

Geospatial Analyses at the Lower Mississippi River Forecast Center

W. Scott Lincoln, Sr. Hydrologist/Cartographer
David Schlotzhauer, Hydrologist
NWS Lower Mississippi River Forecast Center

Overview

What do we do at the LMRFC?

- Forecast river stages for ~220,000 mi² area
 - River Gauge Data
 - Rainfall Data
 - Amount/Location and Fallen/Forecasted
 - Soil Moisture Data
- Assist with Flash Flooding

Overview

Most data used by LMRFC (or any NWS office) inherently geospatial

- Tools/Techniques for Situational Awareness
- Research

SA – Status of Model Inputs

- Models depend on valid, consistent input (GIGO)
- Volume of data overwhelming
- So, display data graphically to enable (relatively) quick/easy QC
- (note: all of the following products are generated automatically!)

Calibration Parameters

- Calibrated parameters for our hydrologic model are at least conceptually tied to real world, measureable quantities
- As such, they should not be random; they should be generally consistent spatially and temporally

Calibration Parameters

- Scripts create CSV files with the calibration parameter values
- CSV file joined to shapefile of the river basins and image is output

Calibration Parameters

Rating Curves

 Rating curves provide a means to relate an observed stage to a flow rate

Frequently updated rating curves required for hydrologic forecasting because river impacts are related to the stage but models work with discharge (flow rate)

Rating Curves

- Our system checks an online repository of USGS rating curves, downloads updates when available
- CSV file created indicating which river basins have a USGS rating curve newer than what is currently in system
- CSV file joined to shapefile of the river basins and image is output

Rating Curves

Rain Gauge Status

- Gauges used in our rainfall analysis sometimes provide inaccurate data so often, they are turned off in our system
- Once a gauge is turned off, it requires manual change to turn it back on
- Also difficult to keep track of gauges that are off

Rain Gauge Status

- Script in our system checks for which gauges are set to "on" or "off" and creates a CSV file
- CSV file joined to shapefile of the rainfall gauges and image is output

Rain Gauge Status

24hr PC PP Gauges "On/Off" Flag

2016/4/10 12:00 UTC

Updates daily.

PP_PC Gauges (WHFS)

- OFF
- ON

CoCoRaHS

Reporting

SA – Data Consistency

- Need for a consistent "one-stop-shop" of metadata (flood stage, owner, record crest) for each of our forecast locations
- Data should come from the local NWS Weather Forecast Offices, which are the maintainers of said metadata

SA – Data Consistency

- As a positive side effect, automated retrieval of gauge metadata from WFOs can also improve other issues:
 - Multiple databases/sources can cause inconsistency
 - "System" doesn't allow for single database
 - Alerts/notifications not given when WFOs change their metadata

Forecast Point Cover Sheet

Forecast Point Cover Sheet

Vermilion River

VLSL1

At Lafayette, Surrey Street Gage

http://water.weather.gov/ahps2/hydrograph.php?wfo=LCH&gage=VLSL1

State: LA

 County:
 Lafayette
 Lat:
 30.2172

 HSA:
 LCH
 Lon:
 -91.9925

Owner: N/A

USGS ID: 07386880 USACE ID:

Low Water:		FT
Action Stage:	10.0	FT
Minor Flood:	10.0	FT
Moderate Stage:	14.0	FT
Major Stage:	16.0	FT

Vertical Datum:	-2.7 FT NAVD88

VLSLI

24.9 FT 1940-08-09	CRESTS		
	24.9 F	Т	1940-08-09

16.8 FT	1947-03-13
16.4 FT	1942-04-08
15.8 FT	1993-01-20
15.6 FT	1980-05-17
15.3 FT	2001-06-10
15.0 FT	1993-01-21
14.8 FT	1977-04-22
14.6 FT	1971-12-06
14.3 FT	1966-02-16

SA – Available Data

- NWS is not the only gauge game in town
- Private Weather Station data can be valuable, e.g. wunderground.com

WeatherUnderground PWS - AWIPS

- Compile list of stations and associated lat/lon
- Scripts retrieve wunderground.com data and sum rainfall for each station
- Scripts use arcpy to build shapefile set
- Shapefile set transferred to operational system
- (future?...increase efficiency using LINUX only [pyshp]; create auto QC algorithm)

WeatherUnderground PWS - AWIPS

WeatherUnderground PWS - AWIPS

WeatherUnderground PWS – GR2Analyst

- Same data collection process as previous, but with different parameters and timing
- Matter of formatting data properly so display program can ingest/understand

GR2Analyst is a widely-used radar interrogation program utilized by meteorologists.

WeatherUnderground PWS – GR2Analyst

```
lix-lw-www1/grlevel2/shapefiles/LIX WU 1hrRain Placefile.txt
:!!! DISCLAIMER ----
THIS FILE SHOWS DATA RETRIEVED FROM PRIVATE WEATHER STATIONS ON THE
;WEATHERUNDERGROUND INTERNET SITE AT wunderground.com. THE DATA OBTAINED AND
DISPLAYED IS NOT QUALITY CONTROLLED BY THE NATIONAL WEATHER SERVICE. THE DATA
; IS PROVIDED 'AS IS' AND THE FORECASTER MUST BE RESPONSIBLE FOR DETERMINING THE
;DATA'S FINAL QUALITY AND USEFULNESS.
THE DATA IS COLLECTED AND FORMATTED TO MEET SPECIFIC NATIONAL WEATHER SERVICE
SPATIAL AND TEMPORAL NEEDS AND IS NOT INTENDED FOR USE OUTSIDE OF NATIONAL
; WEATHER SERVICE APPLICATIONS.
;---- END DISCLAIMER !!!
Title: LIX WU Station 1 hour Rainfall Total ending 2016-04-12 15:52Z
Color: 200 200 255
IconFile: 1, 20, 49, 1, 48, "http://www.meteor.iastate.edu/~ckarsten/chase/placefiles/black barbs.png"
Font: 1, 16, 1, "Courier New"
RefreshSeconds: 60
;WU STATIONS (scanned 455 WU PWS in the LIX CWA; 317 reported valid data below)
             (bounding box for scan defined by latitudes: 28.9 to 34.2 and longitudes: -92.2 to -88.2)
Object: 32.103508, -88.204414
 Threshold: 999
Icon: 0, 0, 0, 1, 24, KALBUTLE3 ;text string displayed on mouse hover
 Color: 255 255 255
Text: 0, 0, 1, 0.0 ; last number is hourly rain in inches
End:
```

WeatherUnderground PWS – GR2Analyst

SA – Data Presentation

- Sometimes map isn't the best answer
 - Relatively high bandwidth requirement to display
 - Hard to navigate/manipulate on smartphone
 - Users with visual impairments
- So, show data in tabular format
- Rely on users' inherent geospatial knowledge

Current Gauge HTML

- Script collects current/forecast stage data from various sources
- Script writes data with appropriately formatted HTML tags embedded in ascii file
- NWS Content Management System ingests HTML and displays to web

http://w2.weather.gov/lmrfc

Current Gauge HTML

```
outf.write(' ' + crlf)
outf.write(' \langle td \rangle' + ID + \langle td \rangle' + crlf)
outf.write('
         ' + CurrStage + '' + crlf)
outf.write(' ' + Crest + '' + crlf)
outf.write(' ' + " " + '' + crlf)
outf.write('
           <a href="' + tablelink + '">Table</a>' + crlf)
outf.write(' ' + crlf)
outf.write(' ' + crlf)
outf.write(' ' + Descript + '' + crlf)
outf.write(' ' + ObTime + '' + crlf)
outf.write('
          ' + CrestTime + '' + crlf)
outf.write('
           &td> ' + crlf)
outf.write('
         <a href="" + graphlink + "">Hydrograph</a>' + crlf)
outf.write(' ' + crlf)
outf.write(' ' + crlf)
outf.write('
           &td> ' + crlf)
              ' + crlf)
outf.write('
outf.write('
             &td> ' + crlf)
outf.write('
           &td> ' + crlf)
outf.write('  ' + crlf)
outf.write(' ' + crlf)
```

Current Gauge HTML

Observations and Forecasts by River System				
Forecast Group	Major Rivers			
FGMISSISSIPPI	Mississippi, Ohio, Arkansas			
FGATCHAFLA	Atchafalaya			
FGUYAZMS	Colwater, Tallahatchie			
FGLYAZMS	Skuna, Yazoo			
FGBIGBMS	Big Black			
FGUPERMS	Pearl, Yackanookany			
FGLPERMS	Pearl, Bogue Chitto			
FGPASMS	Pascagoula, Leaf, Chickashaway, Escatawpa			
FGGULFMS	Wolf, Tchoutacabouffa, Biloxi			
FGFRBRNC	French Broad, Pigeon			
FGLITLTN	Oconaluftee, Tuckasegee			
FGCPOWTN	Clinch, Powell			
FGHOLSTN	Holston			
FGHWSETN	Hiwassee			
FGTENNTN	Flint, Paint Rock			
FGDKEKTN	Duck, Elk			
FGWESTTN	Forked Deer, Wolf, Hatchie			
FGSTFRAR	St. Francis			
FGBLAKAR	Black			
FGUWHIAR	White, James			
FGLWHIAR	White, Cache			
FGUOUAAR	Ouachita, Saline			
FGLOUALA	Ouachita, Tensas			
FGUREDLA	Red, Sulphur, Big Cypress, Black Cypress			
FGLREDLA	Red			
FGCALCLA	Calcasieu			
FGVERMLA	Vermilion			
FGAMCOLA	Amite, Comite, Tickfaw, Tangipahoa, Tchefuncte			

_	G	^			_		
	v	·	_	_	·	_	_

Calcasieu River

BACK

Site GLML1 Calcasieu River nr Glenmora, LA	Latest Observation 6.26 @2016-04-18 13:45 CT	Highest Forecast Value **Below action stage**	More Data Table Hydrograph
OKDL1 Calcasieu River nr Oakdale, LA	**Missing Value**	**Below action stage**	Table Hydrograph
OBCL1	3.46	**Below action stage**	Table
Calcasieu River nr Oberlin, LA	@2016-04-18 14:00 CT		Hydrograph
MTTL1	3.82	**Below action stage**	Table
Whisky Chitto Creek nr Mittie, LA	@2016-04-18 14:00 CT		Hydrograph
BKDL1	95.32	**Below action stage**	Table
Bundick Creek at Bundick Lake, LA	@2016-04-18 13:45 CT		Hydrograph
KDRL1	4.98	**Below action stage**	Table
Calcasieu River nr Kinder, LA	@2016-04-18 14:00 CT		Hydrograph
OTBL1	**Missing Value**	4.90 (Minor)	Table
Calcasieu River nr Old Town Bay, LA		@2016-04-18 19:00 CT	Hydrograph
LCRL1 Calcasieu River at Sam Houston Jones State Park, LA	3.60 @2016-04-18 07:00 CT	**Below action stage**	Table Hydrograph
LCHL1	4.83	4.80 (Minor)	Table
Calcasieu River NEAR Saltwater Barrier, LA	@2016-04-18 13:00 CT	@2016-04-18 19:00 CT	Hydrograph
BSLL1	6.75	**Below action stage**	Table
Bayou Nezpique at Basile, LA	@2016-04-18 14:00 CT		Hydrograph
MRML1	3.25	**Below action stage**	Table
Mermentau River at Mermentau, LA	@2016-04-18 14:15 CT		Hydrograph

SA – Historical Data Availability

- Rivers tend to respond in a similar way to similar rain events, so we look for historical comparisons
- Historical daily rainfall obs dataset
 - Interpolate points to raster (Kriging)
 - Summarize/Display data

Daily Precip. Archive Project

- Maintain database of daily obs and associated interpolated rasters
- Database utilized by separate script that prompts user for period of interest
- Script uses arcpy to create storm total raster of individual daily rasters
- Auto creates graphic from template mxd

Daily Precip. Archive Project

Daily Precip. Archive Project

Sidebar - Point Data Interpolation

How can we compare different rainfall estimates of different types?

- Convert point data to gridded data using interpolation.
- IDW best for data where minima and maxima are well sampled. Can cause contour bullseyes. Can artificially increase rainfall between points.
- Spline best for data where minima and maxima need to be interpolated.
 Typically has higher interpolation errors than IDW, but not quantified. Can artificially increase rainfall between points.
- Kriging good for data that is spatially-correlated. Can provide information on how correlation changes with distance. Can assume measurement and interpolation uncertainty right at measurement point (nugget). Provides built-in methods for minimizing creation of mass.

Sidebar - Point Data Interpolation

Kriging

Semivariogram (left)

Equations that describe how data correlates spatially

Interpolation error analysis(right)

Removal of each point, comparison of predicted to actual

2012 HURRICANE ISAAC

 Isaac a slow moving minor storm with heavy rains across SE LA, especially NO

- What can we expect? -- Forecasting Tools
- What happened? -- Event Analysis

Isaac Forecasting

Consensus of forecast cones Aug 23-29

Isaac Forecasting

- 5-day rainfall (QPF) forecast
- Issued Tuesday,
 August 28th 7AM
- Final forecast
 before heavy rain
 bands begin
 impacting coast

Isaac Forecasting

- NWS Best Estimate Rainfall
- Gridded radar data offices mosaicked, then bias-corrected to official gauge stations

 Area of most significant flooding impacts (defined USGS 90th percentile streamflow)

- September 5th-8th, 2012: The National Weather Service (NWS)
 Lower Mississippi River Forecast Center (LMRFC) coordinated
 flood survey teams
 - Document impacts
 - Discuss forecast services with customers/partners
- September-December, 2012: Survey note compilation and analysis
 - Summarizing notes
 - Addressing concerns and action items
 - GIS analysis

Amite @ fort Vincent
Residents on Summerfield are cutoff
but not flooded. Some portions of
the road still impassable onthe 6th.

is near the crown of the road at foint

APPLOX wslvl = 5.8'

Amite River @ Bagon Marchac

Amite River Road and Horshoe Bend were impassable. All homes have been clevated and 9.8 feet no logiser floods, Their property is very much invido

Presby Outing 9/6/12 21" Ruin Entrance to Cump store * Indian ed 1' from Floor of clobbeux 4ª /hour dury Storm Garges higher by one foot Georges Foot of Water Independed of Northelor Rds
Water comments of treatments marthelor 8300 Thomas Marthalor ad I "ench mato shop 3:00 pm 40 crast at 8300 T Martholog Rd -15 / hyh 5pm go at Jour 7: Jup 2 proper 2044 " From 1979 on Water to back stop of home * Imput Fruktin Creek Backsup to homes may + Input Black Creek Burk. ups to here may Rent @ latter blum com 15 years get inside 6 brids of 1 Foot 8:30 am Flowsday Walnoway Thursday starting Falling * Highest Thursday coming , but Friday Sofurday Holen from water comy up buth sides ethoron Church Katern flooded more flooded now ZF Cribical Mans Rd 6500

Tches botta / Agartments on book I sloughy off back exting into bual Friday Morning 3Ft From black pions wateron two steps to across from apartment Light poli 1'=2' of lightpelo showing 5- byours aportment 18 5F+ 13.5 f+ to 14.5F+ &Look Gage - 0.38 Ft Agartment 16.5 - 16.6F1 stoff Ald slope from bond to binh Top of 14.35 shift 13 approximate on lightpute * Import some honor may Flood on River Road

angipahou @ Amite gauge crest: 80.0 + 25.3 = 105. - water found mark on east US. bank reached directory - EM is linked that LAID not overloyed - ove driveway for lot time in 18915 study at net office - Couple feet over road to vets office - Water cut off some homes or vetatice road (Thomas Rd) - up to ground above 103 ff at losts yest resist of Thomas Rd RIVER @ HWY 440 - NO INDICATIONS OF FLOODING ON ROAD; BRIDGE DECK ESTIMATED 15' ABOVE HWM CHECK FOR POSSIBLE BATUM SHIFT @ KENL

What to do with all of this different information???

This leads to a nearly year 4 year long period of:

- Compiling notes and mapped locations into a survey report
- Analyzing data
- Answering questions raised by the survey
- Compiling recommendations for improving our service
- Validating an extreme rainfall event in the New Orleans area

SOURCE

USGS
NWS/Survey
Public (High
Confidence)
Public (Low
Confidence)

The 20+ inch rainfall that started it all...

- Official site in New Orleans area reported extreme rainfall totals, but was discounted at the time.
- "New Orleans has never received that rainfall rate and not had significant flooding" – common justification.

The 20+ inch rainfall
The 27 inch rainfall* that made us search even harder...

Photo courtesy of Uptown Messenger

The 20+ inch rainfall

The 27 inch rainfall*

The 19 inch rainfall that corroborated the nearby gauges

*Additional QC from a later analysis adjusted the value downward to 19 inches.

How can we confirm/discount rainfall maximum in New Orleans?

- Estimate storm runoff as proxy for minimum basinaveraged rainfall.
- In typical watersheds with gauges at outlet point, we can estimate runoff using a rating curve and the discharge hydrograph.
- But New Orleans is not a typical watershed and runoff does not flow downhill into streams
- Runoff flows into storm drains, which have to be pumped into canals, then pumped into Lake Pontchartrain
- So use pumping data in place of rating/discharge!

SEWERAGE & WATER BOARD OF NEV DRAINAGE PUMPING STA

								<i></i>						_	_					
	WATER GAUGES					INDICATING WATT METERS Constant Daties Vertical Parapa												1		
		rtios	Die	charge			- 6	600 V Uni	in			60 (yele		et Duttes	_	Vertical			
Time	In Back of Screen	In Front of Screen	STAH	E8 C080	A	В	c	D	E	F	G	н	1	#1	#0	No.1	No.2	Ne.3	No.4	By-
12:30 A.M.	105	105	227		195		TE											-	-	1
1:00	D.	11,	332	993	138		17	15						130	700			-	-	+
1:30	103	100	230	3,70			1										-	-	-	+
2:00	113	119	331	93,	15		tr	350						BOD	3790	-	-	-	-	+
2:30	100	124	334	234				-									-	+	+	+
3:00	113	173	235	235	25		U	130						1200	310	-	-	+	+	+
3:30	124	12	234	234	295		LT							_	-	-	-	-	+	+
4:00	174	129	13"	230	222		II							7300	250 230	1	+	+	+	+
4:30	126	132	234	234	345		Lt	1382							1	1	-	-	+	+
5:00	145	15	235	235	等		4	135						精	350		+	+-		+
5:30	143	149	233	24.38											200	+	+	+-	+	-
6:00	42	148	240	240	78		H	138						150	35	0	-	+	-	-
6:30	140	188	316	Sus	795		UT	1385							7772		+	-	+	-
7:00	140	14.5	213	243	粥		LT	138							35	0	+	-	+	-
7:30	139	1.43	946	940	29%		LI	1380						_	200	-	-	-	-	
8:00	134	39	345	342	幣		U	10%							-33	0	-	+	+	-
8:30	-	139	246	244	1785		17	1300						-	0 00	-	-	+	-	
9:00	137	39	246	244	4		14	1210	1					19	0 194	0	_		-	-

Courtesy New Orleans Sewerage and Water Board

Subbasin	Rainfall (in)	Loss (%)	Loss (in)	Modeled Runoff (in)	Equivalent Depth Pumped (in)
1	16.97	13.5%	2.29	14.77	
2	11.29	1.5%	0.17	11.02	
3	10.42	2.2%	0.22	10.11	
4	12.02	4.3%	0.51	11.43	
6	17.35	20.4%	3.54	13.88	
7	12.28	3.3%	0.40	11.76	
19	9.11	2.7%	0.24	8.77	
PolderAVG	13.54	10.2%	1.39	12.13	11.94

- Uncertainty analysis shows that without the rainfall maximum, modeled runoff drops to around 10 inches, even though around 12 inches was pumped out
- How could the city pump ~2.0 inches more was pumped than what actually fell?
- So YES, this evidence supports this high rainfall maximum

Flash Flood Data -- Crowdsourcing

- Current methods of collecting flash flood reports inadequate for verifying new models/techniques under development
- Data-mining of social media, news media, and other web sources is one potential way to complement NWS LSRs

Why care about flash flooding?

- Among short-fuse weather events from 1994-2015, *flash* flooding is just shy of #1* in:
 - Number of fatalities
 - Crop/property damage

*NOTE: Ignoring the big tornado year of 2011, flash flooding would be just slightly higher than tornadoes.

Flash Flooding Statistics

U.S. Weather Fatalities: All

U.S. Weather Fatalities: Short-fuse events

Source: National Weather Service Office of Climate, Water, & Weather Services

Why improve flash flood warnings?

Source: Flooded Locations and Simulated Hydrographs Project. OU/CIMMS/NSSL/NOAA 9:00 CST

...NUMEROUS ROADWAYS
FLOODED ACROSS
WESTERN PORTIONS OF
THE COUNTY...

How do we validate the model at left which is spatial against report above?

How to improve flash flood warnings?

 Techniques need to be verified and/or calibrated against actual flash flooding

- Current reports of flash flooding come from NWS Local Storm Reports (LSRs)
 - Data is inconsistent by event and by office
 - Data lacks areas of confirmed "no flooding"
 - Data isn't used to verify warnings spatially

How to improve flash flood warnings?

• What can we do?

 Search for as much data as possible for real events and quantify the severity

- For tornadoes/straight-line winds NWS surveys damaged areas after event to determine scope and cause
- Damage for high-end wind events typically evident even in lower population areas

 Where's the evidence of high-end flash flood event?

 Where's the evidence of high-end flash flood event?

 With quick onset of flooding and quick drainage, sometimes there is no debris nor obvious mud/dirt marks in vegetation within just a few days

Social media

- Facebook pages for TV, radio, newspaper
- Twitter posts using tags Pensacola and Flood
- Youtube videos
- News media
 - TV, radio, newspaper websites
- Other web sources
 - Blogs
 - Google Traffic

Data from social media... community TV facebook

Data from social media... Twitter

Google Traffic

Youtube

Blog posts

Sources for additional reports

News Media

Quantifying report severity

Severity Label	Description/Criteria
Roadway flooded	Minor nuisance flooding of roadways
Roadway flooded (major)	Flooding of roadways deep enough to stall cars, or overtopping of bridges along major highways of modern design standards
Structure flooded	Residences or businesses flooded
Washout	Roadways or culverts completely washed away
Water rescue	Reports of persons needing to be rescued from residences or their vehicles
Dam failure	Dam eroded away to allow impounded water to release uncontrolled
Unknown	Flooding reported but little additional information provided

Adapted from:

Lincoln, W. S., 2014: Analysis of the 15 June 2013 isolated extreme rainfall event in Springfield, Missouri. *J. Operational Meteor.*, **2** (19), 233–245.

Ouachita Mountains, AR: June 2010

3hr Rainfall Average Recurrence Interval

Reports to NWS (LSRs)

5*

Ouachita Mountains, AR: June 2010

3hr Rainfall Average Recurrence Interval

LSRs & CrowdSourced

Eastern TN: August 2012

3hr Rainfall Average Recurrence Interval

Reports to NWS (LSRs)

Eastern TN: August 2012

3hr Rainfall Average Recurrence Interval

LSRs & CrowdSourced

Coastal MS: May 2013

3hr Rainfall Average Recurrence Interval

Reports to NWS (LSRs)

Coastal MS: May 2013

3hr Rainfall Average Recurrence Interval

LSRs & CrowdSourced

Springfield, MO: June 2013

3hr Rainfall Average Recurrence Interval

Reports to NWS (LSRs)

Springfield, MO: June 2013

3hr Rainfall Average Recurrence Interval

LSRs & CrowdSourced

Southwest MS: March 2014

3hr Rainfall Average Recurrence Interval

Reports to NWS (LSRs)

Southwest MS: March 2014

3hr Rainfall Average Recurrence Interval

LSRs & CrowdSourced

Coastal FL/AL: April 2014

3d Rainfall Average Recurrence Interval

Reports to NWS (LSRs)

Coastal FL/AL: April 2014

3d Rainfall Average Recurrence Interval

LSRs & CrowdSourced

LA: February 2016 & March 2016

Analysis ongoing...

LA: February 2016 & March 2016

Analysis ongoing...

Summary

- Geospatial analysis is about products and techniques
- Automation is key in operations
- Cross-platform considerations
- Expand thinking on how to obtain information and make it actionable data
- Expand thinking on what we think of as a geospatial analysis tool

REMOTE SENSING - GIS

- RADAR
- Weather Satellite
- River Gauges
- Flood Analysis
 - High Water Marks
 - Gauging records
 - International Charter
 - Satellite images of flooding
 - Extent AND Temporal record

Questions/Comments?

W. Scott Lincoln

Senior Hydrologist, Cartographer

scott.lincoln@noaa.gov

David Schlotzhauer, CEM

Hydrologist

david.schlotzhauer@noaa.gov

National Weather Service Lower Mississippi River Forecast Center Slidell, Louisiana (985) 641-4343