Increased Risk of Spring Flooding Due to Wet Fall

Very high river levels and elevated soil moisture across northern Illinois and southern Wisconsin this fall have increased the risk of flooding next spring, but flooding is not yet certain.

Multiple factors contribute to spring flooding. Fall river levels and soil moisture are just part of the overall risk. Additional spring flood risk factors will be monitored closely throughout the winter and early spring to better determine the threat.

Spring Flood Risk Factors:

- High fall river levels
- High fall soil moisture
- Winter Precipitation (Snow Cover)
- Winter Temperatures (Frost Depth)
- Spring Precipitation
- Spring Temperatures (Snow Melt)

Historical Flood Analysis

Spring flooding is more likely, but not certain, following a wet fall. This demonstrates the importance of looking at all spring flooding factors combined.
Winter 2019 Precipitation Outlook

The winter 2019 climate outlook suggests that normal to wetter than normal weather is favored for December through February across much of the Upper Midwest and Great Lakes regions.

Confidence in the winter outlook is considered to be low to moderate. This season will not have El Niño or La Niña conditions in place, which would typically allow the winter to be more predictable.

Even a normal amount of precipitation this winter season could bring an elevated risk for flooding this upcoming spring.

Potential Winter/Spring Hydrologic Impacts

- Rivers freezing at high levels
- Soil moisture freezing at elevated levels
- River ice jams
- Spring flooding due to rainfall and/or snowmelt

Spring Flood Outlooks

The next scheduled updates to the spring 2020 flood risk are during the official Spring Flood Outlooks. These outlooks will be released on the following dates:

- February 13, 2020
- February 27, 2020
- March 12, 2020

Stay Informed

The National Weather Service urges those with interests along area rivers and streams to stay tuned to future statements and outlooks through the winter and into early spring.