Forecast (ZBW/ZNY/ZDC)


https://www.weather.gov/zbw/IGF

TFM Gate Forecasts

https://www.aviationweather.gov/trafficflowmgmt/gate

Graphical Forecasts for Aviation (GFA)

TCF Summary

Issuance	24 x 7, every 2 hours	Collaborated 60-90 min prior
Source	AWC Webpage/TSD	
Forecast Projections	4, 6, 8 hours	
Confidence/Coverages	High Confidence Sparse	25% to 39% coverage
	High Confidence Medium	40% to 74% coverage
	Solid Line	75% and higher
Access	TSD and Web	www.aviationweather.gov/tcf
Graphic / Text	Graphic only	

Numerical Weather Prediction

There Are Many Weather Models

<u>US</u>

- GFS/GEFS
- NAM (3, 12, 36 km)
- RAP
- HRRR & HRRR-X
- WRF ARW
- WRF NMM
- NSSL WRF
- LAMP/LAMP-X
- SREF

Others

- ECMWF
- UKMET
- CMC
- RGEM
- NOGAPS
- NAVGEM
- JMA

Numerical Weather Prediction

- Gives snapshots and/or animations of future state of atmosphere
- Requires significant experience / training to correctly interpret model output
 - Scientific basis / knowledge of how models work
 - Systematic biases, strengths, weaknesses
 - Comparison with current weather to cross-check initialization
 - "Reasonableness" (smell-test)
 - Oprog/Dt : i.e. trends
- There are dozens of models out there...which one is the right one?

Deterministic vs. Probabilistic

- Probabilistic <u>establishes a</u> <u>likelihood for a particular event</u>
- Benefits to Probabilistic approach – many scenarios are considered, and the "most likely" solution is presented

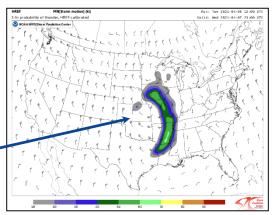
"Primitive" Weather Forecasting Equations
$$p = \rho \, R \, T \quad \text{Meal Gas Law (Equation of State)} \qquad \qquad \frac{\partial u}{\partial t} = \eta v - \frac{\partial \Phi}{\partial x} - c_s \theta \frac{\partial \pi}{\partial x} - z \frac{\partial u}{\partial x} - \frac{\partial (z^2 + v^2)}{\partial x}$$

$$\vec{A}_k = \sum \left(\vec{F}_k \right) \text{Newton's Second Law of Motion} \qquad \Delta p = -\rho g \Delta z \\ \vec{A}_v = \sum \left(\vec{F}_v \right) \mathbf{M} = (\vec{P} \vec{G} \vec{A})_v - \vec{g} \qquad \frac{\partial v}{\partial t} - \eta \frac{u}{v} - \frac{\partial \Phi}{\partial y} - c_s \theta \frac{\partial \pi}{\partial x} - z \frac{\partial u}{\partial x} - \frac{\partial (z^2 + v^2)}{\partial y}$$

$$\vec{A}_v = \sum \left(\vec{F}_v \right) \mathbf{M} = (\vec{P} \vec{G} \vec{A})_v - \vec{g} \qquad \frac{\partial v}{\partial t} - \eta \frac{u}{v} - \frac{\partial \Phi}{\partial y} - c_s \theta \frac{\partial \pi}{\partial x} - z \frac{\partial u}{\partial y} - c_s \theta \frac{\partial \pi}{\partial x} - z \frac{\partial u}{\partial y} - z \frac{\partial v}{\partial y} - z \frac{\partial$$

- Deterministic every event is the result of known inputs
 (Ex: predicting a bank account balance...you know the initial deposit and the interest rate)
- In weather, there can be <u>hundreds</u> of inputs!
- Benefits to deterministic models one solution!
- Drawbacks that one solution probably isn't correct!

Deterministic vs. Probabilistic


HRRR/NAM/WRF/NMM and most Global models are deterministic

Forecast Reflectivity (snapshot of what the radar is expected to look like)

SREF, HREF, and LAMP are Probabilistic

TSRA Probability (areas most likely to see convection)

